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We construct the two-loop Green’s functions for a quark bilinear operator inserted at nonzero momentum
in a quark 2-point function for the most general off-shell configuration. In particular we consider the quark
mass operator, vector and tensor currents as well as the second moment of the flavor nonsinglet Wilson
operator.
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I. INTRODUCTION

Recently an interesting study has appeared [1], which
concerns the mass composition of the proton using lattice
gauge theory. It is now accepted that quarks and gluons are
the fundamental constituent particles which form the
hadrons. However the relative percentage contribution of
each parton to the overall mass is not precisely known. In
[1] this breakdown was provided using lattice gauge theory
methods and it was shown that around 9% is attributable to
the quark condensates from the weak sector of the Standard
Model. Of the remainder quark and gluon energies con-
tribute 32% and 37%, respectively, and the anomalous
gluonic part makes up the remaining 23%. To achieve such
results the underlying quantum field theory, quantum
chromodynamics (QCD), was used to study the energy-
momentum tensor as well as other physically important
operators. This is not a straightforward exercise since one
has to operate in a strictly nonperturbative region of QCD
[1]. Moreover aside from estimating errors one has to
ensure that the measurements and results are not incon-
sistent with known high energy behavior. By this we mean
that the lattice computed Green’s functions have to be
consistent over all energy ranges. Therefore ensuring that
measurements correctly extrapolate to the high energy limit
is important. This was incorporated in the matching
analysis of [1] to high loop order computations in the
chiral limit. However the early perturbative results of [2–5]
used in [1] were for a specific external momentum
configuration setup. For instance, the Green’s functions
used for the matching correspond to a quark bilinear
operator inserted in a quark 2-point function. In effect

overall this becomes a 3-point function since an external
momentum can flow into the operator insertion in addition
to those of the quark external legs. For the lattice matching
used in [1] the perturbative setup was the one where the
operator momentum is zero [2] and hence is an excep-
tional configuration. However, there is also interest for
lattice computations in more general configurations. For
instance, in [6–8] operators have been considered with a
nonzero momentum insertion in the symmetric point
configuration. This is known as the symmetric momentum
(SMOM) case since the squares of each of the three
external momenta are all equal. A similar configuration
was used in [9,10] for studying the 3-point QCD vertex
functions in the continuum. The setup of [6–8] has proved
to have had a wide use in a variety of lattice problems
involving quark bilinear operators. For instance, a non-
exhaustive representation set of recent studies can be
found in [11–18].
Subsequently variations on this external momentum

configuration scheme have been considered [8,9], where
the operator momentum squared differs from those of the
external quarks which are equal to each other. One example
of the usefulness of such setups can be seen in [14] where
the renormalization constants of quark bilinear operators
were computed in two different renormalization schemes
on the lattice. One was the RI0 scheme of [2,3] and
the behavior of those renormalization constants was com-
pared to the corresponding ones in the SMOM setup.
Interestingly for several operators the results for the latter
scheme were reliable over a much larger energy range than
the RI0 case. This was in the sense that in the chiral limit the
mass operator and pseudoscalar operator renormalization
constants should have the same value with a similar
statement for the vector and axial vector currents in the
flavor nonsinglet case. That these agree for virtually the
whole energy range for the operator with nonzero momen-
tum insertion in the Green’s function provides credence to
moving to the SMOM schemes for more reliable analyses.
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This may be due in part to them being kinematic-based
schemes using nonexceptional momentum configurations
where infrared issues do not arise. With the advances in
lattice technology to allow us to study internal hadron
dynamics in more depth and precision there is a clear need
for the continuum matching program to progress too for
quark bilinear operators as well as for other operators. One
interesting recent development on the experimental side is
the measurement of the pressure exerted by the constituent
partons inside a hadron. For instance in [19] the pressure
distribution inside a proton was measured experimentally.
Subsequently there has been a lattice investigation into
estimating the pressure distribution as well as shear forces
inside the proton [20]. With the progress in the precise
constituent mass breakdown of a proton in [1] through
operator measurements on the lattice, then to progress with
theoretical parton pressure studies will require lattice
analysis too. This will also necessitate high loop results
in the continuum field theory but for a more general
momentum configuration than those such as SMOM used
for the matching so far. Therefore to keep apace of such
developments it is the purpose of this article to extend the
SMOM computations of the quark 2-point functions with
quark bilinear operator insertions to the most general off-
shell momentum configuration. This will provide results
for a large range of momentum transfer cases including the
one where all external momenta squared are different. In
particular we will focus on the Green’s function with flavor
nonsinglet scalar, vector and tensor operators inserted as
well as the first moment of theWilson operator used in deep
inelastic scattering. These will all be in the chiral limit.
So we will not need to consider the axial vector of
pseudoscalar operators. The various Green’s functions will
be computed to two loops in the MS scheme and we will
provide the complete decomposition into the full basis
of Lorentz tensors. This is important since it will allow in
principle lattice measurements in a variety of different
component directions. While the quark mass and vector
current operators are standard quantities to consider, there
has been interest in the tensor current in recent years
[13,16,18]. For example, such operators can arise as part of
dimension six operators in effective field theory extensions
of the Standard Model. In one recent study [16], nucleon
form factors of the tensor current have been examined with
input from lattice QCD results. Another article recording a
lattice study of tensor currents is [13]. Therefore our off-
shell computations will be useful for perturbative matching
in future extensions of such lattice analyses.
The paper is organized as follows. We detail the quantum

field theoretic aspects of the machinery we will use in
Sec. II before recording our results in Sec. III. Concluding
remarks are given in Sec. IV. Two Appendixes are
provided. The first records the tensor basis for the
Green’s function of each operator considered together with
the projection matrix. The other summarizes the various

analytic functions which appear in the one- and two-loop
amplitudes.

II. FORMALISM

We outline the formal details of the various Green’s
functions we will evaluate off-shell in this section and use
parallel notation to previous articles [21,22]. To assist with
labeling of various quantities we will use the same short-
hand notation for the following gauge invariant quark
bilinear operators which is

S≡ ψ̄ψ ; V ≡ ψ̄γμψ ; T ≡ ψ̄σμνψ ;

W2 ≡ Sψ̄γμDνψ ; ∂W2 ≡ S∂μðψ̄γνψÞ; ð2:1Þ

where ψ is the quark field and the gluon Aa
μ is embedded in

the covariant derivative with coupling constant g. We note
that all operators are flavor nonsinglet and σμν ¼ 1

2
½γμ; γν�.

Since we are concerned with the chiral limit then results for
the pseudoscalar and axial vector operator will be the same
as their respective scalar and vector counterparts and we
will make no further reference to them. The two operators
W2 and ∂W2 are symmetric and traceless with respect to
their Lorentz indices in d dimensions. We illustrate this by
an example for the latter operator. Defining

O∂W2
μν ¼ ∂μðψ̄γνψÞ; ð2:2Þ

then

SO∂W2
μν ¼ O∂W2

μν þO∂W2
νμ −

2

d
ημνO

∂W2σ
σ ð2:3Þ

is the symmetric and traceless operator. Given the structure
of the operatorW2 one might expect that the operator where
the covariant derivative acts solely on the antiquark is not
included. However it is not an independent operator since it
can be written as a linear combination of W2 and ∂W2. We
could have chosen to ignore the latter in place of a more
symmetric choice of independent operators. However one
of the reasons we have included ∂W2 instead is that while it
mixes under renormalization withW2, as would be the case
for the other operator which we regard as not independent,
the mixing matrix of the fW2; ∂W2g set is triangular. This
produces a natural partition within the larger profile since
the renormalization constant of ∂W2 is the same as that of
V. For the other operators S, V and T there is no mixing and
their renormalization is purely multiplicative. For nota-
tional reasons if we label the sector containing both twist-2
Wilson operators by W2 which should not lead to
any ambiguity, then the W2 sector operators renormalize
according to

Ooi ¼ ZW2

ij Oj; ð2:4Þ
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where o indicates a bare entity. With our choice of operator
basis for the twist-2 operators the mixing matrix of
renormalization constants will have the form

ZW2

ij ¼
�
ZW2

11 ZW2

12

0 ZW2

22

�
: ð2:5Þ

Another reason we have included the operator ∂W2 is that it
cannot be neglected when one studies operator Green’s
functions where there is an external momentum flowing
into the operator. In the early work of [23–25] the main
interest was the renormalization of the Wilson operators
themselves alone. The mixing with the total derivative
operators was not needed. Therefore the operators were
renormalized by inserting into a quark 2-point function
where there was no external momentum flow into the
operator itself. In this setup there is no need to consider any
mixing issues as the off-diagonal matrix element of (2.5)
could not be accessed and was not needed for the deep
inelastic scattering formalism. As our motivation is to
contribute to a different problem which involves knowing
the structure of a full Green’s quark 2-point function with
an operator at nonzero momentum insertion the operator
∂W2 must be included. By doing so we have a closed set of
operators under renormalization. This has been tested in
[26] where 2-point operator correlation functions were
computed to three loops in the chiral limit for the set given
in (2.1). In particular without the mixing matrix (2.5) the
correlation function of the operator W2 with itself would
not have been finite. Nor would the contact renormalization
constants have been closed under renormalization as extra
divergences would have appeared at two loops which could
not be consistently renormalized. Therefore we have to
treat the operator ∂W2 on the same footing as W2.
To be more concrete we will consider the set of Green’s

functions

ΣL
μ1…μnL

ðp; q; rÞ ¼ hψðpÞOL
μ1…μnL

ðrÞψ̄ðqÞi; ð2:6Þ

where the label L denotes S, V, T, W2 or ∂W2 and the
number of Lorentz indices is nL which takes the respective
values 0, 1, 2, 2 and 2. The three external momenta p, q and
r satisfy the energy-momentum conservation

pþ qþ r ¼ 0 ð2:7Þ
and we have chosen the momentum into the operator, r, to
be the dependent one. With this ΣL

μ1…μnL
ðp; q; rÞ will be a

function of three variables which we have chosen to be x, y
and μ2 defined by

x ¼ p2

r2
; y ¼ q2

r2
; r2 ¼ −μ2; ð2:8Þ

where the first two are dimensionless. A related quantity
which will appear in the final expressions for the various of

the Green’s function is the Gram determinant derived from
the three momenta which is given by

ΔGðx; yÞ ¼ 1 − 2x − 2yþ x2 − 2xyþ y2: ð2:9Þ

It is worth noting the connection these variables have for the
earlier momentum configurations considered in [6–8,21,22].
The completely symmetric point, SMOM, is defined by
x ¼ y ¼ 1. However for what is now termed the interpolat-
ing momentum (IMOM) configuration introduced in [6]
there is a subtle aspect for the mapping of the variables of
(2.8) to those used in [22]. The main difference is that in the
IMOM setup a parameter ω was introduced with the scale
of the momentum r flowing in through the operator.
Therefore to make connection with the variables used here
and those of [22] we note that the mapping is x ↦ 1

ω and
μ2 ↦ ωμ2.
In order to determine (2.6) for each operator L we have

constructed an automatic computation which evaluates the
one- and two-loop Feynman graphs contributing to
ΣL
μ1…μnL

ðp; q; rÞ. The algorithm we have followed is similar

to [21,22] and is to decompose ΣL
μ1…μnL

ðp; q; rÞ via

ΣL
μ1…μnL

ðp; q; rÞ ¼
XNL

k¼1

ΣL
ðkÞðp; qÞPL

ðkÞμ1…μnL
ðp; qÞ ð2:10Þ

into a basis of Lorentz tensors, PL
ðkÞμ1…μnL

ðp; qÞ, which
carry the spinor indices of the external quark fields, with an
associated set of scalar amplitudes, ΣL

ðkÞðp; qÞ. Here NL

denotes the number of elements in the Lorentz tensor basis
which are 2, 6, 8 and 10 of the respective sectors of (2.1).
The explicit forms of the tensors in each basis are provided
in Appendix A. Each of the amplitudes in (2.10) is a sum of
scalar Feynman integrals to which we can apply the Laporta
algorithm [27]. This allows us to relate all the integrals
comprising each Green’s function through integration by
parts to a set of core Feynman integrals which are termed
masters. Their values have been determined by direct
methods [28–31], and we have summarized the key
functions which arise in the final expressions for
ΣL
μ1…μnL

ðp; q; rÞ in Appendix B. To extract the integrals
comprising each amplitude we use the same projection
method of [21,22] where ΣL

μ1…μnL
ðp; q; rÞ is multiplied by a

linear combination of PL
ðkÞμ1…μnL

ðp; qÞ for each value of k.

To construct the projection we have to accommodate the
spinor index aspect of each of the tensors in each basis. A
systematic way to achieve this is to use a specific basis for
all possible combinations of γ matrices that can arise. These
have been discussed at length in [32–36] and are defined as

Γμ1…μn
ðnÞ ¼ γ½μ1…γμn�; ð2:11Þ
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where Γμ1…μn
ðnÞ , with n ≥ 0, are totally antisymmetric in the

Lorentz indices. There are a countably infinite number of
these matrices and they form a complete set which span
spinor space in d-dimensional spacetime. This is important
since we will use dimensional regularization to evaluate all
the Feynman integrals. Clearly for an integer dimension the
basis will truncate to a finite set but they allow one to
systematically construct the projection matrix from the
basis tensors PL

ðkÞμ1…μnL
ðp; qÞ since the Γμ1…μn

ðnÞ naturally

partitions spinor space due to the property [32–36]

trðΓμ1…μm
ðmÞ Γν1…νn

ðnÞ Þ ∝ δmnIμ1…μmν1…νn : ð2:12Þ

Here Iμ1…μmν1…νn is the generalized unit matrix on the
infinite dimensional space and the trace is over the spinor
indices. One advantage of using the ΓðnÞ matrices is that
they can only be contracted by external momenta which are
different due to the antisymmetry property. For higher
n-point functions this would allow one to construct tensor
bases involving γ matrices in a systematic way. In light of
this each scalar amplitude is deduced from

ΣL
ðkÞðp; qÞ ¼ ML

kltrðP
Lμ1…μnL
ðlÞ ðp; qÞΣL

μ1…μnL
ðp; q; rÞÞ;

ð2:13Þ
where there is a sum over l. The projection matrix ML

kl is
symmetric and its entries are polynomials in d, x and y. The
only kinematic scale dependence comes through a possible
overall power of μ2. The matrix ML

kl is the inverse of the
NL × NL matrix N L

kl which is computed from

N L
kl ¼ trðPL

ðkÞμ1…μnL
ðp; qÞPLμ1…μnL

ðlÞ ðp; qÞÞ ð2:14Þ

for each sector L.
To effect the two-loop computation automatically we

have generated the Feynman graphs using QGRAF [37] and
translated the electronic output into the input format for the
integration routine. This is written in the symbolic manipu-
lation language FORM [38,39]. The next step is to perform
the projection on each graph to produce a sum of scalar
integrals. At this stage each of these carries numerators
which involve scalar products of the internal and external
momenta. These need to be simplified before the Laporta
algorithm can be implemented. So as far as possible the
scalar products are written as linear combinations of the
propagators which in most cases reduces the number of
propagators in the integral. In some cases the power of a
propagator can become negative and this is regarded as what
is termed an irreducible line. It can be accommodatedwithin
the integration by parts formalism. Therefore for each
QGRAF generated Feynman graph one has a set of scalar
integrals involving positive, negative or zero powers of a set
of propagators which describe the original topology or the
original one plus irreducible ones. At two loops the latter

could have irreducible propagators which correspond to a
completely different topology. Again this can be accom-
modatedwithin the Laporta formalism since the reduction to
master integrals is a purely algebraic procedure acting on
integer index representations of a function constrained by
the rules derived from the integration by parts. To achieve the
reduction we have used the REDUZE package [40,41] and
constructed a database which covers all the integrals we
require. From this database we have extracted the required
relations in Form notation and included that module within
the automatic evaluation. In terms of numbers of graphs to be
computed there are 1 one-loop and 13 two-loop ones forS,V
and T. The respective numbers for both W2 and ∂W2 are 3
and 32. The final step after each graph has been determined
to the finite part in dimensional regularization is to carry out
the renormalization in the MS scheme. This is achieved
using the rescaling method of [42]. All graphs are computed
as a function of the bare coupling constant and gauge
parameter. Then their renormalized counterparts are intro-
duced via the canonical renormalization constant. However
the operator renormalization has also to be included. ForS,V
and T this is multiplicative similar to the coupling constant
while that for theW2 sector uses the mixing matrix (2.5). In
each case this is also implemented automatically via the
method of [42]. For completeness we include the various
operator MS renormalization group functions to two loops
which are [23,24,43–47]

γSðaÞ¼−3CFaþ½20TFNf−97CA−6CF�
CFa2

6
þOða3Þ;

γVðaÞ¼Oða3Þ;

γTðaÞ¼CFaþ½257CA−171CF−52TFNf�
CFa2

18
þOða3Þ;

γW2

11 ðaÞ¼
8

3
CFaþ

1

27
½376CACF−112C2

F−128CFTFNf�a2

þOða3Þ;

γW2

12 ðaÞ¼−
4

3
CFaþ

1

27
½56C2

F−188CACFþ64CFTFNf�a2

þOða3Þ;
γW2

22 ðaÞ¼Oða3Þ; ð2:15Þ

where a ¼ g2=ð16π2Þ andCF,CA and TF are the usual color
group Casimirs and invariants. The anomalous dimensions
γVðaÞ and γW2

22 ðaÞ actually vanish to all orders, the former
because of the fact that it is a physical operator and the latter
as it is the total derivative of the same operator. Another
reason for including the operator anomalous dimensions
rests in a check we have on our results. Given that the finite
part of each Green’s function, as will be evident, is a
complicated function of the parameters x and y, then the
correct MS operator renormalization constants must emerge
naturally in our computation. Not only that but they should
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not be x or y dependent which turns out to be the case. With
all the discussed ingredients we have completed the two-
loop evaluation of ΣL

μ1…μnL
ðp; q; rÞ automatically for arbi-

trary linear covariant gauge in the MS scheme for each of
the operators in (2.1).

III. RESULTS

In this section we discuss various aspects of the results
and give a sense of the properties of the various amplitudes
of ΣL

μ1…μnL
ðp; q; rÞ for each operator L of (2.1). We have

reviewed some of the common functions of x and y which

arise at one and two loops in Appendix B. They involve
polylogarithms up to the fourth order. The expressions for
the amplitudes of each of the operator Green’s functions are
needless to say quite large in each case. Therefore it is more
appropriate for practical use by others to record that data in
a usable form. To achieve this we have included all the
results in Supplemental Material [48]. However for com-
pleteness and to be able to give a connection to that notation
we provide an example of one of the amplitudes. As the
scalar operator represents the most compact result, the
expression for the channel 1 amplitude for this operator in
the Landau gauge for the SUð3Þ color group for Nf ¼ 3 is

ΣS
ð1Þðp; qÞjSUð3Þ

α¼0
¼ −1þ

�
−
16

3
þ 2 lnðxyÞ þ 2Φ1ðx; yÞ

�
a

þ
�
60ζ3 −

4385

18
þ 445

6
lnðxyÞ − 23

3
ln2ðxyÞ − 88

9
lnðxyÞΦ1ðx; yÞ

þ 2

9
lnðxyÞΦ1ðx; yÞy −

2

9
lnðxyÞΦ1ðx; yÞxþ

14

3
lnðxÞ lnðyÞ

−
4

9
lnðyÞΦ1ðx; yÞyþ

4

9
lnðyÞΦ1ðx; yÞxþ

1

9
Ω2

�
1

x
;
y
x

�

−
1

3
Ω2

�
y
x
;
1

x

�
þ 1

9
Ω2

�
1

y
;
x
y

�
−
1

3
Ω2

�
x
y
;
1

y

�
þ 2

9
Ω2ðx; yÞ

þ 1195

18
Φ1ðx; yÞ þ

2

9
Φ1ðx; yÞ2 −

2

9
Φ1ðx; yÞ2y −

2

9
Φ1ðx; yÞ2x

þ 2Φ2

�
y
x
;
1

x

�
1

x
Δ−3

G − 12Φ2

�
y
x
;
1

x

�
y
x
Δ−3

G þ 30Φ2

�
y
x
;
1

x

�
y2

x
Δ−3

G

− 40Φ2

�
y
x
;
1

x

�
y3

x
Δ−3

G þ 30Φ2

�
y
x
;
1

x

�
y4

x
Δ−3

G − 12Φ2

�
y
x
;
1

x

�
y5

x
Δ−3

G

þ 2Φ2

�
y
x
;
1

x

�
y6

x
Δ−3

G − 4Φ2

�
y
x
;
1

x

�
Δ−3

G − 4Φ2

�
y
x
;
1

x

�
Δ−2

G

− 4Φ2

�
y
x
;
1

x

�
Δ−1

G þ 12Φ2

�
y
x
;
1

x

�
yΔ−3

G þ 4Φ2

�
y
x
;
1

x

�
yΔ−2

G

− 4Φ2

�
y
x
;
1

x

�
yΔ−1

G − 8Φ2

�
y
x
;
1

x

�
y2Δ−3

G þ 4Φ2

�
y
x
;
1

x

�
y2Δ−2

G

− 8Φ2

�
y
x
;
1

x

�
y3Δ−3

G − 4Φ2

�
y
x
;
1

x

�
y3Δ−2

G þ 12Φ2

�
y
x
;
1

x

�
y4Δ−3

G

− 4Φ2

�
y
x
;
1

x

�
y5Δ−3

G þ 2Φ2

�
y
x
;
1

x

�
xΔ−3

G þ 2Φ2

�
y
x
;
1

x

�
xΔ−2

G

þ 2Φ2

�
y
x
;
1

x

�
xΔ−1

G − 8Φ2

�
y
x
;
1

x

�
xyΔ−3

G − 4Φ2

�
y
x
;
1

x

�
xyΔ−2

G

þ 12Φ2

�
y
x
;
1

x

�
xy2Δ−3

G þ 2Φ2

�
y
x
;
1

x

�
xy2Δ−2

G − 8Φ2

�
y
x
;
1

x

�
xy3Δ−3

G

þ 2Φ2

�
y
x
;
1

x

�
xy4Δ−3

G þ 2Φ2

�
1

y
;
x
y

�
1

y
−
52

9
Φ2ðx; yÞ

�
a2

þOða3Þ; ð3:1Þ
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where α is the gauge parameter, Nf is the number of
massless quarks and ζz is the Riemann zeta function. To
gauge the structure of this amplitude as a function of x and
y we have provided a three-dimensional plot of it over the
domain − 1

2
≤ x ≤ 2 and − 1

2
≤ y ≤ 2 in Fig. 1 forNf ¼ 3 in

the Landau gauge for the SUð3Þ color group. Also included
in this figure is the channel 2 amplitude for comparison.
Both are the one-loop functions for the particular value of
αs ¼ 0.125 with αs ¼ g2=ð4πÞ. Plotting the two-loop
amplitudes for the same value of the coupling does not

significantly change the qualitative behavior of the ampli-
tudes by more than a few percent.
For each of the other operators the expressions for the

amplitudes are formally similar to (3.1) but larger. To assist
with appreciating the structure of amplitudes for these other
cases we have made similar three-dimensional plots for the
same gauge, color and flavor parameters as Fig. 1 for the
first two Lorentz channels. These are given in Figs. 2–5.
The behavior of the results for V and T are similar in form.
Recalling that channel 1 for S, V and T contains an Oð1Þ

FIG. 2. One-loop amplitudes 1 (left) and 2 (right) for V.

FIG. 1. One-loop amplitudes 1 (left) and 2 (right) for S.

FIG. 3. One-loop amplitudes 1 (left) and 2 (right) for T.

J. A. GRACEY PHYS. REV. D 99, 125017 (2019)

125017-6



term, but for the operatorW2 it is channel 2, we see a larger
variation over the domain we have chosen for these
channels compared with the others. Though there is an
exception for T which is a reflection that in this case
channel 2 corresponds to a different partition of the ΓðnÞ
matrices. For ∂W2 we have plotted channel 3 rather than 2
since the latter is equivalent to the graph of channel 1. This
is because the operator ∂W2 is a total derivative and this
derivative introduces this symmetry. Moreover the plots for
channel 1 of V and ∂W2 are equivalent for similar reasons.
One aspect of our calculation which we have checked is

the generalization of the relations between amplitudes
given in [21,22] are satisfied. By this we mean that in
the original Green’s function one can interchange the
external quark and antiquark legs which implies that several
of the amplitudes in the Lorentz decomposition are related.
For the general off-shell cases this means that the momenta
p and q have to be swapped in the explicit expressions. For
completeness we note that the relations are

ΣV
ð2Þðp;qÞ¼ΣV

ð5Þðq;pÞ; ΣV
ð3Þðp;qÞ¼ΣV

ð4Þðq;pÞ ð3:2Þ

for the vector operator while

ΣT
ð3Þðp;qÞ ¼ ΣT

ð6Þðq;pÞ; ΣT
ð4Þðp;qÞ ¼ ΣT

ð5Þðq;pÞ ð3:3Þ

are the corresponding ones for the tensor case. In the W2

sector due to the asymmetry in the definition of the operator
W2 itself there are only symmetry relations for the ∂W2

operator. These are

Σ∂W2

ð1Þ ðp; qÞ ¼ Σ∂W2

ð2Þ ðq; pÞ; Σ∂W2

ð3Þ ðp; qÞ ¼ Σ∂W2

ð8Þ ðq; pÞ;
Σ∂W2

ð4Þ ðp; qÞ ¼ Σ∂W2

ð7Þ ðq; pÞ; Σ∂W2

ð5Þ ðp; qÞ ¼ Σ∂W2

ð6Þ ðq; pÞ;
Σ∂W2

ð9Þ ðp; qÞ ¼ Σ∂W2

ð10Þ ðq; pÞ: ð3:4Þ

In the case of each operator the order of the momenta
arguments in the amplitude of the right-hand side have been
swapped. We have verified that each of the above relations
for the respective operators hold to two loops for all x and
y. As a final check on our results we have taken the limits
back to various results which are already known [21,22].

IV. DISCUSSION

The computation of the Green’s function (2.6) which we
have carried out here for the operators of (2.1) in the most

FIG. 4. One-loop amplitudes 1 (left) and 2 (right) for W2.

FIG. 5. One-loop amplitudes 1 (left) and 3 (right) for ∂W2.
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general off-shell momentum configuration completes our
program to provide their full structure to two loops. With
the provision of different momentum values for the external
quark fields of (2.6) it should be possible to examine new
aspects of the dynamics of the partons of the proton for
problems of current interest. We note again that the lattice
evaluation of the pressure inside the proton [20] would be
one physical quantity of distinct interest given the potential
to refine the comparison with the original experimental
results of [19] further. That aside there are other uses for our
results. For instance, the parton distribution functions have
been considered on the lattice in, for example, [49–53].
Again the greater freedom to measure the Wilson operator
Green’s function in a larger set of momenta choices should
assist with improving our knowledge of the deeper struc-
ture of the proton. The subsequent stage to our programwill
be to extend to the next loop order. This is not a trivial task
for the general momentum configuration. It would require
the expressions of the master integrals analogous to the
two-loop ones of [28–31]. While progress to achieve this
has been made in recent years [54], with the provision of
the algorithm to determine the master integrals the explicit
functions are not yet known. That is the next stage in the
program.
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APPENDIX A: TENSOR BASES
AND OPERATOR PROJECTION

MATRICES

In this Appendix we record the basis tensors for the
decomposition of each Green’s functions together with the
elements of each projection matrix. While each is similar to
their counterparts in previous momentum configurations
[21,22], there are several differences in the general case
where x and y are not restricted. For the scalar quark
operator there are two tensors when there are two inde-
pendent external momenta which are

PS
ð1Þðp; qÞ ¼ Γð0Þ; PS

ð2Þðp; qÞ ¼
1

μ2
Γpq
ð2Þ: ðA1Þ

In this and the other bases the scale μ will appear in
several elements to ensure each has the same dimension.
It also means that the elements of each projection
matrix have the same dimension. As the scalar operator
basis involves different elements of the generalized γ
matrices then the projection matrix is diagonal due to
(2.12) giving

MS ¼ 1

4ΔG

�ΔG 0

0 4

�
: ðA2Þ

There is a similar partition for the remaining projection
matrices which are larger.
For the vector case there are six basis elements defined as

PV
ð1Þμðp; qÞ ¼ γμ; PV

ð2Þμðp; qÞ ¼
pμp
μ2

;

PV
ð3Þμðp; qÞ ¼

pμq

μ2
; PV

ð4Þμðp; qÞ ¼
qμp

μ2
;

PV
ð5Þμðp; qÞ ¼

qμq

μ2
; PV

ð6Þμðp; qÞ ¼
1

μ2
Γð3Þμpq; ðA3Þ

where the final one will form a unit partition. However as
the projection matrix is now 6 × 6 but symmetric we will
only list those nonzero elements of the upper triangle.
Defining

MV ¼ 1

4½d − 2�Δ2
G
M̃V ðA4Þ

in order to extract the overall common factor we then
have

M̃V
11 ¼ ½x2−2xy−2xþy2−2yþ1�2;

M̃V
12 ¼−4½ðy−1Þ2þ x2−2ðyþ1Þx�y;

M̃V
13 ¼−2½x2−2xy−2xþ y2−2yþ1�½xþy−1�;

M̃V
14 ¼−2½x2−2xy−2xþ y2−2yþ1�½xþy−1�;

M̃V
15 ¼−4½ðy−1Þ2þ x2−2ðyþ1Þx�x;

M̃V
22 ¼ 16½d−1�y2;

M̃V
23 ¼ 8½d−1�½xþy−1�y; M̃V

24 ¼ 8½d−1�½xþ y−1�y;
M̃V

25 ¼ 4½dx2þ2dxy−2dxþdy2−2dyþd−2x2

þ4x−2y2þ4y−2�;
M̃V

33 ¼ 4½4dxyþx2−6xy−2xþy2−2yþ1�;
M̃V

34 ¼ 4½d−1�½xþy−1�2;
M̃V

35 ¼ 8½y−1þ x�½d−1�x;
M̃V

44 ¼ 4½4dxyþx2−6xy−2xþy2−2yþ1�;
M̃V

45 ¼ 8½y−1þ x�½d−1�x; M̃V
55 ¼ 16½d−1�x2;

M̃V
66 ¼ 4½ðy−1Þ2þx2−2ðyþ1Þx�; ðA5Þ

where we have not listed the zero elements outside the Γð1Þ
and Γð3Þ partitions.
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Following [21,22] our basis for the tensor operator is

PT
ð1Þμνðp; qÞ ¼ Γð2Þμν; PT

ð2Þμνðp; qÞ ¼
1

μ2
½pμqν − pνqμ�Γð0Þ;

PT
ð3Þμνðp; qÞ ¼

1

μ2
½Γð2Þμppν − Γð2Þνppμ�; PT

ð4Þμνðp; qÞ ¼
1

μ2
½Γð2Þμpqν − Γð2Þνpqμ�;

PT
ð5Þμνðp; qÞ ¼

1

μ2
½Γð2Þμqpν − Γð2Þνqpμ�; PT

ð6Þμνðp; qÞ ¼
1

μ2
½Γð2Þμqqν − Γð2Þνqqμ�;

PT
ð7Þμνðp; qÞ ¼

1

μ4
½Γð2Þpqpμqν − Γð2Þpqpνqμ�; PT

ð8Þμνðp; qÞ ¼
1

μ2
Γð4Þμνpq: ðA6Þ

To record the elements of the projection matrix we define the factorized matrix MT and set

MT ¼ 1

4½d − 2�½d − 3�Δ2
G
M̃T: ðA7Þ

Then

M̃T
11 ¼ −½x2 − 2xy − 2xþ y2 − 2yþ 1�2; M̃T

12 ¼ 0;

M̃T
13 ¼ 4½ðy − 1Þ2 þ x2 − 2ðyþ 1Þx�y; M̃T

14 ¼ 2½x2 − 2xy − 2xþ y2 − 2yþ 1�½xþ y − 1�;
M̃T

15 ¼ 2½x2 − 2xy − 2xþ y2 − 2yþ 1�½xþ y − 1�; M̃T
16 ¼ 4½ðy − 1Þ2 þ x2 − 2ðyþ 1Þx�x;

M̃T
17 ¼ 4½ðy − 1Þ2 þ x2 − 2ðyþ 1Þx�; M̃T

22 ¼ −2½ðy − 1Þ2 þ x2 − 2ðyþ 1Þx�½d − 2�½d − 3�;
M̃T

23 ¼ M̃T
24 ¼ M̃T

25 ¼ M̃T
26 ¼ M̃T

27 ¼ 0; M̃T
33 ¼ −8½d − 1�y2;

M̃T
34 ¼ −4½d − 1�½xþ y − 1�y; M̃T

35 ¼ −4½d − 1�½xþ y − 1�y;
M̃T

36 ¼ −2½dx2 þ 2dxy − 2dxþ dy2 − 2dyþ d − 3x2 þ 2xyþ 6x − 3y2 þ 6y − 3�;
M̃T

37 ¼ −8½d − 1�y; M̃T
44 ¼ −4½2dxyþ x2 − 4xy − 2xþ y2 − 2yþ 1�;

M̃T
45 ¼ −2½d − 1�½xþ y − 1�2; M̃T

46 ¼ −4½y − 1þ x�½d − 1�x;
M̃T

47 ¼ −4½y − 1þ x�½d − 1�; M̃T
55 ¼ −4½2dxyþ x2 − 4xy − 2xþ y2 − 2yþ 1�;

M̃T
56 ¼ −4½y − 1þ x�½d − 1�x; M̃T

57 ¼ −4½y − 1þ x�½d − 1�; M̃T
66 ¼ −8½d − 1�x2;

M̃T
67 ¼ −8½d − 1�x; M̃T

77 ¼ −8½d − 1�½d − 2�; M̃T
88 ¼ −4½ðy − 1Þ2 þ x2 − 2ðyþ 1Þx� ðA8Þ

are the upper triangle entries in the symmetric matrix.
The situation for the final operator W2 is slightly different from the previous ones. In this we have chosen to define the

basis in such a way that each Lorentz tensor is symmetric and traceless. While there is no a priori reason for doing so it
results in some of our basis elements having x and y dependence unlike the derivative free operators. So the basis tensors
formally differ from those of [21,22]. However they equate to the latter in the respective limits. Our choice here is

PW2

ð1Þμνðp; qÞ ¼ γμpν þ γνpμ −
2

d
pημν; PW2

ð2Þμνðp; qÞ ¼ γμqν þ γνqμ −
2

d
qημν;

PW2

ð3Þμνðp; qÞ ¼ p

�
1

μ2
pμpν þ

x
d
ημν

�
; PW2

ð4Þμνðp; qÞ ¼ p

�
1

μ2
pμqν þ

1

μ2
qμpν þ

½1 − x − y�
d

ημν

�
;

PW2

ð5Þμνðp; qÞ ¼ p

�
1

μ2
qμqν þ

y
d
ημν

�
; PW2

ð6Þμνðp; qÞ ¼ q

�
1

μ2
pμpν þ

x
d
ημν

�
;

PW2

ð7Þμνðp; qÞ ¼ q

�
1

μ2
pμqν þ

1

μ2
qμpν þ

½1 − x − y�
d

ημν

�
; PW2

ð8Þμνðp; qÞ ¼ q

�
1

μ2
qμqν þ

y
d
ημν

�
;

PW2

ð9Þμνðp; qÞ ¼
1

μ2
½Γð3Þμpqpν þ Γð3Þνpqpμ�; PW2

ð10Þμνðp; qÞ ¼
1

μ2
½Γð3Þμpqqν þ Γð3Þνpqqμ�: ðA9Þ
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This partitions the projection matrix into an 8 × 8 submatrix for the Γð1Þ matrices and 2 × 2 for the Γð3Þ sector.
Defining

MW2 ¼ 1

4½d − 2�2Δ3
Gμ

2
M̃W2 ; ðA10Þ

where the factor includes μ2 since the elements of the tensor basis each have an odd number of external momenta.
The nonzero elements of the upper triangle of each submatrix of the two symmetric partitions of M̃W2 are

M̃W2

11 ¼ 2½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�2y; M̃W2

12 ¼ ½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�2½xþ y− 1�;
M̃W2

13 ¼ −16½½y− 1�2 þ x2 − 2½yþ 1�x�½d− 2�y2; M̃W2

14 ¼ −8½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�½xþ y− 1�y;
M̃W2

15 ¼ −4½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�½xþ y− 1�2;
M̃W2

16 ¼ −8½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�½xþ y− 1�y;
M̃W2

17 ¼ −2½d− 2�½x2 þ 6xy− 2xþ y2 − 2yþ 1�½x2 − 2xy− 2xþ y2 − 2yþ 1�;
M̃W2

18 ¼ −8½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�½xþ y− 1�x;
M̃W2

22 ¼ 2½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�2x;
M̃W2

23 ¼ −8½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�½xþ y− 1�y;
M̃W2

24 ¼ −2½d− 2�½x2 þ 6xy− 2xþ y2 − 2yþ 1�½x2 − 2xy− 2xþ y2 − 2yþ 1�;
M̃W2

25 ¼ −8½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�½xþ y− 1�x;
M̃W2

26 ¼ −4½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�½xþ y− 1�2;
M̃W2

27 ¼ −8½d− 2�½x2 − 2xy− 2xþ y2 − 2yþ 1�½xþ y− 1�x;
M̃W2

28 ¼ −16½½y− 1�2 þ x2 − 2½yþ 1�x�½d− 2�x2; M̃W2

33 ¼ 64½dþ 1�½d− 2�y3;
M̃W2

34 ¼ 32½dþ 1�½d− 2�½xþ y− 1�y2; M̃W2

35 ¼ 16½dx2 þ 2dxy− 2dxþ dy2 − 2dyþ dþ 4xy�½d− 2�y;
M̃W2

36 ¼ 32½dþ 1�½d− 2�½xþ y− 1�y2; M̃W2

37 ¼ 16½dx2 þ 2dxy− 2dxþ dy2 − 2dyþ dþ 4xy�½d− 2�y;
M̃W2

38 ¼ 8½dðxþ y− 1Þ2 þ 8xyþ 4x− 2y2 þ 4y− 2�½d− 2�½xþ y− 1�;
M̃W2

44 ¼ 8½dx2 þ 6dxy− 2dxþ dy2 − 2dyþ dþ 3x2 þ 2xy− 6xþ 3y2 − 6yþ 3�½d− 2�y;
M̃W2

45 ¼ 8½4dxyþ x2 þ 2xy− 2xþ y2 − 2yþ 1�½d− 2�½xþ y− 1�; M̃W2

46 ¼ 16½dþ 1�½d− 2�½xþ y− 1�2y;
M̃W2

47 ¼ 4½dþ 1�½d− 2�½x2 þ 6xy− 2xþ y2 − 2yþ 1�½xþ y− 1�;
M̃W2

48 ¼ 16½dx2 þ 2dxy− 2dxþ dy2 − 2dyþ dþ 4xy�½d− 2�x;
M̃W2

55 ¼ 32½2dxyþ x2 − 2xþ y2 − 2yþ 1�½d− 2�x;
M̃W2

56 ¼ 8½dx2 þ 2dxy− 2dxþ dy2 − 2dyþ dþ 4xy�½d− 2�½xþ y− 1�;
M̃W2

57 ¼ 16½dþ 1�½d− 2�½xþ y− 1�2x; M̃W2

58 ¼ 32½dþ 1�½d− 2�½xþ y− 1�x2;
M̃W2

66 ¼ 32½2dxyþ x2 − 2xþ y2 − 2yþ 1�½d− 2�y; M̃W2

67 ¼ 8½4dxyþ x2 þ 2xy− 2xþ y2 − 2yþ 1�½d− 2�½xþ y− 1�;
M̃W2

68 ¼ 16½dx2 þ 2dxy− 2dxþ dy2 − 2dyþ dþ 4xy�½d− 2�x;
M̃W2

77 ¼ 8½dx2 þ 6dxy− 2dxþ dy2 − 2dyþ dþ 3x2 þ 2xy− 6xþ 3y2 − 6yþ 3�½d− 2�x;
M̃W2

78 ¼ 32½dþ 1�½d− 2�½xþ y− 1�x2; M̃W2

88 ¼ 64½dþ 1�½d− 2�x3;
M̃W2

99 ¼ 8Δ2
G½d− 2�y; M̃W2

910 ¼ 4½d− 2�ΔG½xþ y− 1�; M̃W2

1010 ¼ 8ΔG½d− 2�x: ðA11Þ
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APPENDIX B: BASIC INTEGRALS

In the final expressions for the operator Green’s functions several core functions arise which are combinations of the
polylogarithm function LinðzÞ. We record them here for completeness. The main function at one loop is

Φ1ðx; yÞ ¼
1

λ

�
2Li2ð−ρxÞ þ 2Li2ð−ρyÞ þ ln

�
y
x

�
ln

�ð1þ ρyÞ
ð1þ ρxÞ

�
þ lnðρxÞ lnðρyÞ þ π2

3

�
; ðB1Þ

where λðx; yÞ and ρðx; yÞ are given by [29,30]

λðx; yÞ ¼
ffiffiffiffiffiffiffi
ΔG

p
; ρðx; yÞ ¼ 2

½1 − x − yþ λðx; yÞ� ; ðB2Þ

and throughout this section x and y are variables in general not to be confused with the kinematic ones of (2.8). However the
triangle graph whereΦ1ðx; yÞ arises has anOðϵÞ correction which cannot be neglected a priori for the two-loop evaluation.
It is given by [29,30]

Ψ1ðx; yÞ ¼ −
1

λ

�
4Li3

�
−
ρxð1þ ρyÞ
ð1 − ρ2xyÞ

�
þ 4Li3

�
−
ρyð1þ ρxÞ
ð1 − ρ2xyÞ

�
− 4Li3

�
−

xyρ2

ð1 − ρ2xyÞ
�

þ2Li3

�
xρð1þ ρyÞ
ð1þ ρxÞ

�
þ 2Li3

�
yρð1þ ρxÞ
ð1þ ρyÞ

�
− 2Li3ðρ2xyÞ − 2ζ3

−2 lnðyÞLi2
�
xρð1þ ρyÞ
ð1þ ρxÞ

�
− 2 lnðxÞLi2

�
yρð1þ ρxÞ
ð1þ ρyÞ

�
−
2

3
ln3ð1 − ρ2xyÞ

þ 2

3
ln3ð1þ ρxÞ þ 2

3
ln3ð1þ ρyÞ þ 2 lnðρÞln2ð1 − ρ2xyÞ

−2 lnð1 − ρ2xyÞ
�
lnðρxÞ lnðρyÞ þ ln

�
y
x

�
ln

�ð1þ ρyÞ
ð1þ ρxÞ

�
þ2 lnð1þ ρxÞ lnð1þ ρyÞ þ π2

3

�

þ 1

2
ln ðxyρ2Þ½lnðρxÞ lnðρyÞ þ ln

�
y
x

�
ln

�ð1þ ρyÞ
ð1þ ρxÞ

�
− ln2

�ð1þ ρxÞ
ð1þ ρyÞ

�
þ 2π2

3

��
: ðB3Þ

At the next loop order there are two key functions in the two-loop master integrals. These are [28,29]

Φ2ðx; yÞ ¼
1

λ

�
6Li4ð−ρxÞ þ 6Li4ð−ρyÞ þ 3 ln

�
y
x

�
½Li3ð−ρxÞ − Li3ð−ρyÞ�

þ 1

2
ln2

�
y
x

�
½Li2ð−ρxÞ þ Li2ð−ρyÞ� þ

1

4
ln2ðρxÞln2ðρyÞþ π2

2
lnðρxÞ lnðρyÞ þ π2

12
ln2

�
y
x

�
þ 7π4

60

�
ðB4Þ

and

Ω2ðx; yÞ ¼ 6Li3ð−ρxÞ þ 6Li3ð−ρyÞ þ 3 ln

�
y
x

�
½Li2ð−ρxÞ − Li2ð−ρyÞ�

−
1

2
ln2

�
y
x

�
½lnð1þ ρxÞ þ lnð1þ ρyÞ� þ 1

2
½π2 þ lnðρxÞ lnðρyÞ�½lnðρxÞ þ lnðρyÞ�: ðB5Þ

These functions are related to cyclotomic polylogarithms [55].
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