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We study the Klein four-group (K4) symmetry of the time-dependent Schrödinger equation for the
conformal mechanics model of de Alfaro-Fubini-Furlan (AFF) with confining harmonic potential and
coupling constant g ¼ νðνþ 1Þ ≥ −1=4. We show that it undergoes a complete or partial (at half-integer ν)
breaking on eigenstates of the system, and is the automorphism of the ospð2; 2Þ superconformal symmetry
in super-extensions of the model by inducing a transformation between the exact and spontaneously broken
phases ofN ¼ 2 Poincaré supersymmetry. We exploit the K4 symmetry and its relation with the conformal
symmetry to construct the dual Darboux transformations which generate spectrally shifted pairs of the
rationally deformed AFF models. Two distinct pairs of intertwining operators originated from Darboux
duality allow us to construct complete sets of the spectrum generating ladder operators that identify specific
finite-gap structure of a deformed system and generate three distinct related versions of nonlinearly
deformed slð2;RÞ algebra as its symmetry. We show that at half-integer ν, the Jordan states associated with
confluent Darboux transformations enter the construction, and the spectrum of rationally deformed AFF
systems undergoes structural changes.
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I. INTRODUCTION

In quantum mechanics, symmetries map the states of a
system into its states. If the ground state is invariant under the
corresponding transformations, one says that the symmetry is
unbroken, otherwise symmetry is (spontaneously) broken.
Sometimes, along with a continuous group of symmetry
transformations, a discrete symmetry group appears [1],
and a nontrivial interplay may occur between both types of
symmetries. An interesting and important case from this
point of view is presented by the conformal mechanics
model of de Alfaro, Fubini and Furlan (AFF) [2] with
confining harmonic potential and coupling constant g ¼
νðνþ 1Þ ≥ −1=4.1 Its nonrelativistic conformal symmetry
and supersymmetric extensions [5–10] find a variety of
interesting applications including the particles dynamics in
black hole backgrounds [11–16], cosmology [17–19],
nonrelativistic AdS/CFT correspondence [20–24], QCD

confinement problem [25,26], and physics of Bose-
Einstein condensates [27,28].
On the other hand, the time-dependent Schrödinger

equation for the AFF conformal mechanics model reveals
a discrete Klein four-group symmetry generated by trans-
formation of the parameter ν → −ν − 1, and by the spatial
Wick rotation x → ix accompanied by the time reflection
t → −t. In the picture of the stationary Schrödinger
equation the time reflection transforms into the change
of the eigenvalue’s sign E → −E. The discrete symmetry
K4, however, turns out to be completely broken at the level
of the quantum states when ν is not a half-integer number:
application of the group generators to physical eigenstates
produces formal eigenstates which do not satisfy the
necessary boundary conditions. In the case of half-integer
values of the parameter ν the K4 discrete symmetry breaks
partially, and transformation ν → −ν − 1, as we shall see,
turns out to be a true symmetry nontrivially realized on
the spectrum of the system. In the physics of anyons, where
the AFF model is used to generate the transmutation of
statistics, half-integer values of ν correspond to the two-
particle system of identical fermions [29–31]. In the context
of the problem we consider here, even though the new
solutions with arbitrary value of ν generated by trans-
formations of the discrete group are not acceptable from the
physical point of view, the analogs of such nonphysical
states in other quantum systems are used to produce new
solvable potentials and supersymmetric extensions via the
(generalized) Darboux transformations [32–38]. They also
are used, for example, for the construction of multisoliton
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1The AFF model is a two-particle Calogero system [3] with
included confining harmonic potential term but omitted center of
mass coordinate. Its Schrödinger operator also is known as the
Gol’dman-Krivchenkov Hamiltonian [4].
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and finite-gap solutions to the Korteweg-de Vries equation
[34,39,40]. In particular, solutions with behavior typical for
extreme waves are constructed in [41] based on nonphysi-
cal states of the AFF model without the harmonic trap.
The implications of the presence of the K4 discrete

symmetry group in the AFF model, and its interplay with
conformal and superconformal symmetries, surprisingly,
have not been investigated yet in the literature.
In this work, we study in detail the action of trans-

formations of the Klein four-group on the states of the
AFF system, its relation to the conformal symmetry, and
its nontrivial role in N ¼ 2 super-extensions of the AFF
model and their ospð2; 2Þ superconformal symmetry.
This superconformal symmetry, as will be shown, is based
essentially on the simplest case of the Darboux dual
schemes which produce the same but spectrally shifted
pairs of the quantum systems. Based on this observation,
with the help of the Klein four-group transformations we
address the problem of construction of the general Darboux
dual schemes to generate infinite families of the new
exactly solvable systems given by rational deformations
of the conformal mechanics systems with arbitrary values
of the parameter ν. The general dual Darboux schemes
that we obtain produce the same but spectrally shifted pairs
of rationally deformed AFF models. As a consequence,
their distinct intertwining operators allow us to construct
the complete sets of the spectrum generating ladder
operators for them and identify the nonlinearly deformed
versions of conformal slð2;RÞ algebra which describe
their symmetries. In this way we generalize our earlier
results obtained for the restricted case of the AFF model
with integer values of ν only [42,43], that were based on
the Darboux transformations of the quantum harmonic
oscillator. Coherently with the indicated above peculiarity
of the half-integer values of the parameter ν from the
point of view of the Klein four-group transformations, we
will see how the Jordan states [41,44–49] enter the
construction at ν ¼ Zþ 1=2 via the confluent Darboux
transformations. We also trace out the structural changes in
the spectra of the rationally deformed AFF systems which
happen at half-integer ν under continuous variation of
this parameter.
The remainder of the paper is organized as follows. In

Sec. II, we summarize the basic ingredients of the Darboux
transformations, and in their context, consider the Jordan
states. In Sec. III, we briefly present the AFF model
together with its conformal symmetry and solutions of
equations of motion provided by it, and discuss shortly the
introduction of the scale which turns out to be related to the
holographic QCD, the AdS2 isometry and the AdS/CFT
correspondence, and Dirac’s different forms of relativistic
dynamics. Section IV is devoted to the discussion of the
discrete Klein four-group symmetry of the time-dependent
Schrödinger equation for the AFF model and its action on
physical states, its relation to the conformal symmetry, and

the role played by the discrete K4 group in the N ¼ 2
super-extensions of the AFF system generated by the
simplest dual Darboux schemes. The algorithm of con-
struction of the general dual Darboux schemes is developed
in Sec. V. In Sec. VI we list some Darboux schemes which
produce distinct infinite families of new exactly solvable
systems described by rational deformations of the AFF
model with arbitrary number of gaps introduced into the
equidistant spectrum of the original system. For each such
a Darboux scheme we construct its dual that plays a key
role in identifying the spectral properties of the generated
system and its symmetry. We also trace out there the
structural changes in the spectra of the obtained systems
under continuous variation of the parameter ν. In Sec. VII,
we use the intertwining operators of the dual Darboux
schemes to construct the complete sets of the spectrum
generating ladder operators of the rationally deformed AFF
systems. These higher order differential operators detect
and describe the “finite-gap” structure of the spectra of
the corresponding systems, and generate three distinct
but related versions of the nonlinearly deformed slð2;RÞ
conformal algebra which describe their symmetries. The
application of the general results of Secs. V–VII is
illustrated by an example presented in Sec. VIII. In Sec. IX
we summarize the results and discuss some problems to be
interesting for further investigation. In three Appendixes
some technical details necessary for the main text are
presented.

II. GENERALIZED DARBOUX
TRANSFORMATIONS

In this section we summarize some properties of the
generalized Darboux transformations which will be
employed in what follows.

A. Darboux transformations and
intertwining operators

Consider the equation

L0ψλ ¼ λψλ; L0 ¼ −
d2

dx2
þ VðxÞ; ð2:1Þ

corresponding to the eigenvalue problem of a Schrödinger
type operator L0. In this section we treat Eq. (2.1) as a
formal second order differential equation on some interval
ða; bÞ, and in the following sections we take care about its
physical nature. Suppose we have a set of solutions ψk
corresponding to eigenvalues λk, k ¼ 1;…; n. We use them
as seed states for generalized Darboux transformation and
generate the associated eigenvalue problem

L½n�Ψλ ¼ λΨλ;

L½n� ¼ −
d2

dx2
þ VðxÞ − 2

d2

dx2
lnWðψ1;…;ψnÞ: ð2:2Þ
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If the set of the seed states is chosen in such a way that the
WronskianW takes nonzero values on ða; bÞ, then potential
of the generated system will also be nonsingular there. In
the general case, solutions of (2.2) are generated from
corresponding solutions of Eq. (2.1),

Ψλ ¼
Wðψ1;…;ψn;ψλÞ
Wðψ1;…;ψnÞ

¼ Anψλ; ð2:3Þ

where An is the differential operator of order n defined
recursively as

An ¼ An…A1; Ak ¼ Ak−1ψk
d
dx

�
1

Ak−1ψk

�
;

k ¼ 1;…; n; A0 ¼ 1: ð2:4Þ

By the construction, kerAn ¼ spanfψ1;…;ψng. Operator
An and its Hermitian conjugate A†

n intertwine the operators
L0 and L½n�,

AnL0 ¼ L½n�An; A†
nL½n� ¼ L0A

†
n; ð2:5Þ

and satisfy relations

A†
nAn ¼

Yn
k¼1

ðL0 − λkÞ; AnA
†
n ¼

Yn
k¼1

ðL½n� − λkÞ: ð2:6Þ

From the first equation in (2.6) one can find that
kerA†

n ¼ spanfAnψ̃1;…;Anψ̃ng, where

ψ̃ λ ¼ ψλ

Z
x dζ
ðψλðζÞÞ2

ð2:7Þ

is a linear independent solution of Eq. (2.1) with the same
eigenvalue λ, Wðψλ; ψ̃ λÞ ¼ 1. Similarly to (2.3), A†

nΨλ ¼
ψλ for Ψλ ∉ kerA†

n, and

A†
n
gðAnψ̃kÞ ¼ ψk ∈ kerAn:

Here and in what follows we consider equalities between
wave functions and Wronskians in “up to a multiplicative
constant” sense when the corresponding constant will be
inessential.
The generalized Darboux transformation possesses the

iterative property according to which system (2.2) can be
generated alternatively via successive Darboux transfor-
mations.2 This property allows us to get some useful
Wronskian identities. Suppose that we have two collections
of (formal) eigenstates of (2.1), fϕng ¼ ðϕ1;…;ϕnÞ and
fφlg ¼ ðφ1;…;φlÞ. In the first step, we generate a

Darboux transformation by taking the first collection as
the set of the seed states, and obtain the intermediate
Hamiltonian operator with potential V1 ¼ VðxÞ−
2ðlnWðfϕngÞÞ00. In this way, the states of the second
collection fφlg will be mapped into the set of (formal in
general case) eigenstates fAnφlg ¼ ðAnφ1;…;AnφlÞ of
the intermediate system, where An is the corresponding
intertwining operator of order n constructed following
(2.4). Then, employing these states as the seed states
for a second Darboux transformation, we finally obtain
a Schrödinger operator with a potential V2 ¼ V1ðxÞ−
2ðlnWðfAnφlgÞÞ00. Having in mind that the same result
will be produced by a one-step generalized Darboux
transformation based on the whole set of the chosen
eigenstates of the system L0, we obtain the equality

WðfϕngÞWðfAnφlgÞ ¼ Wðϕ1;…;ϕn;φ1;…;φlÞ: ð2:8Þ

Consider now the set of two states corresponding to a
same eigenvalue λj, fϕ2g ¼ ðϕ1 ¼ ψ j;ϕ2 ¼ ψ̃ jÞ. In this
case Wðψ j; ψ̃ jÞ ¼ 1, and the corresponding intertwining
operator reduces to A2 ¼ −ðL0 − λjÞ. Using this observa-
tion and Eq. (2.8), we derive the equality Wðψ j; ψ̃ j;
φ1;…;φlÞ ¼ WðfφlgÞ, which is generalized for the relation

Wðψ1; ψ̃1;…;ψ s; ψ̃ s;φ1;…;φlÞ ¼ WðfφlgÞ: ð2:9Þ

In the case when functions φ1;…;φl are not obligatorily
to be eigenstates of the operator L0, the last relation
changes for

Wðψ1; ψ̃1;…;ψ s; ψ̃ s;φ1;…;φlÞ

¼ W

��Ys
k¼1

ð−L0 þ λkÞφl

��
: ð2:10Þ

B. Jordan states

For a given Schrödinger operator L0, one can construct a
certain set of functions which are not its eigentstates but are
annihilated by the action of a certain polynomial of L0.
Functions of such a nature can be related with the confluent
Darboux transformations and are identified as Jordan states
[45]. They were used, for example, in the construction of
isospectral deformations of the harmonic oscillator systems
[48,52], and also they appeared in the context of solutions
to the KdV equation [41]. In this subsection we construct
Jordan states that are solutions of the fourth order differ-
ential equation ðL0 − λ�Þ2χ� ¼ 0. They will play an impor-
tant role in subsequent consideration.
We employ the following approach: take an eigenstate

ψ� corresponding to eigenvalue λ� as a seed state of the
Darboux transformation. This provides us with the first
order differential operators

2Intermediate systems appearing in such a way may have a
singular nature on the interval ða; bÞ [39,50,51].
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Aψ� ¼ ψ�
d
dx

�
1

ψ�

�
; A†

ψ� ¼ −
1

ψ�

d
dx

ψ�: ð2:11Þ

According to Eq. (2.6), their product gives us the shifted
Schrödinger operator A†

ψ�Aψ� ¼ L0 − λ�, whose kernel is
spanned by the linear independent states ψ� and ψ̃�.
The problem of constructing Jordan states reduces then
to solving equations

A†
ψ�Aψ�Ω� ¼ ðL0 − λ�ÞΩ� ¼ ψ�;

A†
ψ�Aψ�Ω̆� ¼ ðL0 − λ�ÞΩ̆� ¼ ψ̃�: ð2:12Þ

Their solutions are given, up to a linear combination of ψ�
and ψ̃�, by particular solutions of respective inhomo-
geneous equations,

Ω� ¼ ψ�

Z
x

a

dζ
ψ2�ðζÞ

Z
b

ζ
ψ2�ðηÞdη;

Ω̆� ¼ ψ�

Z
x

a

dζ
ψ2�ðζÞ

Z
b

ζ
ψ�ðηÞψ̃�ðηÞdη: ð2:13Þ

Here the integration limits are chosen coherently with the
region where the operator L0 is defined, and we have the
relations

Wðψ�;Ω�Þ ¼
Z

b

x
ψ2�dζ; Wðψ�; Ω̆�Þ ¼

Z
b

x
ψ�ψ̃�dζ;

ð2:14Þ
which will be useful to produce nonsingular confluent
Darboux transformations.
Let us inspect now the role of Jordan states (2.13) in

Darboux transformations generated by a set of the seed
states fψng. The intertwining operator (2.4) and Eqs. (2.5)
and (2.12) give us the relations

Anψ� ¼ ðL½n� − λ�ÞAnΩ�; Anψ̃� ¼ ðL½n� − λ�ÞAnΩ̆�:

ð2:15Þ
If the state ψ� (or ψ̃�) is annihilated by An, i.e., if the set of
the seed states fψng includes ψ� (or ψ̃�), the functionAnΩ�
(or AnΩ̆�) will be an eigenstate of L½n� with eigenvalue λ�
which is available to produce another Darboux trans-
formation if we consider L½n� as an intermediate system.
Otherwise, the indicated function is a Jordan state of L½n�,
and in correspondence with (2.13) we have

AnΩ� ¼ ðAnψ�Þ
Z

x

a

dζ
ðAnψ�Þ2ðζÞ

Z
b

ζ
ðAnψ�Þ2ðηÞdη;

ð2:16Þ

AnΩ̆� ¼ ðAnψ�Þ
Z

x

a

dζ
ðAnψ�Þ2ðζÞ

Z
b

ζ
ðAnψ�ÞðηÞ gAnψ�ðηÞdη

ð2:17Þ

up to a linear combination with Anψ� and gAnψ�.
Having in mind that Jordan states appear naturally in the

confluent generalized Darboux transformations [45], one
can consider directly a generalized Darboux transformation
based on the following set of the seed states: ðψ1;Ω1;…;
ψn;ΩnÞ. This generates a Darboux-transformed system
which we denote by L̂½2n�. The intertwining operator AΩ

2n

as a differential operator of order 2n is built according to
the same rule (2.4), but with the inclusion of Jordan states
into the set of generating functions. By the construction,
this operator annihilates the chosen 2n seed states, and one
can show that

ðAΩ
2nÞ†AΩ

2n ¼
Yn
i¼1

ðL − λiÞ2;

AΩ
2nðAΩ

2nÞ† ¼
Yn
i

ðL̂½2n� − λiÞ2: ð2:18Þ

This, in particular, means that kerðAΩ
2nÞ† ¼ spanfAΩ

2nψ̃1;

AΩ
2nΩ̆1;…;AΩ

2nψ̃n;AΩ
2nΩ̆ng. In the context of generalized

Darboux transformations based on a mixture of eigenstates
and Jordan states, a useful relation

Wðψ�; ψ̃�;Ω�; Ω̆�;φ1;…;φlÞ ¼ Wðφ1;…;φlÞ ð2:19Þ

can be obtained by employing Eq. (2.10) with s ¼ 1, and
Eqs. (2.12) and (2.9), Here we imply that φi with i ¼
1;…; l is the set of solutions of equation (2.1) with λi ≠ λ�.

III. AFF CONFORMAL MECHANICS MODEL

Consider now the one-dimensional system given by the
action [2]

I½q� ¼
Z

Lðq; _qÞdt; L ¼ 1

2

�
_q2 −

g
q2

�
; ð3:1Þ

where q > 0 has dimension ½q� ¼ ½ ffiffitp �, and g is a dimen-
sionless coupling constant which classically is assumed to be
positive to avoid the “problem of fall to the center.” System
(3.1) is characterized by conformal symmetry ConfðR1Þ
that canonically is generated by the Hamiltonian Hg, the
dilatation generator D, and generator of special conformal
transformations K,

Hg ¼
1

2

�
p2 þ g

q2

�
;

D ¼ 1

4
ðqpþ pqÞ −Hgt;

K ¼ 1

2
q2 − 2Dt −Hgt2; ð3:2Þ
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where p ¼ _q. These are the integrals of motion that satisfy
the equation of the form d

dt A ¼ ∂A
∂t þ fA;Hg ¼ 0. They

obey the soð2; 1Þ algebra3

fD;Hgg ¼ Hg; fD;Kg ¼ −K; fHg;Kg ¼ −2D;

ð3:3Þ

which is isomorphic to the algebra slð2;RÞ of the
conformal symmetry ConfðR1Þ. Classical algebra (3.3)
is characterized by the Casimir invariant Q ¼ KHg −D2

that takes the value Q ¼ 1
4
g. Last relation from (3.2)

gives us solution to the equation of motion for the
system (3.1),

qðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðat2 þ 2btþ cÞ

q
; ð3:4Þ

where real-valued constants a, b and c correspond to the
values of the integrals Hg, D and K, respectively, and thus
are restricted by conditions a > 0, c > 0, and relation
ac − b2 ¼ g=4 that guarantees positive values for the
square root argument.
At the quantum level the noncommutativity of

D and K with Hamiltonian Hg in correspondence with
the Poisson bracket relations (3.3) means that they do
not generate symmetries in the usual sense of relating
degenerate states, but rather they can be used to relate the
states with different eigenvalues of the Hamiltonian
operator.
Conformal symmetry (3.3) is a dynamical symmetry for

the system (3.1), but it also is the isometry of AdS2. This
underlies the interest to the model [2] in the context of the
AdS/CFT correspondence and its diverse applications, in
particular, related to the appearance of scale in nominally
conformal theories [25].
Original system (3.1) has no scale, but the scale

emerges in the theory via a mechanism described by de
Alfaro, Fubini and Furlan [2]. This happens as follows.
First relation in (3.3) and second relation in (3.2) reflect
the fact that action (3.1) is explicitly invariant under the
scale transformations q → eαq, t → e2αt, α ∈ R, in accor-
dance with which at the quantum level the dilatation
operator generates the transformation Hg → e−2αHg.
Consequently, the Hamiltonian operator of the quantum
version of the system (3.1) has a continuous spectrum in
which there is no conformal invariant ground state. This
can be related with the nature of the evolution coordinate
t, which is not a good global coordinate on AdS2 [12].

To resolve this problem, one can consider the following
change of the variables

yðtÞ ¼ qðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ vtþ wt2

p ; dτ ¼ dt
uþ vtþ wt2

; ð3:5Þ

where u > 0, v and w > 0 are real constants with
dimensions ½u� ¼ 1, ½v� ¼ 1=t and ½w� ¼ 1=t2. By replace-
ment (3.5), action (3.1) transforms into

Z
Lðy; y0Þdτ þ 1

4

Z
dτ

d
dτ

½ðvþ 2wtðτÞÞq2ðtðτÞÞ�

¼ I½y� þ Isurface; ð3:6Þ

where Lðy; y0Þ ¼ 1
2
ðy02 − g

y2 − ω2y2Þ, y0 ¼ dy
dτ, and

ω2 ¼ ð4wu − v2Þ=4. From the action I½y� ¼ R Ldτ, we
obtain the new time translation generator

Hg ¼
1

2

�
p2 þ g

y2
þ ω2y2

�
; p ¼ y0; ð3:7Þ

which is a compact slð2;RÞ generator when ω2 ¼
ð4wu − v2Þ=4 > 0, whose quantum analog, like the quan-
tum analog of Hg, has a spectrum restricted from below
when g ≥ −1=4 [53,54]. The new evolution parameter
τ ¼ 1

ω arctanðvþ2wt
2ω Þ varies in the finite interval ð− π

2ω ;
π
2ωÞ,

and new Hamiltonian (3.7) is conjugate to this good
global time coordinate. In the context of black hole
physics the AFF suggestion simply amounts to an
improved choice of time coordinate [12,15]. As ω is a
dimensionfull parameter, ½ω� ¼ ½1=t�, (3.7) breaks the
manifest scale invariance of the original system (3.1),
and via such a basic mechanism the mass and length scales
are introduced in holographic QCD (often referred to as
“AdS/QCD”) [25,26].
In spite of the introduced scale, the action of the new

system is conformal invariant as we will see now. The
dilatation generator D and the conformal transformation
generator K associated with the action I½y� are given by the
explicitly depending on time τ integrals

D ¼ 1

2
ðyp cosð2ωτÞ þ ð2ωy2 −Hgω

−1Þ sinð2ωτÞÞ;
ð3:8Þ

K ¼ 1

2
ðy2 cosð2ωτÞ − ypω−1 sinð2ωτÞ

−Hgω
−2ðcosð2ωτÞ − 1ÞÞ: ð3:9Þ

Via the Noether theorem, integrals (3.8) and (3.9) are
related to the following infinitesimal symmetries of the
action:

3To treat integrals (3.2) as generators of the Lorentz algebra
soð2; 1Þ requires an introduction of a constant σ with dimension
of time (squared length) to make Hg and K dimensionless,
Hg → σHg, K → σ−1K, that, however, does not change the form
of algebra (3.3).
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δy ¼ ϵDy cosð2ωτÞ;
δτ ¼ ϵDω

−1 sinð2ωτÞ;

δðLdτÞ ¼ d
dτ

ð−ϵDωy2 sinð2ωtÞÞdτ; ð3:10Þ

δy ¼ −ϵKω−1 sinð2ωτÞ;
δτ ¼ ϵKω

−2ðcosð2ωτÞ − 1Þ;

δðLdτÞ ¼ d
dτ

ð−ϵKωy2 cosð2ωtÞÞdτ: ð3:11Þ

Integrals Hg, D and K of the “regularized” AFF system
generate the Newton-Hooke symmetry [10,55,56]

fHg;Dg ¼ −ðHg − 2ω2KÞ;
fHg;Kg ¼ −2D;

fD;Kg ¼ −K; ð3:12Þ

whose Casimir invariant is Q ¼ KHg −D2 − ω2K2 ¼
g=4. Using Eqs. (3.8) and (3.9), one can find solution to
the equation of motion of the system (3.6),

yðτÞ ¼ ω−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ sin2ð2ωτÞ

s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a sin2ðωτÞ þ bω sinð2ωτÞ þ cω2 cosð2ωτÞ

q
;

ð3:13Þ

where a > 0, b and c > 0 are constants corresponding to
the values of the integrals Hg, D and K, respectively,
and obeying the relation ac − b2 − ω2c2 ¼ g=4. From the
explicit form of solution we see that it is periodic with the
period T ¼ π=ω not depending on the value of the coupling
constant4 g. The finite interval in which the evolution
parameter τ varies corresponds to the period of the motion
of the system (3.6), and one can consider τ as the compact
evolution parameter that takes values on the closed interval
½− π

2ω ;
π
2ω� with identified ends.

In the limit ω → 0, Hamiltonian Hg reduces to the
Hamiltonian Hg of the model (3.1), the integrals D and
K reduce to the integrals D and K, the algebra (3.12) takes
the form (3.3), and bounded periodic solution (3.13)
transforms into solution (3.4) for the system (3.1), which
describes the unbounded motion of a particle in potential
g=q2. The symmetry transformations of the system (3.1)
generated byD andK are recovered from (3.10) and (3.11).
In particular, the nontrivial total time derivative in the last
relation in (3.10) transforms in this limit into δðLdtÞ ¼ 0.
This reflects the difference between manifest scale

symmetry of the system (3.1) and more complicated,
“hidden” form of the dilatation symmetry of the system
given by LagrangianL. In application of the system (3.6) to
the problem of confinement in QCD, parameter ω intro-
duces a mass scale, while the evolution parameter τ finds an
interpretation as the difference of light-front times between
events involving quarks and antiquarks in mesons [25].
To clarify further the relation between systems (3.1) and

(3.6), we note that at τ ¼ t ¼ 0 we have yð0Þ ¼ qð0Þ= ffiffiffi
u

p
,

y0ð0Þ ¼ ffiffiffi
u

p
_qð0Þ − vqð0Þ

2
ffiffi
u

p , and therefore the Hamiltonian

(3.7) becomes

Hg ¼ uHg − vDþ wK: ð3:14Þ
This shows that transformation (3.5) means in fact that a
certain linear combination of slð2;RÞ generators is used as
a new generator of time translations. To be more specific,
we note that the slð2;RÞ algebra can be presented in the
form of soð2; 1Þ Lorentz algebra

fJμ; Jνg ¼ ϵμνλJλ; ð3:15Þ
where μ, ν, λ ¼ 0, 1, 2, Jμ ¼ ημνJν, ημν ¼ diagð−1; 1; 1Þ,
and ϵμνλ is the Levi-Civita totally antisymmetric tensor,
ϵ012 ¼ 1. Comparison of (3.3) with (3.15) shows that the
integrals σHg, σ−1K and D of the system (3.1) can be
identified, up to soð2; 1Þ transformation, with generators
ðJ0 þ J1Þ, ðJ0 − J1Þ and J2, and Casimir invariant Q of
algebra (3.3) corresponds to the Casimir element −JμJμ
of algebra (3.15). Relation −JμJμ ¼ g > 0 together with
inequality ðJ0 þ J1Þ > 0 describes the upper sheet of
the two-sheeted hyperboloid in (2þ 1) dimensional
Minkowski space with coordinates J1, J2, J0. According
to such an identification, Hamiltonian Hg corresponds to a
noncompact slð2;RÞ generator of parabolic type [58,59]
being a linear combination of generators of rotation and
Lorentz boost transformations in (2þ 1) dimensional
Minkowski space. Putting then for simplicity u ¼ 1,
v ¼ 0, w ¼ σ−2, we reduce (3.14) to the relation 1

2
σHg ¼

J0 that shows that Hamiltonian (3.7) is the generator of
rotations in (2þ 1)-dimensional Minkowski space with
coordinates Jμ. According to Dirac [60,61], Hg and Hg

provide us with different forms of relativistic dynamics on
the upper sheet of two-sheeted hyperboloid in (2þ 1)-
dimensional Minkowski space, which by means of solu-
tions (3.4) and (3.13) are projected to configuration spaces
with coordinates q and y, and are described by evolution
parameters t and τ, respectively.
Changing the variable y for x ¼ ffiffiffiffi

ω
p

y, and canonically
quantizing (3.7), we obtain the Hamiltonian operator
(ℏ ¼ 1)

Ĥg ¼
ω

2

�
−

d2

dx2
þ x2 þ g

x2

�
; x ∈ ð0;∞Þ: ð3:16Þ4System given by Hamiltonian (3.7) is an isoperiodic defor-

mation of the half-harmonic oscillator of frequency ω [57].
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From now on, we assume that g ≥ −1=4 to ensure that the
spectrum of (3.16) is bounded from below [53,54].
In correspondence with this, one can set in (3.16) g ¼
νðνþ 1Þ with ν ≥ −1=2. Following [3], as a domain of
(3.16) we take fψ ∈ L2ðð0;∞Þ; dxÞjψð0þÞ ¼ 0g. As we
will see, this guarantees that ψ 0ð0þÞ ¼ 0 for ν > 0, while
0 < jψ 0ð0þÞj < ∞ for ν ¼ 0. We require additionally that
ψðxÞψ 0ðxÞjx¼0þ ¼0 for −1=2<ν<0, and ψðxÞψ 0ðxÞjx¼0þ ¼
c ≠ ∞ when ν ¼ −1=2. In all the cases the specified
properties of wave functions will guarantee that probability
flux vanishes at x ¼ 0þ. The specified domain corresponds
to (essentially) self-adjoint nature of the operator (3.16) in
the case of ν ≥ 1=2, and to a special case θ ¼ π=2 of
one-parametric, θ ∈ ½0; π�, families of self-adjoint exten-
sions of Ĥg in the cases of −1=2 < ν < 1=2 and ν ¼ −1=2.
This special case is the unique value of θ for which the
spectrum of (3.16) with −1=4 ≤ g < 3=4 is equidistant
similarly to the case of g ≥ 3=4. For the detailed discussion
of the issue of self-adjoint extensions of the operator (3.16)
we refer to [54,62,63]. In the next section we shall see that
the specified quantum Hamiltonian operator (3.16) corre-
sponds, in accordance with the described above classical
picture, to the so called discrete type representation Dþ

α of
the slð2;RÞ algebra characterized by the value of the
Casimir operator ĴμĴμ ¼ −αðα − 1Þ, in which the compact
generator Ĵ0 takes positive discrete values j0n ¼ nþ α,
n ¼ 0; 1;…, with α ¼ 1

2
νþ 3

4
≥ 1

2
[59].

In what follows, we identify new, not described earlier in
the literature, finite discrete symmetries of the Schrödinger
equation with Hamiltonian operator of the regularized AFF
model. We show that these finite discrete symmetries,
described by the Klein four-group, are nontrivially encoded
in the conformal symmetry of the AFF model. We also find
that this discrete symmetry has peculiarities in the case of
half-integer values of the parameter ν, and, in particular,
at ν ¼ −1=2. The value ν ¼ −1=2, as we will see, also is
special in superextensions of the AFF model, where the
transformations of the Klein four-group appear as auto-
morphisms of the superconformal ospð2; 2Þ symmetry and
relate (mutually map) the corresponding systems with exact
and spontaneously broken N ¼ 2 Poincaré supersymme-
tries. Then we use these discrete symmetries together
with the conformal symmetry to generate, by means of
Darboux transformations, infinite families of new, exactly
solvable quantum systems with equidistant spectra con-
taining arbitrary number of gaps and described by sym-
metries of the type of finite W algebras, which represent
nonlinearly deformed and extended forms of the conformal
slð2;RÞ algebra.

IV. SYMMETRIES OF THE QUANTUM AFF
MODEL AND ITS N = 2 SUPEREXTENSIONS

In this section, we discuss some aspects of symmetry
of the quantum AFF model given by the Hamiltonian

operator (3.16). Namely, we show that the corresponding
Schrödinger equation has a finite discrete symmetry,
which is broken in general case and is encoded in the
“fine” structure of conformal symmetry of the system.
It also will be shown that in the case of half-integer values
of the parameter ν, the finite discrete symmetry has some
peculiarities related to the structure of eigenstates and
eigenvalues of the quantum Hamiltonian (3.16). These
peculiarities are manifested in a spectral symmetry real-
ized in the form of a “departure from the Hilbert’s hotel”
mechanism and in appearance of Jordan states in kernels
of the ladder operators being noncompact generators of
conformal symmetry. We also discuss here the effect of
discrete group on superconformal symmetry of N ¼ 2
super-extensions of the AFF system.
Consider the time-dependent Schrödinger equation of

the quantum system (3.16),

i
∂Ψνðx; tÞ

∂t ¼ HνΨνðx; tÞ; ð4:1Þ

with

Hν ¼ −
d2

dx2
þ x2 þ νðνþ 1Þ

x2
: ð4:2Þ

Here, the operator Hν corresponds to (3.16) with gðνÞ ¼
νðνþ 1Þ, ν ≥ −1=4, and ω ¼ 2. Solutions of Eq. (4.1) in
the form of stationary states Ψνðx; tÞ ¼ e−itλνψνðxÞ are
given in terms of the well known physical eigenstates of
Hν represented by normalized wave functions satisfying
the boundary conditions at x ¼ 0,

ψν;nðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
Γðnþ νþ 3=2Þ

s
xνþ1Lðνþ1=2Þ

n ðx2Þe−x2=2;

Eν;n ¼ 2νþ 4nþ 3; ð4:3Þ

where Eν;n are the eigenvalues, n ¼ 0; 1;…, and

LðαÞ
n ðxÞ ¼

Xn
k¼0

Γðnþ αþ 1Þ
Γðkþ αþ 1Þ

ð−xÞk
k!ðn − kÞ! ð4:4Þ

are the generalized Laguerre polynomials.
Then the problem Hνψν ¼ λνψν fits with (2.1), but to

generate new exactly solvable systems and identify their
ladder operators and the associated deformed conformal
symmetries we should not be limited just by considering
physical states. In subsequent sections we will see how
nonphysical states obtained via the application of certain
discrete symmetry group transformations play an important
role in the structure of the quantum conformal algebra
generators of the AFF model and its ospð2j2Þ super-
conformal extensions, as well as in the construction of
new systems and their hidden symmetries.
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A. The Klein four-group as a Schrödinger
equation symmetry

Parametrizing the coupling constant in parabolic form
g ¼ νðνþ 1Þ, which is symmetric with respect to ν ¼ − 1

2
,

we artificially induce the invariance of the Eq. (4.1) with
respect to the transformation ρ1∶ν → −ν − 1. Equation (4.1)
is also invariant with respect to the transformation ρ2∶
ðx; tÞ → ðix;−tÞ. These two transformations generate the
Klein four-group as a symmetry of Eq. (4.1): K4 ≃ Z2 ×
Z2 ¼ ð1; ρ1; ρ2; ρ1ρ2 ¼ ρ2ρ1Þ, where each element is its
own inverse. At the level of the stationary Schrödinger
equation, the action of ρ2 reduces to the transformation
ρ2∶ðx; Eν;nÞ → ðix;−Eν;nÞ, which means that ρ2 is a com-
pletely broken Z2 symmetry, for which the transformed
eigenstates ρ2ðψν;nÞ ¼ ψν;nðixÞ with eigenvalues −Eν;n are
nonphysical solutions. The transformation ρ1 at the same
level of the stationary Schrödinger equation implies that
the energy eigenvalues change as Eν;n → ρ1ðEν;nÞ ¼
E−ν−1;n ¼ 4n − 2νþ 1. The difference between the original
energy level and the transformed one is Eν;n − E−ν−1;n ¼
ΔE · ðνþ 1=2Þ, where ΔE ¼ 4 is the distance between
two consecutive levels. So, if we take ν ¼ l − 1=2 with
l ¼ 0; 1;…, we obtain ρ1ðEl−1=2;nÞ ¼ El−1=2;n−l, and find
that physical energy levels with n ≥ l are transformed into
physical energy levels but lowered by 4l. Under the action of
ρ1, the eigenstates (4.3) are transformed into the functions

ρ1ðψν;nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
Γðn − νþ 1=2Þ

s
x−νLð−ν−1=2Þ

n ðx2Þe−x2=2

≔ ψ−ν−1;n: ð4:5Þ

In the case of ν ≠ l − 1=2, functions (4.5) do not satisfy
boundary condition at x ¼ 0 because of the presence of the
factor x−ν, and they are nonphysical, formal eigenstates of
Hν. The case of ν ¼ l − 1=2 requires, however, a separate
consideration. To analyze this case, we observe that

ρ1ðψl−1=2;nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
Γðn − lþ 1Þ

s
x−lþ1=2Lð−lÞ

n ðx2Þe−x2=2:

ð4:6Þ

Due to thepoles ofGamma function, this expressionvanishes
when n < l, i.e., ρ1 annihilates the first l eigenstates of the
system. On the other hand, the identity

ð−ηÞm
m!

Lðm−nÞ
n ðηÞ ¼ ð−ηÞn

n!
Lðn−mÞ
m ðηÞ ð4:7Þ

with integerm and n, which follows from (4.4), allows us to
write ρ1ðψl−1=2;nÞ ¼ ð−1Þlψl−1=2;n−l when n ≥ l, and this
is coherent with the change of the energy eigenvalues under
application to them of transformation ρ1. In conclusion, ρ1

corresponds to a symmetrywhich is just the identity operator
when l ¼ 0, while for l ≥ 1 this symmetry annihilates thel
lowest physical eigenstates, but restores them by acting on
the higher eigenstates.5 From this point of view, in the case of
half-integer ν, transformation ρ1 does not produce anything
new. Nevertheless, we can also construct a finite set of
nonphysical solutions of the same nonphysical nature as in
(4.5) given by the functions

ψ−l−1=2;k ≔ ρ1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðkþ lþ 1Þ

k!

r
ψl−1=2;k

!

¼ x−lþ1=2Lð−lÞ
n ðx2Þe−x2=2;

k ¼ 0;…;l − 1; ð4:8Þ
singular at x ¼ 0, whose corresponding eigenvalues are
E−l−1=2;n ¼ 4n − 2lþ 2.
We note that the combined transformation ρ1ρ2ðψν;nÞ

always produces nonphysical solutions for all values of ν
due to the presence of ρ2. Wave eigenfunctions transformed
by the K4 generators ρ2 and ρ1ρ2 diverge exponentially
at infinity, and for the following consideration it is
convenient to introduce a special common notation for
them: ψ rðνÞ;−nðxÞ ¼ ψ rðνÞ;nðixÞ, where rðνÞ ¼ ν corre-
sponds to application of ρ2, and rðνÞ ¼ −ν − 1 corresponds
to application of ρ1ρ2 to ψν;nðxÞ. In the same way, we
introduce a common notation for physical eigenstates and
nonphysical eigenfunctions exponentially disappearing at
infinity: ψ rðνÞ;nðxÞ, where rðνÞ ¼ ν corresponds to eigen-
states (4.3), and rðνÞ ¼ −ν − 1 corresponds to nonphysical
eigenfunctions (4.5) or (4.8) when ν ¼ l − 1=2. In the case
of ν ¼ l − 1=2, l ≥ 1, we have E−l−1=2;l−n−1 ¼
−E−l−1=2;n for n < l, and one finds that (4.8) and their
partners in the sense of Eq. (2.7) are related with non-
physical eigenstates produced by ρ2 and their partners,

ψ−l−1=2;l−1−n ∝ ψ̃−l−1=2;−n;

ψ̃−l−1=2;n ∝ ψ−l−1=2;−lþ1−n: ð4:9Þ

B. Conformal symmetry and ladder operators

In this subsection, we explore the quantum conformal
symmetry of the model from the perspective of the discrete
Klein four-group symmetry.
Hamiltonian (4.2) is the compact generator of the

dynamical conformal symmetry of the AFF model, which
together with the second order differential operators

5This is similar to a picture of a Hilbert’s hotel under departure
of clients from first l rooms with numbers n ¼ 0;…;l − 1 with
simultaneous translation of the clients from rooms with numbers
n ¼ l;lþ 1;…, into the rooms with numbers n − l. Note that
the power ðC−Þl of lowering generator of conformal symmetry
(4.10) with ν ¼ l − 1

2
acts on physical eigenstates in a way similar

to ρ1, but violating normalization of the states, see Eq. (4.14).
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C−ν ¼ −
�
d
dx

þ x

�
2

þ νðνþ 1Þ
x2

; Cþν ¼ ðC−ν Þ† ð4:10Þ

satisfies the commutation relations of the slð2;RÞ algebra,

½Hν; C�ν � ¼ �4C�ν ; ½C−ν ; Cþν � ¼ 8Hν; ð4:11Þ

whose Casimir invariant is given by C ¼ ðHνÞ2 −
1
2
ðCþν C−ν þ C−ν Cþν Þ ¼ 4νðνþ 1Þ − 3. Taking linear combi-

nations J 0 ≔ 1
4
Hν, J 1 ≔ 1

8
ðCþν þ C−ν Þ, J 2 ≔ i

8
ðC−ν − Cþν Þ,

one finds that they satisfy the quantum analog of the
classical Lorentz algebra (3.15). The rescaled Casimir
operator − 1

16
C represented in their terms reduces to

J μJ μ ¼ −αðα − 1Þ with α ¼ 1
2
νþ 3

4
, and as it was indi-

cated at the end of the previous section, eigenvalues of J 0

are j0 ¼ nþ α, n ¼ 0; 1;…. We note here that the linear
combinations J 0 − J 1 and J 0 þ J 1 are the operators 1

2
x2

and 1
2
ð− d2

dx2 þ
νðνþ1Þ

x2 Þ, which are the quantum analogs of the
integrals K andHg defined in (3.2) for the model (3.1) with
q changed for x and t ¼ 0.
Coefficient 4 in the first commutator in (4.11) is the

distance between the consecutive energy levels of the AFF
system, and by means of the unitary transformation

C�ν → C�ν ðtÞ ¼ e−itHνC�ν eitHν ¼ e∓i4tC�ν ; ð4:12Þ

we obtain two dynamical integrals of motion, now in the
sense of the Heisenberg equation d

dt A ¼ ∂A
∂t − i½A;Hν� ¼ 0.

Their linear Hermitian combinations

DðtÞ¼ i
C−ν ðtÞ−Cþν ðtÞ

8
; KðtÞ¼ 2Hν−C−ν ðtÞ−Cþν ðtÞ

16
;

ð4:13Þ

are the quantum analogs of the generators of the Newton-
Hooke symmetry (3.8) with ω ¼ 2.
According to (4.11), operators C�ν are the ladder oper-

ators of the quantum AFF system described by the
HamiltonianHν. The generator ρ1 of the discrete K4 group
acts identically on generators of the conformal symmetry,
ρ1ðHνÞ¼Hν, ρ1ðC�ν Þ¼C�ν , while ρ2ðHνÞ¼−Hν, ρ2ðC�ν Þ ¼
−C∓ν . In correspondence with this, ρ2 is the automorphism
of the slð2;RÞ algebra which transforms the unitary
irreducible representation Dþ

α of the system (4.2) restricted
from below, j0 ¼ nþ α, α ¼ 1

2
νþ 3

4
≥ 1

2
, into the unitary

irreducible representation D−
α of slð2;RÞ restricted from

above, j0 ¼ −ðnþ αÞ, n ¼ 0; 1;… [59].
The ladder operators act on physical eigenstates and

nonphysical states generated from them by transformations
of the K4 group as follows:

C�ν ψ rðνÞ;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðErðνÞ;n�2ν�3ÞðErðνÞ;n�2ν∓ 1Þ

q
ψ rðνÞ;n�1;

ð4:14Þ

C�ν ψ rðνÞ;−n

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðErðνÞ;n � 2ν� 3ÞðErðνÞ;n � 2ν ∓ 1Þ

q
ψ rðνÞ;−ðn∓1Þ:

ð4:15Þ

The coefficients in (4.14) and (4.15) vanish when the ladder
operators act on the states from their corresponding kernels,
which in the case of ν > −1=2 are given by

ker C−ν ¼ spanfψν;0;ψ−ν−1;0g;
ker Cþν ¼ spanfψν;−0;ψ−ν−1;−0g: ð4:16Þ

In the case of ν ¼ −1=2, the kernels of the ladder operators
C�−1=2 are similar to (4.16) but with the states ψ−ν−1;0 and
ψ−ν−1;−0 there changed, respectively, for the Jordan states

Ω−1=2;0 ¼
�
a −

1

2
ln x

�
ψ−1=2;0;

Ω−1=2;−0 ¼
�
b −

1

2
ln x

�
ψ−1=2;−0; ð4:17Þ

where a and b are constants.
In the context of the Darboux transformations, the first

equation in (4.11) can be written in the equivalent form
C∓ν Hν ¼ ðHν � 4ÞC∓ν , which means that C�ν intertwine the
systemHν with itself but shifted for additive constants∓4.
Then Eq. (4.16) indicates that the second order differential
operators −C�ν are generated by the choice of the seed states
ðψν;∓0;ψ−ν−1;�0Þ, and by means of Eq. (2.3) we can write
the equalities

C∓ν ϕrðνÞ;z ¼ −
Wðψν;�0;ψ−ν−1;�0;ϕrðνÞ;zÞ

Wðψν;�0;ψ−ν−1;�0Þ
; ð4:18Þ

where ϕrðνÞ;z with z ¼ �n, n ∈ N, corresponds to an
eigenstate or a Jordan state of Hν. The Wronskian form
of these equalities is useful to find the action of the
ladder operators on the states ψ̃ rðνÞ;�0 and Ω̆−1=2;0. Using
Eqs. (2.9) and (2.19), and equalities

Wðψν;�0;ψ−ν−1;�0Þ ¼ −ð2νþ 1Þe∓x2 ;

Wðψ−1=2;�0;Ω−1=2;�0Þ ¼ e∓x2 ; ð4:19Þ

one can find that

C−ν ψ̃ rðνÞ;0 ∝ ψ rð−ν−1Þ;−0; Cþν ψ̃ rðνÞ;−0 ∝ ψ rð−ν−1Þ;0;

ð4:20Þ
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C∓−1=2ψ̃−1=2;�0 ∝ Ω−1=2;∓0; C∓−1=2Ω̆−1=2;�0 ∝ ψ−1=2;∓0:

ð4:21Þ
Returning to the issue of Jordan states, we realize that

they have appeared in the systems with half-integer ν, but
let us consider first the general case. For this, we use (2.15)
and the first relation in (4.11) to prove the relations

ΩrðνÞ;�n ∝ ðC�ν ÞnΩrðνÞ;�0; Ω̆rðνÞ;�n ∝ ðC�ν ÞnΩ̆rðνÞ;�0:

ð4:22Þ
Thus, the ladder operators act in a similar way as they act
on eigenstates of Hν, but with a difference when n ¼ 0.
When ν ≠ −1=2, we obtain the relations C�ν ΩrðνÞ;∓0 ∝
ψ̃ rð−ν−1Þ;�0 and C�ν Ω̆rðνÞ;∓0 ∝ Ωrð−ν−1Þ;�0. Due to (4.9)

one can make the identification Ω̆−l−1=2;�0 ¼
Ω−l−1=2;∓ðl−1Þ, so in the half-integer case ν ¼ l − 1=2
with l ≥ 1 we obtain

C�l−1=2Ωl−1=2;∓0 ∝ ψ−l−1=2;∓ðl−1Þ;

C�l−1=2Ω−l−1=2;∓0 ∝ ψl−1=2;∓ðl−1Þ: ð4:23Þ

Acting on these relations by ðC�l−1=2Þl, we obtain zero, and
conclude that

kerðC�l−1=2Þlþk ¼ spanfψl−1=2;∓0;…;ψl−1=2;∓ðlþk−1Þ;

ψ−ðl−1=2Þ−1;∓0;…;ψ−ðl−1=2Þ−1;∓ðl−1Þ;

Ωl−1=2;∓0;…;Ωl−1=2;∓ðk−1Þg ð4:24Þ

for k ¼ 1; 2;…. The whole picture is summarized in Fig. 1.

C. Superconformal symmetry and
the Klein four-group

Here, we inspect the action of the transformations of the
Klein four-group on a supersymmetric extension of the
AFF model.
One can take two different ways to produce two different

supersymmetric extensions of the AFF model by taking
two different Darboux transformations of the first order
based on the choice of the seed states ψν;0 and ψν;−0. By
means of Eq. (2.4) with n ¼ 1we obtain two corresponding
pairs of Hermitian conjugate intertwining operators,

A−
ν ¼ d

dx
þ x −

νþ 1

x
; Aþ

ν ¼ ðA−
ν Þ†;

B−
ν ¼ d

dx
− x −

νþ 1

x
; Bþ

ν ¼ ðB−
ν Þ†: ð4:25Þ

These operators link the systems Hν and Hνþ1 by the
intertwining relations of the form (2.5),

A−
νHν ¼ ðHνþ1 þ 2ÞA−

ν ; Aþ
ν Hνþ1 ¼ ðHν − 2ÞAþ

ν ;

ð4:26Þ

B−
νHν ¼ ðHνþ1 − 2ÞB−

ν ; Bþ
ν Hνþ1 ¼ ðHν þ 2ÞBþ

ν :

ð4:27Þ

Let us note here that if we choose, instead, nonphysical
eigenstates ψ−ν−1;0 and ψ−ν−1;−0 as the seed states, we
generate the operators −Aþ

ν−1 and −Bþ
ν−1, respectively.

These operators relate the system Hν with Hν−1 by

FIG. 1. The action of the ladder operators in dependence on the value of ν. Diagram (a) illustrates the case of half-integer ν ¼ l − 1=2
with l ¼ 1;…, where it is shown how Jordan states can be related to eigenstates by the action of C�ν . Diagram (b) corresponds to
nonhalf-integer values of ν. In (c), it is indicated how the case with ν ¼ −1=2 can be obtained from (b) by changing the corresponding
states. The shapes with borders highlighted in blue (red) represent the states annihilated by C−ν (Cþν ).
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intertwining relations of the form (4.26) and (4.27) with ν
shifted by minus one.
From the point of view of the Klein four-group, the states

ψν;0 and ψν;−0 are related by transformation ρ2, while the
states ψν;�0 and ψ−ν−1;�0 are mutually transformed by ρ1.
As a consequence, the application of transformations ρ1
and ρ2 to the intertwining operators gives

ρ1ðA∓
ν Þ ¼ −B�

ν−1; ρ1ðB∓
ν Þ ¼ −A�

ν−1; ð4:28Þ

ρ2ðA�
ν Þ ¼ −iB�

ν ; ρ2ðB�
ν Þ ¼ −iA�

ν : ð4:29Þ

These relations are valid for ν > −1=2. At ν ¼ −1=2 the
transformation ρ1 reduces to the identity.
We can construct now two different N ¼ 2 super-

Hamiltonians

He
ν ¼
�
A−
ν Aþ

ν ¼Hνþ1−2ν−1 0

0 Aþ
ν A−

ν ¼Hν−2ν−3

�
;

ð4:30Þ

Hb
ν ¼
�
B−
νBþ

ν ¼Hνþ1þ2νþ1 0

0 Bþ
ν B−

ν ¼Hνþ2νþ3

�
;

ð4:31Þ

where the indexes e and b refer to the exact and sponta-
neously broken N ¼ 2 Poincaré supersymmetries des-
cribed by the corresponding super-Hamiltonians. The
operator (4.30) has an equidistant spectrum given by
eigenvalues En ¼ 4n, n ¼ 0; 1;…, where n ¼ 0 corre-
sponds to the nondegenerate ground state ð0;ψν;0Þt of
zero energy, while all the energy levels with n ≥ 1 are
doubly degenerate. The Hamiltonian (4.31) has eigenvalues
En ¼ 4nþ 4νþ 6, each of which is doubly degenerate, and

two ground states with energy E0 ¼ 4νþ 6 > 0 areΨðþÞ
0 ¼

ðB−
ν ψν−1;0;ψν−1;0Þt and Ψð−Þ

0 ¼ σ3Ψ
ðþÞ
0 .

System (4.30) is described by the ospð2; 2Þ supercon-
formal dynamical symmetry generated by the even, He

ν,
Rν ¼ 1

4
ðHe

ν −Hb
νÞ ¼ σ3

2
− ðνþ 1ÞI, G�

ν , and odd, Qa
ν , Sa

ν ,
a ¼ 1, 2, operators, where I is the unit 2 × 2 matrix,

G�
ν ¼

�
C�νþ1 0

0 C�ν

�
; ð4:32Þ

Q1
ν ¼

�
0 A−

ν

Aþ
ν 0

�
; S1

ν ¼
�

0 B−
ν

Bþ
ν 0

�
; ð4:33Þ

Q2
ν ¼ iσ3Q1

ν; S2
ν ¼ iσ3S1

ν: ð4:34Þ

Here Qa
ν are the supercharges of the system, which

annihilate the ground state, i.e., the system indeed is in
the phase of unbroken N ¼ 2 Poincaré supersymmetry.
The Lie superalgebraic relations

½He
ν;Rν� ¼ ½He

ν;Qa
ν � ¼ 0; ð4:35Þ

½He
ν;G�

ν � ¼ �4G�
ν ; ½G−

ν ;Gþ
ν � ¼ 8He

ν − 16Rν; ð4:36Þ

½He
ν;Sa

ν � ¼ −4iϵabSb
ν ; ½Rν;Qa

ν � ¼ −iϵabQb
ν ;

½Rν;Sa
ν � ¼ −iϵabSb

ν ; ð4:37Þ

½G−
ν ;Qa

ν � ¼ 2ðSa
ν þ iϵabSb

νÞ;
½Gþ

ν ;Qa
ν � ¼ −2ðSa

ν − iϵabSb
νÞ; ð4:38Þ

½G−
ν ;Sa

ν � ¼ 2ðQa
ν − iϵabQb

νÞ;
½Gþ

ν ;Sa
ν � ¼ −2ðQa

ν þ iϵabQb
νÞ; ð4:39Þ

fQa
ν ;Qb

νg ¼ 2δabHe
ν; fSa

ν ;Sb
νg ¼ 2δabðHe

ν − 4RνÞ;
ð4:40Þ

fQa
ν ;Sb

νg ¼ δabðGþ
ν þ G−

ν Þ þ iϵabðGþ
ν − G−

ν Þ ð4:41Þ

correspond to the dynamical ospð2; 2Þ superconformal
symmetry of the system (4.30). To identify the gen-
erators of superconformal symmetry of the system
(4.31), we note that the superconformal ospð2; 2Þ
algebra given by Lie super-algebraic relations (4.35)–
(4.41) has an automorphism f ¼ f−1 which corresponds
to the transformations He

ν→He
ν−4Rν¼Hb

ν , Rν → −Rν,
G�
ν → G�

ν , Q1
ν → −S1

ν, Q2
ν → S2

ν, S1
ν → −Q1

ν S2
ν → Q2

ν.
Therefore, the transformed operators are the generators
of the ospð2; 2Þ corresponding to the system Hb

ν , for
which the Poincaré supercharges are −S1

ν and S2
ν. None

of these supercharge operators annihilates both ground
states of the system coherently with spontaneously
broken nature of the N ¼2 Poincaré supersymmetry
of the system (4.31).
Let us consider now the action of the K4 group on the

superextended systems. The action of both generators ρ1
and ρ2 on superextended systems we define in the same
way as they were defined for the nonextended AFF system
Hν. We use Eq. (4.28) to transform the generators of
ospð2; 2Þ by ρ1, and obtain

ρ1ðHe
νÞ ¼ σ1ðHe

ν−1 − 4Rν−1Þσ1;
ρ1ðG�

ν Þ ¼ σ1ðG�
ν−1Þσ1; ð4:42Þ

ρ1ðRνÞ ¼ σ1ð−Rν−1Þσ1; ð4:43Þ

ρ1ðQ1
νÞ ¼ σ1ð−S1

ν−1Þσ1; ρ1ðQ2
νÞ ¼ σ1ðS2

ν−1Þσ1;
ð4:44Þ

ρ1ðS1
νÞ ¼ σ1ð−Q1

ν−1Þσ1; ρ1ðS2
νÞ ¼ σ1ðQ2

ν−1Þσ1:
ð4:45Þ
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Therefore, the action of ρ1 on generators of the super-
conformal algebra of the system described by the super-
Hamiltonian He

ν produces the generators of supeconformal
symmetry ospð2; 2Þ of the system described by the super-
Hamiltonian Hb

ν−1 unitarily rotated by σ1. In other words,
the action of ρ1 on the system (4.30) and generators of
its superconformal algebra is equivalent to do the shift
ν → ν − 1, apply the automorphism f defined above, and
then apply a unitary transformation given by the operator
σ1. The transformed generators (4.42)–(4.45) still satisfy
the same superconformal algebra, i.e., ρ1 is an automor-
phism of the ospð2; 2Þ, but they describe another super-
extended system having different properties in the sense
that in the transformed system, unlike the initial system
(4.30), the N ¼ 2 Poincaré supersymmetry is spontane-
ously broken in the case of ν > −1=2. The only exception
from this rule corresponds to the case ν ¼ −1=2, where the
transformed Hamiltonian reduces to σ1He

−1=2σ1, and rep-
resents a unitary transformed super-Hamiltonian with the
unbroken N ¼ 2 Poincaré supersymmetry.
On the other hand, one can verify that when ρ1 acts

on the Hamiltonian Hb
ν , it produces σ1ðHe

ν−1Þσ1, and this
time the N ¼ 2 Poincaré supersymmetry of the system is
changed from the spontaneously broken phase (in the case
of ν > −1=2) to the phase of unbroken supersymmetry,
with the only exception of the systemHb

−1=2 with unbroken

supersymmetry, which unitary transforms into σ1Hb
−1=2σ1.

This picture of transformation of ρ1 on superextended
systems can be compared with the case of the nonextended
AFF system, where ρ1 acts identically on its Hamiltonian
and generators of the conformal symmetry, though, as we
saw, it acts nontrivially on eigenstates of the system.
By knowing the action of ρ2 on the intertwining

operators (4.25), explicitly given in (4.29), we can apply
this transformation to the generators of superconformal
algebra. As a result, we find that it generates the auto-
morphism of ospð2; 2Þ given by relations

ρ2ðHe
νÞ ¼ −Hb

ν ; ρ2ðG�
ν Þ ¼ −G∓

ν ; ρ2ðRνÞ ¼ Rν;

ð4:46Þ

ρ2ðQ1
νÞ ¼ −iS1

ν; ρ2ðQ2
νÞ ¼ −iS2

ν; ð4:47Þ

ρ2ðS1
νÞ ¼ −iQ1

ν; ρ2ðS2
νÞ ¼ −iQ2

ν: ð4:48Þ

The transformed Hamiltonian operator is similar here to the
Hamiltonian produced by the automorphism f but multi-
plied by −1. This correlates with the anti-Hermitian nature
of the transformed fermion generators of superalgebra.
Accordingly, the spectrum of the transformed matrix
Hamiltonian is negative, not bounded from below, and
each its level is doubly degenerate for ν ≥ −1=2.
In correspondence with the described picture, the appli-

cation of the combined transformation ρ2ρ1 is just another

automorphism of the superconformal algebra (4.35)–
(4.41), which produces anti-Hermitian odd generators,
and ρ2ρ1ðHe

νÞ ¼ σ1ð−He
ν−1Þσ1. The discrete spectrum of

the transformed Hamiltonian is not restricted from below
and is given by the numbers En ¼ −4n, n ¼ 0; 1;…, where
each negative energy level is doubly degenerate, while
nondegenerate zero energy level corresponds to the state
ðψν;0; 0Þt.

V. DUAL DARBOUX SCHEMES

If we have two ways to generate the same, modulo
an additive shift, particular system from the AFF model
with a certain value of the parameter ν by employing two
distinct Darboux transformations based on distinct sets of
the seed states with different behavior at infinity, we say
that we have two dual Darboux schemes, or a Darboux
duality. This property was discussed and exploited earlier
in the case of rational deformations of harmonic oscillator
for the construction of the complete sets of the spectrum
generating ladder operators as well as for the description
of emergent nonlinear extensions of superconformal
symmetry appearing in such systems [42,43,48,51,52].
We also used dual Darboux schemes in the previous
section in the discussion of supersymmetric extensions of
the AFF model.
To give a simple example of the dual schemes, one

can choose the set of eigenstates ðψν;0;…;ψν;m−1Þ,
whose Wronskian is, up to a multiplicative constant,
xmð2νþmþ1Þ=2e−mx2=2. This implies that after the Darboux
transformation (2.2) the Hamiltonian operator takes the
formHνþm þ 2m. On the other hand, if we take the scheme
ðψν;−0;…;ψν;−ðm−1ÞÞ based on nonphysical eigenstates
generated by transformation ρ2, we produce the same
system but shifted by the relative constant −4m, so this
both schemes are dual. Intertwining operators of order m
of both schemes allow to construct fermionic integrals of
motion of the corresponding supersymmetric extension
of the system, and generate the corresponding ospð2; 2Þ
superconformal symmetry in the case of m ¼ 1, as it was
done in the previous section, or to generate nonlinearly
deformed and extended version of ospð2; 2Þ when m > 1.
The purpose of this section is to derive certain Wronskian

identities and employ them for construction of the dual
Darboux schemes. The latter allow us to generate rational
deformations of a general form with arbitrary number of
gaps implemented into equidistant spectrum of the AFF
systems in a well controlled manner, to identify the complete
sets of the spectrum generating ladder operators for them and
their nonlinearly deformed conformal symmetries. We also
observe the peculiar changes that happen with spectra of
such systems under variation of the parameter ν when it goes
through half-integer values.
In the following the equalities between wave functions

and Wronskians are considered up to multiplication by
nonzero real constants.
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A. The dual schemes algorithm

Here we consider a systematic procedure to obtain the
dual scheme from a given Darboux scheme by means of
certain Wronskian identities.
As we have shown in the previous section, the case in

which ν takes half-integer values is special and more
complicated in comparison with the nonhalf-integer case.
This happens due to appearance of Jordan states in the
game via the properties of noncompact generators of the
conformal symmetry which simultaneously are the ladder
operators for corresponding AFF systems, see Eq. (4.23).
By this reason we start first with the case of nonhalf-integer
values of ν, and choose a generic set of physical and
nonphysical eigenstates of Hν as the seed states,

fαg ¼ ðψν;k1 ;…;ψν;kN1
;ψ−ν−1;l1 ;…;ψ−ν−1;lN2

Þ;
ki; lj ¼ �0;�1;…; ð5:1Þ

where i ¼ 1;…; N1 and j ¼ 1;…; N2, and, for simplicity,
we suppose that jk1j < … < jkN1

j and jl1j < … < jlN2
j.

Consider now a scheme of the form (5.1) with non-
repeated states, and suppose that both ki and lj carry the
same sign for all i and j. Also let us define the index
number nN ¼ maxðjk1j;…; jkN1

j; jl1j;…; jlN2
jÞ, which can

correspond to a state with index ν or −ν − 1. So if ki and lj
carry the plus sign, the equality

WðfαgÞ ¼ e−ðnNþ1Þx2WðfΔ−gÞ;
fΔ−g ≔ ðψ−ν−1;−0;ψν;−0;…; ψ̌−ν−1;−ri ; ψ̌ν;−si ;…;

ψ−ν−1;−nN ;ψν;−nN Þ; ð5:2Þ

is satisfied, where the marked states ψ̌−ν−1;−ri and ψ̌ν;−si ,
with ri ¼ nN − ki and sj ¼ nN − lj, are omitted from the
set fΔ−g. On the contrary, if ki and lj carry the minus sign,
we have the equality

WðfαgÞ ¼ eðnNþ1Þx2WðfΔþgÞ;
fΔþg ≔ ðψ−ν−1;0;ψν;0;…; ψ̌−ν−1;ri ; ψ̌ν;sj ;…;

ψ−ν−1;nN ;ψν;nN Þ; ð5:3Þ

where now ri ¼ nN − jkij and sj ¼ nN − jljj. These rela-
tions are also valid if one of the numbers N1 or N2 is equal
to zero, which means that in the corresponding scheme
there are only states of the same kind with respect to the
first index, −ν − 1 or ν, respectively.
When considering ν ¼ l − 1=2 with l ¼ 0, 1, 2, we will

have relations analogous to (5.2) and (5.3), but changing
each state of the form ψ−ν−1;�ðlþkÞ by Ωl−1=2;�k, as a result
we deal with the confluent Darboux transformation.
To prove the displayed Wronskian relations, we have to

keep in mind that the operators C�ν are in fact the intert-
wining operators of the dual schemes ðψν;0;ψ−ν−1;0Þ and

ðψν;−0;ψ−ν−1;−0Þ in the case of ν > 1=2, while for ν ¼ −1=2
we take the sets ðψ1=2;0;Ω−1=2;0Þ and ðψ1=2;−0;Ω−1=2;−0Þ. It is
also necessary to take into account the action of these
operators on eigenstates and Jordan states discussed in the
previous section.
By means of Eqs. (2.8), (2.9), (4.19) and (4.21), we will

develop a step by step processes to show the validity of
(5.2) and (5.3) in the case when ν is not a half-integer
number, and then we will explain how these relations can
be extended to the half-integer case. As a starting point,
consider the Wronskian of the set fαg defined in (5.1). If
the states ψν;�0 and ψ−ν−1;�0 do not belong to (5.1), we can
replace the Wronskian WðfαgÞ by

Wðψν;�0;ψ−ν−1;�0; ψ̃ν;�0; ψ̃−ν−1;�0; fαgÞ
¼ e∓x2Wðψν;∓0;ψ−ν−1;∓0; fC∓ν αgÞ; ð5:4Þ

where we used relations (2.8), (2.9), (4.19) and (4.20),
and fC∓ν αg means that the ladder operators are applied to
all the states in the set. On the other hand, if ψ rðνÞ;�0 belong
to (5.1), we can replace the Wronskian of the initial set of
the seed states by

Wðψ rð−ν−1Þ;�0; ψ̃ rð−ν−1Þ;�0; fαgÞ
¼ e∓x2Wðψ rð−ν−1Þ;∓0; fC∓ν β1gÞ; ð5:5Þ

where fβ1g is the scheme fαg with the omitted state
ψ rðνÞ;�0. Finally, if ψν;�0 and ψ−ν−1;�0 belong to (5.1), we
have

WðfαgÞ ¼ e∓x2WðfC∓ν β2gÞ; ð5:6Þ

where fβ2g is the scheme fαg with the omitted states ψν;�0

and ψ−ν−1;�0. Note that in all these three relations we have
lowered or raised the index of the states in fαg, and also in
the case of Eqs. (5.4) and (5.5) we have included additional
states which do not belong to the initial set. Also, we note
that an exponential factor has appeared. These identities
can be applied to the Wronskians on the right-hand side of
Eqs. (5.4)–(5.6), which will contribute with new exponen-
tial factors in newWronskians, and so on. For this reason, if
we restrict the initial set fαg by the conditions described
above (that every state in the set has the second index of the
same sign), and we repeat this procedure nN þ 1 times with
positive (negative) sign of the indexes in (5.4)–(5.6), we
finally obtain Eq. (5.2) or (5.3).
Now, we consider the case when ν takes a half-integer

value. Note first that by means of relations (2.8), (2.19), the
second relation in (4.19), and relations (4.21), we can
repeat the arguments presented above for the case when
ν ¼ −1=2, but changing each function of the form ψ−ν−1;n
by Ω−1=2;n in relations (5.4)–(5.6). As a consequence,
relations (5.2) and (5.3) are now valid with the same
corresponding changes. On the other hand, with a simple

KLEIN FOUR-GROUP AND DARBOUX DUALITY … PHYS. REV. D 99, 125016 (2019)

125016-13



example one can see that this does not hold for the case
ν ¼ l − 1=2 with l ≥ 1. For this we consider the scheme
ðψ1=2;1;ψ1=2;2Þ, for which theWronskian can be rewritten as

Wðψ1=2;0;ψ3=2;0; ψ̃1=2;0; ψ̃−3=2;0;ψ1=2;1;ψ1=2;2Þ
¼ e−x

2

Wðψ̃−3=2;0;ψ1=2;−0;ψ1=2;0;ψ1=2;1Þ; ð5:7Þ

where we have repeated the same idea that we employed in
(5.4), and also we used (4.9) to change ψ−3=2;−0 by ψ̃−3=2;0.
As this last indicated state appears, we cannot use Eqs. (2.8)
and (2.9) to include ψ−3=2;0 and produce the intertwining
operator C−1=2, so the algorithm is stopped.
Nevertheless, we can use the connection between

H−1=2þl and H−1=2, provided by the Darboux transforma-
tion produced by the seed states ðψ−1=2;�0;…;ψ−1=2;�ðl−1ÞÞ
to obtain the corresponding dual schemes. Each eigenstate
or Jordan state of Hνþm can be obtained by applying the
Darboux mapping to corresponding eigenstates or Jordan
states of H−1=2. The details of the procedure are described
in the Appendix A, but it can be summarized in three
simple steps.

(i) If we have a scheme based on eigenstates or Jordan
states of Hνþm with ν ¼ l − 1=2, then by using
the corresponding Darboux transformation and
Eq. (2.8), we find an equivalent scheme in the
system with ν ¼ −1=2.

(ii) Then we construct the dual scheme by using the
algorithm adapted for ν ¼ −1=2.

(iii) Finally, we translate the resulting dual scheme into
the scheme for Hνþm by using the corresponding
Darboux transformation and Eq. (2.8) again.

The main result is that we just have to change every func-
tion of the form ψ−ν−1;�ðlþnÞ by Ω−l−1=2;�n when ν is
equal to l − 1=2. In this way one finds that Wðψ1=2;1;

ψ1=2;2Þ ¼ e−3x
2

Wðψ1=2;−0;ψ1=2;−1;ψ1=2;−2;Ω1=2;−1Þ.
Now, we focus our discussion on relation between both

dual schemes. In general, if fΔ−g coincides with the
scheme in the argument of the Wronskian on the left-hand
side of (5.3), then fΔþg coincides with the scheme on the
left-hand side of (5.2), and consequently WðfΔþgÞ ¼
e−ðnNþ1Þx2WðfΔ−gÞ. By this reason we call fΔþg and
fΔ−g a positive and a negative dual scheme, respectively.

If fΔþg has nþ states and fΔ−g has n− states, then one can
note that nN ¼ nnþ ¼ nn− , and nþ þ n− ¼ 2ðnN þ 1Þ,
which is the total number of the states employed in both
dual transformations.
The general rules can be summarized and better under-

stood with the examples presented diagrammatically in
Fig. 2.
This kind of diagrams is read as follows. In the top-line,

there appear the ordered states vanishing at infinity, which
are ordered from the lowest to the highest second index in
wave functions, and which always end in the number
without a bar (the first index of wave function is ν). In the
bottom-line, there appear the Wick rotated states (second
index of wave functions appears with the minus sign),
ordered in the same way. The filled black circles denote the
states that appear in the Wronskian arguments in the
corresponding dual scheme. The mirror diagrams shown
in Fig. 2 correspond to the following Wronskian equalities:

Wðψ−ν−1;2;ψν;2Þ¼ e−3x
2

Wðψ−ν−1;−1;ψν;−1;ψ−ν−1;−2;ψν;−2Þ;
ð5:8Þ

Wðψν;2;ψν;3Þ ¼ e−4x
2

Wðψν;−0;ψν;−1;ψ−ν−1;−2;ψν;−2;

ψ−ν−1;−3;ψν;−3Þ; ð5:9Þ

whose explicit form is given in Appendix C. The trans-
formation which relates the AFF systems described by Hν

with Hνþm can also be understood within this picture.
Furthermore, using a diagram similar to those in Fig. 2, one
can show that the schemes fΔþg ¼ ðψ rðνÞ;0;…;ψ rðνÞ;m−1Þ
and fΔ−g ¼ ðψ rðνÞ;−0;…;ψ rðνÞ;−ðm−1ÞÞ are dual.

VI. RATIONALLY DEFORMED
AFF SYSTEMS

A rational deformation of the AFF model can be
generated by taking a set of the seed states

fαKAg ¼ ðψν;l1 ;ψν;l1þ1;…;ψν;lm ;ψν;lmþ1Þ; ð6:1Þ

composed from m pairs of neighbor physical states. Krein-
Adler theorem [37,38] guarantees that the resulting system
described by the Hamiltonian operator of the form

FIG. 2. Two “mirror diagrams” corresponding to dual schemes for the conformal mechanics model. The numbers n indicate the states
ψν;n, and symbols n̄ correspond to the states ψ−ν−1;n.
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HKA
ðν;mÞ ¼ Hνþm þ 4mþ FνðxÞ

QνðxÞ
ð6:2Þ

is nonsingular onRþ. Here FνðxÞ andQνðxÞ are real-valued
polynomials, QνðxÞ has no zeroes on Rþ, its degree is two
more than that of FνðxÞ, and so, the last rational term in (6.2)
vanishes at infinity. The spectrum of the system (6.2) is the
equidistant spectrum of the AFF model with the removed
energy levels corresponding to the seed states. Consequently,
any gap in the resulting system has a size 12þ 8k, where
k ¼ 0; 1;… corresponds to k adjacent pairs in the set (6.1)
which produce a given gap. An example of this kind of the
systems is generated by the scheme ðψν;2;ψν;3Þ, whose dual
negative scheme is given by Eq. (5.9).
Another class of rationally extended AFF systems is

provided by isospectral deformations generated by the
schemes of the form

fαisog ¼ ðψν;−s1 ;…;ψν;−smÞ; ð6:3Þ

which contain only Wick rotated states ρ2ðψν;nðxÞÞ ¼
ψν;nðixÞ. As the functions used in this scheme are propor-
tional to xνþ1 and do not have real zeros other than x ¼ 0,
one obtains a regular on Rþ system of the form

Hiso
ðν;mÞ ¼ Hνþm þ 2mþ fνðxÞ; ð6:4Þ

where fνðxÞ is a rational function disappearing at infinity
[64], and one can find that potential of the system (6.4) is
a convex on Rþ function. In this case the transformation
does not remove or add energy levels, and, consequently,
the initial system Hν and the deformed system (6.4) are
completely isospectral superpartners. Some concrete exam-
ples of the systems (6.4) with integer values of ν were
considered in [42].
Consider yet another generalized Darboux schemewhich

allows us to interpolate between different rationally
deformed AFF systems. For this we assume that the initial
AFF system is characterized by the parameter ν ¼ μþm,
where −1=2 < μ ≤ 1=2 and m can take any non-negative
integer value. For these ranges of values of the parameter ν,
real zeros of the functions ψμþm;n−m are located between
zeros of ψ−ðμþmÞ−1;n, so that we can rethink the Krein-Adler
theorem and consider the scheme

fγμg ¼ ðψ−ðμþmÞ−1;n1 ;ψ ðμþmÞ;n1−m;…;ψ−ðμþmÞ−1;nN ;

ψ ðμþmÞ;nN−mÞ; ð6:5Þ

which includes 2N states and where we suppose that ni −
m ≥ 0 for all i ¼ 1;…; N. The Darboux transformation
based on the set (6.5) produces the system

Hdef
μþm ≔ Hμþm − 2ðlnWðγνÞÞ00

¼ Hμþm þ 4N þ hμþmðxÞ=qμþmðxÞ; ð6:6Þ

where the term 4N is provided by the Gaussian factor in the
Wronskian, and the last term is a rational function vanish-
ing at infinity and having no zeros in the whole real line,
including the origin, if an only if −1=2 < μ ≤ 1=2, see
Appendix B. Let us analyze now some special values of μ.
The case μ ¼ 0: by virtue of relation between Laguerre

and Hermite polynomials, H2nðxÞ ¼ ð−4Þnn!Lð−1=2Þ
n ðx2Þ

and H2nþ1ðxÞ ¼ 2ð−4Þnn!xLð1=2Þ
n ðx2Þ, in this case we

obtain those systems which were generated in [42] by
Darboux transformations of the half-harmonic oscillator.
They are characterized by gaps of the size 8þ 4k, and
represent rational extensions of the AFF model with integer
coupling constant g ¼ mðmþ 1Þ, which in the case of
m ¼ 0 reduce to a rationally extended harmonic oscillator
supplied with a potential barrier at x ¼ 0. Note that the
minimal size of the gaps here is less than that for the
systems produced by the scheme (6.1).
The case μ ¼ 1=2: we have here the relation

ρ1ðψmþ1=2;niÞ ¼ ψ−m−3=2;ni ¼ ð−1Þmþ1ψmþ1=2;ni−m−1, due
to which the scheme (6.5) transforms into

fγ1=2g ¼ ðψ1=2þm;n1−m−1;ψ1=2þm;n1−m;…;

ψ1=2þm;nN−m−1;ψ1=2þm;nN−mÞ; ð6:7Þ

which corresponds to (6.1) with li ¼ ni −m − 1. We
additionally suppose that ni −m − 1 ≠ ni−1 −m, other-
wise the Wronskian vanishes. Note that when μ ≠ 1=2,
the image of the states ψμþm;ni−m−1 under Darboux map-
ping (2.3) is a physical state, but in the case μ ¼ 1=2 such
states aremapped into zero since the argumentψ1=2þm;ni−m−1
appears twice in the Wronskian of the numerator.
The case μ ¼ −1=2: this case was not included in the

range ofμ from the beginning due to relationρ1ðψm−1=2;niÞ ¼
ψ−m−1=2;ni ¼ ð−1Þmψm−1=2;ni−m which would mean the
appearance of the repeated states in the scheme (6.5) and
vanishing of the corresponding Wronskian. However, in
Appendix B we show that the limit relation limμ→−1=2W
ðfγμgÞ=ðμþ1

2
ÞN∝WðfγgÞ is valid, where the scheme fγg is

fγg ¼ ðψm−1=2;n1−m;Ωm−1=2;n1−m;…;ψm−1=2;nN−m;

Ωm−1=2;nN−mÞ; ð6:8Þ

which corresponds to a non-singular confluent Darboux
transformation [45].
By considering this last comment, in conclusion we

have that when −1=2 ≤ μ < 1=2, the states ψ−ðμþmÞ−1;ni
(and Ωm−1=2;ni−m in the case of μ ¼ −1=2) are nonphysical
states. This means that only the physical states ψνþm;ni−m
indicate the energy levels removed under the corresponding
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Darboux transformation, i.e., there are gaps of the mini-
mum size 2ΔE ¼ 8, where ΔE ¼ 4 is the distance between
energy levels of the AFF model, which can merge to
produce energy gaps of the size 8þ 4k. On the other hand,
when μ ¼ 1=2, we have a typical Krein-Adler scheme with
gaps of the size 12þ 4k.
To give an example, we put m ¼ 0, that means ν ¼ μ,

and consider the scheme ðψ−ν−1;2;ψν;2Þ with −1=2 <
ν ≤ 1=2, whose Wronskian is presented explicitly in
Appendix C, and in the case of ν ¼ −1=2 we have the
scheme ðψ−1=2;2;Ω−1=2;2Þ. The potential of the rationally
deformed AFF system generated by the corresponding
Darboux transformation is shown in Figs. 3 and 4.
As it is seen from the figures, the first minimum of the

potential grows in its absolute value, its position moves to
0, and it disappears at ν ¼ 1=2, while the local maximum
near zero also grows, its position approaches zero, and it
goes to infinity in the limit. Besides, the first maximum
of the ground state vanishes when ν approximates the limit
value 1=2. Coherently with the described behavior of
the potential, the image of the Darboux-transformed state
ψν;1, which is the first excited state of the new system
when −1=2 ≤ ν < 1=2, vanishes when ν → 1=2, the

corresponding energy level disappears from the spectrum
at ν ¼ 1=2, and the size of the gap increases from 8 to 12.
The described three possible selection rules to choose the

seed states correspond to the negative scheme (6.3), which
generates isospectral deformations, the positive Krein-
Adler scheme (6.1), and the positive interpolating scheme
(6.5). Then we can apply the algorithm constructed in
Sec. VA to obtain the corresponding dual schemes for
them. The positive and negative dual schemes will be used
in the next subsection to construct complete sets of the
spectrum generating ladder operators for the rationally
deformed conformal mechanics systems.

VII. INTERTWINING AND
LADDER OPERATORS

As a starting point, we consider any positive scheme for
the AFF model Hν that produces its certain nonsingular
rational deformation. For simplicity we do not touch here
the schemes that contain Jordan states. However, we have
relations (2.18) and (4.24), and relations (5.2) and (5.3)
which were extended to such cases with the corresponding
substitutions; see the comments for Eq. (A6). This means

FIG. 3. On the left, a graph of the corresponding potential is shown which is produced by the associated Darboux transformation
applied to the AFF model with three indicated values of the parameter ν versus the dimensionless coordinate x. For ν ¼ −1=2, the
corresponding limit is taken, and the resulting system has an attractive potential with a (not shown) potential barrier at x ¼ 0. For ν ¼ 0,
we obtain a rationally extended half-harmonic oscillator. The case ν ¼ 1=2 corresponds to the Krein-Adler scheme ðψ1=2;1;ψ1=2;2Þ with
a gap equal to 12. On the right, the ground states of the corresponding generated systems are shown as functions of dimensionless
coordinate x.

FIG. 4. On the left, the potential of deformed systems with ν close to 1=2 is shown. On the right, the ground states of the corresponding
systems are displayed.
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that the properties summarized below are also valid for
the schemes containing Jordan states.
Let a positive scheme contains nþ states labeled by ni,

i ¼ 1;…; nþ, with nnþ being the biggest quantum number
in the set. We denote by HðþÞ the system generated by the
Darboux transformation based on the set of the chosen seed
states. By applying the algorithm from Sec. VA, we obtain
the corresponding dual negative scheme with n− ¼ 2nnþ þ
2 − nþ seed states labeled by index −lj with j ¼ 1;…; n−
and −ln− ¼ −nnþ . The resulting system of the Darboux
transformation based on the negative scheme we denote by
Hð−Þ. By using (5.2) we obtain that the generated
Schrödinger operators are mutually shifted for a constant,

HðþÞ −Hð−Þ ¼ ΔEðnnþ þ 1Þ ¼ 2ðnþ þ n−Þ;
ΔE ¼ 4: ð7:1Þ

We can construct the corresponding intertwining operators
of both schemes by following the rule (2.4). Let us denote
by A�

ðþÞ and A�
ð−Þ the intertwining operators of the positive

and negative schemes being differential operators of the
orders nþ and n−, respectively. Some useful properties of
these operators are summarized as follows. First, they
satisfy the intertwining relations

A−
ð�ÞHν ¼ Hð�ÞA−

ð�Þ; Aþ
ð�ÞHð�Þ ¼ HνA

þ
ð�Þ; ð7:2Þ

from where one concludes that the operators A−
ð�Þ map

differently physical eigenstates of Hν as well as nonphysi-
cal ones obtained from them by action of generators of
the K4 group. The states ψ̃ rðνÞ;�n behave asymptotically as

e�x2=2, and the states produced from them by application of
differential operators A−

ð�Þ will carry the same exponential
factor. Having this asymptotic behavior in mind, let us
suppose that ψ rðνÞ;−l� and ψ rðνÞ;n� are some arbitrary states
from the negative and positive scheme, respectively.
By using (7.2), we obtain the relations

A−
ð−Þψ̃ rðνÞ;−l� ¼ A−

ðþÞρ1ðψ rðνÞ;nnþ−l� Þ;
A−
ðþÞψ̃ rðνÞ;n� ¼ A−

ð−Þρ1ðψ rðνÞ;−ðnnþ−n�ÞÞ; ð7:3Þ

in both sides of which the functions satisfy the same second
order differential equation and have the same behavior at
infinity. Note that in the dual schemes in (5.2) and (5.3), the
indexes nnþ − l� and −ðnnþ − n�Þ are in correspondence
with the indexes ri, and si of the states omitted from the
positive and negative scheme, respectively. This helps us to
obtain the identities

Aþ
ð−ÞA

−
ðþÞ ¼ ð−1Þnnþþ1−nþðC−ν Þnnþþ1;

Aþ
ðþÞA

−
ð−Þ ¼ ð−1Þnnþþ1−nþðCþν Þnnþþ1: ð7:4Þ

It is enough to prove the first relation in (7.4), and the second
is produced by theHermitian conjugation.Asweknow,A−

ðþÞ,
annihilates all the states in the positive scheme, while Aþ

ð−Þ
annihilates all the functions of the form A−

ðþÞψ̃ rðνÞ;−l� . Then,
actingbyAþ

ð−Þ from the left onboth sides of the first relation in

(7.3), we find that kerðAþ
ð−ÞA

−
ðþÞÞ ¼ ðψν;0;ψ−ν−1;0;…;

ψν;nnþ
;ψ−ν−1;nnþ

Þ ¼ kerðC−ν Þnnþþ1.
Finally, to have a complete picture we write the relations

A−
ð−Þψ rðνÞ;k ¼ A−

ðþÞψ rðνÞ;nnþþ1þk0 ;

A−
ðþÞψ rðνÞ;−k0 ¼ A−

ð−Þψ rðνÞ;−ðnnþþ1þk0Þ: ð7:5Þ

In the case of the dual schemes fγg and fΔðm−1
2
Þ

− g defined in
(6.8) and (A6), where ν ¼ m − 1=2, similar relations are
obtained but with ψ−μ−m−1;�ni and ψ̃−μ−m−1;�ni replaced by
Ωm−1

2
;�ðni−mÞ and Ω̆m−1

2
;�ðni−mÞ when required.

With the help of the described intertwining operators,
we can construct three types of ladder operators for Hð�Þ
which are given by:

A� ¼ A−
ð−ÞC

�
ν A

þ
ð−Þ; B� ¼ A−

ðþÞC
�
ν A

þ
ðþÞ;

Cþ ¼ A−
ð−ÞA

þ
ðþÞ; C− ¼ A−

ðþÞA
þ
ð−Þ: ð7:6Þ

Let us denote these operators in the compact form F�
a ¼

ðA�;B�; C�Þ, a ¼ 1, 2, 3, and use (7.1) and (7.2) to obtain
the commutation relations

½Hð�Þ;F�
a � ¼ �RaF�

a ; ½F−
a ;Fþ

a � ¼ PaðHð�ÞÞ; R1 ¼ R2 ¼ 4;

P1 ¼ ðηþ 2νþ 3Þðη − 2νþ 1ÞPn−ðηÞPn−ðηþ 4Þjη¼Hð−Þ
η¼Hð−Þ−4;

P2 ¼ ðηþ 2νþ 3Þðηþ 2νþ 1ÞPnþðηÞPnþðηþ 4Þjη¼HðþÞ
η¼HðþÞ−4;

R3 ¼ 4ðnnþ þ 1Þ; P3 ¼ PnþðηÞPn−ðηÞj
η¼Hð−Þ
η¼HðþÞ−4; ð7:7Þ
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where

Pn−ðyÞ ¼
Yn−
i¼1

ðy − λ−i Þ; PnþðyÞ ¼
Ynþ
i¼1

ðy − λþi Þ; ð7:8Þ

and λ�i are the corresponding eigenvalues of the seed states
in the positive and negative schemes. Equations (7.7) are
three different but related copies of the nonlinearly de-
formed conformal algebra slð2;RÞ. One can verify that due
to the nonlinearity of these three copies, the commutator of
generators with different values of index a do not vanish,
and therefore the complete structure is rather complicated.
Similarly to the nondeformed case, be means of a unitary

transformation produced by U ¼ e−itHð�Þ we obtain the
integrals of motion F�

a ðtÞ ¼ e∓RaF a, and by linear com-
binations of them construct the Hermitian generators
DaðtÞ ¼ ðF−

a ðtÞ − Fþ
a ðtÞÞ=ði2RaÞ and KaðtÞ ¼ ðFþ

a ðtÞ þ
F−

a ðtÞ þ 2Hð�ÞÞ=R2
a which generate three copies of a

nonlinear deformation of the Newton-Hooke algebra,

½Hð�Þ;Da� ¼ −i
�
Hð�Þ −

ðRaÞ2
2

Ka

�
;

½Hð�Þ;Ka� ¼ −2iDa;

½Da;Ka� ¼
1

iR3
a
ðPaðHð�ÞÞ − 2RaHð�Þ þ R3

aKaÞ; ð7:9Þ

which are hidden symmetries of the system described
by Hð�Þ.
In the isospectral case, the operatorsA� are the spectrum

generating ladder operators, where their action on physical
eigenstates of Hð�Þ is similar to that of C�ν in the AFF
model. On the other hand, in rationally extended gapped
systems obtained by Darboux transformations based on the
schemes not containing Jordan states, the separated states
have the form A−

ð−Þψ̃−ν−1;−lj ¼ A−
ðþÞψν;nnþ−lj , where the

states ψ−ν−1;−lj belong to the negative scheme and
ψν;nnþ−lj are the omitted states in the corresponding dual
positive scheme. Since by construction the separated states
belong to the kernel of Aþ

ð−Þ, the operators A
� and C− will

always annihilate all them.
The resulting total picture related to the action of the

ladder operators can be summarized as follows. Operators
of the A� type detect all the separated states organized in
valence bands, while they act like ordinary ladder operators
in the equidistant part of the spectrum. The lowering
operator B− annihilates the lowest state in each valence
band, and the raising operator Bþ annihilates there the
highest states, and B� also act in an ordinary way in the
equidistant part. The operators C� connect the separated
part of the spectrum with its equidistant part, and the
lowering operator C− annihilates all the separated states as
well as some excited states in the equidistant part according

to the rule: if there is no level in the spectrum of energy
En − ΔEðnnþ þ 1Þ, where ΔE ¼ 4, then the corresponding
physical eigenstate of energy En is annihilated by it. For the
case of the confluent Darboux transformations produced on
the base of the scheme (6.8) and its dual one, the separated
states are A−

ð−Þψ̃m−1
2
;−l� ¼ A−

ðþÞψm−1
2
;nN−m−l� , but the picture

related to the action of the ladder operators is the same.

VIII. APPLICATION: EXAMPLE

In this section we will apply the machinery of the dual
schemes and the construction of nonlinear deformations
of the conformal algebra to a nontrivial example of
rationally extended system with gaps. Remember that if
we take ν ¼ μþm, we do the change ψ−ðμþmÞ−1;�n
by Ω−ðμþmÞ−1;�ðn−mÞ with n > m when μ → −1=2 in each
of the relations that we have in the following, see Sec. V.
Consider a system generated on the base of the Darboux-

dual schemes ðψν;2;ψν;3Þ ∼ ðψν;−0;ψν;−1;ψν;−2;ψ−ν−1;−2;
ψν;−3;ψ−ν−1;−3Þ. Here, n− ¼ 2, nþ ¼ 6, nnþ ¼ nn− ¼ 3

and n− þ nþ ¼ 2ðnnþ þ 1Þ ¼ 8 ¼ 2ΔE. The positive
scheme, whose Wronskian is given explicitly in
Appendix C, corresponds to the Krein-Adler scheme that
provides us the system

HðþÞ ¼ −
d2

dx2
þ VðþÞðxÞ; ð8:1Þ

whose potential VðþÞ is plotted in Fig. 5. The spectrum of
the system, Eν;0 ¼ 2νþ 3, Eν;1 ¼ 2νþ 7, Eν;n ¼ 2ν þ
4ðnþ 2Þ þ 3, n ¼ 2;…, is characterized by the presence
of the gap of the size 3ΔE ¼ 12, which appears between
the first and second excited states. The negative scheme
generates the shifted Hamiltonian operator Hð−Þ ¼
HðþÞ − 4ΔE. In terms of the intertwining operators A�

ðþÞ
and A�

ð−Þ of the respective positive and negative schemes,
the physical eigenstates of (8.1) are given by

FIG. 5. The resulting potential with ν ¼ 1=3 and energy levels
of the system. The energy levels of the physical states annihilated
by the ladder operators A−, Aþ, B−, Bþ, and C− are indicated
from left to right.
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Ψj ¼ A−
ðþÞψν;j ¼ A−

ð−Þψ̃−ν−1;j−3; j ¼ 0; 1; ð8:2Þ

Ψj ¼ A−
ðþÞψν;jþ2 ¼ A−

ð−Þψν;j−2; j ¼ 2; 3;…: ð8:3Þ

The explicit form of the polynomials (7.8) for the
system is

PnþðηÞ ¼ ðη − 11 − 2νÞðη − 15 − 2νÞ; ð8:4Þ

Pn−ðηÞ¼ ðηþ9−2νÞðηþ13−2νÞ
Y3
i¼0

ðηþ4nþ3þ2νÞ;

ð8:5Þ

and so, A−
ð�ÞA

þ
ð�Þ ¼ Pn�ðHνÞ and A−

ð�ÞA
þ
ð�Þ ¼ Pn�ðHð�ÞÞ.

The spectrum generating ladder operators are given by
Eq. (7.6), and the nonlinearly deformed conformal algebras
generated by each corresponding pair of the ladder oper-
ators and the Hamiltonian HðþÞ are obtained from (7.7) by
using polynomials (8.4) and (8.5). To clarify the physical

nature of the ladder operators in more detail, we inspect their
corresponding kernels by using relations (4.20) and (7.4).
We consider first the operators B�, which have the

lowest differential order 6 and possess the following
kernels:

kerB− ¼ spanfA−
ð−Þψ̃−ν−1;−0; A−

ðþÞψ̃ν;2; A−
ðþÞψ̃ ν;3;Ψ0;

A−
ðþÞψ−ν−1;0;Ψ2g;

kerBþ ¼ spanfA−
ðþÞψ̃ν;2; A−

ðþÞψ̃ν;3; A−
ðþÞψν;−0;

A−
ðþÞψ−ν−1;0;Ψ1; A−

ð−Þψ̃−ν−1;−1g;

where only Ψj with j ¼ 0, 1, 2 are physical states. The
operators B� act like fermionic operators in the separated
two-dimensional valence band, in which Bþ transforms
the state Ψ0 into the excited state Ψ1, and annihilates Ψ1,
while B− acts in a similar way but in the downward
direction.
The ladder operators A� have differential order 14 and

their kernels are

kerA− ¼ spanfA−
ð−Þψ̃ν;−0; A−

ð−Þψ̃ν;−1; A−
ð−Þψ̃ν;−2; A−

ð−Þψ̃ ν;−3;Ψ0;Ψ1;Ψ2; A−
ð−Þψ−ν−1;0;

A−
ð−Þψ̃−ν−1;0; A−

ð−Þψ−ν−1;−1; A−
ðþÞψ̃ν;1; A−

ðþÞψ̃−ν−1;1; A−
ðþÞψ̃−ν−1;2; A−

ðþÞψ̃−ν−1;3g;
kerAþ ¼ spanfA−

ð−Þψ̃ν;−0; A−
ð−Þψ̃ν;−1; A−

ð−Þψ̃ν;−2; A−
ð−Þψ̃ ν;−3;Ψ0;Ψ1; A−

ð−Þψ̃ν;4;

A−
ð−Þψ−ν−1;−0; A−

ð−Þψν;−4; A−
ð−Þψ−ν−1;−4; A−

ð−Þψ̃ν;0; A−
ð−Þψ̃−ν−1;0; A−

ð−Þψ̃−ν−1;1; A−
ð−Þψ̃−ν−1;2g:

Both separated states are detected by A�: they are
annihilated by both lowering and raising ladder operators.
From the described action of the ladder operators A� and
B� it is clear that one cannot connect with their help the two
separated states with the states in the equidistant part of the
spectrum, and we need another pair of the ladder operators
to do this job. Fortunately, we have the operators C� of
differential order 8, whose kernels are

ker C− ¼ spanfA−
ð−Þψ̃ν;−0; A−

ð−Þψ̃ ν;−1; A−
ð−Þψ̃ν;−2; A−

ð−Þψ̃ν;−3;

Ψ0;Ψ1;Ψ4;Ψ5g;
ker Cþ ¼ spanfA−

ðþÞψ̃ν;2; A−
ðþÞψ̃ν;3; A−

ðþÞψν;−0; A−
ðþÞψν;−1;

A−
ðþÞψν;−2A−

ðþÞψ−ν−1;−2; A−
ðþÞψν;−3; A−

ðþÞψ−ν−1;−3; g:

These equations show that the lowering operator C−

annihilates all the states in the separated valence band as
well as some states in the equidistant part of the spectrum,
but the raising operator Cþ does not annihilate any physical
state. In fact, by using the commutation relation for these
operators given in (7.6), which for this case is read as
½HðþÞ; C�� ¼ �4ΔEC�, one can derive that CþΨ0 ¼ Ψ2

and CþΨ1 ¼ Ψ3. This allows us to connect the separated
states with the equidistant part of the spectrum.

IX. SUMMARY, DISCUSSION, AND OUTLOOK

We studied the effect of the Klein four-group K4 as a
symmetry of the time-dependent Schrödinger equation of
the AFF model, and found that it has deep implications in
dependence on the values of the parameter ν in the coupling
constant gðνÞ ¼ νðνþ 1Þ ≥ −1=4. In general, the action of
theK4 transformations changes the values of the energy, and
transforms physical eigenstates into nonphysical ones. In the
case ν ¼ l − 1=2 with l ¼ 0; 1; 2;…, however, the reflec-
tion symmetry of the coupling constant, ρ1∶ν → −ν − 1,
reduces to the identity transformation when l ¼ 0, while
for l ≥ 1 it annihilates the first l states and transforms all
other eigenstates, ρ1ðψl−1=2;nþlÞ ¼ ð−1Þlψl−1=2;n, coher-
ently with lowering their energies so that the spectrum is
not changed. Thus, the ρ1 appears to be a true, nontrivial Z2

symmetry of the system when the parameter ν takes half-
integer values. Omitting the normalization constants in wave
functions ψl−1=2;n, n ¼ 0;…;l − 1, l ≥ 1, annihilated by
ρ1, the same transformation allows us to construct nonphysi-
cal states which play an important role in our constructions
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and can be transformed into physical states by the action
of the raising operator. On the other hand, the spatial
Wick rotation ρ2∶ðx; Eν;nÞ → ðix;−Eν;nÞ corresponds to
the automorphism of the conformal algebra slð2;RÞ. This
automorphism transforms an infinite-dimensional unitary
representation of slð2;RÞ restricted from below, which is
realized on the spectrum of the AFF system, into an infinite-
dimensional unitary representation restricted from above.6

The nonphysical states generated by the transformations of
the K4 group appear in the kernels of the degrees of the
decreasing and increasing generators of slð2;RÞ. In special
cases of ν ¼ l − 1=2, some of those nonphysical states are
changed for Jordan states of the AFF system.
We showed that in the N ¼ 2 super-extensions of the

AFF model, the nonphysical eigenstates produced by the
K4 generators play a key role in the corresponding Darboux
transformations, and that the K4 is the automorphism group
of their superconformal ospð2; 2Þ dynamical symmetry.
The interesting feature of the transformations generated by
the ρ1 is that they change the systems with exact (unbroken)
N ¼ 2 Poincaré supersymmetry into the systems in a
spontaneously broken phase, and vice versa. The pecu-
liarity of the case ν ¼ −1=2 reveals itself here once again:
both possible supersymmetric extensions of the AFF model
turn out to be related by a unitary transformation provided
by ρ1, and are described by the unbroken N ¼ 2 Poincaré
supersymmetry.
Then we use the discrete transformations generated by

the Klein four-group together with the conformal symmetry
to generate, by means of Darboux transformations, infinite
families of new, exactly solvable quantum systems with
arbitrary number of gaps introduced into the equidistant
spectrum of the AFF model. The obtained systems are
described by symmetries of the type of finite W algebras,
which represent nonlinearly deformed and extended forms
of the conformal slð2;RÞ algebra.
To construct such rational deformations of the AFF

system and study their spectral properties, we developed
the algorithm of the dual Darboux schemes for the
conformal mechanics model with arbitrary values of the
statistics parameter ν. Note that the simplest form of
the dual Darboux schemes appears in the construction of
the N ¼ 2 super-extensions of the AFF model and gen-
erators of their superconformal ospð2; 2Þ symmetry. The
physical eigenstates together with nonphysical ones gen-
erated from them by transformations of the Klein four-
group form a base for the Darboux duality in the case of
ν ≠ Zþ 1=2. In the case of half-integer values of ν the
Jordan states naturally enter the construction via the
confluent Darboux transformations. Each pair of the dual

Darboux transformations different from that we employed
in the construction of the N ¼ 2 super-extensions of
the AFF model, generates its some rational deformation.
The obtained in such a way system can be completely
isospectral (up to a global spectral shift) to the initial
conformal mechanics model, or may have a finite number
of valence bands in the low part of the spectrum, which are
separated by gaps between themselves and from the semi-
infinite band with equidistant energy levels. The minimal
size of a gap in our construction corresponds to one missing
energy level in comparison with two missing levels in gaps
of minimal size in the systems generated by the Krein-
Adler transfromations, which also are included in our dual
Darboux schemes.
We showed that when the statistics parameter varies

continuously, the spectrum of rationally deformed AFF
systems suffers structural changes at half-integer
(“fermionic”) values of ν. No such changes happen,
however, at integer values of ν corresponding to the case
of bosons in the context of the statistics transmutations
[29–31]. Recall that all the deformations of the conformal
mechanics model with ν ∈ Z can be generated by gener-
alized Darboux transformations from the quantum har-
monic oscillator system [42]. At the same time we also note
here that the question of the self-adjoint extension of the
AFF Hamiltonian operator requires a special consideration
in the case ν ¼ −1=2 [54], which corresponds to a minimal
value of the coupling constant g for which the spectrum is
bounded from below, and when, as we saw, the Klein
four-group symmetry suffers minimal breaking.
The Darboux duality allowed us to obtain the set of the

three pairs of ladder operators of different but comple-
mentary nature. In the case of the rationally deformed
gapped systems, Hermitian conjugate ladder operators of
the A type detect all the separated states, each of which is
annihilated by both, the lowering and the raising, operators;
the lowering operatorA− also annihilates the lowest state in
the equidistant part of the spectrum. The raising ladder
operator of the B type detects the states with highest energy
level in each valence band by annihilating them. The
lowering operator B− makes the same with the states of
the lowest energy level in each valence band, and also
annihilates the lowest state in the equidistant part of the
spectrum. Although the operators of these two types detect
all the separated states as well as identify the borders of the
valence bands and the edge of the semi-infinite band with
equidistant energy levels, they cannot connect the states
from different bands. This job is realized with the help of
the ladder operators of the C type. As a result, one can see
that any of the two sets of the ladder operators, (C�,A�) or
(C�, B�), forms a complete set of the spectrum generating
ladder operators by which any eigenstate of the rationally
deformed AFF system can be transformed into its any other
eigenstate. In the case if we have an isospectral deformation
of the AFF system Hν obtained via the Darboux scheme

6The restricted from above unitary representations are non-
physical from the point of view of the AFF system, but both types
of the slð2;RÞ-representations find applications in the theory of
anyons [65–67].

LUIS INZUNZA and MIKHAIL S. PLYUSHCHAY PHYS. REV. D 99, 125016 (2019)

125016-20



(6.3), the operators A� are enough to generate the entire
tower of physical eigenstates starting from any physical
eigenstate.
Each of the three pairs of the conjugate ladder operators

together with the Hamiltonian operator generate some
nonlinearly deformed version of the conformal slð2;RÞ
algebra of the W-type [68], which is the symmetry of
the corresponding rationally deformed AFF system of a
generic form. We, however, did not compute commutators
between ladder operators of different types, but with a
quick inspection one can notice that new structures are
generated. Though the resulting picture is expected to be
rather complicated and requires a separate study, it should
be similar to that appearing in the case of ν ¼ 0, which
was analyzed in detail in [43], as well as to that in the
PT-regularized two-particle Calogero systems [69,70], and
can be described as follows. Any extended system com-
posed from a pair of the AFF systems characterized by the
parameters ν and νþm, m ∈ Z, are described, as we
showed, by the superconformal ospð2; 2Þ symmetry in the
case of m ¼ 1, while a nonlinear deformation of this
superalgebra should appear when m > 0. On the other
hand, if the composed system contains a pair of rationally
deformed AFF systems, according to our results in [43],
one can expect that its spectrum should be described by
some nonlinear extensions of the ospð2j2Þ symmetry.
Some nonlinearly extended versions of slð2;RÞ are
expected then to appear as W-type algebras describing
symmetries of the rationally deformed AFF systems.
Our consideration of rational deformations of the con-

formal mechanics was restricted by inclusion of Jordan
states of the simplest form. Following the analysis and
ideas presented in Refs. [44–47,49], the constructions can
be generalized to the case of higher order Jordan states
defined via relations

ðL − λ�ÞΩð0Þ
� ¼ ψ�; ðL − λ�ÞΩðkÞ

� ¼ Ωðk−1Þ
� ;

k ¼ 1;…; ð9:1Þ

as well as to their further generalizations defined as the
states annihilated by polynomial in L operators [48].

The states that we have used correspond to Ωð0Þ
� . In this

way, one can produce the systems by means of confluent
Darboux transformations which involve more Jordan states
of these chains, and one can expect that the spectrum of
the resulting systems will have a similar gapped structure.
Then it would be interesting to study such kind of the
systems from the point of view of the spectrum generating
ladder operators and the extended nonlinear deformations
of the (super)conformal algebra associated with them.
It is known that the conformal symmetry underlies the

relation between the quantum free particle and harmonic
oscillator systems [17,71,72]. A similar picture also is valid
for the two-particle Calogero system without confining

potential term and omitted center of mass degree of
freedom, i.e., for the system (3.1), and the AFF model
(3.7) [2,25,73,74]. The Calogero model and its deforma-
tions, in turn, are intimately related to the soliton solutions
of the Korteweg-de Vries equation and higher equations of
its hierarchy [41,75–77]. It would be interesting to inves-
tigate the question of a possible relation between rational
deformations of the AFF model studied here and solutions
to the same hierarchy of completely integrable systems
described by partial differential equations. At the same
time, the approach based on the Klein four-group trans-
formations employed here can also be applied to the
two-particle Calogero model with arbitrary values of the
statistics parameter ν but without the confining harmonic
potential term. In this way one could expect to generate
new quantum solvable systems which may be related to the
Korteweg-de Vries hierarchy.
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APPENDIX A: DUAL SCHEMES IN
HALF-INTEGER CASE

To obtain the dual schemes in the half-integer case,
we analyze first the relations that exist between of H−1=2
and H−1=2þl. The latter are given by the dual schemes
ðψ−1=2;�0;…;ψ−1=2;�ðl−1ÞÞ, whose Wronskians are

Wðψ−1=2;�0;…;ψ−1=2;�ðl−1ÞÞ ¼ xl
2=2e∓lx2=2: ðA1Þ

The corresponding intertwiners map eigen- and Jordan
states of H−1=2 to those of H−1=2þl. If we choose the
scheme with positive indexes, some of these mappings
useful for the following are given by

A−
lψ−1=2;n ¼ ψ−1=2þl;n−l; A−

lΩν;−1=2 ¼ Ω−1=2þl;n−l;

n ≥ l; ðA2Þ

A−
lΩ−1=2;l ¼ ψ−ð−1=2þlÞ−1;l; l < l; ðA3Þ

where A−
l and its Hermitian conjugate Aþ

l are the inter-
twining operators of the chosen Darboux transformation.
On the other hand if we take the scheme with negative sign
in indices, we obtain another intertwining operators B�

l ,
which satisfy the relation B�

l ¼ ðiÞlρ2ðA�
l Þ, i.e., their

action on eigenstates and Jordan states can be obtained
by application of ρ2 to the relations that correspond to the
action of A�

m.
Now, to derive the dual schemes let us assume that we

have a collection of nonrepeated seed states of the form
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ðψ−1=2;0;…;ψ−1=2;l−1; fϑ−1=2gÞ, where fϑ−1=2g contains
N1 arbitrary physical states ψ−1=2;ki with ki > l − 1 for
i ¼ 1;…; N1, and N2 arbitrary Jordan states of the form
Ω−1=2;lj with j ¼ 1;…; N1. In the same way as we did in
Sec. V, we define nN as the largest of the numbers nN1

and
nN2

, and also we suppose for simplicity that the signs of
both ki and kj are positive. Then we use (2.8) and (A1) to

write Wðψ−1=2;0;…;ψ1=2;l−1; fϑ−1=2gÞ ¼ xl
2=2e−lx

2=2W
ðfA−

lϑ−1=2gÞ. The next step is to use the extension of
the dual schemes for ν ¼ −1=2, i.e., we change each
function of the form ψ−ν−1;n by Ω−1=2;n in Eq. (5.2), and
use it to rewrite this last Wronskian relation as

WðA−
lfϑ−1=2gÞ ¼ x−l

2=2e−ðnNþ1−l=2Þx2WðfΔð−1=2Þ
− gÞ;

ðA4Þ

where Δð−1=2Þ
− is the dual scheme of ðψ−1=2;0;…;ψ−1=2;l−1;

fϑ−1=2gÞ given by fΔð−1=2Þ
− g ¼ ðψ−1=2;−0;…;ψ−1=2;−ðl−1Þ;

fϑ−−1=2gÞ, and

fϑ−−1=2g ¼ ðψ−1=2;−l;Ω−1=2;−0;…; ψ̌−1=2;−sj ; Ω̌−1=2;−ri ;…;

ψ−1=2;−nN ;Ω−1=2;−nN Þ: ðA5Þ

Here, as well as in the nonhalf-integer case, the marked
functions ψ̌−1=2;−sj and Ω̌−1=2;−ri indicate the omitted states
with sj ¼ nN − lj and ri ¼ nN − ki. In the last step, we use
Eqs. (2.8) and (A1) with the negative sign to write the
equality WðfΔð−1=2Þ

− gÞ ¼ xl
2=2elx

2=2WðB−
lfϑ−−1=2gÞ and as

analog of (A4) we obtain

WðA−
lfϑ−1=2gÞ ¼ e−ðn0Nþ1Þx2WðB−

lfϑ−−1=2gÞ;
n0N ¼ nN − l: ðA6Þ

This relation is the dual scheme equation for the case
ν ¼ l − 1=2. By means of (A2) and its analogs for B−

l
obtained by the application of ρ2, we conclude that in
the scheme of the left-hand side of the equation there are
N1 physical states of the form A−

lψ−1=2;ki ¼ ψl−1=2;ki−l,
and a mixture of N2 Jordan states and formal states
produced by ρ2 distributed in the following way: we
have Jordan states A−

lΩ−1=2;li ¼ ψl−1=2;li when li < l − 1,
and formal statesA−

lΩ−1=2;li ¼ ψl−1=2;li−l when li ≥ l. The
omitted states in the scheme on the right-hand side are
B−
l ψ̌−1=2;−sj¼ψ̌−1=2þl;−ðsj−lÞ and B−

l Ω̌−1=2;−rj¼ψ̌−l−1=2;−rj

(B−
l Ω̌−1=2;−rj ¼ ψ̌−l−1=2;−ðrj−lÞ) when rj ≤ l − 1 (rj > l).

Note that the largest index in both sides of the equation is
now given by n0N ¼ nN − l. In comparison with the non-
half-integer case, this is the same result that we would
obtain if we consider Eq. (5.2) in the nonhalf-integer case,
and then formally change the states of the form ψ−ν−1;li by
Ω−l−1=2;li−l when li ≥ l in the limit ν → l − 1=2.

Relation analogous to (5.3) would be obtained if we
start from the case ν ¼ −1=2 with a scheme composed
from the eigenstates and Jordan states produced by ρ2, and
then apply the same arguments employed for the case
analyzed above.

APPENDIX B: SOME WRONSKIAN RELATIONS

We show here that the Wronskian (6.5) takes nonzero
values and that it reduces to (6.8) in the limit μ → −1=2.
For this, consider first a generic system (2.1) which has a
set of the seed states ðϕ1;ϕ2;…;ϕ2l−1;ϕ2lÞ with eigen-
values λ1 < λ2 < … < λ2l−1 < λ2l. Then the following
relation

Wðϕ1;ϕ2;…;ϕ2l−1;ϕ2lÞ ¼
Yl−1
i¼0

WðA2iϕ2iþ1;A2iϕ2iþ2Þ;

ðB1Þ
can be proved by induction, where A0 ¼ 1, and A2i with
i ≥ 1 corresponds to the intertwining operator associated
with the scheme ðϕ1;…;ϕ2iÞ. From (B1) it follows that if
each factor WðA2iϕ2iþ1;A2iϕ2iþ2Þ does not have zeros,
then the complete Wronskian neither has them. To inspect
the properties of the Wronskian factors, we use the
relation

W0ðA2iϕ2iþ1;A2iϕ2iþ2Þ¼ ðλ2iþ2−λ2iþ1ÞA2iϕ2iþ1A2iϕ2iþ2;

ðB2Þ

and integrate it from a to x,

WðA2iϕ2iþ1;A2iϕ2iþ2Þ

¼ ðλ2iþ2 − λ2iþ1Þ
Z

x

a
A2iϕ2iþ1A2iϕ2iþ2dζ þ ω; ðB3Þ

where ω ¼ WðA2iϕ2iþ1;A2iϕ2iþ2Þjx¼a. In the case when
functions A2iϕ2iþ1, A2iϕ2iþ2 and their first derivatives
vanish in b, we find ω ¼ −ðλ2iþ2 − λ2iþ1Þ

R
b
a A2iϕ2iþ1

A2iϕ2iþ2dζ, and then

WðA2iϕ2iþ1;A2iϕ2iþ2Þ

¼ −ðλ2iþ2 − λ2iþ1Þ
Z

b

x
A2iϕ2iþ1A2iϕ2iþ2dζ: ðB4Þ

Relation (B1) takes then the form

Wðϕ1;ϕ2;…;ϕ2l−1;ϕ2lÞ

¼
Yl−1
i¼0

ðλ2iþ1 − λ2iþ2Þ
Z

b

x
A2iϕ2iþ1A2iϕ2iþ2dζi: ðB5Þ

Analogously, one can consider a generic system, choose
l solutions φi of Eq. (2.1), and construct l corresponding
Jordan states Ωi using Eq. (2.13). Assuming also that these
states satisfy relations (2.16), one can find that
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Wðφ1;Ω1;…;φl;ΩlÞ ¼
Yl−1
i¼0

WðAΩ
2iφiþ1;AΩ

2iΩiþ1Þ

¼
Yl−1
i¼0

Z
b

x
ðAΩ

2iφiþ1Þ2dζi; ðB6Þ

where AΩ
0 ¼ 1 and AΩ

2i correspond to the intertwining
operator associated with the scheme ðφ1;Ω1…;φl;ΩlÞ.
Relation (B6) can be proved in a way similar to that for (B5).
Let us turn now to the AFF model, where a ¼ 0, b ¼ ∞,

and choose the seed states in (B1) in correspondence with
our picture: for i ¼ 0;…; l − 1 we fix ϕ2iþ1 ¼ ψ−μ−m−1;niþ1

and ϕ2iþ2 ¼ ψμþm;niþ1−m. This identification implies that
λ2iþ1 ¼ E−μ−m−1;niþ1

, λ2iþ2 ¼ Eμþm;niþ1−m, and λ2iþ2 −
λ2iþ1 ¼ 4ðμþ 1=2Þ. These both functions and their first
derivatives behave for large values of x as e−x

2=2, and
vanish at x ¼ ∞. This behavior is not changed by appli-
cation of any differential operator with which we work.
On the other hand, near zero we have A2iψ−μþmþ1;niþ1

∼
x−μ−m−i and A2iψμþm;niþ1−m ∼ xμþmþ1þi. Therefore, for
small values of x, A2iψ−μþmþ1;niþ1

A2iψμþm;niþ1−m ∼ x,
and WðA2iψ−μþmþ1;niþ1

;A2iψμþm;niþ1−mÞ takes a finite
value when x → 0þ. Knowing this and Eq. (B2), we
employ the Adler method [38], and use the theorem
on nodes of wave functions to show that zeros and the
minima and maxima of the functions A2iψ−μþmþ1;niþ1

and
A2iψμþm;niþ1−m do not coincide, and that their correspond-
ing Wronskian is nonvanishing.
In the case μ ¼ −1=2, we put φj ¼ ψm−1=2;njþ1−n with

j ¼ 0;…; l − 1, and then we arrive at the relations

WðfγμgÞ
ð4μþ 2ÞN ¼ ð−1Þl

Yl−1
i¼0

Z
∞

x
A2iψ−μ−m−1;niþ1

×A2iψμþm;nniþ1
−mdζi; ðB7Þ

WðfγgÞ ¼
Yl−1
j¼0

Z
∞

x
ðAΩ

2jψm−1=2;njþ1−mÞ2dζj; ðB8Þ

where the sets fγμg and fγg are defined in (6.5) and (6.8).
We note that both equations are pretty similar each other,
and if we suppose that A2i → AΩ

2i when μ → −1=2, and
take into account the relation ψm−1=2;nj−m ∝ ψ−ðm−1=2Þ−1;nj ,
we find that

lim
μ→−1=2

WðfγμgÞ
ð4μþ 2ÞN ∝ WðfγgÞ: ðB9Þ

This relation is true for the case i ¼ 1, which implies that
A2 → AΩ

2 in the corresponding limit. The general case is
proved by induction.

APPENDIX C: WRONSKIANS (5.8), (5.9)

The explicit form of the Wronskians (5.8) and (5.9),
which are used in the main text, is

Wðψν;2;ψ−ν−1;2Þ
¼ ð2νþ 1Þe−x2ð45 − 72νþ 16ð−4x6 þ x8Þ

þ 8x4ð15 − 4νð1þ νÞÞ þ ν2ð−7þ 2νð2þ νÞÞÞ;
ðC1Þ

Wðψν;2;ψν;3Þ
¼ e−x

2

x3þ2νð16x8 − 32x6ð5þ 2νÞ þ 24x4ð5þ 2νÞ2
− 8x2ð3þ 2νÞð5þ 2νÞð7þ 2νÞ þ ð3þ 2νÞð5þ 2νÞ2
× ð7þ 2νÞÞ: ðC2Þ
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