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An intriguing result presented by two of the present authors is that an anti—de Sitter space can be derived
from a conformal field theory by considering a flow equation. A natural expectation is that given a certain
data on the boundary system, the associated geometry would be able to emerge from a flow, even beyond
the conformal case. As a step along this line, we examine this scenario for nonrelativistic systems with
anisotropic scaling symmetries, such as Lifshitz field theories and Schrodinger invariant theories. In
consequence we obtain a new hybrid geometry of Lifshitz and Schrodinger spacetimes as a general
holographic geometry in this framework. We confirm that this geometry reduces to each of them by

considering special nonrelativistic models.
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I. INTRODUCTION

One of the fascinating subjects in string theory is a
conjectured duality between a string (or gravity) theory on
an anti—de Sitter (AdS) space in d + 1 dimensions and a
conformal field theory (CFT) in d dimensions. This is
called the AdS/CFT correspondence [1-3] and it is
recognized as a realization of the holographic principle
[4,5]. This correspondence has not been proven completely
yet, but it is supported by a huge amount of circumstantial
evidences and there is no contradiction so far.

The validity of the AdS/CFT correspondence has been
well recognized nowadays, and it has opened up a new
arena to consider applications of AdS/CFT to realistic
systems in condensed matter physics (CMP) (often
referred to as AdS/CMP). By following this approach,
one can study the nonperturbative physics of gauge
theories in a strongly coupled region by using a weakly
coupled (semi-)classical gravity. Indeed, a lot of works
have been carried out (For nice reviews, for example,
see [6-11]).

One of the issues in the context of AdS/CMP is to consider
how to realize nonrelativistic (NR) systems beyond the
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usual, relativistic CFT. A key ingredient is an anisotropic
scaling like

t —> A%, x5 AX (i=1,....,d=1),

A areal const., (1.1)
where ¢ and x' are time and spatial coordinates, respec-
tively. Here Z is called the dynamical critical exponent,
which measures anisotropy of the system. In particular,
the Z =1 case corresponds to the relativistic dilatation.
There are two famous examples of symmetry algebra
including the anisotropic scaling (1.1), Schrédinger alge-
bra [12] and Lifshitz algebra.1 The geometries that
preserve these symmetries as isometries have been con-
structed in [18-20], respectively. These geometries have
been proposed from the symmetry argument. Then, with
the standard dictionary (with some extension), the boun-
dary theory is argued. One of the subtle points is that the
boundary behavior of these geometries are not so well
defined. Namely, a part of the geometry shrinks as we
approach the boundary. Then, the supergravity approxi-
mation may not be valid any more and the notion of the
boundary would be subtle.

Based on this observation, our motivation here is to
consider the inverse direction to the preceding works. That
is, we would like to demonstrate that a gravity dual may
emerge starting from a nonrelativistic system with a scaling
invariance. For this purpose, we shall follow the method
based on flow equations proposed by two of the present

'For more details on the nonrelativistic algebras, see [13—17].
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TABLE I. Summary of the results in this paper. “LS,” “R,” “NR,” “(C)PS” stand for “light-cone reversal symmetry,” “relativistic,”
“nonrelativistic,” “(conformal) primary scalar,” respectively. Z denotes the dynamical critical exponent.

Section Theory type Operator type Flow equation type Geometry type

I CFT CPS R AdS

IVA NRCFT NRCPS NR NR Hybrid

IVB CFT CPS NR Lifshitz with Z = 2
IvC NRCFT with LS NRCPS R Schrodinger

IVD CFT NRCPS R Schrédinger

IVE NRCFT NRCPS NR Lifshitz with Z =2

v Lifshitz Lifshitz PS Lifshitz Lifshitz with general Z

authors [21 ,22].2 In fact, they have derived an anti—de Sitter
space from a CFT data by considering a flow equation. A
natural expectation is that given a certain data on the
boundary system, the associated geometry would be able to
emerge from a flow, even beyond the conformal case. This
possibility would open up an intriguing research arena to be
studied in relation to the holographic principle.

In this paper, we examine this expectation for nonrela-
tivistic systems with an anisotropic scaling symmetry, such
as Lifshitz field theories and Schrodinger invariant theories.
As a result we obtain a hybrid geometry of Schrodinger and
Lifshitz spacetimes as a general holographic space by
employing the associated two-point functions as the boun-
dary data and generalizing the flow equation itself. This
geometry contains both of them as special examples of
nonrelativistic models. Our results are summarized in Table I.

The rest of this paper is organized as follows. Section II
provides a brief review of gravity duals for nonrelativistic
systems, Schrodinger spacetimes, and Lifshitz spacetimes. In
Sec. III, we review how an AdS geometry emerges from a
CFT data given at the boundary by employing a flow equation.
In Secs. IV and V, we apply the formulation to nonrelativistic
CFTs, a Lifshitz-type scale invariant theory, respectively.
Section VI is devoted to conclusion and discussion. The
Schrodinger algebra and the Lifshitz algebra are summarized
in Appendix A, while a different flow equation is considered
for the Lorentzian CFT in Appendix B. Transformation
properties of the flowed field are given in Appendix C.

II. GRAVITY DUALS FOR
NONRELATIVISTIC SYSTEMS

In this section, we shall give a brief review of gravity
duals for nonrelativistic systems, Schrodinger spacetimes
and Lifshitz spacetimes.

A. Schrodinger spacetimes

In 2008, Son proposed a geometry [18] preserving the
Schrodinger symmetry as the maximal symmetry” as a

*The flow equation method to construct a holographic theory
was originally introduced in Ref. [23] and was further developed
in Refs. [24,25].

holographic dual of a nonrelativistic system realized in a
cold atom experiment. The metric is given by4

p_ E2dxtda + 57 ()’ +de? , (dt)?

o
72 AR

ds

(2.1)

where ¢ is a real constant parameter. This geometry can be
considered as a one-parameter deformation of a (d + 2)-
dimensional AdS space, which is regarded as a gravity dual
of a d-dimensional Schrodinger invariant system.

The Schrodinger algebra [12] is composed of a time
translation, spatial translations, spatial rotations, Galilean
boosts, a mass operator, a special conformal transformation
and an anisotropic scaling as
xi = Ax!

t — N7t (i=1,...d-1),

A areal const., (2.2)

where ¢ and x' are time and spatial coordinates, respec-
tively, and Z is the dynamical critical exponent. In the
original Schrodinger algebra, the Z = 2 case is considered.
In more general, one may consider an arbitrary value of Z,
though the special conformal symmetry is broken except
forZ=2or 1.

It is easy to see the invariance of the metric (2.1) under
the Schrodinger symmetry (For the detail, see [18]). In
particular, the metric (2.1) is invariant under the scaling

x+ — A2x+,

x> Axi

X~ =X,

(i=1,...,d—1). T — At.

(2.3)

B. Lifshitz spacetimes

The Lifshitz spacetime was proposed in [20] as a gravity
dual for the Lifshitz fixed point realized in condensed
matter systems. (For a comprehensive review of the Lifshitz

The Schrodinger algebra can be embedded into a relativistic
conformal algebra as a subalgebra. Hence the usual AdS metric is
Schrodinger invariant, but this symmetry is not the maximal one.
For the detail of the embedding, see Appendix A.

“The r coordinate describes a radial direction, not the
Euclidean time.
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holography, see [26].) The metric of the gravity dual is
given by

—dr? d=1(dx")> + dr?
ds? = 7 = , (2.4)
which is invariant under the rescaling
1= A1, x> Ax (i=1,...,d-1), T—-Az. (2.5)

This is a bulk realization of the scaling symmetry included
in the Lifshitz algebra. As described in Appendix A in
detail, the Lifshitz algebra is composed of a time trans-
lation, spatial translations, spatial rotations and the aniso-
tropic scaling (2.2).

The metric (2.4) describes a d + 1-dimensional bulk
geometry and the boundary theory has d — 1 spatial
directions and a time direction.

III. HOLOGRAPHIC GEOMETRY FROM A
FLOWED CONFORMAL PRIMARY

In Refs. [21,23], we proposed a mechanism for a
holographic geometry to emerge from a boundary QFT
coarse-grained by a flow equation. In this section, as a
warm-up, we demonstrate this mechanism concretely by
using conformal field theories.

A. Euclidean case

In this subsection, we review the emergence of an AdS
geometry from a generic Euclidean CFT via the flow
equation approach [21].

Consider a D-dimensional Euclidean CFT with a real
scalar primary field Oy(x) with conformal dimension A,.
By using the conformal symmetry of correlation functions,
the 2-point function of the primary operator can be
expressed as

(00(x)00(0)) =fo(x?).

where x? := §,x*x and fo(u) o« u~
Let us define a flowed field ¢g(x;7) by a free flow

equation as

Opo (x;11)

Tnzazfﬁo(xm), $o(x:0)=0p(x), *=85"0,0,,

fo(Ax?) =A"5fo(x?),

Ao

(3.1)

(3.2)

where # is a positive number called a flow parameter, and
the original field is recovered at the limit n — 0.° The
formal solution of the flow equation is given by

’Note here that we naively take 9? for the flow equation so as
to realize a diffusion equation. This is the original choice
employed in [21,23-25]. Only for this purpose, however, there
may be some possibilities to generalize this choice, as we shall
see later.

bo(xin) = " Op(x). (3.3)

This is a well-defined operator, since this can be
rewritten as

tolwin) = [ PyKolx=yin0o).  (34)
where
1 x?
Ko(x;n) = Wexp {—4—’7] (3.5)
is the Green function of the flow equation:
OKo(x;
PRI _ gy ), Kol0) =00 (36
n

A virtue to coarse-grain operators by a flow equation is
that the 2-point function of the flowed operator has no
contact singularity. To see this, we compute the 2-point
function of the flowed field ¢, as

(o (xr:m ) o (x23m)) = NP1 (04(x1) Og(x2)),  (3.7)

where we used (3.4) and 0, & act on x|, x,, respectively:
0, = a%;’ 8;, = 0%; By using (3.1), we can rewrite this as

(o (x15m1)po(x231m2)) = emazfo(x%z)v (3-8)

where n, =#n; + 1, X5 :=x; —x,. This quantity is a
smooth function of x7, and 5, since this can be rewritten
by using the Green function (3.5), which implies the
absence of the contact singularity, as was claimed.® Let
us denote this smooth function by Fy(x3,;7,). Then by
using the scaling relation in (3.1) the function F|, satisfies

Fo(Nxty; Nny) = A7220F(xiyiny). (3.9)

Choosing A = 1/11%r we find

2
(o (x13m1)o(x2512)) :—i@ Fy <&;1>- (3.10)
N+ M+

We introduce a normalized field denoted by o as

¢o(x;n)
(Bo(x:m)?)

so that (o (x;57)?) = 1. The average is taken in the original
D dimensional theory. This is well defined due to the fact
that the contact singularity is resolved. Using the normalized
field we define

oo(x; 1) = (3.11)

®The explicit form was given in [21].
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N 19}
QAB(X; ’7) = R? —UO(X; ﬂ)wao(x/;ﬂ/),

lim
(< ay)=(xar) O
(3.12)
948(2) = (9ap(x;1)). (3.13)
where R is a certain length scale, (z4) = (x#,7) with 7 :=
\/n/a and « is fixed later. Thanks to this normalization,
gag(2) becomes the information metric [21], and thus can be
regarded as a metric in the D + 1 dimensional holographic
space, called the induced metric. For simplicity, we take

R =1 hereafter.
The 2-point function of the normalized filed 6, becomes

(aotmimentasine) = (222) 6, (22). 1y

M4

where Go(u) = Fo(u;1)/Fy(0;1), and thus Gy(0) = 1.
Therefore the induced metric is evaluated as

1 Ao

g;u/(z) == 5/4»_2G6<0)’ gTT(Z) = T_Q ’ (315)

and the other components vanish.
We can determine G’(0) by using the flow equation for
the 2-point function of the normalized operator

8,1] <00(X1§'I1)00(x2;’72)> = 3;%1 <<’0<x1§’11)00(x2;’72)>’

(3.16)
which leads to
Ao x%2> x%z x%z
-—Gy (— - G, | —=
et N+ nhot? "\ ny
2D / X%z 4)6%2 " x%2
ZWGO — + AO+2G0 — . (317)
ym M+ My M+
From this we find
Ao
GH0) =——. 3.18
0) = -5 (3.18)

Therefore, taking @ = 1/(2D), we obtain the Euclidean
AdS metric as

dx? + d?

ds? = Ap—— (3.19)
T

Thus, the flow approach generates an AdS space from a
Euclidean CFT.
This result can be confirmed from symmetry argument.

To see this let us consider the D dimensional conformal
transformation of the normalized field:

5o (x;1) = —{n(9?6x+*) + 20 (8 6x+)0,0,
+2n(06x*)0, + 6x+ }0,60(x;1)

- 59 (@ 0,650, + (9,50} on (0.
(3.20)

Following [21], we decompose this into isometries of the
D + 1 dimensional AdS and the rest as

5oy (x:) = Moy (i) + o). (3:21)

where

84l (xi 1) = _(5;78,7 + Sxf‘a,,)ao(x; n).

Apn+2
o )aooc;n), (3.22)

5oy (xsn) = 420D, (&1 +

with

ox* = ox* 4 2Dnb*, on=(2A—4(b,x"))n.  (3.23)

Then the conformal transformation of the induced metric is
computed as

5conngB (z) = 5diff9AB (z)

o 0
li 2T (gextra : ’; !
- (X';'?/;El(xm) oz4 078 (oo n)oolxs )
+ 00(x; )80 (X3 77)), (3.24)
where
8 gap(2) = (" gap(x;m)),
8 gup(2) = (8 g (s ). (3.25)

Since the 2-point correlation function is invariant under an

arbitrary conformal transformation, 5" g,z(z) = 0. On
the other hand, by using (3.14) and (3.22) we find

56XTIL[

(860 (x1311)00(x231m2) + 00 (X57) o0(x23m2))

VAnm) e x2
:_8(77%(’71—'72)([9%12)?‘%ng ”—12 . (3.20)
+ +

where we set a - § := o 3,,. This implies that the 2nd term in
(3.24) vanishes. Therefore
it g,5(z) = 0. (3.27)

Since this result means that the metric is invariant under the
isometry of AdS (6%, §), which is a maximally symmetric

126002-4
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space, the induced metric has to be an AdS one up to an
overall constant. This is the desired result.

B. Lorentzian case

In this subsection we comment on the construction of a
Lorentzian AdS geometry by a flow equation approach. To
this end the first thing to do is to smear operators by a flow
equation in the Lorentzian space. This should be done so as
to preserve the causal structure at least in a certain amount.
Although it is unclear whether such a smearing is possible
by a diffusion-type differential equation, a natural candi-
date of a Lorentzian free flow equation may be given by

Oo(xin) _ o (x:m),

2 v
an 0° = g"0,0,,

(3.28)

with ¢** = diag(—1, 1, ..., 1). However it is soon realized
that the formal solution of this flow equation becomes
divergent.

To avoid this problem, in what follows, we simply use the
Wick rotation for a time coordinate. Then the Lorentzian
flow equation (3.28) is mapped in the Euclidean one (3.2),
which can be solved without any problems.’ Then we rotate
the result back to the Lorentzian space.

Let us start the flow equation in the Euclidean space
(3.2). For later purposes we introduce a complex coordinate
that x = (¥,xt,x") with x* = (x"'+ix?)/v/2 and
rewrite the flow equation as

Q%%QZW%WW P=08+20,0.. (329
The flowed field is expressed as
dolin) = [ yKolx=yn) 040,
1 X+ 2x X
K0<x,7]) = WCXP |:_ T:| . (330)

The 2-point function of the normalized field is given by

(o0(t1. X13m1)00(t2, X3 112))

2 A X2+ 2xtx
_ (Lﬁﬂz) OGO(w), (3.31)

N+ s

which leads to

"The AdS /CFT correspondence in the Lorentzian space has a
different aspect from the Euclidean case [27-29]. For example,
see [30] for a careful study on the analytic continuation in this
context.

This approach has a virtue that Lorentz invariance is manifest,
but assumes a sufficient fall-off of a flowed operator at infinity,
which is nontrivial for any operators in CFT. We instead present a
different approach to this problem in Appendix B.

_5 GhO) GO Ao

i .2 94+-=9-4+=— 2

9ij=
ar ar

(3.32)

and the others vanish. By using (3.18) and a = 1/(2D),
this gives the Euclidean AdS metric containing a complex
coordinate

dx? + 2dxTdx~ + d¢?

2

dS2 = AO

(3.33)

By the analytic continuation x” = —ix?, the coordinates
x*, x~ become the light-cone ones x* = (x~! £ x°)/1/2,
which converts the Euclidean AdS metric to the Lorentzian
one with the formally same expression.

IV. HOLOGRAPHIC GEOMETRY FROM FLOWED
NONRELATIVISTIC CONFORMAL PRIMARIES

In this section we shall apply the flow equation approach
(presented in Sec. III) to a nonrelativistic conformal
primary operator, and investigate induced geometry by a
nonrelativistic flow equation.

A. General induced geometry

In this subsection we investigate a general holographic
geometry for a generic nonrelativistic CFT with a non-
relativistic flow equation. To this end we start with a d-
dimensional nonrelativistic CFT with a primary scalar field
O(X, r) with a general dimension Ay. The nonrelativistic
conformal symmetry constrains the 2-point function of this
operator as

(0. 1)0" (2. 12)) —Lf<;—%2> (@.1)
' ' Ao’ \2tp,)°

where X* = x;x'.
For our argument, let us introduce an extra direction
denoted by x~, in order to embed the d-dimensional
nonrelativistic symmetry into the D = d + 1 dimensional
relativistic conformal symmetry, generated with
Xt = a' + ' X0 + At + bFx? = 2x(b-x),  (4.2)
where a*, @, 1 and b* are parameters of translation,
rotation, dilatation and special conformal transformation,
respectively, and the D dimensional light-cone coordinate
is given by x := (x*) = (X,x",x7) with x* = 7. The trans-
formation law under the Schrédinger symmetry can be
derived from the conformal transformation (4.2) for a scalar
primary operator with dimension A,

6conf00(x) — —5)(”8”0()()() — % (6#5)(”)00()(), (43)

126002-5
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by keeping only the following components of the
parameters,
=y, wt—=A, b~ =b,
(4.4)

and the other parameters are set to zero. Then the trans-
formation law (4.2) reduces to

Sxt =a'+ o' jx —vixt + Ax' = 2bx'x",

&xt =at +2axt = 2b(x")?,

&x™ = p+vix' + b¥2. (4.5)

Here v/, u, 2 and b correspond to parameters of the Galilei
transformation, mass operator, scale transformation and
special conformal transformation, respectively. Note here
that the x~ coordinate does not appear on the right-hand
sides. This means that the translation for the x~ direction
commutes with the other transformations, so that the
associated generator i0_ is identified with the mass operator.
Notably, x™ corresponds to the time direction in the non-
relativistic system.

Thus a scalar primary operator O(x) with dimension A
transforms as

850(x)=[-a'0;—atd, —pud_—w'x/9;
=0 (x;0_—x70;) = A(Ap+x'0;+2x70,)
+b{—(x')20_ +2x" (Ao + X', + 270, )} O(x),
(4.6)

and its 2-point function is given by

1 X2
).
(xf)%e 22,

(4.7)

<0(-)?17x;r7xl_)0Jr (52’x2+?x5)> -

It is easy to see that (4.7) reduces to (4.1) when x7, — 0.

We smear this nonrelativistic conformal primary oper-
ator by a nonrelativistic flow equation. A general non-
relativistic free flow equation is

(%(/)(x; n) = (2imd, +20_9, +8)p(x;n),
$(x;0) = O(x), (4.8)

where 7 is a real parameter of mass dimension one. This
can be solved as

Plxin) = 120D, +20_0,+7") O(x)

:/d XK (x—=x'5m)0(x) (4.9)

where

2t
e 4n

VAP

Let us study the transformation of the flowed operator
under the nonrelativistic conformal transformation.

K(x;n) = exp[—imx~] (4.10)

8 p(xin) = eq(2iﬁ18++28,0++52)5S0(x)

=8p(xin) + 8/ 5p(x:m) (4.11)

where &° is given by (4.6) and

Sap(xin) = [2imnv'd; — 1200,
+ b{(—2n(d — 1) + 4nAo + 4170,)0_
+ dimn(Ap + X0, + 90" +nd,)

+4xn0, o (x;n). (4.12)
Note that the flowed operator ¢(x; ) transforms differently
from O(x) under the Galilei transformation unless m
vanishes.

We move on to the 2-point function of the flowed
operator, which is written as

<¢(x1§771)¢T(x2§'12)>
— oM 2imD,420_0,+0)+ny(=2imd, 4200, +7") (0(x,) 0" (x2))
. - f(x]_2+%)
:exp[17+(21m8+ +28_0+—|—(9 )] W (413)

X12

where we used the same notation in the previous section.
This function can be written as F((X2)% xj5, X155 114)-
From the Galilean invariance we find

v (X' 0_— (xT +2imn)2x'02)F, (3%,x",x7;n) =0. (4.14)
This can be generally solved by
F (32, xT,x73n) =FQ2(x" +2imn)x~+x%,x"m), (4.15)

where F is an unknown function. The nonrelativistic scale
invariance requires

FL (2232 22T x—3 %0, ) =720 F (2, xT,x73n,), (4.16)
which constrains the function in such a way that

FQ2(xt + 2imn, )x™ + %%, x"5n,)
1 F<2(x+ + 2imn)x” + ¥ xt

1), (417)
nﬁ‘” ny ny >
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As a result the 2-point function is written as

(B Cerzm)d (xa3m2))
_ 1 F<2(xfr2+2i’h’7+)x1_2+()?12)2’x_1+2;1)‘ (4.18)

nﬁ" N+ N+

Note that the contact singularity is resolved with a general
parametrization.

By using this result the 2-point function of the normal-
ized field becomes

<5(x1;’71)6+(x2;’72)>
_ (4;71 ,12> Ao/zG (2(x1+2 +2imn . )x7, + (¥12)? x_1+2>
t Ny )’
(4.19)

where G(u,v) = F(u,v;1)/F(0,0;1).

Since the normalized flowed field ¢ is complex-valued
for nonrelativistic theories in general, the definition of the
metric operator, for example, should be modified like

Oa0(x;1)0p0" (x11) + Opo(x;1)0a0" (x311)
2 9,
(4.20)

Gap(xsn) =

so that the induced metric, which is given by g45(z) =

(gap(x;n)), becomes real and symmetric.. Then the
induced metric is computed as
Ao
I (2) = el 9n(2) = g-(2) =0,  (421)
— -1 G<O'2) 6
94+(2) = 4_772 (0),
—~G19(0) = 2imG1)(0)
9+—(Z) = >
n
- 5, -
9-(2) = =(4im)>’G*0(0),  g;;(z) = —~G"0(0),
n
(4.22)

where G (u,v) == 920"G(u,v). The undetermined
constants are not independent from each other, since the
flow equation implies

°If one wants to relate the induced metric to an information
metric for a complex-valued vector model as in [21], an extra
term § ((670,40) (6" 0po) + (0a070)(Opc'o)) is necessary to add
to the definition of the induced metric. However, this term may not
be written as an expectation value of a specific operator. Hence we
shall avoid using this definition here, probably though the relevance
to an information metric would be significant for the bulk
description as shown in [21]. We shall leave this issue as a future
work. We appreciate Janos Balog for discussion on this point.

Oy’ (x5 "))

= (2(im +0_)0, + ) (p(x;m)p" (¥s')).  (4.23)
From this we obtain

—Ap = (2d +2)G9(0) + 8imG1D (0) 4 2imG ) (0),
(4.24)

(—Ap — 1)G19(0) = (2d + 6)G29(0) 4 8imG>1)(0)

+ 2imGUD(0). (4.25)
The induced line element is thus written as
ds> = i;;dnz + _G:);z) © (dx*t)?
" —-G19(0) — 2imG1-V)(0) et e
n
+ (4m)>G20 (0) (dx™)? + =05G 00 i
(4.26)

We refer to this geometry as the nonrelativistic (NR) hybrid
geometry. In what follows, we apply this result to specific
examples.

B. Nonrelativistic flow of a conformal primary

A first application is to nonrelativistic smearing of a
conformal primary scalar operator in a general CFT
considered in Sec. III. In this case the induced geometry
is more simplified than (4.26).

To see this let us smear the conformal primary scalar
field Oy(x) by the nonrelativistic flow equation (4.8) and
denote the smeared operator by ¢;(x;7n). The relation
between the relativistic flowed operator and the nonrela-
tivistic one is

b (xin) = M o (x11p). (4.27)

Therefore the 2-point function of the flowed operator is

<¢rh(xl;771)¢:h(x2;772)>

= 20 =2 (b, (31311 ) po (%25 1))

— %FO (2(XT2 + 2[77+ﬁ”l)x1_2 + (-)_612)2 ’ 1> , (428)
/i M+

and that of the normalized field is
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(0 (x13m) ok (x2312))
Ao X1, + 2in m)xy, + (%12)?
:(gz@@) @(% + 2in >2+<u>>

ny M4

(4.29)

G(u,v) in Sec. IVA now reduces to Gy(u) so that

Gm9(0) = G{"(0),  G"P(0) =0, (4.30)
for n € Z, k € Z5,. Then (4.25) reduces to
S A 1 Ap(A 1
GO (0) = -2 - _Bo(80+1]) (4.31)

2(D+2) )= 4D(D +2)

where D = d + 1. As a result the induced line element
given by (4.26) reduces to

dr* + 2dxtdx™ + dx?

ds* = Ap |y(dx™)? + 2 (4.32)
where we set
Ap +1
=./2D =4m>—9 4.
T n, y mD(D—i—Z)’ (4.33)

both of which are positive. Note that the limit m — 0
reduces this geometry to the AdS one given in the previous
section.

The metric (4.32) is a Schrodinger spacetime with Z = 0
and the wrong sign. It is well known that this geometry can
be regarded as a Lifshitz geometry with Z = 2 after an
appropriate compactification [31,32]. This can be easily
seen by performing the completing square with respect to
dx~. The resulting metric is given by

d+2 d2 d*z dxt\2
ds*> = Ay _(x4) + Tt x—l—y(dx‘—l——xQ)}
YT T YT

(4.34)

By taking a compactification along the x~-direction, this
metric describes a Lifshitz spacetime [31,32].

C. Light-cone reversal symmetry
with the relativistic flow

As another simple example, we consider a holographic
geometry emerging from the nonrelativistic theory with the
light-cone reversal symmetry (x* — —x*) generated by the
relativistic flow (m = 0). This implies that the 2-point
function of the normalized field given by (4.19) is invariant
under x3, — —x7, so that we can write G(u, v) = G(u, v?)
with an unknown function G. Therefore, we have

G (0) =0,
Ao
2D

G02(0) = 26(0),

G19(0) = (4.35)

Setting n = %, we obtain

2D2GOV(0) (dxt)?  dr? 4 2dx*tdx~ + di>

dSZ:AO - 5

Ap 7 T
(4.36)

This metric describes nothing but a Schrodinger spacetime
with o = 22°C0) srudied in Ref. [18].

D. Nonrelativistic deformation of a conformal primary

As a more nontrivial example, we consider a non-
relativistic deformation of a conformal primary scalar
operator in a relativistic CFT which preserve the property
of the nonrelativistic conformal primary condition.

Let us consider a general CFT in Sec. III and deform the
conformal primary scalar field Oy(x) as

0.(x) = e 0y (x), (4.37)
where € is a real deformation parameter. In order for the
deformed operator to be well behaved, the parameter e
needs to be positive. This will turn out to be important to
obtain a Schrodinger space-time with the correct sign.

Let us show that the deformed operator O.(x) is a
conformal primary operator in the nonrelativistic conformal
algebra. The conformal transformation of O, (x) is given by

50, (x) = 5 Oy (x) = 50, (x) + 5,0, ().

(4.38)
where 5" is given by (4.3) with (4.2), and
5.0.(x) =2¢[(2b-x—A— 0 1)0* — 00,0
+2(x-0+Ap+ 1)bTO_
—2xth-00_ + 4ebT02]0,(x). (4.39)
5.0, vanishes if and only if
0 =2, ot =b=b"=0. (4.40)

The subalgebra with this parameter constraint is nothing
but the Schrodinger algebra given in (4.5). In other words,
the subalgebra commuting with the operator ¢“? becomes
the Schrodinger algebra. Therefore the deformed operator
O.(x) is a nonrelativistic conformal primary operator.
Hence we can apply the result in Sec. IVA to this
deformed operator. The induced geometry obtained from
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the flowed operator of O, by the nonrelativistic flow
equation (4.8) is given by (4.26), where the metric
components are determined as a function of e.

An interesting situation happens when m = 0, where the
flow equation becomes relativistic. In this case both CFT and
the flow equation enjoy the light-cone reversal symmetry, so
that the situation reduces to Sec. IV C, and the induced
metric reduces to a Schrodinger one given by (4.36):

202GV (0) (dx*)?  dr? +2dx*dx~ + di®
Ap 7 72 '

(4.41)

dSz :AO -

where GEO’ D describes the 2-point function of the normalized
flowed field:

(oc(xr3m)oe(x2:m2))
_ (2\/’7]”2) AOGG <2x<1‘r2xl_2+()?12)2’ <&> 2)‘ (442)
n+ N+ N+
In the current case, we can evaluate G (6) To this end
let us investigate the transformation rule of the flowed field
¢.(x;n) under the conformal transformation:

5(630nf¢€ (X; I’]) _ 6'7(52+28+8*)+68% 5conf0<x>

= 8" ep(x317) + Segpe(x3m) (4.43)

where

Supe(x5m) = [2;7{(2b-x—/1)8,7— (d=1-2Ap)b-0}
+2e{(2b-x—A—w~1)0*
+2(x-0+Ap+1)bTO_—w't0,0_-2xTI_b-0}
+43%b- 00, +8enb™0_0, +8€*b* 3¢ (x:n).

(4.44)

If we restrict the conformal transformation to the

Schrodinger one, (4.40), then the terms dependent on €

drop out and we have (4.11) with /m = 0. Since the 2-point

function is invariant under the rotation parametrized by
'™, which is outside the Schrodinger algebra, we find

2 = ()2
(x~0; — x'0, +4€0_0,)G, <x +zx o ’(x 2) ) =0,
n

(4.45)
which leads to
G§°’1>(u, v) = 8669’0)(14, v). (4.46)

On the other hand, (4.25) gives

Ap +1 509 G) = Ap(Ap +1)

A(20) Gy _ _ _
G (0) = 2(D+2) ¢ 4D(D +2)

(4.47)

Therefore we obtain

Ap(Ap +1)

A0,1) /7
GOV(0) =2
0) =255+

(4.48)

Finally the induced line element is obtained as

4(Ap + 1)D (dx*)?
D+2 o~
N de® + 2dxtdx~ + d¥?

TZ

ds®> = Ap|—€

(4.49)

Since the parameter e is positive, this is a Schrodinger
space-time with the correct sign.

This result is in fact guaranteed by the symmetry. Let us
restrict the argument of conformal symmetry in the previous
section to that of the nonrelativistic one. Then the normal-
ized field o, (x;7) transforms under the Schrodinger trans-
formation as

8o (xin) = 6§"o (xin) + 8o (xin),  (4.50)

where 63 generates isometries of the Schrodinger space-
time as

8", (xin) = =6'x* 040, (x:n),

Oxl=a'+ o jx) —vixT +Ax' = 2bx*x',
Oxt=at +2axt —2b(xT)?,
Fx=pu+vix +b(+17%), &= (2bxt -2z,

(4.51)

while the extra contribution becomes

A 2
g (x;n) = 4b*O_ (8,7 + 02+ >0'€(x; n). (4.52)
n
From this it follows that

5ema<ffe(x1 M )55(X2§’72)>

= —8bx}yx3 (m —m2) (2\/’71712) AOG£2.0> (x_%z (xfz)z).

12 )
N+

T
(4.53)

+

Therefore, we have &6*"g,z(z) =0, which implies
531 g,5(z) = 0. This shows that the resulting induced metric
is invariant under the transformations forming the
Schrodinger algebra, which requires the geometry to be a
Schrodinger spacetime.
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E. Mass eigenvector

Finally we consider the case where a conformal primary
scalar in a nonrelativistic CFT becomes a mass eigenvector
such that

M.0,] =m0,., M=id_ (4.54)

with a mass parameter m, and the transformation of the
operator O,, is given by (4.6). Then the 2-point function of
this primary operator given by (4.7) is now more con-
strained as [13,17]

2
Cexp [im(xy, +52)]
<0m(5€ ’x+’x_)0m<f vx+’x_)-{-> = =
1 X X 2: X3, %) (1)
(4.55)

with a constant C.

Smearing by the flow equation (4.8) does not break the
property of the operator as an eigenvector for the mass
operator, so the 2-point function of the flowed operator,
which we denote by ¢,,, further reduces from (4.18) to

(P ()P (x2312))

()’

B exp |:im(xl_2 +W)} F (@ 1) (4.56)
= Ap " n ' ' '
My -

It is important to note the introduction of nonzero / in the
flow equation (4.8) is needed to resolve the contact
singularity in the time (x") direction. Therefore the
function G in Sec. IV A reduces to

’

N+ N+
X2 xT
L] i . a— ) (457
EXp[lm<x +2(x++2iﬁm+)>}Gm<f1+) (4.57)

This suggests that the induced line element (4.26) becomes

G <2(x+ + 2imn . )x” + X? x*)

Ao —G,(0)
=—dnpf +—"~
4;12 Tt 4172
—imG’, (0
, ZimGy(0)
n

ds? (dx*)?

dx+dx—+m2(dx—)2+%diﬂ. (4.58)

The coefficients G),(0) and G),(0) are determined from
(4.24) and (4.25) as follows.

A m(d_—l)
Gy(0) == 32
2i(m + m)
m(d—1) im(d—1)
G (0) _ _(AO + 1+ 2im )Glm(o) T am? (4 59)
" 2i(m + m) ' '

This geometry becomes a Lifshitz one with Z = 2 after
an appropriate compactification in some parameter region.
To realize this, we tune a parameter in the nonrelativistic
flow as m = —cm with ¢ > 0. Then, by setting

-m 5 1 2
= T = T,
4A0m 4cAp

n (4.60)

the above metric becomes

d+2 d2+d—2 d+ 2
ds2:A0<cl( j4> + 5 x>+m2<dx_+02:—2) ,

T
(4.61)
where c¢; and c, are given by
ARAp—d+ 1)+ (d-1)(1 -c)?
cp = AO B ,
2(1-¢)
Ap(2cAp —d+1

2m*(1 —c)

Thus, ¢ has to be negative so that the metric (4.58) may be
regarded as a Lifshitz spacetime with Z =2. This is
realized in a region specified by

(4.63)

Cc

d—1\2c—-1
(O<)AO<<—2 )—2 ;

where the upper bound becomes maximum as

Ap < (d=-1)/2atc=1.

V. HOLOGRAPHIC GEOMETRY FROM A
LIFSHITZ-TYPE SCALE-INVARIANT THEORY

In this section, we consider a Lifshitz-type scale-invariant
field theory, which is not necessarily conformally invariant.
There exists a primary scalar olperator O4(t,X), which
transforms under the dilatation as'°

O, (AX, N?t) = A=2004 (X, 1) (5.1)
with a scaling factor Z. Using the invariance under the

translation and the special rotation, the 2-point function of
this scalar operator is constrained as

"“The infinitesimal transformation is 6,0, (%.1) = —A(Ap+
xiai +Zt(9,)02(.?, t), where A = el.
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(02(%1,1,)0z(%, 1)) =

where f is a function characterized by the original theory.
We assumed it to be smooth in terms of the time and invariant
under the time reversal.''

A flow equation in this case should be a diffusion type
and compatible with the scaling relation. We can easily find
out such a flow equation as

Oz (X.1; -
Q0L _ 5+ ataf=\R) (.1,
1(%.0) = 0,(%.1), (53)

where we here introduced a positive parameter a. We call
this flow a Lifshitz flow. The formal solution is given by

b7(%. 1) = T+ 0,(3, 1), (5.4)

The 2-point function of the flowed field ¢, can be
written as

(Dz(R1, tism)pz(%n, t23m2))
= en? ranfotind o) (02(X1,11)02(%,, 1))

= 104 0H0,(% 1. 112) 04(0.0)) (5.5)
where we used (5.2) and set 7,y =57 +n5. Taking
into account (5.2) we can denote this function by
Fz(X1,,13,;2% "2, ,n,). Here we used the assumption
that the function f in (5.2) is smooth with respect to
the time.

By using the scaling relation (5.1) the function Fj,
satisfies

FZ(A2x2,Azztz;AzzZZ‘lnz+,A2n+)

= ATR0F (3%, 227 g ). (5.6)

Choosing A = 1/, we find

1 22 2%y,
F7(3,23mz,m,) =—5-F < Rl o 1) (5.7)
z Ze nﬁo N+ ’73 a

from which the normalized flowed field is given by

(2n)20/

I e 23 t; 9
FZ(0,0;1,1)¢Z( n)

oz(X. ;) = (5.8)
so that

"If we do not assume this, then terms such as didx* appear in
the induced metric.

(62(X1, tism)oz(Xs, ta3m2))

_ (2\/711712)% (h t12 22_1’72+)’ (5.9)

b Z’
M+

Ny My ’ﬁr

where G (x,x5,x3) := Fz(x1,%2;x3,1)/F7(0,0;1,1). This
function G is constrained by the flow equation:

Oy (bz(X1.t13m) bz (¥a. 123112))

2 _ - -
= (0" +azZn{™'07) (b7 (X1 113z (X, tim))  (5.10)
which leads to
—Ap=2(d-1)G}"Y(0,0,1)
+az222G99(0,0, 1),
0,0,1 a (0,1,0)
GP00(0,0,1) = = ——G(0,0,1). (5.11)

Nonzero components of the induced metric are calcu-
lated as

Ao Z(Z-1) 0
=9 D0,0,1), 5.12
gm]( ) 4]72 4}72 GZ ( (g ) ( )
gu(2) = —5,GP100.0.1),  (5.13)
(2n)* 7 T
. —6;j (1,0,0)
g,-j(z) 7 G (O 0, l) (514)
Therefore
Ao Z(Z-1
ds? = <_2_—( , )G(Oo”(o 0, 1)>d
4n 4n
-2 _0.1.0)
+ GP(0,0,1)(dr)?
an? Oz 10,0, 1)(a1)
-5,G5°%(0,0,1) .
+ dx'dx’
n
= (Ao — aZ(Z — 1)222G919(0,0, 1))
7 +d¥  2G5""(0,0.1) (dr)? (5.15)
72 (2a)? 2z '
where we set 7 := ar? with
Ao + az2272G919(0,0, 1)
o =
2(d = 1) (Ao — aZ(Z - 1)22°2G9"Y(0,0,1))
(5.16)

This describes a Lifshitz geometry with a general dynami-
cal exponent Z.
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VI. CONCLUSION AND DISCUSSION

We have extended the construction of holographic
geometries by means of the flow equation approach to
nonrelativistic scale invariant theories. After reviewing the
construction of the AdS space by using a general CFT both
in the Euclidean and the Lorentzian space, we moved on to
the construction of holographic geometries of a nonrela-
tivistic CFT and a nonrelativistic flow equation. As a result
we have obtained a hybrid geometry of both Schrodinger
and Lifshitz geometries as a general holographic space-
time in this framework. Applying this result to specific
nonrelativistic models, we have reproduced a Schrodinger
geometry and a Lifshitz one with Z = 2. We have also
reproduced a Lifshitz geometry with a general dynamical
exponent by smearing an operator of a Lifshitz theory with
a suitable modification of the flow equation.

It would be an interesting problem to realize the
seemingly new geometry we called the NR hybrid geom-
etry in Sec. [V A as a solution of a certain bulk theory. Such
a bulk theory may be realized as a usual gravitational theory
coupling to matter fields in a similar way with Lifshitz and
Schrodinger geometries (see [33] for a review and refer-
ences therein).

Although the flow field approach seems to provide
new perspective to investigate the holography, there are
still gaps to fill in between them. One of them is the
relationship between flowed operators in a CFT and bulk
operators appearing in the standard AdS/CFT correspon-
dence. It may be clear that they are conceptually differ-
ent, because the 2-point function of a flowed operator
does not have contact singularity, while that of a bulk
local field has. Indeed there is a standard construction of
bulk operators from a Lorentzian CFT known as the
Hamilton-Kabat-Lifshitz-LLow construction [34], where
bulk operators are obtained by convoluting CFT oper-
ators with a certain smearing function. Their striking
result is that such a smearing is done over the causally
disconnected region to obtain a bulk operator in even
dimensional Poincaré AdS, while smearing is done all
over the region for odd dimensional one. In Sec. III B and
Appendix B we smeared a CFT primary operator in
Lorentzian flows. In both cases smearing region is
basically done all over the space. It is important to
understand how smearing encodes the causality in the
Lorentzian space in the flow equation approach.

In relation to the above, it is also important to investigate
the correspondence of excited states between the bulk and
boundary in the flow field approach. There are orthodox
ways to study bulk geometries corresponding to an excited
state (for example [35]), while there is a proposal how to
compute a back-reacted geometry by an excited state in the
flow field approach [36]. It is intriguing to see whether a
resulting induced geometry have desired properties and
match one constructed by a different approach.

We hope to come back to these issues in the near future.
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APPENDIX A: CONFORMAL, SCHRODINGER
AND LIFSHITZ ALGEBRAS

In this Appendix we shall describe how the Schrodinger
and Lifshitz algebras are embedded into the conformal
algebra 80(2,D), and present the transformation laws
under the Schrodinger and Lifshitz symmetries.

1. Conformal algebra 30(2,D)

Let us begin with a conformal algebra 80(2,D) in D
dimensional Minkowski spacetime, which is generated by
antisymmetric matrices M p satisfying

[Mp.Mcp|=igacMpp—igscMap —igapMpc+igppMac-
(A1)
Here the indices are the metric components are given by
AB,...=-1,0,1,...,D,
—9-1-1=—9oo =9n = =gpp = 1.

In the following, it is helpful to introduce the light-cone
coordinates:

- 1
= — (P £ x7).

V2

Then the components of M, can be presented in terms of
the conformal basis P, (translation), M,, (Lorentz rota-
tion), D (dilatation) and K, (special conformal) as follows:

(A2)
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v + =
H M, P, K,
M = A3
N S BT
= \-x, D 0

Now the commutation relation in (A1) can be decomposed
into the following standard form:

[M,uw Mpé} = ig/tvaﬁ - igupMﬂé - ig/uSMup + ingMﬂ s

(A4)
[M/,w’ Pp] = ig;lva - igupP;u
[M;w’ Kp] = igypKv - igvpK/,u (AS)
[K”, P, = i9,D +iM,,, (A6)
[D,MW} =0, [D,P,| =iP,, [D,K,| = —iK,.
(A7)

2. Schrodinger algebra from 30(2.D)

To see the Schrodinger algebra as a subalgebra of
80(2, D), it is useful to introduce another couple of the
light-cone coordinates x* with x* and xP~!:

1

xt = — (xP71 £ x9). A8
\/E( ) (A8)
Then the generators of 30(2, D) can be displayed as
+ = j =
+ 0 M. -M, P, K,
- M., 0o -G P.K_
(Map) = (A9)
1 Mi+ Gi MU Pi Ki
T |-p, -P_ —P; 0 -D
= \-kK, K. -K; D 0

It is significant to notice that one can find out a subalgebra
by dropping the generators M;,, K; and K. By introduc-
ing the following notation

H=P,, M=P_, K=K_,

D=D+M_., (Al0)

the subalgebra is given by

M;;. M) = iguM ; —iguMy —igyM i +ig;M.

[Mijspk] =iguP;—igjPi, [Mij,Gk] =i9uG;—igpG;
[G,,Pj]:l'gijM, [H,G,)=iP;, [H,K|]=-iD,
[D.Pj]=iP;,  [D.G;]=~iGy,

[D.H)=2iH, [D.K]=-2iK, (Al1)

and the other commutation relations vanish. This is nothing
but the Schrodinger algebra.12 This algebra is composed of
H (time translation), P; (spatial translation), M;; (spatial
rotation), G; (Galilean boost), D (anisotropic dilatation) K
(special conformal) and M (mass operator).

As one can notice from the commutation relations in
(A11), the scale transformation associated with D is
anisotropic like
xt = Ax

t— At (A areal constant parameter).

(A12)

This is a characteristic of the Schrodinger algebra.

3. Lifshitz algebra from Schrodinger algebra

The Lifshitz algebra is embedded as a subalgebra of the
Schrodinger algebra when the dynamical exponent is two.
This embedding can be seen by dropping off the generators
G;, K and M from the Schrodinger algebra (A11). The
resulting commutation relations are given by

M, My| = igyMj — igiuM — iguM j + igM .
(M, Py] = iguP; — igyP;,

[D,P,]=iP;,,  [D,H]=2iH.

(A13)
In total, this algebra is composed of H (time translation), P;
(spatial translation), M;; (spatial rotation) and D (aniso-
tropic dilatation). To recover the algebra with an arbitrary
value of the dynamical exponent Z, the commutation
relation involving the dilatation and Hamiltonian should
be modified as

(D, H] = ZiH. (Al14)

APPENDIX B: LORENTZ NONINVARIANT
FLOW EQUATION

In this Appendix we present a different method to flow a
primary operator in Lorentzian CFT. Although this
approach breaks the manifest Lorentz invariance, it has a
virtue to obtain a well-defined flowed operator in the
Lorentzian space.

The method is to introduce another flow parameter 7,
specially for the time direction as follows.

0

9 =~
87’],¢0 I¢0

0
= Eija%cbo, (B1)

This is the Schrodinger algebra with the dynamical critical
exponent z. = 2. One may consider an arbitrary value of z.. But
except z. # 2 (and 1), the special conformal generator K must be
excluded so as to close the algebra.

126002-13



AOKI, YOKOYAMA, and YOSHIDA

PHYS. REV. D 99, 126002 (2019)

If the flow parameters are in the region that

n, <0, n>0, (B2)
then the flow equation has a well-defined solution
po(xi,,m) = €M% 0 (x)
— [ ¥Ryl xinmou) (B3
where
(,;,/)2 _(X;_;u‘g
e 4 e n
Ko(x, x'3mi,m) = (B4)

(4, )2 (dam)z

Then the two point correlation function of the flowed
operator is written as

(Po(x1: 10> m1)Po(x23 112, 12))

= g_"lz912""’78,2_’7;81,2""7181/2‘}"0(xfz)
= 7Ol £ (x3,), (B5)

where we used the notation in the main text. This is a
function of #,,X,,7,4,n,, which we denote by
Fo(£2,,X%,; 14,1+ ). By using the scaling relation we find

1 Xy
Ao P = FaS 5 ) (e
In particular

{¢ho(x;s e m)?) = Fo(0,0;2n,,2n)

1
= Fy (0, o;%, 1) . (B7)

Furthermore we have

t2 22
Fy 000 <’x;;1,’ 1)
n'n’n

Ao
= (-1
n

2P
_ F(moo)(_x_’?t 1)
nnn

Therefore the two point correlation function of the
normalized field is given by

2 2
10 +n0; ﬂ)(x%z)

(B8)

(60 (x13m1.11)00(X23 112 12))

2 X2 N
= <\/4’71’72>AO FO(ﬂ%’ﬁ;%’l)
ny \/FO(O,O;%,I)FO(O,O;%,I)

(B9)

The right-hand side is convergent and smooth for 7#,,
N <0, n1, ny > 0. Therefore we perform the analytic
continuation in terms of #,;, 17,, from the negative region to
the positive value with n, = n, 7, — 1,. Then the right-

2 22
hand side yields a smooth function of t'—z and ;—'2, which we
+

denote as (V‘;’“”Z)AOG (‘2 ‘f) with GO(O) = 1. We thus
obtain

(o0(x13m1)00(xX251m2)) = <@>A Go <t12 ﬁz)

M4 My Ny
(B10)

where we set

(o0(x1311)00(xX23m2)) = 1lim (60 (x137,1,11)60(X23 1125 12) ) -

M1 =M
=

(B11)

By using this the induced metric is computed as

Ao —0ij 0.1) 7
) ij i G ’ 0 )
9 (2) e 9:j(z) Pl (0)
-1 S
9ul(2) =Gy " (O) (B12)
From the flow equation we find
1
—ApFp(0,0;1,1) == F*"9 0,01, 1)
n
=2(D - DFY90,0:1,1),
1
~FPO90,0,1,1) = —2F(0,0:1, 1), (B13)
n
which leads to
—Ap =2(D - 1)GLV(0) - 2G6{"(0).  (B14)

By using (B8) we find G\ (0) = —G{"”(0), which gives
G((]O’l)(ﬁ) = %. Using these relations we obtain the
induced line element as

—ds? + d¥% + d7?

dS2 = A(’) 5 s
T

(B15)
where we set 72 = 2Dp. This is the Lorentzian AdS metric.

APPENDIX C: TRANSFORMATION OF THE
FLOWED FIELD

1. Useful formulas

We here collect some useful formulas to calculate
transformation properties of the flowed field.
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e xl = (xi + 200 e,
W xixd = (x4 200 ) (¥ + 200)e" = (xix] + (X0 + WO + 8;) + PO )er”
R = (2 4+ 4n%- D+ 2(d — 1)y + 420 en?

e

2’13+ -xT = 200, 0_

xT 4 2n0_
xt +25n0_ 262’7‘9+0 = ((xT)2 +4nxto_ + 4?02 )0+ 0-

)e

)
x4 250, )e?1?+9-

)

)

an+3 (x+>

X" 42570, )29+~ = ((x7)2 + dnx~0,, + 4207 e*19+0-

l\)
=
S5
+
2
><
A ~~ ~~ ~~ /—\

eeagx_ = (x_ + 268_)6633’
() = (57 + 260 Ve (x ) + 2620 + 1) + 4602 e

e xtxm = xt(x” + 2ed_)e”

20 0_+ed2 o~ (x— + 2778+ + 268_)827]8+0_+€(92_’
@210+ 0_+€d2 (x7)? = ((x7)? +4px=0, + 4n*0% + 4ned, 0_ + 2e(2x0_+ 1) + 46283)62"8+8’+€a%,
20002yt = — (™ 4 2n(x" - + xTD, + 1) + 420, 0_ + dned> + 2ext )00+

ea(’)Jr(x-&-)n — (x+ _~_a)nea(?+'

2. General transformation properties

Under the conformal transformation, the general flowed field ¢, ,,(x;7) transforms as
5/c0nf¢€’m(x;r]) = (O +20,0)+ed? +in2md.. 5O (x) = 5 ep, . (x317) + Aconf¢€7m(x; 7).
A e (x51) = (5 + 8+ 87 + 5 pem (x371),
where
sl i= —[a- 0+ 0,30, + A(X- 0+ Ap) +X*b- 0 —2b-X(X- 0 + Ap)],
8" :=2n(2b - X — 4)(0, — 2imd) — 2n(d — 1 =2Ap)b - 0,
5:=2e[2b-X— A= )P +2(Xx- 0+ Ao+ 1)bTO_ — 0" 0;0_ —2XTO_b - 0],
S = dnPb - 9(0, - 2imd, ),
& = 8enb™ 0_(0, — 2imd,.),
5 = 8e2b P,

and x = (X, x" + 2imn,x”) with a- 9 = a'0; + a*0, +a 0_.
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