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We study N ¼ 1 globally supersymmetric theories on runaway backgrounds arising from scalar
potentials with a slope characterized by a scale M ¼ jV=V 0j. We find that, under mild assumptions, there
always exists a massive Goldstino in the low-energy effective theory. In the simplest models, the effective
mass of such a fermion is of order

ffiffiffiffi
V

p
=M or of order V=M2μwhen a seesaw mechanism takes place, where

μ is a scale that characterizes the masses of other heavy fermions.

DOI: 10.1103/PhysRevD.99.126004

I. INTRODUCTION

Runaway potentials have received a renewed interest
because of the controversy surrounding (meta)stable de
Sitter vacua, not only in string theory [1,2] but also within
quantum gravity in general [3,4]. Moreover, a de Sitter
conjecture was put forward in Ref. [5], restricting the form
of the scalar potential V in low-energy effective theories
and excluding de Sitter critical points. For generic runaway
potentials, for a positive V, one has

j∇ϕVj
V

¼ 1

MðϕÞ > 0: ð1Þ

In Eq. (1), MðϕÞ is some field-dependent mass scale, and
∇ϕV refers to the derivative with respect to scalars with
canonically normalized kinetic terms. In particular, the
authors of Ref. [5] have put a bound on MðϕÞ and have
correlated it explicitly with MP. However, if one simply
studies runaway potentials, such restriction is unwarranted.
Indeed, it was subsequently pointed out that the bound onM
set byRef. [5]may be difficult to reconcilewith the Standard
Model Higgs potential [6], and further refinements of the de
Sitter conjecture have been proposed [7–11] (for recent
reviews, see Refs. [12,13]). The implications of such a
conjecture on inflation have been summarized in
Refs. [14,15], and the study of the implications on late-
time cosmology [14,16–19] supports a quintessence-type
behavior [20–22] for the low-energy supergravity theory
[23–26]. For further recent developments on the
de Sitter Kachru-Kallosh-Linde-Trivedi construction [27],

see Refs. [28–36], and for discussions on other
possible counterexamples to the de Sitter conjectures, see
Refs. [37–40].
Our approach in this article is to remain agnostic about

the validity of the de Sitter conjectures and study instead
directly the implications of such a runaway background on
the low-energy N ¼ 1 supersymmetric theory. In other
words, we are solely interested in the runaway behavior
implied by (1) and its implications. In particular, as MP
does not explicitly appear in (1), this condition may hold
also when gravity is decoupled, assuming that M is not
explicitly correlated toMP. Let us therefore assume that the
condition (1) holds for a globally supersymmetric field
theory. Then, at least one scalar (say ϕ) of some super-
multiplet will have a runaway behavior, implying that the
scalar potential part of the Lagrangian has the form

LV ¼ −V ¼ −V0 − cϕþ… ð2Þ

Here, we assume for simplicity that ϕ and c are real without
loss of generality. Clearly, if this background is to satisfy
(1) in a nontrivial way (e.g., V ≠ 0), then the scalar
background will develop a runaway time-dependent behav-
ior, and supersymmetry will be generically broken [41,42].
However, assuming the breaking is spontaneous, then such
a theory will still be invariant under the supersymmetry
transformations. For the scalar ϕ, the supersymmetry
transformations will generically have the form

ϕ → ϕþ ϵψ þ…; ð3Þ

where the fermion ψ is the superpartner of ϕ and ϵ is the
supersymmetry parameter. Then, the scalar potential part of
the Lagrangian, that is (2), will produce the following term
under a supersymmetry variation:

−cϵψ − cϵ̄ ψ̄ : ð4Þ
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The only term that can cancel (4) is a term of the form

LG−ψ ¼ −cGαψα − cḠ _αψ̄
_α; ð5Þ

where G is the Goldstino, that is, a linear combination of
the physical fermions of the low-energy theory, that trans-
forms under supersymmetry as

Gα → Gα þ ϵα þ… ð6Þ
The linear combination of the physical fermions that
contribute to the Goldstino is uniquely fixed by requiring
that the latter is the only fermion with a nontrivial shift in its
supersymmetry transformation, when it is evaluated on the
background [41]. In (5) and in (6), for simplicity, we have
set the supersymmetry breaking scale to unity, but we will
restore it when we study supersymmetric chiral models in
the next sections.
Let us now inspect the meaning of a term of the form (5)

in more detail. Generically, either the Goldstino will be
identified with ψ , and therefore have a Majorana mass, or,
if it is not completely aligned with ψ , then the two fermions
will share a Dirac mass. In both cases, however, indepen-
dent of the details, a term of the form (5) will signal that the
Goldstino has acquired an effective mass. As we will see in
the rest of this article, the existence of a massive Goldstino
in runaway dynamical backgrounds is a generic feature of
globally supersymmetric theories. Our findings can be
contrasted to vacua with stabilized scalars (or with flat
directions), which violate (1), and would give rise to a
massless Goldstino. Therefore, supersymmetric theories on
runaway backgrounds lead to distinct phenomenological
implications that deserve a dedicated study.
Before closing this section, let us note that other types of

massiveGoldstini have been studied in supersymmetrywithin
different contexts in Refs. [43–48]. These massive fermions
have aphysical origin different from themassiveGoldstinowe
study here. For example, the massive fermions studied in
Refs. [45,46] are not true Goldstini (they do not shift); rather,
they are the orthogonal fermions to the Goldstino that
generically become massive, whereas the Goldstino itself
remains massless. The breaking of supersymmetry in
Refs. [45,46] is of course spontaneous, and it originates from
multiple sectors. Moreover, the pseudo-Goldstini studied in
Ref. [48] are related to the explicit breakingof supersymmetry.
This article is organized as follows. In Sec. II, we discuss

generic time-dependent scalar backgrounds and show how
Yukawa couplings give rise to effective fermionic masses.
In Sec. III, we elaborate on chiral models with a single
chiral superfield, and we exemplify our general discussion
from the Introduction with two explicit models that contain
effective Goldstino mass terms. In Sec. IV, we discuss
chiral models with multiple chiral superfields and study the
fermion mass matrix on time-dependent scalar back-
grounds. We close in Sec. V, with a short discussion of
our findings and future directions.

II. EFFECTIVE FIELD THEORY ON TIME-
DEPENDENT SCALAR BACKGROUNDS

In supersymmetric field theories, the fermions generi-
cally appear with Yukawa-type couplings to the scalars
[42,49]. As a result, nontrivial time-dependent scalar
backgrounds will generically give rise to effective fermion
masses, even for the Goldstino [41]. Therefore, before we
introduce supersymmetric theories, we would like to set the
stage for the study of these effective fermionic mass terms.
To this end, consider a field theory with a fermion χ and a
real scalar ϕ described by a Lagrangian,1

L ¼ −
1

2
∂mϕ∂mϕ − iχ̄σ̄m∂mχ

−
1

2
mðϕÞχ2 − 1

2
mðϕÞχ̄2 − VðϕÞ: ð7Þ

Let us split the scalar ϕ as

ϕ ¼ ϕB þ δϕ; ð8Þ

where ϕB will serve as the background for the scalar, while
δϕ describes the fluctuations around such background. By
varying the Lagrangian, we find that the equations satisfied
by the scalar background have the form

∂m∂mϕB ¼ V 0ðϕBÞ: ð9Þ

Clearly, if we wish to study the theory around a critical
point, then the background will satisfy V 0ðϕBÞ ¼ 0.
However, if we are not explicitly interested in the critical
points of the scalar potential, we can still replace the split
form of the scalar (9) into the Lagrangian (7) and study the
effective theory of the fluctuations around the background
ϕB. Then, the total action describing the system will have
the form

S ¼ SjB þ Seff : ð10Þ

The background part is given by

SjB ¼
Z

d4x

�
−
1

2
∂mϕB∂mϕB − VðϕBÞ

�
: ð11Þ

The effective part of the action Seff ¼
R
d4xLeff , containing

the fluctuations, is given in terms of the Lagrangian

Leff ¼ −
1

2
∂mδϕ∂mδϕ − iχ̄σ̄m∂mχ

−
1

2
meffχ

2 −
1

2
meff χ̄

2 − Veff ; ð12Þ

where

1We use the conventions of Ref. [49].
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Veff ¼
X∞
n¼2

1

n!
VðnÞjϕB

δϕn; ð13Þ

and

meff ¼ mðϕBÞ þ
X∞
n¼1

1

n!
mðnÞjϕB

δϕn: ð14Þ

Here, we used the notation VðnÞ ¼ ∂nV=∂ϕn and similarly
for the mass m, and with “jB,” we mean that the quantity is
evaluated on the background. Notice that there are no linear
terms with respect to δϕ in the effective Lagrangian except
of the Yukava couplings. This is happening because the
background satisfies the bosonic equations of motion.
Therefore, because of the splitting (10), the effective action
will contain the Gaussian terms and higher-order inter-
actions and can be treated within perturbation theory.
Let us turn to the fermionic mass matrix on such a

background. The fermionic equations of motion can be now
derived from the effective action Seff . We vary Seff with
respect to χ̄ _α and find

−iσ̄m_αβ∂mχ
β ¼ χ̄ _α

�
mðϕBÞ þ

X∞
n¼1

1

n!
mðnÞjϕB

δϕn

�
: ð15Þ

Equation (15) describes the propagation of a massive spinor
with mass given by evaluating themðϕÞ on the background,
whereas the rest of the terms that appear describe inter-
actions of the Yukawa type with the scalar fluctuations.
We conclude that the effective theory that arises from (7)

when it is studied around a scalar field background ϕB that
satisfies the bosonic equations of motion describes a
massive spinor with effective mass given by

mðϕBÞ: ð16Þ

Clearly, our discussion here can also be extended to
theories with multiple fermions, and we will study such
supersymmetric theories in the fourth section.

III. SINGLE CHIRAL SUPERFIELD

Let us first discuss a supersymmetric field theory with a
single chiral superfield Φ ¼ Aþ ffiffiffi

2
p

θχ þ θ2F, where A is
a complex scalar, χ is the fermion superpartner of A, and F
is the complex scalar auxiliary field. We study the
Lagrangian

L ¼
Z

d4θΦΦ̄þ
�Z

d2θWðΦÞ þ c:c:

�
: ð17Þ

Here, WðΦÞ is the superpotential, which is a holomorphic
function of Φ. Once we reduce (17) to components and
integrate out the auxiliary field, we find

L ¼ −∂mA∂mĀ − iχ̄σ̄m∂mχ

−
1

2
ðW00χ2 þ W̄00χ̄2Þ − V; ð18Þ

where the scalar potential has the form

V ¼ W0W̄0; ð19Þ

with W0 ¼ ∂W=∂A.
We wish to study the effective theory of the fluctuations

around a nontrivial time-dependent background ABðtÞ that
satisfies the scalar equations of motion. To this end, we can
split A as

A ¼ ABðtÞ þ δA; ð20Þ

where ∂2AB ¼ V 0ðABÞ. Assuming that the scalar potential
satisfies the condition (1) gives generically

W00ðABÞ
W0ðABÞ

¼ CðABÞ; ð21Þ

with CðABÞ related to the scale M as jCðABÞj ¼ M−1. As a
result, for the scalar field background AB, we should
assume

W0ðABÞ ≠ 0; W00ðABÞ ≠ 0: ð22Þ

Clearly, such background will break supersymmetry as the
energy density of the system evaluated on the background
is nonvanishing and given by [41]

ρjB ¼
				 ∂AB

∂t
				
2

þ jW0ðABÞj2 > 0: ð23Þ

The supersymmetry transformation of the fermion χ evalu-
ated on such background is a shift,

δSUSYχαjB ¼ −
ffiffiffi
2

p
W̄0ðABÞϵα þ i

ffiffiffi
2

p
σ0
β _β
ϵ̄ _β

∂AB

∂t ; ð24Þ

and it describes the Goldstino.
As we have explained in the previous section, to find the

effective mass of the fermion, we only have to evaluate its
mass term given in (18) on the bosonic background. We
find

mχðABÞ ¼ W00ðABÞ ≠ 0; ð25Þ

therefore, the Goldstino is massive. Evaluating (21) on the
background gives

jmχ j2 ¼
				W

00W0

W0

				
2

¼ VjCj2: ð26Þ
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As we see, the mass of the Goldstino is related only to the
value of the scalar potential evaluated on the background
and to the scale M (via C) that characterizes the slope.
Identifying jCðABÞj ¼ M−1, we find

jmχ j ¼
ffiffiffiffi
V

p
=M: ð27Þ

The relation (27) will appear also in models that include
more than one fermion, as we will see later.
Let us now stress that if we take the limit

W0ðABÞ ¼ finite; W00ðABÞ → 0; ð28Þ

which is equivalent to

VðABÞ ¼ finite; CðABÞ → 0; ð29Þ

we find

mχðABÞ → 0: ð30Þ

This happens because in such background the scalar is
stabilized while supersymmetry is broken; therefore, the
Goldstino essentially becomes massless. In the example we
studied here, as there is only one fermionic mode in the
effective theory, this observation is trivial. However, when
we study models with multiple fermions, we will identify
the eigenvalue of the fermionic mass matrix corresponding
to the Goldstino as the one that vanishes in the limit
CðABÞ → 0. Such a limit might not be physical in a generic
setup; however, we will only employ it as a formal limit that
will help us identify the Goldstino effective mass on a
nontrivial background.
The Goldstino was also studied in a nontrivial back-

ground in Ref. [50],2 directly within a nonlinear realization
of supersymmetry, in which it was assumed that terms
including _ϕ acquire nonvanishing vacuum expectation
values. The Goldstino was found to be massless in such
a setup. Nevertheless, terms contributing to a Goldstino
effective mass may appear in Ref. [50] with order ϕ̈. The
latter terms were ignored in Ref. [50] as being highly
suppressed; therefore, a detailed study of these terms is
required to compare with our analysis here. Our findings,
however, are in complete agreement with Ref. [41], in
which it is explained how the Goldstino acquires an
effective mass during reheating.
Before we turn to generalizations with multiple fer-

mions, let us discuss two simple examples with a single
chiral superfield.

A. Displacement from supersymmetric vacuum

For a simple example, we can discuss the superpotential

W ¼ 1

2
mΦ2: ð31Þ

This model has a massive fermion with mass

mχ ¼ m; ð32Þ

which is independent of the background. Clearly, on the
vacuum where hAi ¼ 0, supersymmetry is unbroken; thus,
the fermion is not the Goldstino, and it is massive, forming
a massive multiplet with the scalar. However, we can
assume that the scalar is displaced from its true vacuum
to some position A� at time t�, and therefore an effective
theory can be constructed for the nontrivial background of
the form

ÄB ¼ −m2AB; ABðt ¼ t�Þ ¼ A� ≠ 0: ð33Þ

We then find

VjB ¼ m2jABj2; CjB ¼ 1

AB
: ð34Þ

In such a case, we have the general relation (26) satisfied
trivially,

jmχðABÞj2 ¼ m2 ¼ m2jABj2
1

jABj2
; ð35Þ

giving a background with broken supersymmetry and a
massive Goldstino.

B. Runaway potential

The second example we would like to study is a
supersymmetric theory with a runaway potential that is
given by

W ¼ W0e−Φ=m; ð36Þ

where m is a real positive constant. In this setup, the scalar
potential has a runaway behavior,

V ¼ jW0j2
m2

e−ðAþĀÞ=m; ð37Þ

and supersymmetry is in a spontaneously broken phase. For
the slope parameter, we find

C ¼ −
1

m
: ð38Þ

Assuming that we study the theory around a nontrivial
background AB, we find

2Supergravity models with a time-dependent background have
been also studied in Ref. [51] within a different context.
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jmχðABÞj2 ¼
jW0j2
m4

e−ðABþĀBÞ=m ¼ VðABÞjCj2; ð39Þ

in agreement with our general discussion.

IV. MULTIPLE CHIRAL SUPERFIELDS

We can now extend our discussion to a theory with
multiple chiral multiplets that are described by the super-
fields ΦI with θ expansion,

ΦI ¼ AI þ
ffiffiffi
2

p
θχI þ θ2FI: ð40Þ

The AI describe the physical complex scalars, the χI are
Weyl spinors that describe the fermions, and the FI are the
auxiliary fields. The supersymmetry transformations of the
fermions are

δχIα ¼
ffiffiffi
2

p
FIϵα þ i

ffiffiffi
2

p
σa
β _β
ϵ̄_β∂aAI: ð41Þ

When we study the theory around a background where
FI ≠ 0 or _AI ≠ 0, these fermions contribute collectively to
the Goldstino.
The most general chiral model (up to two derivatives)

has the form [49]

L ¼
Z

d4θKðΦ; Φ̄Þ þ
�Z

d2θWðΦÞ þ c:c:

�
: ð42Þ

The holomorphic function WðΦÞ is the superpotential, and
the function K is real, and it is the Kähler potential. The
Kähler metric is defined as

gIJ ¼ KIJ̄ ¼
∂2K

∂AI∂ĀJ̄
: ð43Þ

The connection is given by ΓK
IJ ¼ gL̄K∂IgJL̄. Clearly, one

can choose a specific set of AI such that at a given point AI�
in field space it will hold ΓK

IJj� ¼ 0; however, the deriv-
atives of the connection evaluated at that point will not
generically vanish. Note that the derivatives of the con-
nection ΓK

IJ contribute only to the four-fermion interactions
in the component form of the Lagrangian (42). To proceed
with our discussion, we assume from now on that

gIJ ¼ δIJ; ð44Þ

such that the Kähler manifold is flat. As we have explained,
this is not a very strict requirement, as one can generically
go to a coordinate system in which (44) will hold for small
field excursions and higher-order terms will be highly
suppressed. However, for clarity, we will impose (44) in
general, which then leads to a Kähler potential of the form

K ¼ δIJΦIΦ̄J̄ : ð45Þ

The component form of the Lagrangian (42), with Kähler
potential (45), reads

L ¼ −δIJ∂AI∂ĀJ̄ − iδIJ χ̄ J̄σ̄m∂mχ
I

−
1

2
WIJχ

IχJ −
1

2
W̄Ī J̄ χ̄

Ī χ̄J̄ − V; ð46Þ

where

V ¼ δIJWIW̄J̄: ð47Þ

In (46), the auxiliary fields have been integrated out and
take the values

FI ¼ δIJW̄J̄: ð48Þ

Notice finally that the fermion kinetic terms in (46) are
canonical.
Let us now study the effective theory around a nontrivial

background for the complex scalars AI . Without loss of
generality, we can assume that the scalar that gives rise to
the nontrivial background is Ao, while all other scalars are
constant (on the background). We first split the scalars in
their background values and their fluctuations as

AI ¼ AI
BðtÞ þ δAI; ð49Þ

and we see that the equations that define the bosonic
background have the form

ÄI
BðtÞ ¼ −δIJ

∂V
∂ĀJ

				
B
: ð50Þ

Then, we split the scalar manifold coordinates as
I ¼ ðo; AÞ, and we have

ÄA
BðtÞ ¼ 0; Äo

BðtÞ ¼ −
∂V
∂Āo

				
B
≠ 0: ð51Þ

In accordance to our previous discussions, we set

∂V
∂Ao jB ¼ VojB ¼ c ≠ 0: ð52Þ

The property of the background then leads to the condition

δIJWIoW̄J̄jB ¼ c ≠ 0; ð53Þ

but because the other scalars AA are all stabilized, we also
have

VAjB ¼ 0 → δIJWIAW̄J̄jB ¼ 0: ð54Þ

We have used here the notation VA ¼ ∂V=∂AA. In addition,
for (53) to hold, we have
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WIjB ≠ 0; VjB ≠ 0; ð55Þ

and therefore supersymmetry is spontaneously broken.
We wish now to evaluate the mass of the Goldstino mG

on the nontrivial background (51). One way to proceed
would be to identify the Goldstino as in Ref. [41], then
define the orthogonal fermions to the Goldstino, and finally
calculate the eigenvalue of the mass matrix corresponding
to the Goldstino on the nontrivial background. However,
since we are interested only in identifying the effective
mass of the Goldstino, there is a simpler method which we
can follow. As we have explained, the fermionic mass
matrix will have an eigenvalue mG that vanishes in the
formal limit c → 0. This limit of course has to be taken with
care because mG will not generically vanish if in such a
limit supersymmetry is allowed to be restored. We will
therefore proceed by ascribing to the effective Goldstino
mass the mass matrix eigenvalue in the nontrivial back-
ground (51) that has the property

mGjc→0 → 0; Vjc→0 ≠ 0: ð56Þ

With this strategy in mind, we will proceed to write down
the fermion mass matrix. The fermionic masses read

−
1

2
Ŵooχ

oχo − ŴoAχ
oχA −

1

2
ŴABχ

AχB; ð57Þ

where the ŴIJ are evaluated on the background (51), that is,

ŴIJ ¼ WIJjB; ŴI ¼ WIjB: ð58Þ

There are now three possibilities depending on the type of
supersymmetry breaking:
(A) We have Ŵo ¼ f ≠ 0 and ŴA ¼ 0.
(B) We have Ŵo ¼ 0 and ŴA ¼ fA ≠ 0.
(C) We have Ŵo ¼ fo ≠ 0 and ŴA ¼ fA ≠ 0.

From now on, without loss of generality, we will assume
that f and fA are real and that c is real and positive. Notice
that the c is related to the scale M appearing in (1) via

c ¼ VB

M
ð59Þ

and that

VB ¼ δIJŴI
¯̂WJ̄: ð60Þ

We now turn to the study of the three possibilities A, B,
and C.

A. Ŵo = f ≠ 0 and ŴA = 0

We start with the possibility A, which also means that the
fermion χo is completely aligned with the Goldstino. The
conditions (53) and (54) imply

Ŵoo ¼
c
f
≠ 0; ŴoA ¼ 0: ð61Þ

Here, the effective mass matrix is

mIJ ¼
� c

f 0

0 ŴAB

�
: ð62Þ

Clearly, the Goldstino is massive, with mass proportional to
c, whereas the masses of the other fermions are indepen-
dent and given by ŴAB. Notice that, in particular, for the
Goldstino mass, we have

mG ¼ c
f
¼ VB

M
1ffiffiffiffiffiffi
VB

p ¼
ffiffiffiffiffiffi
VB

p
M

; ð63Þ

delivering the same result as the single chiral multi-
plet model.

B. Ŵo = 0 and ŴA = f A ≠ 0

We now turn to the possibility B and rotate the super-
fields ΦA such that only one of them has a nonvanishing
value for the auxiliary field evaluated on the background.
Namely, we set

fo ¼ 0; f1 ¼ f ≠ 0; fa ¼ 0; ð64Þ

where we further split the scalar manifold coordinates as
A ¼ ð1; aÞ. The conditions (53) and (54) imply

Ŵoo ¼ m; Ŵo1 ¼
c
f
≠ 0; Ŵ11 ¼ 0; ð65Þ

and

Ŵ1a ¼ 0; Ŵoa ¼ va: ð66Þ

We stress that the values of m and va are unconstrained; we
choose them, however, to be real and positive. Therefore,
we have the effective mass matrix for the fermions
ðχo; χ1; χaÞ given by

mIJ ¼

0
BB@

m c
f va

c
f 0 0

vb 0 Ŵab

1
CCA: ð67Þ

The equation that defines the eigenvalues λ reads

c2

f2
det½Ŵab − λδab�

þ λ det

��
m − λ va
vb Ŵab − λδab

��
¼ 0: ð68Þ
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Equation (68) is a higher-order polynomial equation.
Notice, however, that (68) does describe an eigenvalue
that goes to zero as c goes to zero. This is the eigenvalue
that corresponds to the Goldstino. To illustrate the behavior
of this eigenvalue, we will focus on two limiting cases.

1. Case va → 0

Let us first assume that the fermions belonging to the
runaway/Goldstino system do not mix with the other
fermions, that is,

va → 0: ð69Þ

In this case, the two fermions take part in a seesaw
mechanism. Indeed, we find the c-dependent eigenvalues
of (68) to be

λ� ¼ 1

2



m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4ðc=fÞ2

q �
; ð70Þ

along with the eigenvalues of Ŵab that are independent of
c. Clearly, the effective Goldstino mass will be related to
λ�. Let us see which of the two, λþ or λ−, is to be ascribed
to the Goldstino.
For jmj ≫ jc=fj, we have

λþ ≃mþ c2

mf2
; λ− ≃ −

c2

mf2
; ð71Þ

up to order Oðc4Þ. The effective Goldstino mass is
identified with the eigenvalue that vanishes when c → 0
and is thus given by

jmGj≡ jλ−j ¼
c2

mf2
¼ VB

M2

1

m
: ð72Þ

We see that (72) is different from (63). This happens
because the Goldstino is a linear combination of both
fermions χo and χ1. The reader may wonder why the
Goldstino would receive contribution from the fermion χo

when fo ¼ 0. This happens because on the nontrivial
background that we are studying we have

_AojB ≠ 0; ð73Þ

and therefore the fermion χo will also shift under super-
symmetry, as can be seen from (41). As a result, the scale m
also enters into the eigenvalue mG, characterizing the
effective Goldstino mass.
By studying the limit c → 0, we thus found that it is the

λ− eigenvalue of (70) that relates to the Goldstino. We can
then also consider a different limit, namely, jmj ≪ jc=fj,
and we see that the effective Goldstino mass is

λ− ¼ −
c
f
þm

2
þ c
f
Oðm2f2=c2Þ: ð74Þ

Interestingly, this limit reproduces the result of a single
chiral superfield we studied earlier. Indeed, we find

jmGj ≃
jcj
jfj ¼

ffiffiffiffiffiffi
VB

p
M

: ð75Þ

The mass (75) seems not to vanish in the limit c → 0. This
happens because to derive (75) we have assumed that
jmj ≪ jc=fj; therefore, we cannot apply the limit c → 0
here unless m itself goes to zero, in which case jmGj would
go to zero as well.

2. Case c
f ≪ μ

Another natural scenario that can allow us to study the
mass matrix (67) is to assume that

c
f
≪ μ; ð76Þ

where μ is a mass scale that characterizes collectively the
eigenvalues of the matrices Ŵab and ðmvb

va
Ŵab

Þ. This is not an
innocent assumption because there is no guarantee this will
hold in realistic models, because of seesaw mechanisms,
e.g., but it is a way that allows us to proceed here. In this
limit, we can recast Eq. (68) into the form

λG ¼ −
c2

f2
det½Ŵab − λGδab�

det

��
m − λG va
vb Ŵab − λGδab

�� ð77Þ

and solve iteratively for λG up to any order in c=f. This can
be done by expanding the determinant in the numerator as

det½Ŵab − λGδab� ¼
Y
i

ðμi − λGÞ; ð78Þ

where the μi, with μi ∼ μ, are the eigenvalues of the matrix
Ŵab. A similar expansion can be performed for the
determinant appearing in the denominator of (77).
Clearly, the eigenvalue λG in (77) describes the
Goldstino eigenvalue as it does go to zero when c goes
to zero. Let us stress that the iterative procedure is valid
only because we are assuming the eigenvalues of the
matrices appearing in (77) to be much larger than c=f;
otherwise, the procedure would not be a priori justifiable to
give the correct λG. After the first step in the iterative
procedure, we see that the λG eigenvalue will take the form

λG ¼ −
c2

f2
det½Ŵab�

det

��
m va
vb Ŵab

��þ c2

f2μ
Oðc2=f2μ2Þ: ð79Þ
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Then, the Goldstino mass is of order

mG ∼
c2

f2μ
∼

VB

M2μ
: ð80Þ

We see that here the Goldstino mass behaves as in (72). If
we also assume the va to be much smaller than m and the
eigenvalues of Ŵab, then the latter drop out, and we find the
λ− mass of (71).

C. Ŵo = f o ≠ 0 and ŴA = f A ≠ 0

The possibility C means that all the fermions would
contribute to the Goldstino. However, we can always rotate
the superfields ΦA such that only one of the rotated χA

eventually contributes; therefore, we have

fo ≠ 0; f1 ≠ 0; fa ¼ 0: ð81Þ

The conditions (53) and (54) imply

Ŵoofo þ Ŵ1of1 ¼ c; ŴoAfo ¼ −Ŵ1Af1: ð82Þ

Once we set

Ŵoo ¼ m; Ŵoa ¼ va; ð83Þ

the mass matrix takes the form

mIJ ¼

0
BBB@

m c−mfo
f1

va
c−mfo
f1

mf2o−cfo
f2
1

− fo
f1
va

vb − fo
f1
vb Ŵab

1
CCCA: ð84Þ

We search again for the mass eigenstate that will vanish in
the limit c → 0. We will study here only two limiting cases
and leave a detailed account of the properties of (84) for a
future work.

1. Case va → 0

Let us first assume that the parameters that induce the
mixing of the supersymmetry breaking sector with the
matter fermions can be ignored, which means we set

va → 0: ð85Þ

In this case, the effective mass matrix eigenvalues for the
supersymmetry breaking sector read

λ� ¼ B
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4½cfof2

1

m − c2

f2
1

�
q

2
; ð86Þ

where

B ¼ f2o
f21

mþm −
cfo
f21

: ð87Þ

The Goldstino effective mass is given by the λ− because it
goes to zero as c goes to zero. For small c=f1, we have

λ− ¼ cfo
f21 þ f2o

þOðc2Þ; ð88Þ

which gives for the Goldstino effective mass

mG ≃
fo
M

: ð89Þ

Again, we see that the mass of the Goldstino is proportional
to the slope of the scalar potential.

2. Case c
f ≪ μ

Away to proceed without assuming that the va are small
is to shift the fermion χo as

χo → χo þ fo
f1

χ1; ð90Þ

which brings the mass matrix to the form

mIJ ¼

0
BBB@

m c
f1

va
c
f1

cfo
f2
1

0

vb 0 Ŵab

1
CCCA: ð91Þ

Because of the shift (90), the kinetic matrix of the fermions
also changes and takes the form

kIJ ¼

0
BBB@

1 fo
f1

0

fo
f1

1þ f2o
f2
1

0

0 0 δab

1
CCCA: ð92Þ

To find the effective mass eigenvalues, we have to solve the
eigenvalue equation det½mIJ − λkIJ� ¼ 0, that takes the
form

�
c
f1

− λ
fo
f1

�
2

AðλÞ þ
�
λþ λ

f2o
f21

−
cfo
f21

�
BðλÞ ¼ 0; ð93Þ

where
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AðλÞ ¼ det½Ŵab − λδab�;

BðλÞ ¼ det

��
m − λ va
vb Ŵab − λδab

��
: ð94Þ

To proceed, we will assume that (76) holds also here for
the scale μ that characterizes the eigenvalues μi of the
matrices Ŵab and ðmvb

va
Ŵab

Þ. In this limit, we can solve (93)

iteratively by first bringing the determinants to the form
(78) and assuming μi ∼ μ. Indeed, we find

λG ¼ cfoBðλGÞ − c2AðλGÞ
ðf21 þ f2oÞBðλGÞ þ ðλGf2o − 2focÞAðλGÞ

: ð95Þ

Clearly, λG reproduces the correct limit for c → 0, and we
can solve it up to any order in c. The eigenvalue λG then
reads

λG ¼ cfo
ðf21 þ f2oÞ

þOðc2Þ; ð96Þ

giving again (89) as the leading-order contribution to the
effective Goldstino mass.

V. DISCUSSION

Let us end this article with a discussion on the impli-
cations of our findings. We have demonstrated that in
supersymmetric field theories with runaway potentials (or
generically in time-dependent backgrounds) the Goldstino
instead of being massless becomes massive. This happens
because the system is not stabilized on the vacuum; rather,
it is described by an effective theory around a nontrivial
scalar background that evolves in time. As we have shown,
the effective mass of such a fermion has a specific order of
magnitude under rather general assumptions. In the sim-
plest examples, it is controlled by the value of the scalar
potential V evaluated on the background and the scale M
that characterizes the slope

mG ∼
ffiffiffiffi
V

p

M
; ð97Þ

as we found in (27). In a setup where the runaway fermion
mixes with some other fermion via a Dirac mass, we would
find a seesaw mechanism taking place, thus delivering

mG ∼
V

M2μ
; ð98Þ

as, e.g., we found in (72), where μ is a mass scale that enters
the fermion mass matrix.
We did not study here gauged chiral models, but our

results are expected to hold also when gaugings are
introduced. The N ¼ 1 gauge multiplets do not have

physical scalars; therefore, the mass terms of the gaugini
will be similar to those of the χA fermions appearing in (57).
This is, however, an interesting generalization that we leave
for future work.
Let us also discuss if it is natural to have a small c (we

remind the reader that c ¼ V 0). Recall that the pure Volkov-
Akulov Goldstino model enjoys a global R symmetry, if we
ignore higher-order terms. However, the global R sym-
metry is explicitly broken by a Goldstino mass. Then,
because the Goldstino becomes strictly massless in the
vanishing c limit,

mGjc→0 → 0; ð99Þ

the R symmetry may in some cases be restored. Therefore,
a small value for the Goldstino mass would fall under the
technical naturalness arguments [52] as the symmetry of
the system increases when c → 0. As a result, for models
where the R symmetry is mildly broken by c, the massive
Goldstino will be protected from receiving a large mass
from quantum corrections, and c is naturally small.
An interesting question is how to proceed in the study of

generic matter couplings and in particular how to construct
low-energy effective actions in the spirit of the nonlinear
realizations [53–57]. Such low-energy effective theories
can help to classify the generic couplings of the massive
Goldstino and point to possible distinct signals in experi-
ments. In particular, such very light fermions could serve as
dark matter that is weakly interacting with the matter
particles of the Standard Model in the spirit of Ref. [48].
Extrapolating the properties of the massless Goldstino, one
would expect that the massive Goldstino will couple to the
Standard Model sector in a universal manner via the
energy-momentum tensor [53–55]. Namely, we would
have couplings of the form

i
F 4

ðGσm∂nḠ − ∂nGσmḠÞTðSMÞ
mn ; ð100Þ

where TðSMÞ
mn is the energy-momentum tensor of the

Standard Model particles and F is some effective super-
symmetry breaking scale. A detailed study of such a
fermion serving as a dark matter candidate is in order.
Finally, our findings are expected to hold also for

extended globally supersymmetric theories. In particular,
if the real scalar that appears in (2) transforms as

δϕ ¼ ϵiψ i þ…; ð101Þ

then the arguments presented in the Introduction would
lead us to conclude that there exist nontrivial mass terms of
the form

−cψ iGi − cψ̄ iḠi; ð102Þ
where Gi are the Goldstini of the extended supersymmetric
theory [56], transforming as Gi → Gi þ ϵi þ � � � As a
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result, massive Goldstini would also arise in extended
supersymmetry on runaway backgrounds. A detailed dis-
cussion of the fermion mass matrix of such theories is,
however, beyond the scope of this work, and we leave it for
future research.
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