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We give a holographic argument in favor of the AdS Penrose inequality, which conjectures a lower
bound on the total mass in terms of the area of apparent horizons. This inequality is often viewed as a test
of cosmic censorship. We further find a connection between the area law for apparent horizons and the
Penrose inequality. Finally, we show that the argument also applies to solutions with charge, resulting in a
charged Penrose inequality in AdS.
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I. INTRODUCTION AND SUMMARY

Cosmic censorship, which states that regions of arbi-
trarily large spacetime curvature are invisible to asymptotic
observers, is one of the oldest conjectures about general
relativity. It is also one of the most important: if it is true,
general relativity is sufficient to predict everything that
happens outside black holes, while its failure raises the
possibility of directly observing astronomical effects of
quantum gravity. Despite its clear significance, however, it
remains unproven. In the absence of a proof, theoretical
tests of cosmic censorship are of significant value.
In the early 1970s, Penrose [1] proposed the following

test of cosmic censorship: suppose one is given asymp-
totically flat initial data for general relativity with Arnowitt-
Deser-Misner mass M and an apparent horizon σ with area
A½σ�. Assuming cosmic censorship, σ lies inside a black
hole which is expected to settle down to a stationary Kerr
solution. Under evolution, the area of the event horizon
cannot decrease and the total mass cannot increase. (Energy
might be radiated away to null infinity, so the total (Bondi)
mass may decrease.) If the final black hole is described
by the Schwarzschild solution, then GMBH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ABH=16π
p

.
Since angular momentum decreases the horizon area, a
final Kerr black hole satisfies GMBH ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABH=16π

p
. Since

the initial quantities satisfy M ≥ MBH and A½σ� ≤ ABH,
this gives an immediate prediction that all initial data
must satisfy

GM ≥
�
A½σ�
16π

�
1=2

: ð1:1Þ

This is known as the Penrose inequality. It is a stronger
form of the positive mass theorem, M ≥ 0, and is con-
jectured to hold in the presence of an apparent horizon.
A violation of this inequality would indicate a failure of
cosmic censorship.1

As stated, the inequality appears very difficult to prove.
Mathematicians have primarily focused on a Riemannian
version of this inequality, which refers to an asymptoti-
cally flat Riemannian three-dimensional manifold with
nonnegative scalar curvature and a minimal surface σ.
This can be taken as initial data for a solution to Einstein’s
equation with zero extrinsic curvature and positive energy
density. In the resulting spacetime, the minimal surface is
an apparent horizon. After much effort, a complete proof
of this Riemannian inequality was finally given in 2001,
first for a single connected minimal surface [2] and then
for several minimal surfaces [3]. Since not all asymptoti-
cally flat Lorentzian solutions to Einstein’s equation
necessarily admit such initial data, the general inequality
remains open [4].
A similar inequality has been conjectured for asymp-

totically anti-de Sitter (AdS) initial data with an apparent
horizon σ [5]. The same arguments involving cosmic
censorship and black holes settling down to a stationary
solution lead to the conclusion that the mass M and area
A½σ� of an asymptotically AdS initial data with apparent
horizon σ in 4D should satisfy2
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1The converse, however is false: a proof of the Penrose
inequality is not tantamount to a proof of cosmic censorship.
This is clear in more than four spacetime dimensions where the
Penrose inequality might be true, but cosmic censorship fails.

2We are setting the AdS radius to one throughout this paper.
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GM ≥
�
A½σ�
16π

�
1=2

þ
�
A½σ�
16π

�
3=2

: ð1:2Þ

Since the horizon radius of a Schwarzschild AdS black
hole, rþ, is related to its mass by M ¼ ðrþ þ r3þÞ=2, this is
just the statement that A½σ� is bounded from above by the
horizon area of a static black hole with the same mass.
Despite some partial results (see, e.g., [6–9]) this conjecture
is largely open.
So far we have been assuming four-dimensional space-

times, but there is no obstruction to considering the Penrose
inequality in higher dimensions. The general form of the
Penrose inequality in AdS in higher dimensions is given
in [5]; a proof of the Riemannian Penrose inequality for
asymptotically flat Riemannian manifolds of dimension
less than eight is given in [10]. In higher dimensions,
however, the Penrose inequality loses its connection with
cosmic censorship, since there are unstable black holes
in higher dimensions that develop singularities on their
horizon when they pinch off, violating cosmic censorship.
However, this type of naked singularity is rather mild, in
that its resolution in quantum gravity is almost certainly to
let the horizon bifurcate (or change its topology) with only
of order a Planck energy emitted in the process. It is still
possible that some relaxed version of cosmic censorship,
which permits such mild singularities but forbids large-
scale violations, remains valid. Such a reformulation of
cosmic censorship could still imply the Penrose inequality.
Another possibility is that the Penrose inequality may be

false as a broad conjecture about general relativity but could
be valid for theories of gravity coupled to low energy matter
fields that admit a UV completion within quantum gravity.
This is a statement that can be tested within the framework of
holographic quantum gravity [11–13]. The classical limit of
holography relates classical properties of gravity to proper-
ties of a dual quantum field theory (QFT) and one can use
this dual description to try to derive new inequalities.
We will show that a precise formulation of the

(Lorentzian) AdS Penrose inequality follows from standard
ideas in holography without assuming cosmic censorship.
The basic idea is very simple. Given the initial data above,
it is possible to construct a spacetime with two asymptotic
boundaries and the same mass M on each boundary such
that the dual two-boundary QFT state has the property that
the reduced density matrix of one boundary, ρ0, has von
Neumann entropy S½ρ0� ¼ A½σ�=4Gℏ [14,15]. This entropy
is clearly less than the maximum entropy of any density
matrix with the same energy M. But the bulk dual to a
maximum entropy state in a microcanonical ensemble is the
static AdS black hole [16]. So

A½σ� ¼ 4GℏS½ρ0� ≤ 4Gℏmax
fixM

S½ρ� ¼ ABHðMÞ; ð1:3Þ

where ABHðMÞ is the area of a static AdS black hole
with mass M. After solving the right-hand side for M we

recover (1.2). As we discuss in the next section, we will
require an extra condition on the apparent horizon which is
generically satisfied. Since this constitutes what we believe
is the first general argument for a Lorentzian Penrose
inequality from first principles, it is possible that the correct
general form of the inequality (1.3) also requires this extra
condition.3

The fact that the Penrose inequality follows so simply
from holography raises the possibility that holography
might imply a relaxed version of cosmic censorship as
described above. Another piece of evidence in favor of this
possibility is the following. Since our construction involves
a spacetime with a wormhole, the bulk theory must satisfy
the weak gravity conjecture by the arguments in [17].
While the relevance of the weak gravity conjecture to
Penrose’s inequality may not a priori be clear, an intriguing
connection has been discovered between cosmic censorship
and the weak gravity conjecture: it was found in [18,19]
that cosmic censorship can be violated in AdS in a theory
involving only a Maxwell field coupled to gravity.
However, under inclusion of a charged scalar field with
mass and charge satisfying the weak gravity conjecture,
the Einstein-Maxwell counterexamples to cosmic censor-
ship require fine tuning and are not generic [20,21]. This
triumvirate connection between cosmic censorship, the
weak gravity conjecture, and the Penrose inequality is
therefore suggestive that some principle that rules out large
violations of cosmic censorship may be generically sat-
isfied in holography.
It is possible to construct a quantum generalization of

the construction in [14,15], where A½σ� is replaced by the
generalized entropy 4GℏSgen [22]. A natural question is
then whether holography implies a quantum generalization
of the Penrose inequality. Indeed, in order to prove
Penrose’s inequality in the semiclassical regime, we need
to replace the null energy condition (Tabkakb ≥ 0 for all
null vectors ka) with the so-called quantum focusing
conjecture [23]. The final statement of the AdS Penrose
inequality, however, is not particularly interesting: 4GℏSgen
differs from A½σ� by a perturbative correction involving the
entropy of quantum fields on the background classical
spacetime. Since it is a perturbative correction, it can only
make a difference in the case when the classical Penrose
inequality is saturated. But in that case, it reduces to the
well-known statement that the entropy of a quantum field
on a static black hole background is maximized by the
Hartle-Hawking state.
Saturation of the Penrose inequality is interesting in

its own right, as the existing proofs of the Riemannian
Penrose inequality for asymptotically flat initial data show
that it is saturated only for the Schwarzschild solution.
So the Penrose inequality provides a rigidity result for
Schwarzschild black holes. However, in the context of

3We thank T. Jacobson for discussions on this.
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holography this is not the case: maximum entropy static
black holes need not be unique. For example, at low energy
in AdS5 × S5, localized ten dimensional black holes have
more entropy than Schwarzschild AdS5 × S5, while the
situation is reversed at high energy. Clearly, there is a
particular energy at which these two different static black
holes have the same entropy. Even without including the S5

(or other compact extra dimensions) surprisingly little is
known about the uniqueness of static AdS black holes.
Even Schwarzschild AdS has not been shown to be unique.
The best one has is a proof that there are no nearby static
black holes [24].
There are applications of the AdS Penrose inequality

to the area law for apparent horizons [25–29] and a
proposed quasilocal mass formula [30]. We will discuss
these applications in Sec. III, after deriving the inequality in
the next section. There is also a generalization to charged
black holes, which we describe in Sec. III.

II. CONSTRUCTION

In this section, we will first review the requisite concepts
for our argument. This includes a review of holographic
entanglement entropy, our assumptions about apparent
horizons, and of the dual to the area of apparent horizons.
Wewill then present our argument for the Penrose inequality.

A. Background review

Assumptions and conventions: we work in the large-N,
strong coupling limit of gauge/gravity duality. We will
make all of the same assumptions as [14,15], including the
null energy condition. Since our construction relies in a
large part on [14,15], we will give a rough sketch of that
construction and refer the reader to the original papers for
technical details. Finally, we assume reflecting boundary
conditions at the asymptotic boundary. In this section we
will restrict to time-independent boundary sources for our
original QFT state (we follow a construction that results in
a new QFT state, to which this assumption may not apply).
This restriction will be lifted in Sec. III.
We make use of the Hubeny-Rangamani-Takayangi

(HRT) prescription for holographic entanglement entropy
[31,32] (see [33] for a review):

SvN½ρ� ¼
A½XHRT�
4GðDÞℏ

; ð2:1Þ

where ρ is the reduced density matrix on a single connected
component B1 of the asymptotic boundary, GðDÞ is the bulk
Newton’s constant inD ¼ 10 or 11-dimensions (depending
on whether we are in string theory or M-theory), and XHRT
is the minimal area spacelike codimension-two surface in
the full (10 or 11-dimensional) bulk which is (i) a stationary
point of the area functional and (ii) is homologous to B1.
The original prescription works for arbitrary subregions,

but we will only need to apply it to complete components
of the asymptotic boundary. It is often the case that the
surface XHRT wraps the internal dimensions, so that

XHRT ¼ XðdÞ
HRT × YD−d, where the full spacetime is given

byMd × YD−d, andMd is asymptotically AdS. In this case,
we obtain

SvN½ρ� ¼
A½XðdÞ

HRT�
4GðdÞℏ

; ð2:2Þ

where GðdÞ is the d-dimensional Newton’s constant.
We will also need a more recent addition to the holo-

graphic dictionary, which relates the area of a close variant
of apparent horizons to a coarse-graining of the von
Neumann entropy. Recall that an apparent horizon is a
type of marginally trapped surface: that is, a compact,
codimension-two surface σ whose area is stationary under
deformations in an outgoing null direction. Here outgoing
is defined with respect to the anti–de Sitter (AdS) boundary
(in the situation that there are multiple connected compo-
nents to the asymptotic boundary we define outgoing with
respect to a particular connected component). More explic-
itly, if ka is the outgoing, future-directed orthogonal null
vector to σ, and hab is the induced metric on σ, then σ is
marginally trapped if the expansion

θ≡ hab∇akb ð2:3Þ
vanishes everywhere on σ. The usual definition of an
apparent horizon is the outermost, marginally trapped
surface on a Cauchy slice Σ. In [14,15], a closely related
type of surface called a “minimar” surface was defined.
A compact, marginally trapped surface σ is said to be
minimar if:
(1) σ is homologous to a (complete connected) compo-

nent of the asymptotic boundary. That is, there exists
a hypersurface H such that ∂H ¼ σ ∪ B, where B
is a Cauchy slice of (a connected component of)
the asymptotic boundary. The outer wedge of σ—
the region spacelike to σ and between it and the
asymptotic boundary—is the domain of dependence
of H, and is denoted OW ½σ� (see Fig. 1).

(2) There exists a Cauchy sliceH ofOW ½σ� such that σ is
the minimal area surface on H which is homologous
to the boundary.

(3) σ is stable: consider the null geodesic congruence
generated by ka with affine parameter λ (with λ ¼ 0
on σ) and let la be an ingoing future-directed
null vector orthogonal to surfaces of constant λ.
Then there exists a parametrization of la such that
ka∇aθðlÞ ≤ 0, where the expansion, θðlÞ, is defined
as in (2.3) with kb replaced by lb. Equality can hold
only if θðlÞ ¼ 0 everywhere on σ.

Since apparent horizons are outermost on a Cauchy
slice, they always satisfy requirement 1. One can show
that generic apparent horizons satisfy the other two
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requirements also [15]. From here on, we will assume that
our apparent horizons are minimar.
In [14,15], it was argued that the area of apparent

horizons is computed by a coarse-grained entropy called
the outer entropy, obtained by maximizing the von
Neumann entropy over all possible spacetimes that can
be glued into the interior of σ:

Area½σ�
4Gℏ

¼ max
ρ∈H

SvN½ρ�≡ Souter½σ�; ð2:4Þ

where H is the set of all QFT states with a semiclassical
bulk dual which is identical to our original bulk in the
region OW ½σ�. The proof identifies the state ρ ¼ ρ0 that
maximizes SvN as above by explicitly constructing the dual
bulk spacetime ðM0; g0Þ: this spacetime has two asymptotic
regions, agrees with the original spacetime ðM; gÞ on
OW ½σ�, and has an HRT surface X whose area is the same
as the area of σ. The spacetime is constructed by preparing
an initial data slice Σ and time evolving it to generate the
maximal evolution M. It can then be shown that the HRT
surface X is spacelike separated from both asymptotic
boundaries, is null related to σ, and has the same area as σ
(see Fig. 2).4

Note that we are not assuming cosmic censorship, so
it is possible that M will have a Cauchy horizon and be
extendible. As noted in [15], the same result still holds in
this case.

B. An AdS Penrose inequality

The immediate conclusion that follows from the con-
struction reviewed above is that there exists a spacetime
ðM0; g0Þ in which the following equality holds:

A½σ� ¼ A½X�; ð2:5Þ

where X is the HRT surface of ðM0; g0Þ. Assuming the
HRT prescription, we have

A½σ� ¼ A½X� ¼ 4GðDÞℏSvN ½ρ0�; ð2:6Þ

for some QFT state ρ0 (and all quantities in the above
equation are strictly finite in the large-N limit, with the
understanding that GðDÞ should be replaced by the appro-
priate power of 1=N according to the holographic
dictionary).5 We note here two technical points. First, we
are assuming that ðM0; g0Þ has a CFT dual. We have not
proven that it always will, but we think that this is very
likely. Second, since the proof of the HRT proposal in
[37,38] applies to states that can be constructed by path
integrals, and it is not obvious that ðM0; g0Þ can be
constructed in this way, it is in principle possible that
ðM0; g0Þ has a QFT dual but that its von Neumann entropy is
not computed by the area of the HRT surface. Thus our
result could be framed as an exclusive alternative: either
the Penrose inequality holds, or the HRT prescription is
incomplete even in the regime of classical general relativity
in the bulk.
The outer wedge OW ½σ� is by construction identical in

ðM; gÞ and in ðM0; g0Þ. This immediately implies that
asymptotic charges are identical in both spacetimes. In
particular, the total mass within OW ½σ� is identical in both
spacetimes. This in turn implies that the QFT stress
tensor integrated on any slice of ∂M ∩ OW ½σ�—the QFT

FIG. 2. Adapted from [15]. The initial data slice Σ (green) used
to prepare the doubled spacetime with an HRT surface X whose
area is identical to the area of σ. Note that OW ½σ� is fixed by
taking the component of Σ inOW ½σ� to be identical in the doubled
spacetime and in the original spacetime. The entanglement wedge
bounded by X and the right boundary is dual to ρ0.

FIG. 1. Adapted from [15]. An apparent horizon σ (purple) and
its outer wedge OW ½σ� (shaded gray). By assumption there exists
a Cauchy sliceH ofOW ½σ� on which σ is the minimal area surface
homologous to the boundary.

4The regularity of the characteristic initial data specified on Σ
is expected to result in a locally unique Cauchy evolution [34];
see e.g., [35,36]. The data satisfies the constraint equations, and is
consistent with minimally coupled scalar and Maxwell fields.

5We are taking the N → ∞ limit in a way that keeps the ratio
of the black hole radius to AdS length scale nonzero. If it does
go to zero, one ends up with a black hole in an symptotically
flat spacetime and radiation can dominate the microcanonical
ensemble.
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energy E—is identical in ρ and ρ0 to leading order in 1=N.
Since we have assumed that any sources are time inde-
pendent in OW ½σ�, this energy is independent of time.
Since ρ0 is a state (on one connected component of the

asymptotic boundary) with energy E, its entropy must be
smaller than the entropy in the microcanonical ensemble:

GðDÞℏSvN½ρ0� ≤ GðDÞℏ max
E�δE

SvN ¼ GðDÞℏSvN½ρmicro� ð2:7Þ

where the right-hand side is a maximization of SvN
over all QFT states with energy in the range E� δE at a
fixed boundary Cauchy slice, where δE is much larger
than the difference between energy eigenvalues but
much smaller than E. It has recently been argued in
[16] using the Euclidean path integral that the bulk dual
of the microcanonical ensemble is a static black hole of
mass E, whose Bekenstein-Hawking entropy is precisely
SvN½ρmicro�.
We thus find:

A½σ� ≤ ABH½E�: ð2:8Þ

Since we have not required the dominating static black hole
or σ to be a product with the internal space, this formula
applies to the full ten or eleven dimensional spacetime.
When the spacetime is asymptotically AdS4 × Y7 and both
σ and the dominating saddle of the microcanonical ensem-
ble are products with Y7, we recover precisely Eq. (1.2),
the Penrose inequality in four-dimensional asymptotically
AdS spacetimes.

III. GENERALIZATIONS AND APPLICATIONS

A. Time dependent sources

In the previous section, we restricted to time-independent
sources in the QFT to simplify the construction. We will
now relax that condition and allow arbitrary time-dependent
sources on the boundary. Since time-dependent sources will
by definition result in changes to the total energy, we will
need to be more precise about the asymptotic energy that
goes into Eq. (2.8). Operating under our prior assumption of
reflecting boundary conditions, turning on boundary sources
typically increases the energy, so if we choose to evaluate
the energy at a time slice t ¼ t1 on the boundary, it will
generically be smaller than the energy at a boundary time
slice t ¼ t2 > t1.
To obtain the tightest bound, we consider smooth

spacelike cross sections of the boundary that are contained
inOW ½σ� and compute the energy on each. We then take the
minimum of these energies, Emin½σ�. We may execute the
full construction above while keeping Emin½σ� fixed, which
yields the general inequality:

A½σ� ≤ ABH½Emin½σ��: ð3:1Þ

Recall now that hypersurfaces foliated by marginally
trapped surfaces—so-called future holographic screens
[39]—satisfy an area monotonicity theorem [25–29]. In
particular, the spacelike component of a future holographic
screen is foliated by minimar surfaces. If the (minimar)
apparent horizons in the foliations are labeled σðrÞ, with r
the foliation parameter, then evolving forwards to increas-
ing r along the holographic screen corresponds to evolving
along the boundary towards the future: the past boundary
of OW ½σð1Þ� ∩ ∂M is to the past of the past boundary of
OW ½σð1þ ϵÞ� ∩ ∂M. See Fig. 3. The energy increase due to
boundary sources corresponds to an area increase, and the
two are related via the Penrose inequality.
In [14,15], the area increase was interpreted as a

thermodynamic second law: a coarse-grained QFT entropy
increase. Here we see that this thermodynamic entropy
increase is also related to an energy increase via the Penrose
inequality.

B. Connection to quasilocal mass

There is an interesting connection between our deriva-
tion of the Penrose inequality and a recent definition of a
quasilocal gravitational mass associated to a “normal”
(non-trapped, θk > 0) surface. Bousso et al. [30] proposed
that the outer entropy of a normal surface ν should be
thought of as defining a quasilocal massMν associated to ν.
They defined Mν using the relation between mass and area
of a Schwarzschild black hole. However, since we are
considering asymptotically AdS spacetimes, it seems more
appropriate to use the Schwarzschild AdS solution. In four
dimensions, this AdS version of the proposal in [30] is

2GMν ¼ ðaSouter½ν�Þ1=2 þ ðaSouter½ν�Þ3=2 ð3:2Þ

FIG. 3. The area increases in a spacelike direction along a
future holographic screen, which corresponds to time increase
on the boundary. Allowing time-dependent sources on the
boundary results in an increase in E. We maximize SvN subject
to E at the past boundary of OW ½σ�, so the mass in the Penrose
inequality increases correspondingly with the apparent horizon
area increase.
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where a ¼ Gℏ=π. Bousso et al. [30] also construct a
generalization of the doubled spacetime construction
reviewed in Sec. II for normal surfaces. They provide
initial data for a spacetime ðM00; g00Þ with an HRT surface
Xν whose area is given by Souter½ν�, and where the outer
wedge OW ½ν� is unchanged.
Now we can apply our above argument. Let ρ1 be the

dual to one side of ðM00; g00Þ. The von Neumann entropy of
ρ1 is given by the area of Xν, and is smaller than the von
Neumann entropy in the microcanonical ensemble with the
same energy. Therefore:

4GℏSouter½ν� ¼ A½Xν� ¼ 4GℏSvN½ρ1� ≤ 4GℏSvN ½ρmicro�
¼ ABHðMÞ ð3:3Þ

Since the relation between M and ABH is similar to
(3.2), our argument shows that the quasilocal mass Mν

is bounded from above by the total mass M (without
assuming cosmic censorship). This is a desirable property
of a quasilocal mass.

C. Charged black holes

There is a charged version of the Penrose inequality. We
first consider the asymptotically flat case, and then general-
ize to asymptotically AdS. The same chain of arguments
that led to (1.1) shows that assuming cosmic censorship, if
one starts with initial data with mass M and charge Q, and
assumes that no charge can be radiated away, then the area
of the initial apparent horizon must satisfy�

A½σ�
16π

�
1=2

≤
1

2

�
GM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGMÞ2 −Q2

q �
: ð3:4Þ

This is because if the final black hole is Reissner-Nordstrom,
the inequality is saturatedwithA ¼ ABH andM ¼ MBH. If the
final black hole is rotating, the left-hand side is reduced.
Referring back to the original quantities only reduces the
left-hand side further and increases the right-hand side.
Equation (3.4) canbeviewedas a strengtheningof thepositive
mass theorem in the presence of charge: GM ≥ jQj. This
argument also extends to AdS; the statement is imply that the
initial area cannot be greater than the area of a Reissner-
Nordstrom AdS black hole with the same mass and charge.

The holographic argument is easily generalized to
include charge. One can again construct a spacetime so
that the dual state, ρ0, has the same mass and charge as the
original one and satisfies A½σ� ¼ 4GðDÞℏSvN½ρ0�. This is
because the arguments in [14,15] included a possible
Maxwell field. One can now maximize SvN ½ρ� over all
states holding the charge fixed as well as the mass. The
argument in [16] is easily generalized to include charge,
with the result that the bulk dual to a maximum entropy
state at fixed energy and charge is the maximum area
static black hole with the same conserved quantities.6

This implies that A½σ� < ABHðM;QÞ which is the charged
Penrose inequality in AdS. As before, no assumption of
cosmic censorship is needed in this derivation.
It is worth noting that there is a slight difference in the

treatment of electric and magnetic charges. Magnetic
charges are simpler to incorporate in Euclidean path
integrals for two reasons. First, the Maxwell field stays
real after analytic continuation so one does not have to
consider imaginary fields. Second, the standard gravita-
tional path integral computes the partition function at fixed
charge only for magnetic charge. For electric charge, the
path integral computes the partition function at fixed
potential. This is because the standard boundary condition
keeps the potential Aμ fixed on the boundary, which is
sufficient to compute magnetic charges but not electric
ones. To compute the partition function at fixed electric
charge, one needs to either modify the Maxwell action in
the path integral, or project the partition function onto a
definite charge [40]. Neither of these differences changes
the final result.
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