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We study the bending of gravitons that pass near a massive object like the Sun, using scattering
amplitudes in which the Sun is represented by a massive scalar particle. Our results complete previous work
on the bending angles of massless spin-0, spin- 1

2
and spin-1 particles [N. E. J. Bjerrum-Bohr, J. F.

Donoghue, B. R. Holstein, L. Planté, and P. Vanhove, Phys. Rev. Lett. 114, 061301 (2015); N. E. J.
Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, L. Plante, and P. Vanhove, J. High Energy Phys. 11 (2016)
117; D. Bai and Y. Huang, Phys. Rev. D 95, 064045 (2017).], and provides more evidence for the violation
of the equivalence principle at the quantum level, in the sense that the quantum corrections to bending
angles for massless particles with different spins are different. We provide a universal expression for the
bending angle in terms of coefficients of triangle and bubble integrals in the amplitudes in the low-energy
limit. We also compare bending angles for scalar, photon and graviton projectiles under different
circumstances.

DOI: 10.1103/PhysRevD.99.126008

I. INTRODUCTION

General relativity and quantum mechanics have vastly
different foundations. The former requires a smooth space-
time and locality is absolute, while the latter requires
regulation of short spacetime distances and locality is
inherently smeared by the uncertainty principle. Trying
to combine these two theories yields ultraviolet divergences
that apparently can only be absorbed by an infinite set of
counterterms. This situation is often referred to as a loss of
predictivity for quantum gravity. In gravitational theories
with matter, such issues begin at one loop [1]. For pure
Einstein gravity, the loss of predictivity begins at two loops,
as demonstrated by the (nonzero) universal renormalization
scale dependence revealed in Refs. [2–4], after earlier work
on the (unphysical) two-loop divergence in dimensional
regularization [5–7]. Although the ultraviolet properties of
a complete theory of quantum gravity are still very unclear,
we can nevertheless try to extract its long-range behavior,
or infrared properties, by treating the quantum field theory
of gravity as an effective theory and focusing on the long-
range behavior [8–19].
The bending angle of light, or of any massless projectile,

when it passes near a massive object such as the Sun, is a
good observable to study to see how an effective theory of

quantum gravity really works. The massive object can be
represented by a massive scalar particle. Using modern
amplitude techniques, the bending angles for massless
scalar and photon projectiles were calculated in Ref. [20]
and then extended to the massless fermion case in Ref. [21].
There the discontinuities of one-loop amplitudes with only
gravitons crossing the cut were calculated and translated
into a one-loop correction to the bending angle. Later, using
traditional Feynman rules, contributions from scalars
(photons) crossing the cut were also computed for the
case of a scalar (photon) projectile [22]. These papers found
the expected classical post-Newtonian correction to the
bending angle for any projectile, while the quantum
corrections differ for particles with different spins. The
latter property indicates a violation of the classical equiv-
alence principle at the quantum level.
In this paper, we complete this line of research by

computing the bending angle for a graviton projectile.
Again we find the expected classical post-Newtonian correc-
tion to the bending angle, but a different quantum correction
fromwhatwas found in the scalar and photon cases.Ourwork
provides more evidence for the violation of the classical
principle of equivalence at the quantum level. Our result for
the graviton bending angle has more in common with
Ref. [22], in which the scalar (photon) cut contribution is
included for scalar (photon) bending, than with Ref. [20] in
which only gravitons crossing the cut contribute.
This paper is organized as follows. First we list all tree-

level amplitudes relevant for our graviton bending calcu-
lation. Such amplitudes, even with external massive scalars,
can be derived with some care from the four-point
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maximally helicity-violating (MHV) amplitude of N ¼ 8
supergravity (SUGRA). Next we use the method of
(generalized) unitarity [23–26] to fuse tree amplitudes into
a one-loop amplitude. We then perform a standard tensor-
integral reduction in order to write the one-loop amplitude
in terms of scalar integrals. After taking the low-energy or
long-range limit, the one-loop amplitude can be translated
into a semiclassical effective potential. Finally, we extract
the one-loop correction to the bending angle from the
potential using a semiclassical formula for angular deflec-
tion [27]. In addition to the pure-graviton case, we also
provide a universal expression for the bending angle for
scalar, photon and graviton projectiles in different setups, in
terms of the amplitudes’ scalar integral coefficients in the
low-energy limit. We compare the various values of the
bending angle and comment briefly on the possible origin
of the violation of the classical equivalence principle found
here and also in Refs. [20–22].

II. CONSTRUCTING THE LOOP INTEGRAND

We consider a process in which an incoming graviton
with momentum k1 scatters off a massive scalar target with
momentum k4 into an outgoing graviton (−k2) and massive
scalar (−k3), where k1 þ k2 þ k3 þ k4 ¼ 0 in our all-
incoming conventions. The only interactions are Einstein
gravity minimally coupled to a scalar field,

Sg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−2
κ2

Rþ 1

2
gμν∂μΦ∂νΦ −

1

2
M2Φ2

�
; ð1Þ

where κ2 ¼ 32πG and the metric signature is ðþ − −−Þ.
We build up the long-range part of the one-loop

amplitude for this process, not from the action (1) but
by considering cuts in the channel carrying the momentum-
invariant s≡ ðk1 þ k2Þ2. (This cut is called the t-channel
cut in Refs. [20–22]). On the left side of the cut shown in
Fig. 1 is a four-graviton tree amplitude; on the right side is a
two-graviton–two-massive-scalar tree amplitude.
Projectile helicity is conserved in forward scattering.

Taking all particles incoming, helicity selection rules imply
that we need a four-graviton tree amplitude with two
positive- and two negative-helicity gravitons, and a two-
graviton–two-massive-scalar amplitude with opposite grav-
iton helicities. These amplitudes are given by

M½h−ðl2Þhþðl1Þ�
½hþðk1Þh−ðk2Þ� ¼

κ2

4

ð2k1 · k2Þð2k2 · l2Þ
ð2k1 · l2Þ

�h2l2i4
PT

�
2

;

M½hþðl2Þh−ðl1Þ�
½hþðk1Þh−ðk2Þ� ¼

κ2

4

ð2k1 · k2Þð2k2 · l2Þ
ð2k1 · l2Þ

�h2l1i4
PT

�
2

;

M½hþðl2Þh−ðl1Þ�
½Φðk4ÞΦðk3Þ� ¼ κ2

4

hl1j3jl2�2hl1j4jl2�2
ð2l1 · l2Þð2l1 · k3Þð2l1 · k4Þ

;

M½h−ðl2Þhþðl1Þ�
½Φðk4ÞΦðk3Þ� ¼ κ2

4

hl2j3jl1�2hl2j4jl1�2
ð2l1 · l2Þð2l1 · k3Þð2l1 · k4Þ

; ð2Þ

where PT ¼ h12ih2l2ihl2l1ihl11i is the Parke-Taylor
factor. For convenience, we let graviton 1 (incoming) have
positive helicity and graviton 2 (incoming) have negative
helicity. To flip the helicities, we only need to take the
complex conjugate of Eq. (2) and other equations below.
Because the graviton helicity flips when crossing the cut,

the one-loop amplitude reconstructed from its s-channel
discontinuity is

M½Φðk3ÞΦðk4Þ�
½hþðk1Þh−ðk2Þ�

���
1L

¼
Z

dDl
ð2πÞD

M½h∓ð−l2Þh�ð−l1Þ�
½hþðk1Þh−ðk2Þ� M½h�ðl2Þh∓ðl1Þ�

½Φðk4ÞΦðk3Þ�
2l21l

2
2

¼ κ4

32s4
X2
i¼1

X4
j¼3

Z
dDl
ð2πÞD

Nþ− þ N−þ

l21l
2
2PiPj

;

ð3Þ

where P1 ¼ ðk1 − l1Þ2; P2 ¼ ðk2 − l1Þ2; P3 ¼ ðk3 þ l1Þ2 −
M2; P4 ¼ ðk4 þ l1Þ2 −M2 and the numerator terms are

Nþ− þ N−þ ¼ ½tr−ð132l23l1Þ�4
h1j3j2�4 þ ðl1 ↔ l2Þ; ð4Þ

where tr−ð…Þ ¼ trð1
2
ð1 − γ5Þ…Þ. After taking the fourth

power in Eq. (4), we do not need to keep track of the part
of the numerator that is linear in the Levi-Civita tensor.
After loop-momentum integration, this contraction can
only generate εμ1μ2μ3μ4k

μ1
1 k

μ2
2 k

μ3
3 k

μ4
4 , which vanishes due

to momentum conservation and antisymmetry.

III. TENSOR REDUCTION

After performing a standard reduction of the one-loop
tensor integrals in D ¼ 4 − 2ϵ dimensions and combining
contributions from the different pieces of Eq. (3), we can
write the amplitude in terms of scalar tadpole integrals, a
scalar bubble integral, a scalar massless triangle integral, a
scalar massive triangle integral and two scalar box inte-
grals. Focusing on terms with an s-channel cut, we can

FIG. 1. The unitarity cut for the scattering amplitude between
the massless projectile (dashed line) and a massive scalar (solid
line). We only have gravitons on the cut for the graviton bending,
but we include scalars (photons) crossing the cut for the case of
scalar (photon) bending.
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discard the tadpoles and other irrelevant terms. The
amplitude now reads

κ−4M½Φðk3ÞΦðk4Þ�
½hþðk1Þh−ðk2Þ�

���
1L

¼ b1I4ðs; tÞ þ b2I4ðs; uÞ
þ t1I3ðsÞ þ t2I3ðs;MÞ
þ bI2ðsÞ; ð5Þ

where b1, b2, t1, t2 and b are polynomials in s ¼ ðk1 þ k2Þ2
and t ¼ ðk2 þ k3Þ2 as well as M2. For general s, t and M2,
the exact forms of these coefficients are quite complicated.
They can be found in the ancillary file on arXiv. Also,
I4ðs; tÞ and I4ðs; uÞ are scalar box integrals [28] (where we
made the M dependence implicit for simplicity); I3ðsÞ is
the massless triangle integral; I3ðs;MÞ is the finite massive
triangle integral; and I2ðsÞ is the massless scalar bubble
integral [14].

IV. LOW-ENERGY LIMIT

We take the energy of the external graviton E ¼ ω to be
much smaller than M, where ω is the frequency of the
graviton, with t ¼ 2MωþM2. We take the transferred
energy s ¼ −q2 to be even smaller, s ≪ ω2. In this low-
energy limit, the amplitude (5) simplifies greatly. To be
precise, we first take the leading order terms in the q2

expansion of the coefficients of the scalar integrals. Higher
order terms in q2 will be a local term like δðrÞ, or
derivatives of this δ function, after Fourier transformation
to coordinate space. Next we take the leading order terms in
the expansion in ω, and then setD ¼ 4 − 2ϵ and take the ϵ0

and ϵ1 terms. We keep track of the ϵ1 terms since there
might be some subtle 1

ϵ × ϵ effects when combining the
coefficients and the integrals that diverge as ϵ → 0. Now
the one-loop amplitude reads

M½Φðk3ÞΦðk4Þ�
½hþðk1Þh−ðk2Þ�j1L ¼ κ4Ng

4

�
4ðMωÞ4ðI4ðs; tÞ þ I4ðs; uÞÞ þ 4ðMωÞ2sI3ðsÞ −

15

4
ðM2ωÞ2I3ðs;MÞ − 29

8
ðMωÞ2I2ðsÞ

�
; ð6Þ

where Ng ¼ ð2MωÞ4=h1j3j2�4 is an overall phase factor.
The coefficients up to order ϵ1 are (2947ϵ

360
− 29

8
; 4;

ϵ
4
− 15

4
; 4), respectively, for bubble, massless triangle, mas-

sive triangle, and box. Note that the coefficient of the
massless triangle is 4, without an order ϵ term. Thus, when
this coefficient is multiplied by the nonanalytic divergent

part of I3ðsÞ, − logð−s=μ2Þ
sϵ , it will not give us contributions to

the nonanalytic pieces from the 1
ϵ × ϵ effect.

The coefficient of the massive triangle is − 15
4
, which

agrees with Refs. [20,21]. The superficial difference of a
factor of 1

4
is due to a different definition of the massive

triangle integral and will not affect the following results.
However, the coefficient of the massless triangle here is

4, in contrast to 3 in Refs. [20,21]. This difference has a
physical origin. It comes from the fact that Refs. [20,21] do
not consider the contributions from scalars (photons)
crossing the cut in the case of a scalar (photon) projectile.
These contributions are included in Figs. 2 and 3 in
Ref. [22]. In that reference, the coefficient of the massless
triangle is 4, which agrees with our graviton bending result.
We will explore this point later.
The coefficient of the bubble integral is − 29

8
, which

differs from the corresponding coefficients in the scalar and

photon cases. This result provides additional evidence that
the classical equivalence principle is violated in some sense
at the quantum level.
The scalar integrals appearing above can also be sim-

plified in the low-energy limit. If we only keep terms with a
cut in the s-channel and ignore the 1=ϵ divergence [21], we
have

I2ðsÞ≃
1

16π2

�
− log

�
−

s
μ2

��
;

I3ðsÞ≃
1

16π2

�
−

1

2s
log2

�
−

s
μ2

��
;

I3ðs;MÞ≃ 1

16π2

�
−

1

2M2
log

�
−

s
M2

�
−

π2

2M
ffiffiffiffiffiffi
−s

p
�
;

I4ðs; tÞ þ I4ðs; uÞ≃
1

16π2

�
2iπ
Msω

log

�
−

s
M2

��
: ð7Þ

The scalar box part can be shown to exponentiate to an
overall phase factor [29] and thus can be ignored. Then the
amplitude can be rewritten as

M½Φðk3ÞΦðk4Þ�
½hþðk1Þh−ðk2Þ�

���
1L

¼ κ4NgðMωÞ2
�
15 log ð− s

M2Þ
512π2

þ 15M
512

ffiffiffiffiffiffi
−s

p −
log2 ð− s

μ2
Þ

32π2
þ
29 log ð− s

μ2
Þ

512π2

�
; ð8Þ

where again s ¼ −q2.
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V. FROM LOW-ENERGY AMPLITUDE TO
BENDING ANGLE

Next we extract the semiclassical potential via the Born
approximation. The following Fourier transformations will
be useful:

Z
d3q
ð2πÞ3 e

iq⃗·r⃗ 1

q2
¼ 1

4πr
;

Z
d3q
ð2πÞ3 e

iq⃗·r⃗ 1

jqj ¼
1

2π2r2
;

Z
d3q
ð2πÞ3 e

iq⃗·r⃗ logðq2Þ ¼ −
1

2πr3
;

Z
d3q
ð2πÞ3 e

iq⃗·r⃗log2
�
q2

μ2

�
¼

2 logð rr0Þ
πr3

; ð9Þ

where r0 ¼ e1−γEμ−1 and γE is the Euler-Mascheroni
constant. Here r0 is related to infrared physics. It could
be replaced by a more physical parameter by considering
wave packets for the external projectiles, instead of treating
them as plane waves of infinite extent [30], and taking into
account finite detector resolution. But we will not do
so here.
Now the one-loop semiclassical potential can be

obtained as

V1L
g ðrÞ ¼ −1

4Mω

Z
M½Φðk3ÞΦðk4Þ�

½hþðk1Þh−ðk2Þ�j1Lðq⃗Þeiq⃗·r⃗=ℏ
d3q
ð2πÞ3

¼ 15G2M2ω

−4r2
þ
G2Mωℏð16 logð rr0Þ þ 11Þ

πr3
: ð10Þ

Next we can use the semiclassical formula [27] for
angular deflection to get the one-loop bending angle

θ1Lg ¼ b
ω

Z þ∞

−∞

V 0
gðb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p du

¼ 15

4

G2M2π

b2
þ ð64 logð2r0b Þ − 76Þ

π

G2Mℏ
b3

; ð11Þ

where V 0
gðrÞ≡ dV1L

g ðrÞ=dr and b is the gauge-invariant
impact parameter.
The classical post-Newtonian correction is correctly

reproduced, while the quantum correction is different from
those of the scalar and photon cases [20–22]. The most
nonuniversal part of the result originates from the coef-
ficient of the scalar bubble integral. Our graviton-bending
result provides more evidence of the violation of the
classical equivalence principle in the sense that particles
with different spins get different bending angles at the
quantum level.
Following a similar procedure, the tree-level bending

angle can be calculated easily using the tree two-graviton–
two-massive-scalar amplitude in Eq. (2). It agrees with the
tree-level scalar/photon/fermion bending. For complete-
ness, we list it here as

θtreeg=ϕ=γ=f ¼ 4GM
b

: ð12Þ

Based on the above calculations, we can write down a
general expression for the one-loop correction to the
semiclassical potential and the bending angle:

V1LðrÞ ¼ c3G2M2ω

r2
þ
G2Mωℏð4c2 logð rr0Þ − 2c1 − c3Þ

πr3
; ð13Þ

θ1L ¼ −
c3G2M2π

b2
þ 4G2Mℏð4c2 logð2r0b Þ þ 2c1 − 2c2 þ c3Þ

πb3
; ð14Þ

where again b is the gauge-invariant impact parameter and c1, c2, c3 are, respectively, the coefficients of the scalar
massless bubble integral I2ðsÞ, the scalar massless triangle integral I3ðsÞ and the scalar massive triangle integral I3ðs;MÞ
in Eq. (6).

VI. COMPARISON WITH PREVIOUS RESULTS

Following a similar procedure, we have redone the previously computed bending of scalar and photon projectiles. Here
we assume no scalar self-interactions, and every interaction includes gravitation. The action reads

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−2
κ2

Rþ 1

2
gμν∂μϕ∂νϕþ 1

2
gμν∂μΦ∂νΦ −

1

2
M2Φ2

�
;

Sγ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−2
κ2

R −
1

4
gμρgνσFμνFρσ þ

1

2
gμν∂μΦ∂νΦ −

1

2
M2Φ2

�
: ð15Þ
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There are two options for the calculation in each case:
(1) Only gravitons cross the cut in Fig. 1, as in Ref. [20].
(2) Both gravitons and scalars (photons) cross the cut in

Fig. 1 for scalar (photon) bending, as in Ref. [22].
The coefficients c1, c2, c3 mentioned above for each case
are recalculated here using amplitude techniques and are
shown in Table I. They agree with previous results on scalar
and photon bending in Refs. [20–22].
There are several subtleties worth mentioning about the

tree amplitudes used here. Tree amplitudes involving
external gravitons can be obtained directly from e.g.,
Ref. [31] (for pure gravity) or from the four-point MHV
amplitude of N ¼ 8 SUGRA (see the excellent review
[32]), and this makes calculations quite easy. The self-
interactions of matter fields in N ¼ 8 SUGRA do not
contribute to the four-point tree amplitudes with external
gravitons used here.
Indeed, for case 1, i.e., only gravitons cross the cut in

Fig. 1, using SUSY, the numerator in Eq. (3) for a spin-j
projectile can be shown as

NðjÞ ¼
�h1l2i
h2l2i

�
2ð2−jÞ

Nþ− þ ðl1 ↔ l2Þ

¼
�
h1j3j2� tr−ð1l23l1Þ

tr−ð132l23l1Þ
�

2ð2−jÞ
Nþ− þ ðl1 ↔ l2Þ

¼ ½tr−ð1l23l1Þ�4−2j½tr−ð132l23l1Þ�2j
h1j3j2�2j þ ðl1 ↔ l2Þ;

ð16Þ

where Nþ− is the (partial) numerator of graviton bending in
Eqs. (3) and (4). Taking j ¼ 0; 1

2
; 1, the numerator given in

Eq. (16) agrees with those in Refs. [20,21]. Now the
calculation for different projectiles with only the graviton
crossing the cut is straightforward.
However, to calculate the scalar (photon) loop contri-

bution for the scalar (photon) bending, we need tree
amplitudes without an external graviton. There are such
amplitudes in N ¼ 8 SUGRA; however, we cannot use

them because they could contain contributions either from
undesired mediating particles from the N ¼ 8 SUGRA
multiplet, or undesired contact terms, such as the sigma
model term for the four-scalar tree amplitude. Also, we
cannot use BCFW [33,34] recursion relations for these
amplitudes, which is again related to possible undesired
contact terms. Hence, to get these four-point tree ampli-
tudes without external gravitons, we use the three-point
Feynman rules listed in Eqs. (4.10)–(4.12) in Ref. [35]. By
connecting them with a graviton propagator (or a graviton
projector), we get the desired tree amplitudes with a
mediating graviton as

M½ϕðk3Þϕðk4Þ�
½ϕðk1Þϕðk2Þ� ¼

κ2

4

ðs2 þ stþ t2Þ2
stu

;

M½Φðk3ÞΦðk4Þ�
½ϕðk1Þϕðk2Þ� ¼

κ2

4

ðt −M2Þðu −M2Þ
s

;

M½γþðk3Þγ−ðk4Þ�
½γþðk1Þγ−ðk2Þ� ¼ −

κ2

4
h24i2½13�2

�
1

s
þ 1

t

�
;

M½γ−ðk3Þγþðk4Þ�
½γþðk1Þγ−ðk2Þ� ¼ −

κ2

4
h23i2½14�2

�
1

s
þ 1

u

�
;

M½Φðk3ÞΦðk4Þ�
½γþðk1Þγ−ðk2Þ� ¼ −

κ2

4
h2j3j1�2 1

s
;

M½Φðk3ÞΦðk4Þ�
½γ−ðk1Þγþðk2Þ� ¼ −

κ2

4
h1j3j2�2 1

s
; ð17Þ

where again s¼ðk1þk2Þ2, t ¼ ðk1 þ k4Þ2, u ¼ ðk1 þ k3Þ2
and all momenta are incoming. Our expression for the four-
massless-scalar amplitude with a mediating graviton in
Eq. (17) also agrees with Eq. (2.54) in Ref. [36].
Note that by including contributions from scalars (pho-

tons) crossing the cut in the scalar (photon) bending case,
the value of c2 rises from 3 to 4, in agreement with the
graviton-bending case. Thus, by including every possible
gravitational interaction in each action in Eq. (15), we
obtain a greater level of agreement in the bending angle of
particles with different spins. More precisely, the product of
the coefficient c2 and the infrared-divergent massless
triangle integral I3ðsÞ gives us the corresponding infrared
divergence. There are two types of infrared divergences:
(1) a soft divergence when one of the two gravitons

crossing the cut becomes soft;
(2) a forward scattering pole when the angle between the

projectile and the particle crossing the cut (when it is
the same particle as the projectile) becomes small.

Both divergences are universal. The first generates the “3”
for c2, while the second generates an additional “1” in the
table. When scalars (photons) are included on the cut for
the scalar (photon) bending case, the forward-scattering
pole is properly taken into account. Then the infrared
divergence rises by one unit in c2 and matches that of the
graviton bending case, where the two types of infrared

TABLE I. Projectile bending at the quantum level for a variety
of theories. Here c1, c2, c3 are, respectively, the coefficients of the
scalar massless bubble integral I2ðsÞ, the scalar massless triangle
integral I3ðsÞ and the scalar massive triangle integral I3ðs;MÞ in
Eq. (6). In each case, the first column denotes the projectiles,
while the second column denotes the particles crossing the cut.

Projectile Particles crossing cut c1 c2 c3

ϕ h 3
40

3 − 15
4

ϕ h, ϕ 371
120

4 − 15
4

γ h − 161
120

3 − 15
4

γ h, γ 113
120

4 − 15
4

h h − 29
8

4 − 15
4
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divergences arise together, only having gravitons on
the cut.
The remaining nonuniversal difference comes from the

scalar bubble integral coefficient, c1. This difference
indicates the violation of the classical equivalence principle
at the quantum level.
Given the values of c1, c2, c3 in Table I, we can use

Eq. (14) to calculate the one-loop correction to the bending
angle in each case. For example, we substitute the second
and fourth rows of Table I into Eq. (14) and get the scalar
(photon) bending angle with both the scalar (photon) and
the graviton crossing the cut,

θ1Lϕ=γ ¼
15G2M2π

4b2
þ G2Mℏð64 logð2r0b Þ þ 8c1 − 47Þ

πb3
; ð18Þ

where c1 ¼ 371
120

, 113
120

for the scalar and photon, respectively.
This result agrees perfectly with Ref. [22], and also verifies
the correctness of our general expression Eq. (14) for a one-
loop correction to bending angles.
Similarly, when we substitute the first and third rows of

Table I into Eq. (14), we get the scalar (photon) bending
angle with only gravitons crossing the cut as

θ1Lϕ=γ ¼
15G2M2π

4b2
þ G2Mℏð48 logð2r0b Þ þ 8c1 − 39Þ

πb3
; ð19Þ

where c1 ¼ 3
40
, − 161

120
for the scalar and photon, respectively.

This expression differs from Eq. (12) in Ref. [20]. If we
were to take c2 → −c2 in Eq. (14), this difference would go
away. Since our general expression (14) is verified by the
results in Ref. [22], it seems likely that Ref. [20] has missed

a minus sign in the Fourier transformation of log2ðq2
μ2
Þ in

Eq. (9). This sign has propagated to Ref. [21].

VII. EQUIVALENCE PRINCIPLE VIOLATED?

As shown in Refs. [20,21] for spin-0, spin- 1
2
and spin-1

particles, and now here for spin-2 gravitons, massless
particles do not follow the same geodesic anymore at
the one-loop level and have different bending angles. These
results show that the classical equivalence principle is
violated in some sense. However, at the quantum level,
massless particles have a wavelength and cannot really be
treated as point particles. So there should be a tidal force
on them, given that the gravitational field is not uniform.
Thus, the violation of the equivalence principle we see here
might just be an effect of this nonlocality, which imposes
no real challenge to the equivalence principle. If the
wavelength of the massless particles is much shorter (but
not so short that we need to worry about the ultraviolet
details of quantum gravity) than the radius of curvature, the
difference in bending angles might go away. We hope to
explore this case in future work.
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