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We investigate the fate of the classical singularity in a collapsing dust cloud. For this purpose, we quantize
themarginally boundLemaître-Tolman-Bondimodel for spherically symmetric dust collapse by considering
each dust shell in the cloud individually, taking the outermost shell as a representative. Because the dust
naturally provides a preferred notion of time, we can construct a quantummechanicalmodel for this shell and
demand unitary evolution for wave packets. It turns out that the classical singularity can generically be
avoided provided the quantization ambiguities fulfill some weak conditions. We demonstrate that the
collapse to a singularity is replaced by a bounce followed by an expansion. We finally construct a quantum
corrected spacetime describing bouncing dust collapse and calculate the time from collapse to expansion.
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I. INTRODUCTION

It is an open problem whether the ubiquitous singular-
ities of general relativity will disappear after quantization.
Since there is no consensus so far on the appropriate
quantum theory of gravity, this question can be decided
only within a given approach and for certain classes of
models.
In this paper, we shall address the fate of the classical

singularity for a collapsing dust cloud. The framework will
be quantum geometrodynamics, which is the canonical
formulation based on metric variables. Although this
approach may not be the most fundamental one, it is a
conservative approach: one can arrive at the quantum
constraint equations by devising wave equations from
which the classical Einstein equations follow in the semi-
classical (WKB) limit [1].
There already exist various results on the fate of

singularities for collapsing spherically symmetric dust
shells. Using an effective one-loop action with an
Einstein-Hilbert term plus a Weyl tensor-squared term, it
was found that a thin null dust shell collapses and
reexpands instead of ending in a black hole (BH) singu-
larity [2]. In quantum geometrodynamics, the quantization
of a collapsing dust shell was discussed in a mathematically
rigorous way in [3–5], see also [6] for a review. The
demand for a unitary evolution leads to a wave vanishing at
the origin, that is, at the place (more precisely, the time)
where classically the singularity sits. The shell, if repre-
sented by a wave packet, collapses to a minimal radius
inside its horizon and then reexpands. In the classical

theory, this reexpanding wave packet corresponds to a
white hole. That the singularity is avoided in this way is not
surprising. In a unitary time evolution it is not possible that
the wave packet disappears in a singularity—it must
reexpand.
A different but related situation arises for quantum

cosmological models. There, unitarity does not hold for
the standard Wheeler-DeWitt equation [1]. It is, however,
possible to impose the “DeWitt criterion” of vanishing
wave function in the limit of approaching the classical
cosmological singularity. This was investigated for several
models; see, for example, [7] and the references therein.
Recently, the DeWitt criterion was generalized in order to
accommodate the conformal nature of the configuration
space [8].
Concerning the fate of collapsing dust shells, there are

also investigations in other approaches, notably from loop
quantum gravity [9–12]. Again, collapsing quantum shells
turn into expanding ones. A major issue there is the
question of the lifetime of the BH-like temporary object
and the behavior of the horizon. This is of great importance
for relating theses scenarios to potential observations. They
provide realistic models only if the lifetime is bigger than
the current age of our Universe. Otherwise, they cannot be
applied to describing the quantum collapse of astrophysical
objects such as supernovae.
Concerning the details of the scenario, there are a variety

of ideas available: the horizon could, for example, dis-
appear during the bounce [12–15] or could be in a super-
position of BH and white hole (WH) horizons, with a
smooth transition between the two in the form of a “grey
horizon” [3]. There have also been different pictures about
the detailed mechanism that leads to the quantum effects at
the horizon, a spacetime region in which the curvature is
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usually low. Haggard and Rovelli, for example, envision an
accumulation of quantum effects over time [16], while
Barceló et al. propose a shockwave propagating outward
from the would-be singularity [14,15]. There is also little
consensus about the lifetime, different approaches to the
problem giving different results [5,17–19]. A recent review
is given in [20].
In this paper, we shall discuss these problems for the

inhomogeneous spherically symmetric dust collapse
described by the Lemaître-Tolman-Bondi (LTB) model;
see, for example, [21] for a presentation of the classical
LTB model. Its quantization in the geometrodynamical
context was presented in [22,23]. While it was possible in
this model to recover Hawking radiation [24], to compute
nonthermal corrections to it [25,26], and to investigate BH
entropy and the BH mass spectrum [27], the question of
singularity avoidance could not be settled. The main reason
for this failure is the inhomogeneous nature of a dust cloud
and the ensuing functional form of the quantum constraints.
Similarly, while it was claimed that in spherically sym-
metric loop quantum gravity the singularity is avoided due
to the fundamentally quantized nature of space [28,29],
investigating different loop quantum gravity inspired cor-
rections to the LTB model has not suggested any particular
mechanism for this avoidance; a singularity seems to form
just as it does classically [30,31].
Here, we shall develop a different approach to quantizing

the LTB model. The idea is to consider each shell
individually, sidestepping some technical and conceptual
difficulties, and try to infer the behavior of the full dust
cloud from our results. This will enable us to tackle the
question of singularity avoidance and to suggest a scenario
with a bounce as the typical behavior of the quantized dust
cloud. Singularities can thus be avoided. This bounce is a
direct consequence of the unitary evolution with respect to
dust proper time.
Our paper is organized as follows. In Sec. II we introduce

the reader to the LTB model and lay the classical founda-
tions for our approach. We then develop and investigate the
corresponding quantum theory in Sec. III, first making
general statements about its states, and then examining a
specific one in the form of a wave packet. Based on the
dynamics of this wave packet, we construct a quantum
corrected space time for dust collapse and discuss some of
its properties in Sec. IV. We discuss, in particular, the
lifetime for the wave packet to collapse and reexpand.
Section V contains our conclusions.

II. THE CLASSICAL LTB MODEL
AND ITS ON-SHELL ACTION

We give here a brief introduction to the LTB model. It is
a spherically symmetric solution of the Einstein equations
with nonrotating dust of mass density ϵ as its source. Its line
element reads

ds2 ¼ −c2dτ2 þ R02

1þ 2f
dρ2 þ R2dΩ2; ð1Þ

with
8πG
c2

ϵ ¼ F0

R2R0 and
_R2

c2
¼ F

R
þ 2f: ð2Þ

A prime (dot) denotes a derivative with respect to ρ (τ). The
cosmological constant is set to zero. For the time coordinate
one chooses the dust proper time τ and for the radial
coordinate the variable ρ, which continuously labels the
spherically symmetric dust shells at fixed τ. In the follow-
ing, we shall set G ¼ 1 ¼ c.
In these units, FðρÞ is twice the Misner-Sharp mass (see

e.g., [32], page 40) for the LTB spacetime, which gives the
active gravitating mass that is contained in the shell with
label ρ. From the condition Rðτ; ρÞ ¼ FðρÞ one can also
infer whether a shell coincides with an apparent horizon;
the horizon can be future or past depending on the sign of
_R. The energy function fðρÞ plays a role for the general
LTB model, but for simplicity we will in the following
restrict ourselves to the marginally bound LTB model for
which f ¼ 0.
An important quantity is Rðτ; ρÞ, which is the curvature

radius of the shell labeled by ρ at time τ; it describes how
the dust shells collapse or expand. A central or shell
focusing singularity forms in the LTB model when shells
collapse to the point R ¼ 0.
In addition to the central singularity also shell crossing

singularities can appear. They occur when two dust shells
occupy the same radius, that is, when R0 ¼ 0. They are
generally assumed to be an artifact of using a simplistic
matter model and hence are considered unphysical. We will
not address these singularities here, because one can choose
initial conditions such that they do not occur. Moreover, it
is possible to extend the spacetime beyond them; see
[33,34] and the references therein.
We emphasize that the equation of motion relevant for R,

the second equation in (2), only depends on R and F (and
also on f for the nonmarginally bound case), but not on
their spatial derivatives. When a mass function is given,
different dust shells are decoupled, as they do not dynami-
cally influence each other.
Based on this decoupling, we can consider the different

shells in the LTB model independently. Consequently, we
will quantize a single shell in the marginally bound LTB
model and then try to deduce the dynamics of the full dust
cloud. In the following, we will derive a Hamiltonian for
the outermost dust shell.
We start from the Einstein-Hilbert action

S¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p
R½g�þ 1

8π

Z
∂M

d3xη
ffiffiffiffiffiffi
jhj

p
ðk−k0Þ; ð3Þ

and insert a marginally bound LTB solution in the coor-
dinates ðτ; ρ; θ;ϕÞ, where the angular coordinates can be
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integrated out immediately. In (3), k is the trace of the
extrinsic curvature of ∂M, and k0 is the same quantity for
the case that this hypersurface is embedded into flat space.
The factor η is equal to 1 when ∂M is timelike and −1
when it is spacelike [35].
For the boundary ∂M of the spacetime M we take

∂M ¼ Bo ∪ Bτ1 ∪ Bτ2 , where Bτ1=2 are spacelike hyper-
surfaces of fixed constant dust proper time with τ1 < τ2,
and Bo is the timelike boundary coinciding with the
worldtube of the outermost dust shell ρ ¼ ρo. We will
mostly not concern ourselves with the geometry outside the
cloud, although one can always attach a Schwarzschild
exterior with mass M ¼ 1

2
FðρoÞ≕ 1

2
Fo. Below we will

refer to Fo (twice the mass contained in the outermost shell)
as twice the Arnowitt-Deser-Misner (ADM) energy of the
dust cloud, 2EADM, always with this exterior geometry
in mind.
Taking the trace of the Einstein equations for LTB gives

ffiffiffiffiffiffi
−g

p
R½g� ¼ 8πϵR2R0 sin θ ¼ F0 sin θ;

where we have used the equations of motion (2). This gives
for the bulk part of the action (3), SM, the expression

SM ¼ 1

4

Z
dτ

Z
ρo

0

dρF0 ¼ 1

4

Z
dτFo ¼

1

4

Z
dτRo

_R2
o;

where Ro denotes the radius of the outermost shell. We
have made here the assumption that the innermost shell
contains no mass, Fð0Þ ¼ 0, and have used the remaining
part of (2).
Now we turn to the boundary terms. Calculating the trace

of the extrinsic curvature of the timelike boundary Bo gives

ko ¼
2

R
:

Since this matches the trace of the extrinsic curvature for
the same hypersurface embedded into flat space, k0o, the
corresponding boundary term in (3) vanishes. Note that the
same would hold for a boundary term at the innermost
shell ρ ¼ 0.
Let us now calculate the contributions from the temporal

boundaries. The trace of the extrinsic curvature of the
τ ¼ const: hypersurfaces is given by

kτ ¼
_R0

R0 þ 2
_R
R
;

while k0τ simply vanishes. This gives

SBτ
¼ −

1

2

Z
ρo

0

dρðR2 _R0 þ 2RR0 _RÞ ¼ −
1

2
½R2 _R�ρo0 :

Combining the two terms for τ1 and τ2 gives a more
convenient form for these boundary contributions. One has

to keep in mind that the normal to Bτ1 is future directed,
while the normal to ∂M is past directed in the region Bτ1 .
The past-directed boundary term hence carries an addi-
tional sign −1 [35], giving

SBτ
jτ2τ1 ¼ −

1

2
½R2 _Rjτ2 − R2 _Rjτ1 �ρo0

¼ −
1

2

Z
dτ

∂
∂τ ½R

2 _R�ρo0

¼ −
3

4

Z
dτ½R _R2�ρo0 ¼ −

3

4

Z
dτRo

_R2
o:

Here we have used R2R̈ ¼ − 1
2
R _R2, which follows from the

time independence of F ¼ R _R2.
The full action for an LTB solution of the outermost shell

then reads

S ¼ −
1

2

Z
dτRo

_R2
o: ð4Þ

We note that choosing Brown-Kuchař dust as the matter
component, the dust action trivially vanishes on shell [36].
We have now arrived at an action that describes the

dynamics of the outermost shell. This is not surprising,
since we have already inserted the proper dynamics for the
dynamical field RðρÞ and are now left with a prescription
for how the boundary conditions given at the initial time τ1
are to be evolved into the future. In this sense, the above
action (4) is an action for the outermost shell on the
background of all other shells.
We note that including the boundary terms has only

contributed to the prefactor of the action. If we neglected
them, we would only find a different prefactor that would
leave the classical dynamics unchanged and would only
introduce minor changes to the quantum model below.
The momentum conjugate to Ro and the Hamiltonian

corresponding to (4) then read, respectively,

Po ¼ −Ro
_Ro; ð5Þ

H ¼ −
P2
o

2Ro
: ð6Þ

This Hamiltonian is the negative of the ADM energy,

H ¼ −
1

2
Ro

_R2
o ¼ −

1

2
Fo ¼ −EADM;

implying its conservation. It is then obvious that H gives
the expected dynamics. Adjusting the constant of motion
Fo, this Hamiltonian describes the dynamics of any single
shell in the LTB model, not just the outermost one. It is also
consistent with the on-shell Hamiltonian constraint for a
marginally bound LTB model, see [30].

SINGULARITY AVOIDANCE FOR COLLAPSING QUANTUM … PHYS. REV. D 99, 126010 (2019)

126010-3



The fact that the Hamiltonian (6) is negative, although
surprising at first glance, reflects the fact that the gravita-
tional kinetic term in the Hamiltonian constraint is not
positive definite (a feature that can be related to the
attractivity of gravity [37]). As we have seen above, it is
possible here to recover a positive notion of energy from it.
A similar observation was made in [38], where phantom
dust had to be used to recover a positive Hamiltonian for the
LTB model.
We note that it is not possible to arrive at an action for

nonmarginally bound LTB models in a similar way, but an
effective Hamiltonian is easily constructed by simply
adding a potential term fR, where f is constant for a
given shell.
The Hamiltonian (6) also matches the gravitational

Hamiltonian (with its negative kinetic term) for a flat
Friedmann model with vanishing cosmological constant
when identifying the scale factor as aro ¼ Ro, where ro is
the parametric radius of the dust cloud [1]. When using
Brown-Kuchař dust as matter and dust proper time as the
time coordinate, the full Hamiltonian constraint for this
Friedmann model reads H þ Pτ ¼ 0, where Pτ is the
momentum conjugate to τ [39]. Quantizing this constraint
gives exactly the same Schrödinger equation as dis-
cussed below.
It follows that all results obtained in the following also

apply to flat Friedmann models with vanishing cosmologi-
cal constant. The same holds for models of (marginally
bound) Oppenheimer-Snyder collapse, which shares its
dynamics with these cosmological models.

III. QUANTUM DYNAMICS OF THE
OUTERMOST SHELL

We will now apply the usual canonical quantization
procedure in the Schrödinger representation to the
Hamiltonian (6) by making the substitution

Po → P̂o ¼ −iℏ
d

dRo
:

The operator R̂o acts by multiplication. In the following we
will suppress the subscript o.
The Hamiltonian then reads

Ĥ ¼ ℏ2

2
R−1þaþb d

dR
R−a d

dR
R−b: ð7Þ

The parameters a and b describe our freedom of choosing a
factor ordering. Two possible choices are distinguished.
First, a ¼ b ¼ 0 corresponds to the naive factor ordering in
which all derivatives are on the right. Second, b ¼ 0 and
a ¼ 1=2 describes the Laplace-Beltrami ordering, which
follows from the demand for covariance in configuration
space. In the following we set ℏ ¼ 1.

As a first step towards solving the τ-dependent
Schrödinger equation

i
∂ΨðR; τÞ

∂τ ¼ ĤΨðR; τÞ

with the Hamiltonian (7), we derive the stationary modes
ϕEðRÞ satisfying ĤϕE ¼ −EϕE,

−EϕE ¼ 1

2

�
R−1þaþb d

dR
R−a d

dR
R−b

�
ϕE; ð8Þ

where E can be interpreted as EADM.
For E > 0, solutions of (8) are given by

ϕ1
EðRÞ ¼ R

1
2
ð1þaþ2bÞJ1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�
; ð9Þ

ϕ2
EðRÞ ¼ R

1
2
ð1þaþ2bÞY1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�
; ð10Þ

where JnðzÞ and YnðzÞ are Bessel functions of the first and
second kind, respectively.
The zero energy stationary modes are simpler,

ϕ1
0ðRÞ ¼ Rb; ϕ2

0ðRÞ ¼
�
R1þaþb; a ≠ −1
Rb lnR; a ¼ −1:

ð11Þ

Although classically EADM ≥ 0, (8) also possesses sol-
utions for negative energy. They can be interpreted as
genuine quantum solutions without a classical counterpart.
For this case, solutions are given by modified Bessel
functions InðzÞ and KnðzÞ,

ϕ1
−EðRÞ ¼ R

1
2
ð1þaþ2bÞI1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�
; ð12Þ

ϕ2
−EðRÞ ¼ R

1
2
ð1þaþ2bÞK1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�
: ð13Þ

Note that in the following E will always be positive, and
negative energy stationary states correspond to −E. We
note that for the Laplace-Beltrami factor ordering, a ¼ 1=2,
the Bessel functions can be written as elementary functions.
We will construct the full quantum theory for our collaps-

ing dust shell in analogy to ordinary quantummechanics.We
impose square integrability on wave functions and let them
evolve unitarily according to a self-adjointHamiltonian. This
corresponds to enforcing probability conservation in dust
proper time. The treatment is similar in spirit to the treatment
of the collapsing null dust shells in [4].
We start by choosing as the Hilbert space

L2ðRþ; R1−a−2bdRÞ the space of square integrable func-
tions on the positive half line with respect to the scalar
product:
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hϕ;ψi ¼
Z

∞

0

dRR1−a−2bϕ�ðRÞψðRÞ:

The weight R1−a−2b is fixed by the requirement that Ĥ be
symmetric.1 For Laplace-Beltrami ordering, the weight is
just

ffiffiffiffi
R

p
.

We note that we limit our discussion to stationary
solutions of the Schrödinger equation and linear super-
positions over different energies constructed from them,
with wave packets in mind. This may exclude some wave
functions if the stationary modes do not form a (general-
ized) basis of the functions we are interested in. Whether or
not this is the case is hard to prove rigorously and will not
be done here. We expect that the wave functions excluded
by this restriction, should there be any, are not physically
relevant.

A. Square integrability

We will now check which of the stationary modes (9)–
(13) are square integrable with respect to our inner product.
Obviously, the zero energy modes (11) are either not square
integrable at R ¼ 0 or at R → ∞. The positive energy
modes (9) and (10) are also not square integrable. This can
be seen from the expansion of the Bessel functions for large
arguments [40],

JνðzÞ ∼
ffiffiffiffiffi
2

πz

r
cos

�
z −

1

2
νπ −

1

4
π

�
; j arg zj < π;

YνðzÞ ∼
ffiffiffiffiffi
2

πz

r
sin

�
z −

1

2
νπ −

1

4
π

�
; j arg zj < π:

It follows that the modes ϕ1
E and ϕ2

E approach infinity as

R
1
2
ð1−a−2bÞϕ1

E ∼
R

1
4ffiffi

π
3

p ð2EÞ14 cos
�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2 − θa

�
; ð14Þ

R
1
2
ð1−a−2bÞϕ2

E ∼
R

1
4ffiffi

π
3

p ð2EÞ14 sin
�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2 − θa

�
; ð15Þ

where θa ¼ π
6
j1þ aj þ π

4
. We note that in case of the

Laplace-Beltrami factor ordering, this asymptotic behavior
is exact for all R. That positive energy modes are not square
integrable is not surprising. This is well known from, for

example, the case of a free particle. The solutions are
oscillatory and allow an interpretation in terms of Gel’fand
triples (the factor R

1
4 does not prevent this). As in quantum

mechanics, square integrability can be achieved by con-
structing wave packets.
We are now left with the negative energy modes (12)

and (13). The expansion of the modified Bessel functions
for large arguments reads [40]

IνðzÞ ∼
ezffiffiffiffiffiffiffiffi
2πz

p ; j arg zj < π

2
; ð16Þ

KνðzÞ ∼
ffiffiffiffiffi
π

2z

r
e−z; j arg zj < 3π

2
: ð17Þ

We see that the mode ϕ1
−E must be discarded because it

diverges exponentially at infinity. As for ϕ2
−E, it decreases

exponentially at infinity, but we still have to check its
behavior for R → 0. For z → 0 we have for the Bessel
function,

KνðzÞ ∼
� ΓðνÞ

2
ðz
2
Þ−ν; ℜðνÞ > 0

− lnðzÞ; ν ¼ 0;

hence ϕ2
−E approaches the singularity as

R
1
2
ð1−a−2bÞϕ2

−E ∼

8<
:

Γð1
3
j1þajÞ

2ð1
3

ffiffiffiffi
2E

p Þ13j1þaj R
1−1

2
j1þaj; a ≠ −1

−R ln ð2
3

ffiffiffiffiffiffi
2E

p
R

3
2Þ; a ¼ −1:

ð18Þ

It is thus square integrable also for R → 0 if j1þ aj < 3.
Since it also decays exponentially at infinity, ϕ2

−E is square
integrable for these factor orderings.

B. Self-adjoint extensions of the Hamiltonian

We now want to find a domain for the Hamiltonian such
that it is self-adjoint. Here, we will only state the results and
refer to Appendix A for details.
For j1þ aj ≥ 3, the Hamiltonian is essentially self-

adjoint and its unique domain is equal to what is called
its natural domain, consisting of all square integrable
functions ψ such that Ĥψ is square integrable as well
(in addition to some continuity conditions).
Additional conditions emerge for j1þ aj < 3. There we

have a Uð1Þ family of self-adjoint extensions given by
(A10),

−ð1þ eiθÞR1−j1þaj d
dR

R−1
2
ð1þa−j1þajþ2bÞψ

����
R→0

¼ ið1 − eiθÞR1þj1þaj d
dR

R−1
2
ð1þaþj1þajþ2bÞψ

����
R→0

ð19Þ

for a ≠ −1, and by

1One can also consider other weights of the form Rc with real
parameters c. Instead of choosing a factor ordering that renders
the Hamiltonian symmetric, equivalently to the above, one can
construct a symmetrized Hamiltonian of the form 1

2
ðĤ þ Ĥ†Þ

(ignoring boundary terms). This leads to quantum theories
equivalent to the one discussed here, but only if
minf1;−ag ≤ bþ c

2
≤ maxf1;−ag. If this condition is not ful-

filled, additional damping and potential terms would have to be
introduced into the symmetrized Hamiltonian, or one would have
to use complex parameters determining the factor ordering.
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−ð1þ eiθÞRln2R d
dR

R−b

lnR
ψ

����
R→0

¼ ið1− eiθÞR d
dR

R−bψ

����
R→0

ð20Þ

for a ¼ −1. The extensions are parametrized by an angle
θ ∈ ½0; 2πÞ.
One might notice that in (19) and (20) the powers of R do

not match up, and one might hence suspect that the
dimensions could be wrong. In the construction of self-
adjoint extensions for singular operators one has to insert a
dimensionful parameter into the boundary condition we
have given above in order to make the dimensions match.
Usually one chooses for this parameter a relevant scale for
the problem at hand, see e.g., [41]. The only meaningful
scale in our case is the Planck scale, which in the units
chosen here is equal to one, and as such is not visible in
(19) and (20). We could insert an arbitrary dimensionful
parameter into the above expressions, but it would not
influence the results below in any meaningful way.
The next step is to compute the spectrum of the

Hamiltonian and obtain the generalized eigenbasis. We
will refrain from mathematical rigor and take the usual
shortcut of enforcing the boundary conditions of the self-
adjoint extensions, (19) and (20), where applicable, on our
stationary modes ϕ1

E, ϕ
2
E, and ϕ2

−E. The second negative
energy mode ϕ1

−E is discarded because it is not square
integrable and can also not be treated by Gel’fand triples
because it is exponentially increasing.
Let us first consider j1þ aj < 3, and start with ϕ2

−E, see
(13), the last stationary mode remaining in the Hilbert
space. For the case a ≠ −1,

R1∓j1þaj d
dR

R−1
2
ð1þa∓j1þajþ2bÞϕ2

−E

¼ −
ffiffiffiffiffiffi
2E

p
R

1
2
ð3∓j1þajÞK1∓1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�

∼R→0 −
3

2
Γ
�
1 ∓ 1

3
j1þ aj

��
1

3

ffiffiffiffiffiffi
2E

p ��1
3
j1þaj

:

Inserting these expressions into (19) shows that for θ ∈
ðπ; 2πÞ the stationary mode ϕ2

−E evolves unitarily under the
time-dependent Schrödinger equation at one specific
energy determined by

�
1

3

ffiffiffiffiffiffi
2E

p �2
3
j1þaj

¼ − tan
θ

2

Γð1þ 1
3
j1þ ajÞ

Γð1 − 1
3
j1þ ajÞ :

This energy corresponds to a bound state. The condition
can only be fulfilled for values of θ with tan θ

2
< 0. For other

values of θ, (19) is violated for each energy. It remains to
check the case a ¼ −1, for which one finds a similar
restriction:

ln

�
2

3

ffiffiffiffiffiffi
2E

p �
¼ 3

2
tan

θ

2
:

In contrast to a ≠ −1, this holds for all θ ≠ π.
Now we turn to the positive energy modes. Since in

contrast to ϕ2
−E they are not square integrable, we will not

interpret them as bound states, but identify them with the
continuous part of the spectrum, E ∈ Rþ. As explained in
detail in Appendix B, only the linear combination

ϕEðRÞ ¼ − tan
θ

2

Γð1þ 1
3
j1þ ajÞ

Γð1− 1
3
j1þ ajÞ

�
1

3

ffiffiffiffiffiffi
2E

p �
−2
3
j1þaj

ϕ1
E

− cos

�
π

3
j1þ aj

�
ϕ1
E þ sin

�
π

3
j1þ aj

�
ϕ2
E ð21Þ

for a ≠ −1 and

ϕEðRÞ ¼
�
3

π
tan

θ

2
−
2

π
ln

�
2

3

ffiffiffiffiffiffi
2E

p ��
ϕ1
E þ ϕ2

E ð22Þ

for a ¼ −1 fulfill (19) and (20), respectively, for all positive
energies. We will consider only ϕE in the construction of
wave packets, which we will undertake below. Note that for
θ ¼ π, where tan θ

2
diverges, (21) and (22) are not valid and

have to be substituted for ϕ1
E on its own.

Aside from θ ¼ π there is also the distinguished value
θ ¼ 0, for which the mode (21) takes the particularly
simple form

cos

�
π

3
j1þ aj

�
ϕ1
E − sin

�
π

3
j1þ aj

�
ϕ2
E

¼ R
1
2
ð1þaþ2bÞJ−1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�
: ð23Þ

We note that one cannot construct a mode of this type that
fulfills (19) and (20) for all negative energies, since there
we only have ϕ2

−E at our disposal. Hence, the negative half
line is not part of the spectrum of the Hamiltonian, and
negative energies are restricted to those of stationary bound
states.
Finally we want to mention that for j1þ aj ≥ 3, where

the Hamiltonian is essentially self-adjoint, there are no
bound states, since ϕ2

−E is not square integrable, and ϕ1
E is

the only stationary mode that is available for constructing
wave packets, as we will see in the next subsection.
Along the same lines we will see that ϕ2

−E also has to be
ruled out for constructing wave packets for j1þ aj ≥ 3,
such that for all factor orderings only positive energy wave
packets exist.

C. Wave packets and singularity avoidance

We want to construct wave packets by superposing
stationary modes of different energies. Without actually
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calculating the integral involved in this procedure, we are
able to estimate the behavior of these wave packets towards
the singularity from the behavior of the stationary modes
they are constructed from. This is possible because the
stationary modes are well described by power series with
terms of the form

ffiffiffiffi
E

p
α · Rβ for R → 0 [42]. By integrating

this series term by term and assuming that the function A
below (the wave packet in energy space) is well behaved, it
follows that the leading term in the full wave packet
behaves like the leading term of the stationary mode,

ΨðR; τÞ ¼
Z

∞

0

d
ffiffiffiffi
E

p
ϕEðRÞeiEτAð

ffiffiffiffi
E

p
Þ ð24Þ

∼Rβ

Z
∞

0

d
ffiffiffiffi
E

p ffiffiffiffi
E

p
αeiEτAð

ffiffiffiffi
E

p
Þ: ð25Þ

Note that the Bessel function YνðzÞ can only be
expressed by a power series as required above when its
order ν is not an integer, which means that we have to
exclude these cases. The same holds for KνðzÞ, but this is
only marginally relevant here.
We first consider ϕ1

E. For z → 0, JνðzÞ behaves accord-
ing to

JνðzÞ ∼
1

Γðνþ 1Þ
�
z
2

�
ν

; ν ≠ −1;−2;−3;…; ð26Þ

and hence ϕ1
E approaches the singularity as

R
1
2
ð1−a−2bÞϕ1

E ∼
ð1
3

ffiffiffiffiffiffi
2E

p Þ13j1þaj

Γð1þ 1
3
j1þ ajÞR

1þ1
2
j1þaj → 0: ð27Þ

Not only is ϕ1
E square integrable near the singularity, the

probability distribution R1−a−2bjΨj2 for the radius R, the
norm squared of (27), even vanishes at R → 0. This
behavior then also holds for any wave packet constructed
from ϕ1

E: For any such wave packet, regardless of the factor
ordering and the specific function A, the probability for the
outermost dust shell to be in the classically singular
configuration R ¼ 0 is zero. In this sense these wave
packets avoid the singularity. This criterion for singularity
avoidance is close to the DeWitt criterion, cf. [8].
As we have seen in the last subsection, we can only use

ϕ1
E on its own as a basis for wave packets when θ ¼ π, or,

as we will see shortly, when j1þ aj ≥ 3. For other self-
adjoint extensions and factor orderings, we have to con-
sider the linear combination (21), which also includes ϕ2

E.
Apart from a prefactor, YνðzÞ behaves for z → 0 as KνðzÞ
does, which means that ϕ2

E behaves according to (18) when
approaching the singularity. It thus follows that ϕ2

E (and
ϕ2
−E) must be excluded for the construction of wave packets

for j1þ aj ≥ 3, because those wave packets would not be
square integrable when approaching the singularity; so only

ϕ1
E remains. Similarly, for ϕ2

E singularity avoidance occurs
along the same lines as for ϕ1

E only when j1þ aj < 2.
We can see that the singularity is always avoided for

factor orderings where j1þ aj ≥ 3 or j1þ aj < 2, with the
possible exception of 1

3
j1þ aj ∈ N. We want to emphasize

again that this avoidance holds independently of the chosen
self-adjoint extension and the specific wave packet.
Notably, both the naive (a ¼ b ¼ 0) and the Laplace-
Beltrami factor ordering (b ¼ 0, a ¼ 1

2
) fall into this

category of guaranteed singularity avoidance. The case
θ ¼ π should also be highlighted, because there singularity
avoidance occurs independently of the factor ordering.
For the cases where we do not have a guaranteed

singularity avoidance, we have instead the guarantee that
the probability distribution for R does have support at the
singularity. Thus, depending on the factor ordering and
self-adjoint extension, either the singularity does play a role
or it does not; we cannot influence this by our choice of
wave packet. It should be noted that the remaining sta-
tionary mode (13) also does not avoid the singularity for
2 ≤ j1þ aj < 3. Since in addition to being stationary it has
a negative energy, which moreover depends heavily on the
factor ordering and the choice of self-adjoint extension, it
can safely be excluded when discussing gravitational
collapse.
To summarize, we see that singularity avoidance is not

only possible but even guaranteed for a wide class of the
quantum models considered here, and shows a remarkable
robustness under many of the quantization ambiguities. No
artificial fine-tuning is required to achieve this result.

D. A unitarily evolving wave packet

To find out how exactly singularity avoidance is facili-
tated, we want to construct a positive energy wave packet.
We choose the self-adjoint extension θ ¼ π in order to use
ϕ1
E for its construction for all factor orderings.
Useful for the construction of nonstationary modes from

ϕ1
E is the closure equation [see e.g., [43], Eq. (11.59)]

Z
∞

0

dx x JνðaxÞJνðbxÞ ¼
δða − bÞ

a
; for ν > −

1

2
:

The Bessel functions form an orthogonal set under the
scalar product used above. This property also holds in our
Hilbert space for the mode ϕ1

E,

Z
∞

0

dRR1−a−2bϕ1
EðRÞϕ1

Ẽ
ðRÞ ¼ 3

4
ffiffiffiffi
E

p δ
� ffiffiffiffi

E
p

−
ffiffiffiffĩ
E

p �
:

It is more practical to deal with an orthonormal set of
modes, hence we rescale ϕ1

E as
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ϕ̃1
EðRÞ ¼

2ffiffiffi
3

p E
1
4R

1
2
ð1þaþ2bÞJ1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�
:

Our ansatz for constructing wave packets from stationary
solutions reads, as noted before,

ΨðR; τÞ ¼
Z

∞

0

d
ffiffiffiffi
E

p
ϕ̃EðRÞeiEτAð

ffiffiffiffi
E

p
Þ: ð28Þ

For the function Að ffiffiffiffi
E

p Þ we choose a Poisson-like distri-
bution similar to the one used in [4] for collapsing null
shells,

Að
ffiffiffiffi
E

p
Þ ¼

ffiffiffi
2

p
λ
1
2
ðκþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðκ þ 1Þp ffiffiffiffi
E

p
κþ1

2e−
λ
2

ffiffiffi
E

p
2

;

where κ ≥ 0 and λ > 0 are real parameters. We note that κ is
dimensionless and λ has the dimension of length. The
function is normalized,

Z
∞

0

d
ffiffiffiffi
E

p
A2ð

ffiffiffiffi
E

p
Þ ¼ 1:

The mean (square root of the) energy and its width are

ffiffiffiffi
E

p
¼

Z
∞

0

d
ffiffiffiffi
E

p ffiffiffiffi
E

p
A2ð

ffiffiffiffi
E

p
Þ ¼ 1ffiffiffi

λ
p Γðκ þ 3

2
Þ

Γðκ þ 1Þ ;

Δ
ffiffiffiffi
E

p
¼ 1ffiffiffi

λ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ 1 −

Γ2ðκ þ 3
2
Þ

Γ2ðκ þ 1Þ

s
:

Because we have chosen Að ffiffiffiffi
E

p Þ appropriately, there is a
closed form for ΨðR; τÞ in terms of Kummer’s confluent
hypergeometric function 1F1ða; b; zÞ [see e.g., [44], Eq. (1)
in 6.631],

ΨðR;τÞ¼
ffiffiffi
3

p � ffiffiffi
2

p

3

�1
3
j1þajþ1 Γð1

6
j1þajþ κ

2
þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðκþ1Þp
Γð1

3
j1þajþ1Þ

×R
1
2
ð1þaþj1þajþ2bÞ λ

1
2
ðκþ1Þ

ðλ
2
− iτÞ16j1þajþκ

2
þ1

× 1F1

�
1

6
j1þajþ κ

2
þ1;

1

3
j1þajþ1;−

2R3

9ðλ
2
− iτÞ

�
:

ð29Þ

The behavior of the wave packet can be seen in Fig. 1. It
first follows the infalling classical trajectory up to some
minimal R and then makes a transition to the outgoing
classical trajectory: the outermost shell of a collapsing
LTB model bounces before reaching the singularity.
Depending on the parameters of the wave packet, the shell
can even fall significantly far below the apparent horizon
until it switches from collapse to expansion. It should be

emphasized that this transition is classically forbidden and
can be interpreted as tunneling from a collapsing to an
expanding configuration, or, in a heuristic picture, from BH
to WH.
So far this model shares its main features with the

quantum collapse of a null shell [3,4], but in one aspect it
differs: the wave packet describing the null shell shows
little dispersion, while in our case the wave packet increases
in width when proceeding away from the singularity. This
is in contrast to minisuperspace models in quantum
cosmology, where dispersion near the singularity was
interpreted as a mechanism for singularity avoidance;
see, for example, [8,45].

FIG. 1. Probability amplitude for R as given by

R1−a−2bjΨðR; τÞj2, compared to the classical trajectories Rcl ¼
ð∓ 3

2

ffiffiffi
2

p
τÞ23 ffiffiffiffi

E
p 2

3 ¼ ð∓ 3
2

ffiffi
2
λ

q
τÞ

2
3 Γðκþ4

3
Þ

Γðκþ1Þ (full green line) and the

exterior apparent horizon RAH ¼ 2Ē ¼ 2 κþ1
λ (dotted red line),

with a ¼ 2 and b ¼ 1, and different λ and κ.
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We note that the probability distribution for the radius R
shows oscillatory behavior near the τ ¼ 0 line for high
energies, see Fig. 1(a). This interferencelike pattern emerges
because in this region the part of the wave packet centered
around the classical collapsing trajectory is superposed on
the wave packet around the expanding trajectory. In this
sense one could also state that the singularity avoidance
results from destructive interference between two separate
wave packets corresponding to BH and WH, respectively.
We also note that the general form of Fig. 1 does not

seem to change with the factor ordering; the bouncing
behavior is always present. In fact, the parameter b
completely cancels out in the probability distribution
R1−a−2bjΨðR; τÞj2. The details of this distribution depend,
however, on a, such as the position of its peak at τ ¼ 0.
One can demonstrate that this bouncing behavior shows a

certain robustness also under other details of the quantization:
for θ ¼ 0, one can choose the mode (23) for the construction
of wave packets as long as j1þ aj < 3. Due to the similarity
of thismode toϕ1

E one can extendourwave packet to this case
bysimply introducinga fewnegative signs at placeswhere the
order of the Bessel function enters. Checking the correspond-
ing plots shows that this wave packet still bounces. For some
factor orderings this may even happen out from a singular
configuration. We see that this behavior is not only robust
under changes of the factor ordering, but also under different
choices of self-adjoint extension.
To discuss the bouncing behavior more rigorously we

want to calculate, for example, the expectation value of the
radius R of the outermost shell. In its current form, our
wave packet is too complex to perform concrete calcu-
lations, but fortunately it can be significantly simplified.
We set κ ¼ 1

3
j1þ aj and use the identity 1F1ða; a; zÞ ¼ ez

[[42], Eq. (13.6.1)] to arrive at the wave packet

Ψ̃ðR; τÞ ¼
ffiffiffi
3

p R
1
2
ð1þaþj1þajþ2bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1

3
j1þ aj þ 1Þ

q � ffiffiffiffi
2λ

p
3

λ
2
− iτ

�1
3
j1þajþ1

× exp

�
−

2R3

9ðλ
2
− iτÞ

�
: ð30Þ

In quantum cosmology, a similar trick was used in [46].
As we will see below, by this simplification we have

gained the ability to compute quantities such as R̄ðτÞ
analytically, but of course this comes at a cost. We cannot

independently adjust
ffiffiffiffi
E

p
and Δ

ffiffiffiffi
E

p
anymore, since both

are now proportional to 1=
ffiffiffi
λ

p
. The relative width in energy

of the wave packet is now fixed by the factor ordering to

Δ
ffiffiffiffi
E

p
ffiffiffiffi
E

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1

3
j1þ aj þ 2ÞΓð1

3
j1þ aj þ 1Þ

Γ2ð1
3
j1þ aj þ 3

2
Þ − 1

s

≤
Δ

ffiffiffiffi
E

p
ffiffiffiffi
E

p
����
a¼−1

≈ 0.53:

We see that this wave packet can be rather broadly peaked
on its mean energy, depending on a. To decrease its width
significantly, one has to consider factor orderings far

beyond the usual ones: Δ
ffiffiffi
E

pffiffiffi
E

p ≈ 0.2 for a ¼ 14, and Δ
ffiffiffi
E

pffiffiffi
E

p ≈

0.1 for a ¼ 71. As we have stated above, the bouncing
behavior of (29) is still present for high values of j1þ aj,
hence it seems reasonable that results for a Ψ̃ with some
well-defined energy (and therefore very high or low a) will
also be applicable similarly to more reasonable values of a
when considering wave packets of the form (29) and
narrow in energy.
For (30) we can now compute R̄ and ΔR,

R̄ ¼
�
9λ

8
þ 9τ2

2λ

�1
3 Γð1

3
j1þ aj þ 4

3
Þ

Γð1
3
j1þ aj þ 1Þ ; ð31Þ

ΔR ¼ R̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1

3
j1þ aj þ 5

3
ÞΓð1

3
j1þ aj þ 1Þ

Γ2ð1
3
j1þ aj þ 4

3
Þ − 1

s
ð32Þ

≤ ΔRja¼−1 ≈ 0.37 · R̄: ð33Þ

As expected, R̄ðτÞ is symmetric in τ and has a global
minimum at τ ¼ 0, the minimal radius scaling inversely

with the energy for fixed relative width Δ
ffiffiffi
E

pffiffiffi
E

p ,

R0 ≔ R̄ð0Þ ¼
�
9

8
λ

�1
3 Γð13 j1þ aj þ 4

3
Þ

Γð1
3
j1þ aj þ 1Þ ∝

1

Ē
1
3

: ð34Þ

That the dependence of R0 on the energy carries over to
(29) can be checked analytically. One finds that

R̄ðτ ¼ 0Þ ¼ λ
1
3gða; κÞ:

The function gða; κÞ is rather complicated and can be found
in Appendix C.When keeping the relative width (and hence
κ) and the factor ordering constant, this expression is
proportional to Ē−1

3, as for the simplified wave packet.
Furthermore, it seems that R̄ðτ ¼ 0Þ increases with decreas-
ing relative width in energy and with increasing j1þ aj, but
a more rigorous analysis is prevented by the complicated
form of gða; κÞ.
This result is in contradiction to [9], in which by heuristic

arguments R0 ∝ En, with n ¼ 1
3
or n ¼ 1, was obtained.

Our considerations predict (in the language of [9]) a Planck
star, meaning a temporary compact remnant of gravitational
collapse, with sub-Planckian size. For example, for a dust

cloud with solar mass (taking κ ¼ 24, meaning Δ
ffiffiffi
E

pffiffiffi
E

p ≈ 0.1

and a ¼ 1) we get R̄ðτ ¼ 0Þ ≈ 10−13lP ≈ 10−48 m.
One has to be careful when interpreting this result. Recall

that we only consider the outermost dust shell, but during
the bounce the order of the shells might get reversed, as
suggested by the inverse scaling of R0 with E. Remarkably,
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in that case the size of the compact object is not necessarily
connected to the total mass of the initial dust cloud, but
rather to its structure near the center. The minimal size of
the dust cloud, potentially equal to the minimal radius of
the innermost dust shell, might then be considerably higher.
For example, with the Planck mass as Ē and the other
parameters kept the same, R0 is of the same order of
magnitude as the Planck length. We will present more
details on various aspects of this remnant in Sec. IV and
return now to the simplified wave packet and the corre-
sponding expectation value R̄.
We can show analytically that R̄ðτÞ is approximated very

well by classical trajectories when far away from the
singularity, as illustrated in Fig. 1. For τ2 ≫ λ2,

R̄ðτÞ ≈
�
3

2

ffiffiffi
2

p
jτj
�2

3 Γð1
3
j1þ aj þ 4

3
Þ

λ
1
3Γð1

3
j1þ aj þ 1Þ

¼
�
3

2

ffiffiffi
2

p
jτj
�2

3 ffiffiffiffi
E

p 2
3: ð35Þ

It is straightforward to see that this is a solution to (2)
for Rðτ ¼ 0Þ ¼ 0.

IV. QUANTUM CORRECTED SPACETIME
FOR DUST COLLAPSE

Based on the dynamics of the wave packet discussed in
the last section, one can construct a quantum corrected
spacetime describing bouncing dust collapse. In this
section, we will discuss some aspects of this spacetime.
We take the marginally bound LTB metric,

ds2 ¼ −dτ2 þ ð∂ρRÞ2dρ2 þ R2dΩ2;

and use the quantum dynamics of the outermost dust shell
to fix the function Rðτ; ρÞ. We will focus our discussion on
heavy dust clouds and on corresponding wave packets with
a narrow width, such that they follow the classical
trajectories far behind the horizon.
Depending on what we want to discuss it suffices to

simply set Rðρ → ρoÞ ¼ R̄, such that the trajectory of the
outermost shell matches the expectation value of the
corresponding wave packet. Thereby we leave the evolu-
tion of the other shells completely open, except that they be
contained in the outermost shell at least far away from the
singularity. This is the case for our investigation of the
horizon and its lifetime. To compute the effective pressures
arising near the bounce of the quantum corrected space-
time, we have to make use of the fact that our Hamiltonian
gives the correct dynamics for every single shell, and
generalize R̄ to R̄ðρÞ.
We will see that at some points further corrections must

be made in order to account for some inconsistencies of this
spacetime. Hence we will recall the quantum theory in the

background and evoke some of its properties other than the
corrected dust trajectories where necessary.

A. Horizon

We have already mentioned that in classical dust clouds
apparent horizons appear where the condition FðρÞ ¼
Rðτ; ρÞ is fulfilled. Attaching a Schwarzschild exterior to
the classical LTB model, an apparent horizon can pass to
this exterior from the outermost shell when the radius of
that shell becomes smaller than 2EADM. Hence, it is the
outermost dust shell that determines the position of this
horizon via the mass contained in it, and whether the
horizon is future or past via the sign of its velocity. We will
see in the following that in our quantum corrected space-
time the exterior horizon’s behavior is not quite as easily
determined.
First we want to determine the position of the horizon.

Calculating the Misner-Sharp mass for the corrected
trajectory RðτÞ ¼ ðR3

0 þ 9E
2
τ2Þ13, one finds

MMS ¼ E
R3 − R3

0

R3
;

see (31) and (34). We have seen previously that for heavy
dust clouds R0 ≪ 2E, meaning RAH ¼ 2E is still approx-
imately the position of the apparent horizon in question for
early and late times, since 2E ≈ 2MMSðR ≫ R0Þ.
Close to the bounce the situation is more complicated.

Because MMS changes in time, one cannot simply match
the dust cloud to a Schwarzschild solution at the outermost
shell. As we will see in Sec. IV C, effective pressures occur
in our quantum corrected spacetime, which further prevent
the matching to an exterior region [47]. Taking the exterior
apparent horizon to be at RAH ¼ 2MMS, we can see that
when approaching the bounce the apparent horizon shrinks
and even disappears for R ¼ R0, which means that it will
vanish back into the dust cloud for some time during the
bounce. This is in agreement with other propositions for the
behavior of the horizon in similar models [20].
In the following, we will assume that an exterior horizon

is present at R ¼ 2E as long as the outermost shell is inside
this radius, since this introduces the least radical modifi-
cation into the corrected spacetime. This leaves us to
explain the transition of the horizon from BH to WH.
Recall that whether the horizon in question is future or

past is determined by the sign of _R. For the BH it is
negative, while it is positive for the WH. If we limit
ourselves to just the quantum corrected spacetime, the
horizon will of course be either future or past, with an
instantaneous transition when the shell turns around. To
smooth out this process we can invoke the quantum model
and allow the horizon to be in a superposition, as was done
in [3].
Classically, the momentum P ¼ −2R _R always has the

opposite sign to _R, meaning the nature of the horizon can be

CLAUS KIEFER and TIM SCHMITZ PHYS. REV. D 99, 126010 (2019)

126010-10



determined with the help of the operator P̂. Unfortunately,
as is well known for the momentum operator on the half
line, it cannot be made self-adjoint, meaning P̂ is not
technically an observable. Nevertheless, for the calculation
of an expectation value a symmetrized version of P̂ is
sufficient. The operator

P̂ ¼ −iR−1
2
ð1−a−2bÞ ∂

∂RR
1
2
ð1−a−2bÞ

fits our purposes. Now we can calculate the expectation
value of P̂ with respect to the simplified wave packet (30),

P̄ ¼ −i
�
1þ 1

2
j1þ aj

�
R−1 þ i

2

3ðλ
2
− iτÞR

2

¼ −3τ
�
9λ

8
þ 9τ2

2λ

�−1
3 Γð1

3
j1þ aj þ 5

3
Þ

λΓð1
3
j1þ aj þ 1Þ ∝ −τ:

This shows the behavior one would expect: before the
bounce we have sgnP̄ > 0 and hence a BH horizon, and
afterwards with sgnP̄ < 0 a WH horizon. We can make an
educated guess concerning the transition in between by
normalizing P̄ by the condition that at τ → −∞ the wave
packet was in a pure BH state, to which we assign the value
1 (and correspondingly to a WH −1), leading to

p̄ ¼ P̄

P̄τ→−∞
¼ −sgnτ

�
τ2

λ2

4
þ τ2

�1
3

: ð36Þ

P̄τ→−∞ ∝ ð2
9
λjτjÞ13 is the asymptotic behavior of P̄ at very

early times, for the normalization extended to all τ. Taking
p̄ as a measure of “black hole-ness,” we see that the
transition from BH to WH is instantaneous for λ → 0, and
smoothed out for higher values of the parameter. Note that
the minimal radius (34) scales with a positive power of λ. It
follows that the closer the wave packet comes to the
singularity, the more rapid is the transition of the horizon.
Taking into account that during the bounce the order of

the shells might get “scrambled” such that the outermost
shell need not stay outermost, it would be appropriate to
alter the exact form of the horizon transition to reflect the
behavior of the shell that actually has the largest radius at a
given τ. We would then expect a further smoothing of the
transition.

B. Lifetime

The lifetime of the exterior horizon is of great interest as
a consistency check of our model. It should be long enough
such that the bouncing collapse at least resembles a BH;
otherwise, this scenario would be excluded by astrophysi-
cal observations.
In order to discuss this lifetime we introduce two

observers into the spacetime, one at a fixed physical radius

Robs and the other comoving with the dust cloud. These two
observers will meet twice, first during the collapse and
again during the reexpansion. The time difference between
these two events for the comoving observer is then given by

Δτ ¼ τþ − τ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8R3

obs

9

λΓ3ð1
3
j1þ aj þ 1Þ

Γ3ð1
3
j1þ aj þ 4

3
Þ − λ2

s
;

where τ� is defined by Robs ¼ R̄ðτ�Þ. For a heavy cloud
and a fixed relative width in energy, λ has to be small; we
can thus neglect the second term under the square root and
find

Δτ ¼
ffiffiffiffiffiffiffiffiffiffiffi
8R3

obs

9

s �
λ
1
3Γð1

3
j1þ aj þ 1Þ

Γð1
3
j1þ aj þ 4

3
Þ
�3

2

¼
ffiffiffiffiffiffiffiffiffiffiffi
8R3

obs

9E
1
3
3

s
≤

ffiffiffiffiffiffiffiffiffiffiffi
8R3

obs

9Ē

s
:

The last step follows from Hölder’s inequality, Xq ≤ Xp
q
p

for 0 < q < p. For narrow wave packets one would expect
the last two terms to be nearly equal. This result is equal to
twice the free fall time of the outermost shell from an initial
radius Robs down to R ¼ 0.
The lifetime of the grey hole can then be taken to be Δτ

with Robs ¼ RAH,

ΔτGH ≈
8

3
Ē:

The lifetime from the point of view of the comoving
observer scales linearly with the dust cloud’s mass, an
unsurprising result given how closely R̄ sticks to the
classical trajectories. More interesting for comparison with
observations is the timescale experienced by the other,
external observer.
It is at this point that we run into a problem: The exterior

of our bouncing dust cloud at least at early and late times
can be described via a Schwarzschild black hole or, more
precisely, appropriate patches of the Kruskal spacetime. In
terms of Schwarzschild Killing time, which a stationary
observer very far from the dust cloud approximately
experiences, crossing the apparent horizon (which for a
heavy dust cloud happens at sufficiently early and late
times) takes infinitely long. This prediction seems para-
doxical: The comoving observer returns in finite time to his
exterior counterpart, for whom an infinite amount of time
has passed. The outside observer would see his more
adventurous friend as being stuck when approaching the
apparent horizon.
It appears that further modification of the quantum

corrected spacetime is necessary, as was also argued in
[16,48], and in a different context in [49]. Unfortunately,
our model is formulated in terms of dust proper time, and
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we have cut off the exterior geometry. Hence, calculating
the lifetime as seen from the exterior observer would entail
transforming to Schwarzschild Killing time, which is ill-
defined in the quantum model, since this transformation
depends on R and on the energy E. Attaching an exterior to
the dust cloud is also problematic, as we have discussed in
the last section; it is also ambiguous because the time delay
between horizon crossings is an open parameter [16].
We will instead follow a different approach by incor-

porating another physical mechanism into the quantum
corrected spacetime picture: transitions between dynami-
cally distinct “states” of the dust cloud, sticking closely to
the picture of BHWH tunneling as employed in [18,19].
There, the lifetime of a bouncing null dust shell was
computed in a way which in the following we will adapt
to our model.
We differentiate between three states of the dust cloud:

collapsing while being at least partially outside its horizon;
being completely inside the horizon (referred to below as
the grey hole); and expanding outside of its horizon.
We then consider the following setup. The cloud,

characterized by its outermost shell, behaves semiclassi-
cally up until close to the horizon, in accordance with our
previous results. Due to the aforementioned gravitational
time dilation, quantum-gravitational effects have a chance
to accumulate. At this point, the dust cloud will inevitably
experience a transition to one of the other states listed
above. Furthermore, motivated by results for the BHWH
tunneling timescale [5,17,19], we assume that the transition
itself takes a relatively short amount of time, roughly
proportional to the mass of the dust cloud.
This accumulation, or pileup, of quantum effects when

approaching the horizon was first proposed by Haggard and
Rovelli in [16]. We want to note that this mechanism cannot
straightforwardly be applied as an explanation for the
transition of the horizon, as there one cannot take the dis-
tinguished notion of time to be Schwarzschild Killing time.
To determine the lifetime we need to compute the

relevant transition probabilities. We will take these prob-
abilities to be determined by our quantum model,

Wðτ−; τþÞ ¼
����
Z

∞

0

dRR1−a−2bΨ̃�ðR; τ−ÞΨ̃ðR; τþÞ
����2

¼
�

λ2

λ2 þ ðτþ − τ−Þ2
�1

3
j1þajþ1

:

The three states can then be characterized by ranges in
proper time: τ < −τAH for collapse (C),−τAH < τ < τAH for
the grey hole (GH), and τAH < τ for expansion (E). �τAH
with τAH > 0 are the proper times at which the outermost
shell reaches the apparent horizon, R̄ð�τAHÞ ¼ 2Ē.
Let us now follow the dust cloud from the collapsing to

the expanding state. First, the outermost shell approaches
the apparent horizon from the outside and will eventually

make a transition either to the grey hole or to the expanding
state. Which case is more likely?
To answer this question, let us consider the transition

probabilities:

PC→E

PC→GH
¼

R −τAH
−∞ dτ−

R∞
τAH

dτþWðτ−; τþÞR
−τAH
−∞ dτ−

R
τAH
−τAH dτþWðτ−; τþÞ

≈
ð2 τAH

λ Þ−
2
3
j1þaj

2
3
j1þ aj þ 1

:

This is an approximation for high energies of the full
expression, which can be found in Appendix D. We have
used that τAH=λ roughly scales with Ē2. It follows that for
high energies (and nonmaximal relative widths of the wave
packet, a ≠ −1) the transition to the grey hole state
dominates. As a result we will focus on this transition.
We will now define the lifetime as the time it takes for the

dust cloud to make a transition from grey hole to the
expanding state. Once in this state, the outermost shell will
expand away from the apparent horizon and will not get the
chance to make a transition to a different state again. It will
stay outside its horizon, and the grey hole is gone. To
determine this lifetime we follow [19], where a BH lifetime
was computed using a picture of BHWH tunneling, and draw
an analogy to an alpha particle tunneling out of a nucleus. A
simple model for this process is the following: the particle
travels across the nucleus and after a time Δt hits a potential
wall which it can traverse with probability p. If it fails, it will
be reflected and can try again when, after the time Δt has
elapsed once more, it hits a potential wall on the other side.
The lifetime of the nucleus can then be estimated as Δt=p.
Taking also the previously discussed transition from

collapsing to GH state into account, our picture of dust
collapse from the perspective of an exterior observer seems
to resemble the quantum mechanical process of “resonant
tunneling,” where at specific energies depending on the
potential barrier metastable states can occur during scatter-
ing. Some of the different notions of tunneling time (see
e.g., [50]) can also be applied to resonant tunneling (see
e.g., [51]). Unfortunately, this requires knowledge of the
full wave function, which we do not possess. So we return
to our picture of three distinct states.
What we need to determine now is the probability for the

dust cloud to evolve from grey hole to expanding state,
what process replaces reflection in the analogy above, and
the time it takes until the cloud is ready to try escaping
again. The probability can be determined as above,

PGH→E ¼
R
τAH
−τAH dτ−

R
∞
τAH

dτþWðτ−; τþÞR
τAH
−τAH dτ−

R∞
−∞ dτþWðτ−; τþÞ

ð37Þ

≈
Γð1

3
jaþ 1jÞ

4
ffiffiffi
π

p
Γð1

3
jaþ 1j þ 1

2
Þ

λ

τAH
: ð38Þ

The last line is once again an approximation for high
energies. We see that the probability for the dust cloud to
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escape the grey hole state is proportional to 1=Ē2 for heavy
clouds.
Note that the above only holds for a ≠ −1. For a ¼ −1,

the escape probability PGH→E behaves to leading order like
λ

τAH
ln ð2 τAH

λ Þ. This is of no further concern here since we are
only interested in narrow wave packets, but serves as a
warning that for the full wave packet, where the width is not
related to a, this result might change for this specific class
of factor orderings.
Classically the only timescale at our disposal is Ē, and

hence it seems reasonable to assume that the time between
escape attempts is proportional to Ē, as also argued in [19].
We will refrain from guessing the corresponding alternative
process at this point and instead leave its discussion for
future work. It might not even be relevant from the point
of view of the exterior observer, because there is the
possibility that whatever happens is hidden behind a
horizon.
Combining our results thus gives a total lifetime propor-

tional to Ē3. Other contributions are negligible in com-
parison: We have assumed the time for the transition itself
to be of the order Ē. Furthermore, the Killing time when
approaching the horizon only diverges logarithmically, and
hence the time it takes until the initial transition into the
grey hole takes place is, depending on how close to
the horizon this occurs, most likely appreciably smaller
than ∝ Ē3.
Our lifetime is considerably larger than earlier results

that predict a lifetime linear in Ē [5,17]. It has since been
argued that this describes only the time for the transition
itself, in case this happens, and should be complemented by
a timescale associated with the failure to perform a
transition [19]. This is also the viewpoint we adopt here,
but compared to the lifetime ∝ ĒeΞĒ

2

found in [19], our
lifetime is significantly smaller. It is, in fact, comparable
with the Hawking evaporation time, making Hawking
radiation a significant factor for the lifetime. The explicit
inclusion of it deserves further investigation. Also of the
same timescale is the dispersion time of a wave packet
describing a quantized extremal Reissner–Nordström black
hole [52].
Our result also further corroborates the usual sentiment

that the semiclassical description of quantum black
holes breaks down within a timescale of Ē3, an idea first
introduced in the discussion of Hawking evaporation
and supported by the results of [52]. In our model,
the exterior observer first notices the bounce when
this time has elapsed after the formation of the grey
hole, breaking at least the global notion of a correct
classical description of the geometry far away from the
singularity.
In spite of its limitations, we are confident that

our simple model provides convincing arguments for a
finite, but not too short lifetime for the transition from BH
to WH.

C. Effective pressure

For the following discussion it is necessary to generalize
our results from the outermost dust shell to the full LTB
model; we thus assume

Rðτ; ρÞ ¼ ðR0ðρÞ3 þ Rclðτ; ρÞ3Þ13;

with R0ðρÞ ¼
αðρÞ
FðρÞ13 ;

_Rclðτ; ρÞ2 ¼
FðρÞ

Rclðτ; ρÞ
:

Here, αðρÞ has been heuristically introduced to describe
this generalization. We leave this function open, except for
the condition that when approaching ρ → 0, α ∝ F

1
3 such

that the minimal radius of the innermost shell does not
diverge. Furthermore, α has to be chosen in such a way that
for every shell the initial radius is at least as big as its
minimal radius.
One should note that a special case of this class of

bouncing dust collapse models was discussed in [13],
motivated by a specific correction of the energy density
through quantum effects; the authors of [13] considered
homogeneous dust and used a specific function α.
Inserting the resulting metric into the Einstein equations,

we can determine an effective energy-momentum tensor. It
is diagonal, and hence we interpret its components as an
effective energy density and three components of (aniso-
tropic) pressure,

8πϵ ¼ 1

R0R2

�
F −

α3

R3

�0
;

8πpρ ¼ −3
α3

R6
;

8πpθ ¼ 8πpϕ ¼ 3

2

α3

R6
−
3

2

1

R0R2

�
α3

R3

�0
:

As we can see, the corrections to the energy density and the
pressures build up quickly very close to the bounce because
of the factors R−6. To facilitate the bounce, the pressure and
the correction to the energy density need to become
negative enough to make gravity repulsive. Adding up
all contributions gives

8πðϵþ pρ þ pθ þ pϕÞ ¼
1

R0R2

�
F − 4

α3

R3

�0
:

For simplicity we will in the following consider this
expression at the time of the bounce for individual shells.
After all, one would expect that the repulsion is strongest
then. This gives

8πðϵþ pρ þ pθ þ pϕÞjR¼R0
¼ −3

F0

R0
0R

2
0

: ð39Þ
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It should be noted that in agreement with the Misner-Sharp
mass, ϵ vanishes at the bounce.
The expression (39) need not necessarily be negative.2

The shells may get scrambled, that is, their order may
(perhaps partially) be reversed. Because this can only be the
case for the future of a shell-crossing singularity, one has to
specify how the spacetime is extended through it. We have
done that already in the form of the shell trajectories Rðτ; ρÞ
above, but have to be aware that the interpretation of some
quantities changes. Most relevant here is the fact that the
mass function FðρÞ is still constant in time, but cannot be
equal to the mass contained in the shell ρ after crossing
another shell. We have to interpret F as a label attached to
the shells. This restriction is then lifted after the shell
crossings occur a second time, and F once again regains its
former status. Furthermore, we have to consider that the
coordinates do not have to retain their physical meaning
during the bounce: τ is not necessarily the dust proper time,
a fact which will not restrict the following considerations,
whereas the fact that ρ is not monotonically increasing
when going outwards will become very important.
It follows that while F0 is always positive, there is no

guarantee that R0 will stay positive during the bounce,
potentially changing the sign of the effective energy density
(39). If this happens, gravity can become repulsive. How
can we understand this?
To answer this question we calculate the active gravi-

tating mass inside the shell ρ by the following integral, at
first without any scrambling,

Mðρ; τÞ ¼ 4π

Z
ρ

0

dρ̃
ffiffiffiffiffiffi
−g

p ðϵþ pρ þ pθ þ pϕÞ

¼ F
2
− 2

α3

R3
¼R¼R0 −

3

2
F:

As expected, gravity becomes repulsive, and also stronger
by a factor of 3 as compared to the classical collapse.
We now address the case of scrambling which we

restrict to the case where the order of all shells is
completely reversed. Taking into account that the innermost
shell is then the former outermost one with ρ ¼ ρo,
we have

Mðρ; τÞ ¼ 4π

Z
ρ

ρo

dρ̃
ffiffiffiffiffiffi
−g

p ðϵþ pρ þ pθ þ pϕÞ

¼
	
−
F
2
þ 2

α3

R3



ρ

ρo

¼R¼R0 3

2
FðρÞ − 3

2
FðρoÞ < 0:

The sign change in the second line is a result of jR0j
appearing in the square root of the metric determinant and
of R0−1 appearing in the effective energy density and
pressure. It is apparent that now gravity is repulsive not
as a result of negative effective pressure, but simply
because the shells are scrambled.

V. CONCLUSIONS

In this paper, we have quantized the LTBmodel using the
assumption that the quantum dynamics of different dust
shells decouple, just as in the classical case. This has
allowed us to quantize only a single one of those shells,
chosen to be the outermost one, and infer the behavior of
the full dust cloud from the results.
Because the dust brings with it a natural time coordinate,

its proper time, we have been able to ignore the usual
problem of time in quantum gravity [1]. This has enabled us
to construct a quantum theory for the outermost shell in
analogy to conventional quantum mechanics, including
unitary evolution of states. Both the choice of factor
ordering and self-adjoint extension have been left open.
We have been able to show that unitarily evolving states

generically avoid the classical singularity, except when the
factor ordering falls into a specific range. Outside of this
range, singularity avoidance holds for all self-adjoint
extensions. Choosing a convenient self-adjoint extension
has allowed us to examine a particular singularity-avoiding
wave packet for all factor orderings. This wave packet
exhibits a bounce. We have demonstrated that this bounc-
ing behavior exhibits a robustness under quantization
ambiguities similarly to singularity avoidance.
We have then investigated several properties of a

quantum corrected model for gravitational collapse based
on the dynamics predicted by our quantum theory: the
transformation of the horizon from black hole to white hole,
the lifetime of the grey hole, which turns out proportional to
the third power of the ADM energy, and effective pressures
facilitating the bounce. Regarding the last point, we have
found that these pressures are not negative enough to make
gravity repulsive in those cases where the different dust
shells change their order during the bounce, but there the
effective mass inside each shell is still negative exactly
because of this reversed order.
When discussing these aspects of bouncing collapse, the

limits of applicability of our model became apparent: using
dust proper time as the time parameter and cutting off the
model at the dust cloud’s outermost shell has led to
difficulties in determining the grey hole’s lifetime and to
limitations in understanding the apparent horizon.
The perhaps strongest limitation of our model is the

assumption that the shells can be treated independently
from each other. It is far from clear whether the shells do or
do not show some emergent interaction when quantizing
the full LTB model. In fact, we expect additional terms to
occur in the exact Hamiltonian; after all, Hawking radiation

2It should be noted that the relevant energy conditions are still
violated, so the singularity theorems (see e.g., [53]) are not
applicable, allowing the possibility of a bounce. Consider
e.g., 8πðϵþ pρÞjR¼R0

¼ −3 F
R3
0

< 0, which violates the null,

weak, dominant and strong energy condition.
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is not accounted for in our model. Including this radiation
may by itself modify some of our results, especially in view
of the lifetime we have computed (which is of the same
order as the evaporation time). Perhaps it will be possible to
accommodate such effects in an extended model similar
to [54].
In addition, the possible occurrence of shell crossings

near the bounce leaves some open questions. We have
proposed a particular method to deal with them, but there
might be a more elegant alternative which will also be
applicable to the classical shell crossings that we have
excluded from the beginning.
In spite of these limitations, we believe that our results

are a first indication that quantum-gravitational effects can
indeed lead to singularity avoidance in the LTB model, and
that the underlying mechanism is a bounce. The degree of
robustness of these features under the quantization ambi-
guities is certainly encouraging.
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APPENDIX A: SELF-ADJOINT EXTENSIONS OF
THE HAMILTONIAN

This Appendix is devoted to finding the self-adjoint
extension of the Hamiltonian (7); in this, we largely follow
[55]. To start with, we choose as the domain of Ĥ all
functions in L2ðRþ; R1−a−2bdRÞ that are smooth and
compactly supported on the half line such that the boundary
term

Wðψ ;ϕÞ ¼ hϕ; Ĥψi − hĤϕ;ψi

¼ R−a−2b
�
ϕ� ∂ψ

∂R −
∂ϕ�

∂R ψ

�����∞
0

; ðA1Þ

where we take Ĥ just as a differential operator without a
well-defined domain, vanishes for such a function ψ ,
independently of ϕ ∈ L2ðRþ; R1−a−2bdRÞ. Hence, the
domain of its adjoint is as large as it can be for a second
order differential operator, what is called in [55] its natural
domain.
To find out whether the domain of the self-adjoint

Hamiltonian is unique, we need to find the deficiency
indices of Ĥ as the dimensions of the solution spaces to the
eigenvalue equations Ĥ†ψ ¼ �iψ . The corresponding
solutions are the same as the positive and negative energy
stationary modes from the beginning of Sec. III; one simply
has to replace E by i.
Checking for square integrability can also be done in

analogy to the stationary modes: for the eigenvalue −i

only one mode remains and only for factor orderings
j1þ aj < 3. Hence, we have for these factor orderings
the deficiency index n− ¼ 1, and otherwise n− ¼ 0.
Because Ĥ is real, the same has to hold for nþ. Why we
have a square integrable solution to the eigenvalue equation
for eigenvalue i, but none for a real eigenvalue, can be seen
in the following way. The asymptotic behavior of ϕ1=2

E for
R → ∞, (14) and (15), acquires an exponential component
in addition to an oscillating one for E ¼ i. For a specific
combination of the two modes the exponentially growing
parts can be made to cancel out, leaving an exponential
decay towards infinity.
The deficiency indices tell us that Ĥ is essentially self-

adjoint for j1þ aj ≥ 3, meaning it has a unique self-adjoint
extension for those factor orderings. For j1þ aj < 3 the
extension is not unique, but several choices are possible.
Let us start with the former case.
The unique self-adjoint extension of an essentially self-

adjoint operator is equal to its closure. The domain of this
closure is given by all functions ϕ ∈ domĤ† such that
Wðψ ;ϕÞ ¼ 0 for all ψ ∈ domĤ†. Let us first note that for
every such ψ one can construct a function such that it and
its derivative behave like the original function ψ (or
respectively its derivative) at R → ∞ or R → 0, and vanish
for the other boundary. It follows that we can split up the
above condition Wðψ ;ϕÞ ¼ 0 into

wðψ ;ϕÞjR→0 ¼ 0 and wðψ ;ϕÞjR→∞ ¼ 0;

where wðψ ;ϕÞ ¼ 1

2
R−a−2b

�
ϕ� dψ

dR
−
dϕ�

dR
ψ

�
: ðA2Þ

To arrive at generic boundary conditions for unitarily
evolving wave functions, we have to determine how a
generic ψ ∈ domĤ† behaves when approaching the boun-
daries. Let us first consider R → ∞. We know that for any
ψ ∈ domĤ† both ψ and Ĥψ have to be square integrable.
Keeping this in mind we use the identity

2

Z
R

R0

dR̃ R̃1−a−2bðψ�Ĥψ þ ψĤψ�Þ

¼ R̃−a−2b djψ j2
dR̃

����R
R0

− 2

Z
R

R0

dR̃R̃1−a−2b
�
1

R̃

���� dψdR̃
����2 − bð1þ aþ 2bÞ

R̃3
jψ j2

�
;

where 0 < R0 < ∞, to argue analogously to Lemma 2.14
in [55] that R−1

2jψ 0j has to be square integrable near R → ∞.
In analogy to Lemma 2.13 in [55], we can then use the
identities
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Z
R

R0

dR̃ R̃1−a−2b
�
ψ� 1ffiffiffiffĩ

R
p dψ

dR̃
þ ψ

1ffiffiffiffĩ
R

p dψ�

dR̃

�

¼ R̃
1
2
−a−2bjψ j2jRR0

−
Z

R

R0

dR̃ R̃1−a−2b
1
2
− a − 2b

R̃
3
2

jψ j2;

2

Z
R

R0

dR̃ R̃1−a−2b
�

1ffiffiffiffĩ
R

p dψ�

dR̃
Ĥψ þ 1ffiffiffiffĩ

R
p dψ

dR̃
Ĥψ�

�

¼ R̃−1
2
−a−2b

���� dψdR̃
����2 þ bð1þ aþ bÞR̃−5

2
−a−2bjψ j2

����R
R0

þ
Z

R

R0

dR̃ R̃
1
2
−a−2b

�1
2
− a − 2b

R̃2

���� dψdR̃
����2

þ bð1þ aþ bÞð5
2
þ aþ 2bÞ

R̃4
jψ j2

�

to deduce that for R → ∞, R
1
2
−a−2bjψ j2 → 0 and

R−1
2
−a−2bjψ 0j2 → 0. It directly follows that wðψ ;ϕÞ → 0

for R → ∞ and any ψ, ϕ ∈ domĤ†, meaning the R → ∞
part of (A2) is always fulfilled. This holds not only for
j1þ aj ≥ 3, but for any factor ordering. We want to note
that the usual pathological examples for square integrable
functions not vanishing for R → ∞ are excluded here by
the continuity conditions on functions in domĤ†, needed to
make the expression Ĥψ meaningful and the above
identities well defined due to the use of partial integration
when deriving them.
Next we consider the boundary R → 0. To this

end we first note that, as mentioned previously, for
a ψ ∈ domĤ† with Ĥ†ψ ¼ η the function η has to be
included in L2ðRþ; R1−a−2bdRÞ. Using the ansatz ψðRÞ ¼
c1ðRÞϕ1

0ðRÞ þ c2ðRÞϕ2
0ðRÞ, where ϕ1=2

0 are the zero energy
stationary modes (11), here normalized such that
wðϕ1

0;ϕ
2
0Þ ¼ 1, the above equation can be inverted to give

ψðRÞ ¼ c01ϕ
1
0ðRÞ þ c02ϕ

2
0ðRÞ

þ ϕ1
0ðRÞ

Z
R

R0

dR̃ R̃1−a−2bϕ2
0ðR̃ÞηðR̃Þ

− ϕ2
0ðRÞ

Z
R

R̄0

dR̃ R̃1−a−2bϕ1
0ðR̃ÞηðR̃Þ; ðA3Þ

ψðRÞ0 ¼ c01ϕ
1
0ðRÞ0 þ c02ϕ

2
0ðRÞ0

þ ϕ1
0ðRÞ0

Z
R

R0

dR̃ R̃1−a−2bϕ2
0ðR̃ÞηðR̃Þ

− ϕ2
0ðRÞ0

Z
R

R̄0

dR̃ R̃1−a−2bϕ1
0ðR̃ÞηðR̃Þ; ðA4Þ

where c01, c
0
2 and R0, R̄0 are constants, the former complex

and the latter on the real positive half line, and a prime
denotes a differentiation with respect to R. We can now
read off how ψ behaves for different factor orderings
when R → 0.

We first note that ϕ1
0 is square integrable at R ¼ 0 for

a < 2 and at R → ∞ for a > 2, while ϕ2
0 is square

integrable at R ¼ 0 for a > −4 and at R → ∞ for
a < −4. Hence, we have to distinguish four different cases
in the following, keeping in mind that we are presently only
discussing the factor ordering for which Ĥ is essentially
self-adjoint, j1þ aj ≥ 3.
Let us consider a < −4. We choose R0 → ∞ and R̄0 ¼ 0

such that the integrals in (A3) are well defined. Using the
Cauchy-Schwarz inequality we can give an estimation for
these terms in ψ :

����ϕ1
0ðRÞ

Z
∞

R
dR̃R̃1−a−2bϕ2

0ðR̃ÞηðR̃Þ
����

≤
2R

1
2
ð4þaþ2bÞ

ð−1−aÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−4−a

p
�Z

∞

R
dR̃R̃1−a−2bjηðR̃Þj2

�1
2

; ðA5Þ

����ϕ2
0ðRÞ

Z
R

0

dR̃ R̃1−a−2bϕ1
0ðR̃ÞηðR̃Þ

����
≤

2R
1
2
ð4þaþ2bÞ

ð−1 − aÞ ffiffiffiffiffiffiffiffiffiffiffi
2 − a

p
�Z

R

0

dR̃ R̃1−a−2bjηðR̃Þj2
�1

2

; ðA6Þ

and analogously for ψðRÞ0, for which ϕ1
0ðRÞ and ϕ2

0ðRÞ are
replaced by ϕ1

0ðRÞ0 and ϕ2
0ðRÞ0, decreasing the power of R

by 1. Note that the integrals on the right-hand side of the
above estimates are bounded when R → 0 because η is
square integrable.
Furthermore, we have to set c02 ¼ 0; otherwise ψ is not

square integrable at R → 0. Plugging in the remaining
terms pairwise into w and using the estimates (A5) and
(A6), we can see that wðϕ; χÞ always vanishes for any
functions ϕ, χ belonging to domĤ† when R → 0 meaning
that, when keeping in mind the previous analogous result
for R → ∞, (A2) is always fulfilled and no additional
conditions are needed.
For a ¼ −4 the same conclusion holds. In this case the

integral terms can respectively be estimated to behave like
Rb and Rb

ffiffiffiffiffiffiffiffiffiffiffiffij lnRjp
when approaching the boundary, which

still leads to wjR→0 vanishing. Note that in contrast to
a < −4 one has to choose R0 ¼ 1, because ϕ2

0 is not square
integrable at either boundary.
In the case of a > 2 we choose R0 ¼ 0 and R̄0 → ∞.

Apart from minor differences concerning the signs in the
prefactor and the boundaries of the integral as dictated by
the aforementioned choice of R0 and R̄0, we can estimate
the integral terms as in (A5) and (A6); most notably, the
power of R remains the same. Furthermore, we choose
c01 ¼ 0. Once again none of the terms contribute to wjR→0.
The same result emerges for the case a¼2 (c01 ¼ 0, R0 ¼ 0

and R̄0 ¼ 1), for which the integral terms can be estimated
to behave like R3þb and R3þb

ffiffiffiffiffiffiffiffiffiffiffiffij lnRjp
.
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In summary, we can say that for j1þ aj ≥ 3 the domain of
the essentially self-adjoint Hamiltonian is equal to domĤ†

meaning, ignoring continuity conditions, all square inte-
grable functions ψ for which Ĥψ is also square integrable.
Finally we have to consider j1þ aj < 3. We once again

utilize (A5) and (A6). Since both ϕ1
0 and ϕ2

0 are square
integrable at R ¼ 0 for the factor orderings in question, we
can choose R0 ¼ R̄0 ¼ 0, and c01, c

0
2 do not necessarily have

to vanish. Because of ϕ2
0, we have to consider the casewhere

a ¼ −1 on its own. Let us first restrict ourselves to a ≠ −1.
Once again the integral terms can be estimated by (A5) and
(A6), with the aforementionedminor variations. The integral
terms then do not contribute tow asR → 0, but in contrast to
the previously discussed factor orderings, ϕ1

0 and ϕ2
0 do.

For a ¼ −1, the integral terms behave a bit differently:

����ϕ1
0ðRÞ

Z
R

0

dR̃ R̃2−2bϕ2
0ðR̃ÞηðR̃Þ

����
≤
2R

3
2
þbffiffiffiffiffi
27

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ln2R− 6 lnRþ 2

p �Z
R

0

dR̃ R̃2−2bjηðR̃Þj2
�1

2

;����ϕ1
0ðRÞ0

Z
R

0

dR̃ R̃2−2bϕ2
0ðR̃ÞηðR̃Þ

����
≤
2bR

1
2
þbffiffiffiffiffi

27
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ln2R− 6 lnRþ 2

p �Z
R

0

dR̃ R̃2−2bjηðR̃Þj2
�1

2

;����ϕ2
0ðRÞ

Z
R

0

dR̃ R̃2−2bϕ1
0ðR̃ÞηðR̃Þ

����
≤

2ffiffiffi
3

p R
3
2
þbj lnRj

�Z
R

0

dR̃ R̃2−2bjηðR̃Þj2
�1

2

;����ϕ2
0ðRÞ0

Z
R

0

dR̃ R̃2−2bϕ1
0ðR̃ÞηðR̃Þ

����
≤

2ffiffiffi
3

p R
1
2
þbjb lnRþ 1j

�Z
R

0

dR̃ R̃2−2bjηðR̃Þj2
�1

2

:

Despite the differences to previous factor orderings, the
results are identical: only ϕ1

0 and ϕ2
0 contribute to w

as R → 0.
Combining the above with our previous result for the

behavior of ψ for R → ∞, we can give an asymptotic

expansion for any ψ ∈ domĤ† for R → 0 as

ψðRÞ ¼ c01ϕ
1
0ðRÞ þ c02ϕ

2
0ðRÞ þ ψ̃0ðRÞ;

where c01, c02 are arbitrary constants, and ψ̃0 does not
contribute to wjR→0. wjR→∞ always vanishes, and hence
there we have ψ ¼ ψ̃∞. Note that the asymptotic expansion
of the derivative is equal to the derivative of the asymptotic
expansion above.
This allows us to determine self-adjoint extensions for Ĥ

by using Theorem 4.24 of [55], where the procedure we
employ below is called the “asymmetry form method.”

A more pedagogical introduction to this method can be
found in [41].
To start with, we consider the asymmetry form

ΔðψÞ ¼ Wðψ ;ψÞ ¼ −wðψ ;ψÞjR→0 ¼ c01
�c02 − c02

�c01;

where we have used that ϕ1
0, ϕ

2
0 are real and normalized

such that wðϕ1
0;ϕ

2
0Þ ¼ 1. The next step is then to diago-

nalize the asymmetry form, which in our case can be
achieved by defining cþ ¼ 1

2
ð−c01 þ ic02Þ and c− ¼

1
2
ðc01 þ ic02Þ such that

ΔðψÞ ¼ 2iðjcþj2 − jc−j2Þ:

All self-adjoint extensions of Ĥ can then be given by the
condition

c− ¼ eiθcþ; ðA7Þ

where θ ∈ ½0; 2πÞ.
To check whether a given ψ ∈ domĤ† fulfills this

condition for a given θ, we need to extract the constants
c� from the asymptotic expansion of ψ . To this end, we
note

wðψ ;ϕ1
0ÞjR→0 ¼ −c02;

wðψ ;ϕ2
0ÞjR→0 ¼ c01:

This allows us to write the condition (A7) as

−ð1þ eiθÞR2þa d
dR

R−ð1þaþbÞψ
����
R→0

¼ ið1 − eiθÞR−a d
dR

R−bψ

����
R→0

ðA8Þ

for a ≠ −1, and for a ¼ −1 as

−ð1þeiθÞRln2R d
dR

R−b

lnR
ψ

����
R→0

¼ ið1−eiθÞR d
dR

R−bψ

����
R→0

:

ðA9Þ

Finally we note that θ can, of course, be chosen differently
for each factor ordering. We thus change θ according to
θ → −θ þ π for a > −1, allowing us to rewrite (A8) as

−ð1þeiθÞR1−j1þaj d
dR

R−1
2
ð1þa−j1þajþ2bÞψ

����
R→0

¼ ið1−eiθÞR1þj1þaj d
dR

R−1
2
ð1þaþj1þajþ2bÞψ

����
R→0

: ðA10Þ

It turns out that this form of the boundary conditions works
best for our stationary modes. This concludes our dis-
cussion of the self-adjoint extensions of the Hamiltonian.
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APPENDIX B: APPLYING BOUNDARY
CONDITIONS TO THE STATIONARY MODES

We want to enforce the boundary conditions (19) and
(20), which correspond to the different self-adjoint exten-
sions of the Hamiltonian for the positive energy stationary

modes ϕ1
E and ϕ2

E. Recall that only factor orderings with
j1þ aj < 3 are relevant here. First we will con-
sider a ≠ −1.
We start with ϕ1

E and compute

R1−j1þaj d
dR

R−1
2
ð1þa−j1þajþ2bÞϕ1

E ¼ −
ffiffiffiffiffiffi
2E

p
R

1
2
ð3−j1þajÞ

�
cos

�
π

3
j1þ aj

�
J1−1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�

þ sin

�
π

3
j1þ aj

�
Y1−1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

��

∼R→0 −
3 cosðπ

3
j1þ ajÞ

Γð2 − 1
3
j1þ ajÞ

�
1

3

ffiffiffiffiffiffi
2E

p �
2−1

3
j1þaj

R3−j1þaj

þ 3

π
sin

�
π

3
j1þ aj

�
Γ
�
1 −

1

3
j1þ aj

��
1

3

ffiffiffiffiffiffi
2E

p �1
3
j1þaj

;

R1þj1þaj d
dR

R−1
2
ð1þaþj1þajþ2bÞϕ1

E ¼ −
ffiffiffiffiffiffi
2E

p
R

1
2
ð3þj1þajÞJ1þ1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�

∼R→0 −
3ð1

3

ffiffiffiffiffiffi
2E

p Þ2þ1
3
j1þaj

Γð2þ 1
3
j1þ ajÞ R

3þj1þaj;

where we have used several well-known identities
of the Bessel functions and their derivatives, which
can be found e.g., in [42], along with their asymptotic
behavior. Inserting ϕ1

E on its own into (19) would
thus lead to eiθ þ 1 ¼ 0. ϕ1

E is hence viable for θ ¼ π,

but for other self-adjoint extensions we have to
consider more general linear combinations of the two
modes.
For ϕ2

E we proceed along the same lines as for ϕ1
E and

compute

R1−j1þaj d
dR

R−1
2
ð1þa−j1þajþ2bÞϕ2

E ¼
ffiffiffiffiffiffi
2E

p
R

1
2
ð3−j1þajÞ

�
sin

�
π

3
j1þ aj

�
J1−1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�

− cos

�
π

3
j1þ aj

�
Y1−1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

��

∼R→0 3 sinðπ3 j1þ ajÞ
Γð2 − 1

3
j1þ ajÞ

�
1

3

ffiffiffiffiffiffi
2E

p �
2−1

3
j1þaj

R3−j1þaj

þ 3

π
cos

�
π

3
j1þ aj

�
Γ
�
1 −

1

3
j1þ aj

��
1

3

ffiffiffiffiffiffi
2E

p �1
3
j1þaj

;

R1þj1þaj d
dR

R−1
2
ð1þaþj1þajþ2bÞϕ2

E ¼ −
ffiffiffiffiffiffi
2E

p
R

1
2
ð3þj1þajÞY1þ1

3
j1þaj

�
2

3

ffiffiffiffiffiffi
2E

p
R

3
2

�

∼R→0 3

π
Γ
�
1þ 1

3
j1þ aj

��
1

3

ffiffiffiffiffiffi
2E

p �
−1
3
j1þaj

;

On its own, ϕ2
E would only be able to fulfill (19) for a single specific energy, but since it is not square integrable, it does

not admit an interpretation as a bound state. As noted above, only a specific linear combination Aϕ1
E þ Bϕ2

E, A ≠ 0, is
permissible under (19):
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− ð1þ eiθÞΓ
�
1 −

1

3
j1þ aj

��
1

3

ffiffiffiffiffiffi
2E

p �1
3
j1þaj

×
�
A sin

�
π

3
j1þ aj

�
þ B cos

�
π

3
j1þ aj

��

¼ ið1 − eiθÞΓ
�
1þ 1

3
j1þ aj

��
1

3

ffiffiffiffiffiffi
2E

p �
−1
3
j1þaj

B:

For θ ¼ π the above implies B ¼ 0, and hence we see that
ϕ1
E and only ϕ1

E is viable for this self-adjoint extension.
With θ ≠ π we continue and arrive at

A sin

�
π

3
j1þ aj

�
þ B cos

�
π

3
j1þ aj

�

¼ − tan
θ

2

Γð1þ 1
3
j1þ ajÞ

Γð1 − 1
3
j1þ ajÞ

�
1

3

ffiffiffiffiffiffi
2E

p �
−2
3
j1þaj

B;

and hence the positive energy stationary mode permitted by
(19) is

− tan
θ

2

Γð1þ 1
3
j1þ ajÞ

Γð1 − 1
3
j1þ ajÞ

�
1

3

ffiffiffiffiffiffi
2E

p �
−2
3
j1þaj

ϕ1
E

− cos

�
π

3
j1þ aj

�
ϕ1
E þ sin

�
π

3
j1þ aj

�
ϕ2
E:

Finally we want to consider the case a ¼ −1. Plugging
Aϕ1

E þ Bϕ2
E into (20) and a straightforward calculation

leads to

ð1þ eiθÞ
�
Aþ 2B

π
ln

�
2

3

ffiffiffiffiffiffi
2E

p ��
¼ ið1 − eiθÞ 3B

π
:

As is apparent, for θ ¼ π we once again have as our
permitted mode ϕ1

E, and for other factor orderings

�
3

π
tan

θ

2
−
2

π
ln

�
2

3

ffiffiffiffiffiffi
2E

p ��
ϕ1
E þ ϕ2

E:

APPENDIX C: MINIMAL RADIUS FOR THE FULL WAVE PACKET

The expectation value of the minimal radius for the full wave packet (29) can be computed as

R̄ðτ ¼ 0Þ ¼
Z

∞

0

dRR1−a−2bRjΨðR; τ ¼ 0Þj2

¼ λ
1
3
2κþ

1
3π

3
1
3

cscðπ
6
ðjaþ 1j− 3κþ 2ÞÞΓ

�
jaþ1j
6

þ κ
2
þ 1

�
Γð2

3
ÞΓðκþ 1ÞΓ

�
jaþ1j
6

− κ
2

�
×

	
Γ
�jaþ 1j

3
þ 4

3

�
Γ
�jaþ 1j

6
−
κ

2

�
3F̃2

�
4

3
;
jaþ 1j

6
þ κ

2
þ 1;

jaþ 1j
3

þ 4

3
;
jaþ 1j

6
−
κ

2
þ 4

3
;
jaþ 1j

3
þ 1;−1

�

þ 3Γ
�
2

3

�
Γ
�
κþ 2

3

�
3F̃2

�
κþ 2

3
;−

jaþ 1j
6

þ κ

2
þ 1;

jaþ 1j
6

þ κ

2
þ 1;−

jaþ 1j
6

þ κ

2
þ 2

3
;
jaþ 1j

6
þ κ

2
þ 2

3
;−1

�

;

where 3F̃2 are regularized hypergeometric functions. The function gða; κÞ follows from comparison of the above with the
expression R̄ðτ ¼ 0Þ ¼ λ

1
3gða; κÞ. It is obvious that it intricately depends on both a and κ.

APPENDIX D: TRANSITION PROBABILITIES

The full expression for the probability for the transition from collapse to grey hole state, as well as from collapse to
expansion is rather complicated,

PC→E

PC→GH
¼

R −τAH
−∞ dτ−

R∞
τAH

dτþWðτ−; τþÞR
−τAH
−∞ dτ−

R
τAH
−τAH dτþWðτ−; τþÞ

¼
2
3
j1þaj

2
3
j1þajþ1 2

F1

�
1
2
; 1; j1þaj

3
þ 3

2
;− λ2

4τ2AH

�
− 1

1 −
�
4τ2AH
λ2

þ 1
�j1þaj

3

�
1þ 2

ffiffi
π

p
τAHΓðj1þaj

3
þ1

2
Þ

λΓðj1þaj
3

Þ − 8τ2AHj1þaj
3λ2 2F1

�
1
2
; j1þaj

3
þ 1; 3

2
;− 4τ2AH

λ2

�� : ðD1Þ
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Keeping in mind that τAHλ is roughly proportional to Ē2 for
a fixed, we can approximate the result for high energies. To
this end, we note that asymptotically the Gauss hyper-
geometric function 2F1 behaves like [42]

2F1ða; b; c; zÞ ≈
ΓðcÞΓðb − aÞ
ΓðbÞΓðc − aÞ ð−zÞ

−a

þ ΓðcÞΓða − bÞ
ΓðaÞΓðc − bÞ ð−zÞ

−b for jzj → ∞;

2F1ða; b; c; zÞ ≈ 1þ ab
c
z for jzj → 0:

Applying this to (D1) above gives

PC→E

PC→GH
≈
ð2 τAH

λ Þ−
2
3
j1þaj

2
3
j1þ aj þ 1

:

The same approximation can be applied to the transition
probability from grey hole to expanding state,

PGH→E ¼
R
τAH
−τAH dτ−

R
∞
τAH

dτþWðτ−; τþÞR
τAH
−τAH dτ−

R
∞
−∞ dτþWðτ−; τþÞ

¼ 1

2
þ Γð1

3
jaþ 1jÞ

4
ffiffiffi
π

p
Γð1

3
jaþ 1j þ 1

2
Þ

λ

τAH

�
1 −

�
1þ 4τ2AH

λ2

�
−1
3
jaþ1j�

−
2Γð1

3
jaþ 1j þ 1Þffiffiffi

π
p

Γð1
3
jaþ 1j þ 1

2
Þ
τAH
λ 2F1

�
1

2
;
1

3
jaþ 1j þ 1;

3

2
;−

4τ2AH
λ2

�
ðD2Þ

≈
Γð1

3
jaþ 1jÞ

4
ffiffiffi
π

p
Γð1

3
jaþ 1j þ 1

2
Þ

λ

τAH
: ðD3Þ

Note that this approximation for high energies only applies when a ≠ −1, otherwise (D3) behaves like λ
τAH

ln ð2 τAH
λ Þ.
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