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The area dependence of entanglement entropy of a free scalar field is often understood in terms of
coupled harmonic oscillators. In Schrodinger quantization, the Gaussian nature of ground state wave
function for these oscillators is sufficient to provide the exact form of the reduced density matrix and its
eigenvalues, thus giving the entanglement entropy. However, in polymer quantization the ground state is
not Gaussian and the formalism that can provide the exact analytical form of the reduced density matrix is
not yet known. In order to address this issue, here we treat the interaction between two coupled harmonic
oscillators in the perturbative approach and evaluate the entanglement entropy in Schrodinger and polymer
quantization. Contrary to Schrodinger quantization, we show that in the high frequency regime the
entanglement entropy decreases for polymer quantization, keeping the ratio of coupling strength to the
square of individual oscillator frequency fixed. Furthermore for the free scalar field we validate the area
dependence of entanglement entropy in Fock quantization and demonstrate that polymer quantization
produces a similar area law.
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I. INTRODUCTION

The fact that one can incorporate thermodynamical
attributes to a black hole was first introduced in the seminal
work of Bekenstein [1,2]. In these articles and others
[3–13] the authors demonstrated that intrinsic entropy
SBH of a black hole should be proportional to the area
Ah of its event horizon SBH ¼ 1

4
M2

PlAh, where MPl is the
Planck mass. Then the natural question appeared as to how
to connect the concept of quantum states to this entropy of
event horizon [14–17] as horizon is not different than any
other classical surface with no special local dynamics. To
answer this question and to provide a more general
realization of the entropy associated to a black hole the
authors in [18,19] presented the idea in terms of entangle-
ment entropy. Here it is shown that entanglement entropy of
a free scalar field in a certain spatial region is proportional
to its area. In these articles the reduced density matrix,
essential for estimating the entanglement entropy, is
obtained by tracing over the spatial degrees of freedom
(d.o.f.) of the ground state density matrix residing inside the
considered region.
In the regular formulation of entanglement entropy

estimation [19] first the scalar field is partially Fourier
transformed with respect to the angular coordinates. The
resulting Fourier field Hamiltonian is still dependent on the

radial coordinate and it is discretized by assuming a lattice
of finite size and interatomic spacing. This discretization
transforms the Fourier Hamiltonian to be a collection of
coupled harmonic oscillators. The ground state wave
function for these coupled harmonic oscillators then pro-
vides the corresponding ground state density matrix for
the field. Subsequently using the Gaussian nature of this
ground state wave function the reduced density matrix and
its eigenvalues are obtained, which would produce the
entanglement entropy. However this Gaussian nature is a
feature specific to the Schrodinger quantization. In polymer
quantization [20–22], the quantization method used in loop
quantum gravity (LQG) [23–25], the ground state wave
functions are expressed in terms of Mathieu functions.
Using these polymer wave functions it is still unknown how
to obtain the analytic form of reduced density matrix.
In this article we consider a perturbative approach to

circumvent these difficulties and obtain the entanglement
entropy for free scalar field using Fock and polymer
quantization. We treat the interaction between coupled
harmonic oscillators in a perturbative manner to get the
related ground state and eigenvalues of the reduced density
matrix. first we use this procedure to evaluate the entan-
glement entropy for two coupled harmonic oscillators in
Schrodinger and polymer quantization. Then by consider-
ing the free scalar field we obtain the area law in Fock
quantization. Furthermore, we apply polymer quantization
in this formulation and verify that the field theoretic
entanglement entropy obeys a similar area law.
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In Sec. II we briefly review the procedures to derive the
entanglement entropy in the usual formulation. In this
section the detailed description of the considered system is
given. Following in Sec. III we recall the perturbative
formulation and construct the framework to estimate
the entanglement entropy utilizing this technique. In the
subsequent sections we use this formulation to obtain
entanglement entropy for two coupled harmonic oscillators
in Schrodinger and polymer quantization. The following
parts include the realization of the area law of entanglement
entropy in Fock and polymer quantization utilizing per-
turbative formulation. We argue about the implications of
the obtained results and conclude with the discussion.

II. ENTANGLEMENT ENTROPY AND
THE AREA LAW

In the standard derivations of entanglement entropy
[18,19,26–33] one considers a system of coupled harmonic
oscillators as a basis. In particular, the eigenvalues of the
reduced density matrix for two coupled oscillators give the
entanglement entropy corresponding to a single oscillator.
These eigenvalues are used for a set of coupled harmonic
oscillators, which are obtained from the discretized
Hamiltonian of a free scalar field, to get the area law of
entanglement entropy. In this section we briefly review the
key aspects of these procedures and the considered sys-
tems, which will also be useful to construct the perturbative
formulation.

A. Entanglement entropy for two coupled
harmonic oscillators

In order to understand entropy from entanglement at first
a system of two coupled harmonic oscillators [19,26] is
considered. The two unit mass oscillators are denoted
by their position and momentum ðx1; p1Þ and ðx2; p2Þ.
The total system can be described by the Hamiltonian

H ¼ 1

2
½p2

1 þ p2
2 þ ω2

0ðx21 þ x22Þ þ k21ðx1 − x2Þ2�

¼ 1

2
½p2þ þ ω2þx2þ� þ

1

2
½p2

− þ ω2
−x2−�; ð1Þ

where the normal coordinates x� ¼ ðx1 � x2Þ=
ffiffiffi
2

p
, p� ¼

ðp1 � p2Þ=
ffiffiffi
2

p
and normal frequencies ωþ ¼ ω0, ω− ¼

ðω2
0 þ 2k21Þ1=2 are defined to make the Hamiltonian

decoupled. In decoupled form the ground state wave
function becomes simplified and can be expressed in terms
of the normal coordinates as

ψ0ðx1; x2Þ ¼
�
ωþω−

π2

�1
4

exp

�
−
ωþx2þ þ ω−x2−

2

�
: ð2Þ

From expression (2) one can find the ground state density
matrix to be ρðx1; x2; x01; x02Þ ¼ ψ0ðx1; x2Þψ�

0ðx01; x02Þ.

To discuss the entanglement entropy corresponding to a
single oscillator one needs to find its associated reduced
density matrix. The reduced density matrix is obtained by
tracing out the density matrix with respect to the position
d.o.f. of a single oscillator, expressed as

ρrðx2; x02Þ ¼
Z

∞

−∞
dx1ψ0ðx1; x2Þψ�

0ðx1; x02Þ: ð3Þ

The reduced density matrix describes whether the system is
in mixed or pure state and the corresponding entanglement
entropy is defined as SE ¼ −Tr½ρr ln ρr�. In a suitable basis
one can evaluate the entanglement entropy by obtaining the
eigenvalues of the reduced density matrix. In particular,
for two coupled harmonic oscillators the resulting reduced
density matrix from Eq. (3) has eigenvalues

λn ¼ ð1 − ξ2Þξ2n where ξ ¼
ffiffiffiffiffiffi
ω−

p − ffiffiffiffiffiffiffi
ωþ

pffiffiffiffiffiffi
ω−

p þ ffiffiffiffiffiffiffi
ωþ

p : ð4Þ

Then the corresponding entanglement entropy [19,26,34]
becomes

SEðξÞ ¼ −
X
n

λn ln λn ¼ − ln ð1 − ξ2Þ − ξ2

1 − ξ2
ln ξ2: ð5Þ

B. Entanglement entropy for N-coupled
harmonic oscillators

Now it is important to understand the entanglement
entropy corresponding to N-coupled harmonic oscillators
to get the area law of entanglement entropy for the free
scalar field. The general Hamiltonian for the N-coupled
harmonic oscillator is

H ¼ 1

2

XN
j¼1

p2
j þ

1

2

XN
j;k¼1

xjKjkxk; ð6Þ

where the matrix K describes the potential and interaction.
The diagonal elements of K give the frequency square of
the individual oscillator and symmetric off diagonal elements
provide the interaction between two adjacent oscillators.
With the help of a suitably chosen orthogonal matrix U this
interaction matrix is diagonalized to KD as K ¼ UTKDU.
The ground state wave function of this N-coupled harmonic
oscillator (6) can be expressed as

ψ0ðx1;…; xNÞ ¼
�
Det:Ω
πN

�1
4

exp
�
−
x:Ω:x
2

�
; ð7Þ

where Ω ¼ UTK1=2
D U. From this wave function one can

obtain the reduced density matrix when the first n of the total
N oscillators are traced out [19]. The reduced density matrix
is further evaluated using a general form of the matrix Ω,
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Ω ¼
�

A B

BT C

�
; ð8Þ

where A is an n × n matrix corresponding to the first n
oscillators, C is a ðN − nÞ × ðN − nÞ matrix, and B is a
n × ðN − nÞ matrix. In terms of a few newly defined
quantities β ¼ ð1=2ÞBTA−1B and γ ¼ C − β, the reduced
density matrix becomes

ρoutðx; x0Þ ∼ exp ½−ðx:γ:xþ x0:γ:x0Þ=2þ x:β:x0�; ð9Þ

where x and x0 consist of the ðN − nÞ oscillators after the
integration over the first n d.o.f. x ¼ VTγ−1=2D y is defined,
where γ ¼ VTγDV such that γD is diagonal and V is
orthogonal. Then one gets ρoutðx; x0Þ ∼ exp ½−ðy:yþ y0:y0Þ=
2þ y:β0:y0�, where β0 ¼ γ−1=2D VβVTγ−1=2D . Now moving to
the basis z ¼ WTy, such that β0 is diagonalized as
β0D ¼ WTβ0W, one gets

ρoutðz; z0Þ ∼
YN

j¼nþ1

exp ½−ðz2j þ z02jÞ=2þ β0jzjz
0
j�; ð10Þ

where β0j are the eigenvalues of β0. Then the entanglement
entropy [19] corresponding to ðN − nÞ oscillators turns out
to be S ¼Pj SðξjÞ, with SðξÞ given by Eq. (5) and ξ2j ¼
β0j=½1þ ð1 − β02jÞ1=2�.

C. Entanglement entropy for free scalar field
and area law

In order to discuss the area law for entanglement entropy,
a free massive scalar field Φðx⃗Þ is considered with mass μ
and conjugate momenta Πðx⃗Þ. In Minkowski spacetime the
Hamiltonian [35–37] corresponding to the scalar field is

H ¼ 1

2

Z
d3x½Π2ðx⃗Þ þ j∇Φðx⃗Þj2 þ μ2Φ2ðx⃗Þ�: ð11Þ

In terms of partial Fourier decomposition the field Φðx⃗Þ
and the conjugate momentum Πðx⃗Þ are transformed with
respect to the angular coordinates as

Φðx⃗Þ ¼
X
l;m

Zlmðθ;ϕÞ
φlmðrÞ

r
;

Πðx⃗Þ ¼
X
l;m

Zlmðθ;ϕÞ
πlmðrÞ

r
; ð12Þ

where Zlmðθ;ϕÞ denotes real spherical harmonics and the
Fourier field modes satisfy a commutation relation
½φlmðrÞ; πl0m0 ðr0Þ� ¼ iδll0δmm0δðr − r0Þ among themselves.
With this definition of field decomposition from Eq. (12)
the Hamiltonian now becomes H ¼PlmHlm, where

Hlm ¼ 1

2

Z
∞

0

dr

�
π2lmðrÞ þ r2

� ∂
∂r
�
φlmðrÞ

r

��
2

þ
�
lðlþ 1Þ

r2
þ μ2

�
φ2
lmðrÞ

�
: ð13Þ

Next the radial coordinate r is discretized, forming a lattice
with interatomic spacing a and size L ¼ ðN þ 1Þa. The
inverse of the spacing a−1 signifies the ultraviolet cutoff
while the inverse system size L−1 denotes infrared cutoff.
This discretization makes the Hamiltonian look like a set
of coupled harmonic oscillators

Hlm ¼ 1

2a

XN
j¼1

�
π2lm;j þ

�
jþ 1

2

�
2
�
φlm;j

j
−
φlm;jþ1

jþ 1

�
2

þ
�
lðlþ 1Þ

j2
þ μ2a2

�
φ2
lm;j

�
; ð14Þ

such that φlm;Nþ1 ¼ 0 and ½φlm;j; πl0m0;j0 � ¼ iδll0δmm0δjj0 .
Comparison of this Hamiltonian with the Hamiltonian
for N-coupled harmonic oscillators from Eq. (6) gives [26]

Kjk ¼
1

j2

�
lðlþ 1Þδjk þ

9

4
δj1δk1 þ

�
N −

1

2

�
2

δjNδkN

þ ðμaÞ2j2δjk þ
��

jþ 1

2

�
2

þ
�
j−

1

2

�
2
�
δjkðj≠1;NÞ

�

−
� ðkþ 1

2
Þ2

kðkþ 1Þ
�
δj;kþ1 −

�ðjþ 1
2
Þ2

jðjþ 1Þ
�
δj;k−1: ð15Þ

The discretization of the radial coordinate enables one to
get a finite expression of matrix K denoting the potential
energy and interaction. This in turn would enable one to
obtain the entanglement entropy when a finite number n
of spatial points are traced out in total N þ 1 points. Then
as one plots the entanglement entropy with respect to
ðnþ 1=2Þ2, one gets a straight line, which represents the
celebrated area law for entanglement entropy [19]. We
present the area curve of entanglement entropy coming
from perturbative formulation along with the curve
obtained from this usual formulation together in the next
section.

III. ENTANGLEMENT ENTROPY IN THE
PERTURBATIVE APPROACH

As discussed in the previous section using the Gaussian
ground state wave function of coupled harmonic oscillators
from Schrodinger quantization Eq. (2), one can easily
evaluate the exact form of the reduced density matrix in
Eq. (3). However, in polymer quantization, a quantization
method used in loop quantum gravity, the ground state
wave function is obtained in terms of Mathieu functions. To
the best of our knowledge evaluation of the exact analytical
form of reduced density matrix is not possible even for two
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coupled oscillators using these polymer wave functions.
This constraint further debars one to obtain the eigenvalues
for N-coupled oscillators in polymer quantization and
motivates us to take help from the perturbation technique.
In this section we apply perturbation to describe entan-

glement entropy of coupled harmonic oscillators. We
express the Hamiltonian corresponding to the coupled
oscillators in terms of a noninteracting free Hamiltonian
H0 and a net interaction term λHint as

H ¼ H0 þ λHint: ð16Þ

When interaction strength is smaller than the strength of the
free Hamiltonian, which is obtained for small λ, one can
express the ground state jΩi corresponding to the whole
system in a perturbative manner as

jΩi ¼ j0i þ λj01i þ λ2j02i þ…; ð17Þ

where j0i denotes the ground state corresponding to the
noninteracting HamiltonianH0. On the other hand j01i and
j02i denotes the first and second order perturbative cor-
rections to the noninteracting ground state. From the time
independent perturbation theory [38–40] one obtains the
first order correction to the ground state as

j01i ¼
X
n≠0

hnjĤintj0i
E0 − En

jni; ð18Þ

where En denotes the energy of the nth excited state
corresponding to the noninteracting Hamiltonian. The
second order correction to the ground state is expressed as

j02i ¼ −
X
n≠0

h0jĤintj0ihnjĤintj0i
ðE0 − EnÞ2

jni

þ
X
m≠0

X
n≠0

hmjĤintjnihnjĤintj0i
ðE0 − EmÞðE0 − EnÞ

jmi: ð19Þ

We use these perturbative corrections to obtain the actual
ground state up to certain perturbative order in the system
of coupled harmonic oscillators. We mention that while
discussing polymer quantization [22] we consider only the
π-periodic sector for our calculations. In the π-periodic
sector, except for the ground state, the even and odd
energies become degenerate in high energy regimes.
Now as we are interested in the ground state density matrix
it is convenient for us to consider the nondegenerate
perturbation theory.

A. Entanglement entropy for two coupled
harmonic oscillators

We begin with a system of two coupled harmonic
oscillators. We recall the Hamiltonian from Eq. (1) and

observe that it can be expressed in the form of Eq. (16) with
H0 ¼ H1 þH2 and λHint ¼ −k21x1x2, where Hj ¼ ½p2

j þ
ω2x2j �=2 and ω ¼ ðω2

0 þ k21Þ1=2. Perturbative methods can
be applied when k21 is smaller than ω2, which is always true
for nonzero ω0. Then in this system of two coupled
oscillators the correction to the ground state wave function
due to first order perturbation would be

λj01i ¼ Annjni1 ⊗ jni2 ¼ Annjn; ni; ð20Þ

where in the second compact notation of the wave function
the first index corresponds to the first oscillator and
the second one corresponds to the second oscillator.
Here the operation of x̂j on the corresponding ground state
is given by

x̂jj0ij ¼
X
n

Cj
0njnij; ð21Þ

where in general the most dominating term comes from a
single excitation jnij. Then we get for two coupled
oscillators

Ann ¼
k21

En;n − E0;0
C1
0nC

2
0n: ð22Þ

Considering up to first order perturbation, the normalized
ground state is jΩi ¼ N1

nn½j0; 0i þ Annjn; ni�, where the
normalization factor N1

nn ¼ ð1þ A2
nnÞ−1=2. The corre-

sponding reduced density matrix for the first oscillator
would be

ρ̂1 ¼ Tr2ðjΩihΩjÞ ¼ ðN1
nnÞ2½j0ih0j þ A2

nnjnihnj�; ð23Þ

where the states now correspond to the first oscillator.
This reduced density matrix has eigenvalues ðN1

nnÞ2 and
ðN1

nnAnnÞ2, and it would give the entanglement entropy

S1E ¼ −ðN1
nnÞ2½ln ðN1

nnÞ2 þ A2
nn ln ðAnnN1

nnÞ2�: ð24Þ

Now we consider second order perturbation and from
Eq. (19) we observe that the first quantity would vanish
as h0jx̂1x̂2j0i ¼ 0, when discussing two coupled oscilla-
tors. Then second order correction to the ground state can
be expressed as

λ2j02i ¼ Annk21
X
m≠0

hmjx̂1x̂2jn; ni
Em − E0;0

jmi: ð25Þ

We evaluate this quantity explicitly in the Schrodinger
quantization and compare the qualitative difference of
resulting entanglement entropy with the result obtained
from first order perturbation.
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1. Schrodinger quantization

In Schrodinger quantization Cj
0n ¼ δ1;n=

ffiffiffiffiffiffi
2ω

p
and En ¼

ðnþ 1=2Þω, then we have x̂jj0ij ¼ 1=
ffiffiffiffiffiffi
2ω

p j1ij and
E11 − E00 ¼ 2ω. Then A11 ¼ A ¼ k21=4ω

2 and λj01i ¼ k21=
4ω2j1; 1i. The entanglement entropy would be given by
Eq. (24). When the interaction k21 is very small compared to
the frequency square ω2 (≈ω2

0, in that case) of the
individual oscillator, the expression of entanglement
entropy from Eq. (24) can be simplified to

S1E ≈ − ln

�
1 −

�
k1
2ω0

�
4
�
−
�

k1
2ω0

�
4

ln

��
k1
2ω0

�
4
�
: ð26Þ

One can observe that in similar conditions exactly the same
expression for entanglement entropy is obtained from
Eq. (5) using (4). Thus at least for two coupled oscillators,
when the interaction is comparatively much lower than the
frequency square, the first order perturbation produces
reasonable results in accordance with the results from
actual formulation. This fact can also be verified from
Fig. 1(a). Similarly in Schrodinger quantization the second
order correction to the wave function from Eq. (25)
becomes

λ2j02i ¼ A2½j2; 2i þ
ffiffiffi
2

p
ðj0; 2i þ j2; 0iÞ�: ð27Þ

Then the normalized ground state wave function would be

jΩi ¼ N2½j0; 0i þ Aj1; 1i
þ A2fj2; 2i þ

ffiffiffi
2

p
ðj0; 2i þ j2; 0iÞg�; ð28Þ

where N2 ¼ ð1þ A2 þ 5A4Þ−1=2 is the normalization con-
stant. One obtains the reduced density matrix correspond-
ing to the first oscillator as

ρ̂1 ¼ N2
2½ð1þ 2A4Þj0ih0j þ A2j1ih1j þ 3A4j2ih2j

þ
ffiffiffi
2

p
A2ð1þ A2Þfj2ih0j þ j0ih2jg�: ð29Þ

This reduced density matrix has eigenvalues

λ1 ¼N2
2A

2 and

λ2;3 ¼
N2

2

2

�
1þ5A4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þA2Þ2ð9A4−2A2þ1Þ

q �
; ð30Þ

which would give the entanglement entropy as SE ¼
−
P

3
s¼1 λs ln λs. This entanglement entropy and the entan-

glement entropy obtained from first order perturbation are
plotted with the actual entropy in Fig. 1(a) with respect to a
varying coupling between the two oscillators. The percent-
age difference of the obtained result using perturbative
techniques from the actual entanglement entropy is plotted
in Fig. 1(b). From these figures we observe that when the
coupling is small compared to the individual frequency
square of the oscillators, the perturbation method is quite
elegant to study entanglement entropy of coupled harmonic
oscillators. Furthermore, from these figures we also
observe that the results from second order perturbation
does not drastically improve compared to first order
perturbation. On the other hand as our main objective is
to understand the qualitative nature of entanglement entropy
from perturbation, it is expected that first order perturbation
would be good enough to satisfy our requirement.

2. Polymer quantization

In this part we discuss entanglement entropy for the
system of two coupled harmonic oscillators in polymer
quantization. Perturbation techniques are used to obtain the
entanglement entropy as the wave functions arising from
polymer quantization cannot be handled analytically like
the Gaussian wave functions. Here we start with a brief
overview of the technical aspects of polymer quantization.
Polymer quantization [22] is a background independent

quantization procedure arising from LQG. In polymer
quantization apart form the Planck constant ℏ a new
dimension-full parameter λ is introduced. Here the elemen-
tary operators are configuration operator x̂ and translation

operator Ûλ ≡ ˆeiλp and their actions are defined as

FIG. 1. (a) We have plotted the entanglement entropy of two
coupled harmonic oscillators with respect to varying k1 in units of
ω0, from both actual and perturbative formulation. (b) The
percentage difference of perturbative entanglement entropies
from actual entropy is plotted, with respect to varying k1 in
unit of ω0.
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x̂eipxk ¼ i
∂
∂peipxk ; Ûλeipxk ¼ eipðxkþλÞ: ð31Þ

These operators satisfy the basic commutator ½x̂; Ûλ� ¼
−λÛλ. Now with the definition of translation operator from
Eq. (31) and the inner product

hxjx0i ¼ lim
T→∞

1

2T

Z
T

−T
dpe−ipxeipx

0 ¼ δx;x0 ; ð32Þ

it is observed that a momentum operator cannot be defined
as the translation operator is not continuous in its param-
eter. However to describe the kinetic energy part of the
Hamiltonian one must have a suitable expression of the
momentum operator. In this case the momentum operator
should be λ dependent and to be given in terms of the
translation operator. One simple definition of the momen-
tum operator as considered in [22] is

p̂λ ¼
1

2iλ
ðÛλ − Û†

λÞ: ð33Þ

One can then express the eigenvalue equation Ĥψ ¼ Eψ ,
where H ¼ p2=2mþmω2x2=2 represents the Hamiltonian
corresponding to a simple harmonic oscillator with mass
m, as

ψ 00ðuÞ þ
�
σ −

1

2g2
cos ð2uÞ

�
ψðuÞ ¼ 0; ð34Þ

which represents a Mathieu equation [41]. Here λ ¼ λ⋆,
u ¼ λ⋆pþ π=2, g ¼ mωλ2⋆, and σ ¼ 2E=gω − 1=2g2. The
above differential equation has periodic solutions for σ
representing the Mathieu characteristic value functions

ψ2nðuÞ ¼ π−1=2cenð1=4g2; uÞ; σ ¼ AnðgÞ;
ψ2nþ1ðuÞ ¼ π−1=2senþ1ð1=4g2; uÞ; σ ¼ BnðgÞ: ð35Þ

For ðn ¼ 0; 1;…Þ, cen and sen represent the elliptic cosine
and sine functions, where for even n they are π periodic
and for odd n they are π-antiperiodic functions. The
corresponding energy eigenvalues are given by

E2n ¼
ω

4g
½2g2AnðgÞ þ 1�;

E2nþ1 ¼
ω

4g
½2g2Bnþ1ðgÞ þ 1�: ð36Þ

Using the asymptotic expansions of the Mathieu character-
istic value functionsAnðgÞ and BnðgÞ one can get in small g
limit, i.e., when g ≪ 1,

E2n

ω
≈
E2nþ1

ω
¼
�
nþ 1

2

�
−
ð2nþ 1Þ2 þ 1

16
gþOðg2Þ:

ð37Þ

On the other hand in high g regimes, i.e., when g ≫ 1, one
gets

E0

ω
¼ 1

4g
þO

�
1

g3

�
;

E2n−1

ω
≈
E2n

ω
¼ n2g

2
þO

�
1

g

�
:

ð38Þ

From the asymptotic expression (37) we observe that when
g ≪ 1 the energy levels corresponding to the π-periodic
and π-antiperiodic sectors become degenerate among
themselves. On the other hand from (38) we observe that
for g ≫ 1 the energy levels within the separate π-periodic
and π-antiperiodic sectors become degenerate. We consider
only the π-periodic sector of the wave functions, containing
the nondegenerate ground state, to discuss the correspond-
ing entanglement entropy. We mention that the asymptotic
expressions of the energy eigenvalues from Eqs. (37) and
(38) are also utilized in [42–44] to observe the Unruh and
Hawking effect for polymer observer. One can also look
into [45–48] where polymer quantization is used in differ-
ent systems to study particle creation.
Entanglement entropy in polymer quantization: In this

part we evaluate the perturbative corrections to the ground
state in polymer quantization, which basically requires the
estimation of Ann. The operation x̂jj0ij is already discussed
in Eq. (21) and in polymer quantization Cj

0n are given by

Cj
0n ¼ jhnjx̂jj0ij ¼ λ⋆

Z
2π

0

ψ j
n

∂
∂uj ψ

j
0du

j; ð39Þ

where uj ¼ λ⋆pj þ π=2 and λ⋆ is the polymer length scale;
see [22]. There are infinite numbers of nonzero Cj

0n in
polymer quantization, where as in Schrodinger quantiza-
tion there is only one Cj

0n ¼ δ1;n=
ffiffiffiffiffiffi
2ω

p
. In order to compute

polymer corrections we only consider the first and most
dominating nonzero Cj

0n, which is Cj
03. In the small g ¼

ωλ2⋆ limit, i.e., when g ≪ 1, these coefficients are given by

Cj
03 ¼ C03 ¼

iffiffiffiffiffiffi
2ω

p
�
1 −

3

4
gþOðg2Þ

�
; ð40Þ

and the corresponding energy correction is given by

ΔE30 ¼ E3 − E0 ¼ ω

�
1 −

g
2
þOðg2Þ

�
: ð41Þ

The expression of Ann, now obtained as A33, is changed
and using Eq. (22) becomes
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A33 ¼ A ≈ −
k21

4ω2ð1 − g=2Þ
�
1 −

3

2
g

�

≈ −
k21
4ω2

ð1 − gÞ: ð42Þ

One can observe from this expression of A that as one takes
g → 0, one gets back the result from Schrodinger quanti-
zation. We note that the sign of A does not affect the end
result as the entanglement entropy is obtained using A2.
In the ultraviolet limit when g ≫ 1, one has the expressions

Cj
03 ¼ C03 ¼ i

ffiffiffiffiffiffi
g
2ω

r �
1

4g2
þO

�
1

g6

��
; ð43Þ

and

ΔE30 ¼ ω

�
2gþO

�
1

g3

��
: ð44Þ

Then the expression of A33 is

A33 ¼ A ≈ −
�
k1
2ω

�
2 1

2ð2gÞ4 : ð45Þ

We know that the reduced density matrix in first order
perturbation has eigenvalues λ1 ¼ N2

1 ¼ ð1þ A2Þ−1 and
λ2 ¼ ðN1AÞ2. Then for fixed ðk1=ωÞ as we take g → ∞, we
observe that λ1 → 1 and λ2 → 0, because in this limit
A → 0. Then the entanglement entropy evaluated from
these eigenvalues vanishes, providing a very new feature in
the ultraviolet regime of energy in polymer quantization.
We now intend to express this result in a more general

fashion without using asymptotic forms of the Mathieu
functions. For this we need some numerical help. First the
expression of general energy difference of our concern in
polymer quantization is

E0
33 − E0

00 ¼ ωg½B2ðgÞ −A0ðgÞ�; ð46Þ

whereAnðgÞ and BnðgÞ are the Mathieu characteristic value
functions corresponding to even and odd Mathieu func-
tions. The expressions of C03 are obtained from Eq. (39)
with wave functions represented in terms of Mathieu
functions. Then we have

A ¼ A33 ¼
k21

ωg½B2ðgÞ −A0ðgÞ�
C1
03C

2
03; ð47Þ

and the corresponding eigenvalues are

λ1 ¼ N2
1 ¼

�
1þ

� ðαC03=λ⋆Þ2
B2ðgÞ −A0ðgÞ

�
2
�−1

; ð48Þ

and

λ2 ¼
�
N1

ðαC03=λ⋆Þ2
B2ðgÞ −A0ðgÞ

�
2

; ð49Þ

where α ¼ k1=ω. We have plotted this entanglement
entropy coming from first order perturbation for different
fixed values of α with varying polymer parameter g, in
Fig. 2. Then the change of g signifies the change in
harmonic oscillator frequency ω for the fixed ratio k1=ω
and fixed polymer length scale λ⋆. In these plots the fixed
ratio ðk1=ωÞ is considered to be less than 1. It implies that
the interaction strength is less than 1 and permits the
application of perturbation theory even for high g regimes.
We observe that at high frequency regime as g increases the
entanglement entropy decreases and becomes very low at
large g; see Fig. 2. This situation was not present in
Schrodinger quantization as there the entanglement entropy
is a function of A ¼ k21=4ω

2 and its value is fixed for fixed
α ¼ k1=ω. We note that same phenomena can also be
observed in polymer quantization using second order
perturbation with very little quantitative difference. For a
unit mass harmonic oscillator one can interpret the inverse
square root of its frequency to be a length scale character-
istic of the harmonic oscillator. Now as the frequency
increases this length decreases and even reaches polymer
length scale λ⋆ when g becomes very high. One then
interprets the above deviation of entanglement entropy in
polymer quantization from usual quantization, as a result of
the physics in very high energy or in a very small length
scale addressed by polymer quantization.

FIG. 2. (a) The entanglement entropy of two coupled harmonic
oscillators using perturbative formulation in polymer quantiza-
tion, with varying g keeping α ¼ k1=ω fixed. (b) The log-log plot
of the entanglement entropy in polymer quantization, with
respect to varying g keeping α ¼ k1=ω fixed.
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B. Area law for free scalar field

In this part we use perturbation technique to evaluate the
entanglement entropy corresponding to a massive free
scalar field described by the Hamiltonian (11). We first
provide a prescription for the eigenvalues of the reduced
density matrix corresponding to N-coupled oscillators.
By considering only first order perturbation, one can
express the ground state wave function of N weakly
coupled harmonic oscillators as

jΩiN ¼ j000…i þ A1jnn0.::i þ � � � þ AN−1j…0nni; ð50Þ

where A1;…; AN−1 are coefficients of the first order
perturbative correction to wave function, and they are
functions of the individual frequency and interaction
between different oscillators. In both Fock and polymer
quantization the state j00…njnjþ1…i is obtained from

x̂jx̂jþ1j00…i ¼ Cj
0nC

jþ1
0n j00…njnjþ1…i, where we have

omitted the sum on n as the most dominating contribution
comes from a single term. We first include an appropriate
normalization factor to the wave function from Eq. (50) and
calculate the corresponding density matrix and its eigen-
values for a successively increasing number of coupled
harmonic oscillators. Then the eigenvalues, corresponding
to the reduced density matrix after tracing over n d.o.f.
out of total N-coupled harmonic oscillators, can be found
by guessing from the consecutive eigenvalue evaluation, as

λns ¼ N2
cA2

n;

N2
c

2

2
64XN−1

j¼0
j≠n

A2
j �

( XN−1

j¼0
j≠n

A2
j

!
2

− 4

 Xn−1
j¼1
j≠n

A2
j

! XN−1

j¼nþ1
j≠n

A2
j

!)1
2

3
75

ð51Þ
where A0 ¼ 1 and subscript s denotes different eigenvalues
that are three in number for any particular reduction n.
Nc ¼ ðPN−1

j¼0 A2
jÞ−1=2 is the normalization factor corre-

sponding to the perturbed ground state. As discussed
earlier the entanglement entropy corresponding to these
eigenvalues would be SnE ¼ −

P
3
s¼1 λ

n
s ln λns .

1. Area law in Fock quantization

In order to obtain the area law of entanglement entropy in
Fock quantization we first consider the discrete
Hamiltonian, formed out of a partially Fourier transformed
field Hamiltonian in a lattice of finite size, from Eq. (14).
With the help of Eq. (15) one can get frequency ωj of the
jth oscillator and coupling k2j between the jth and ðjþ 1Þth
oscillator. Now according to Eq. (22) we want to find the
expressions of the coefficients of first order perturbation
Aj ¼ k2j=f2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωjωjþ1
p ðωj þ ωjþ1Þg, which are used in

Eq. (51) to get the eigenvalues. We note that the perturba-
tive coefficients Aj are, in principle, functions of l and m

and sums over these quantities are taken to evaluate the
entropy, but for brevity we omitted their index from the
notation. In Fock quantization they are evaluated using
Cj
0n ¼ δ1;n=

ffiffiffiffiffiffiffiffi
2ωj

p
andEj

n ¼ ðnþ 1=2Þωj.We have numeri-
cally computed the entanglement entropy using the obtained
eigenvalues. In Fig. 3 the entanglement entropy from
perturbative and actual formulation is presented for a mass-
less free scalar field. The entanglement entropy in actual
formulation is obtained nonperturbatively, utilizing the
Gaussian nature of the ground state wave functions. We
have used the results from Eq. (10) and the potential from
Eq. (15) to evaluate the entanglement entropy in actual
formulation [19]. Figure 3 shows that first order perturbation
is sufficient to provide an area law for entanglement entropy.
We note that the slope from this area curve (∼0.42) is
different than the one obtained from actual formulation
(∼0.29). One can notice from Eqs. (14) and (15) that the
ratio of the frequency square to interaction strength decreases
when j increases as we consider a larger system size. Thus
perturbation theory becomes less effective and the results
obtained from first order perturbation deviate more from

FIG. 3. (a) The plot of entanglement entropy with respect to
ðnþ 0.5Þ2 for a free massless scalar field in a lattice of total size
N ¼ 60. Here n is the number of position d.o.f. traced out of the
ground state of the scalar field. This plot shows the area law for
entanglement entropy in both actual and perturbative formu-
lation. Here the ratio of the slopes from perturbative entropy and
actual entropy is ∼1.85. (b) This figure provides the log-log plot
of entanglement entropy vs ðnþ 0.5Þ in both actual and pertur-
bative formulation. The slope of the curve from actual formu-
lation is about ∼1.9 where the slope from perturbative
formulation is ∼2.1. We have used first order perturbation to
evaluate the entanglement entropy.
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the actual nonperturbative result for large j.We also note that
as second order perturbation is employed in this formulation
the area curve is quantitatively very little improved and gets
closer to the area curve from actual formulation. Now as we
consider a field with increasing mass, the ratio of the
frequency square and coupling strength from Eq. (15)
increases and the perturbative formulation becomes more
effective in describing the original system.
In addition to the massless case we have also considered

a massive scalar field with discretized Hamiltonian from
Eq. (14). We have taken different values for the parameter
μa and for each value obtained the area law in both the
actual and first order perturbation. Then the massless case
becomes a special case when this parameter μa is taken to
be 0. In particular, we have observed that as we increase the
value of this parameter the perturbation becomes stronger
and the slopes of the two area curves corresponding to
actual and perturbative formulation get closer. The plots
corresponding to this feature are shown in Fig. 4.

2. Area law in polymer quantization

We take the Fourier Hamiltonian density for a massive
free scalar field according to Eq. (14). We note that the
field modes φlm;j and their conjugate momenta πlm;j are
dimensionless here. To consistently introduce polymer

quantization in this formulation we make the transforma-
tions π̃lm;j ≡ πlm;j=

ffiffiffi
a

p
and φ̃lm;j ≡ ffiffiffi

a
p

φlm;j such that the
new field mode and the conjugate momentum become
dimension full. Then the Fourier Hamiltonian density
from Eq. (14) takes the form

Hlm ¼ 1

2

XN
j¼1

�
π̃2lm;j þ

�
jþ 1

2

a

�
2
�
φ̃lm;j

j
−
φ̃lm;jþ1

jþ 1

�
2

þ
�
lðlþ 1Þ
a2j2

þ μ2
�
φ̃2
lm;j

�
: ð52Þ

This Hamiltonian also describes a system of N-coupled
harmonic oscillators given by Eq. (6). In polymer quan-
tization a new dimension full parameter λ⋆ is introduced
with dimension ðlengthÞ1=2, inverse of the dimension
of momentum. Here the basic variables are taken to be
φ̃lm;j and Uλ⋆

lm;j ¼ exp fiλ⋆π̃lm;jg with Poisson bracket

fφ̃lm;j; U
λ⋆
lm;jg ¼ iλ⋆Uλ⋆

lm;j. From the above system of
coupled harmonic oscillators we observe that for a general
jth oscillator the frequency is

ωlm;j ¼
1

aj

�
lðlþ 1Þ þ

��
jþ 1

2

�
2

þ
�
j −

1

2

�
2
�				

j≠1;N

þμ2a2j2 þ 9

4
δj1 þ

�
N −

1

2

�
2

δjN

�1
2 ¼ Ωlm;j

a
:

ð53Þ

Now we want to get the expressions of perturbative
coefficients Aj used in Eq. (51). They are constructed using
expressions of Cj

0n and Ej
n in polymer quantization from

Eq. (39) and (46), which are further given by the dimen-
sionless polymer parameter glm;j ¼ ωlm;jλ

2⋆ ¼ Ωlm;jl⋆=a.
We also note that the interatomic distance a and the
polymer length scale l⋆ ¼ λ2⋆ both have the same nature
and should have the same order as they signify the
ultraviolet cutoff. Then we take their ratio γ ¼ l⋆=a to
be unity, which adds further simplification to the evaluation
of entanglement entropy. We have plotted the entanglement
entropy from first order perturbative formulation in Fig. 5
considering massless free scalar fields in polymer quantum
field theory. In these figures we observe that the area law is
valid in polymer quantization too. However the correspond-
ing slope is now very low compared to results from Fock
quantization. One can also get the area law in polymer
quantization for massive free scalar field with a further
decreased slope.
Implication of the result: From [26] we get to understand

that the slope of the area curve for entanglement entropy
can be different due to many reasons, such as different
discretization procedures, inclusion of mass, or taking
excited states instead of the ground state. We mention
here a consistency check to understand whether this result

FIG. 4. (a) The plot of entanglement entropy of a massive free
scalar field with respect to ðnþ 0.5Þ2 for N ¼ 60. Here μa ¼ 2
and the ratio of the slopes from perturbative entropy and actual
entropy is ∼1.22. (b) The entanglement entropy vs ðnþ 0.5Þ2
plot for massive free scalar field with N ¼ 60. Here μa ¼ 4 and
the ratio of the slopes from perturbative entropy and actual
entropy is ∼1.04. In both cases only first order perturbation is
used.
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from polymer quantization is a plausible one or not. It is
noted in [22] that in low energy regimes polymer quan-
tization reproduces the results from usual Fock quantiza-
tion. Now in this formulation of entanglement entropy
evaluation we observe that one direct influence of polymer
quantization over Fock is dictated by the factor ðl⋆=aÞ.
When this factor is unity the system is completely inter-
preted in terms of polymer quantization. On the other hand
when the value of this quantity decreases the value of
the dimensionless polymer frequency glm;j decreases and
the system becomes more and more Fock-like as the lower
energy regimes of polymer quantization tend to contribute
to the description of the system. We have plotted the
entanglement entropy for different values of this factor
and we observed that as the value decreases the area curve
of entanglement entropy from polymer quantization
approaches the one from Fock quantization; see Figs. 6
and 7. Thus the very low slope of the entanglement entropy
can be described as a feature coming from the disentangling
nature of polymer quantization at high energy regimes. We
note that massive scalar fields also show disentangling
nature and lower the slope of the area curve [49–51].
The entanglement entropy of the free scalar field in

polymer quantization gives rise to another question, which
relates to the corrections to the area law as predicted by

quantum gravity [52–55]. In this manner we note that the
slope of the entanglement entropy vs ðnþ 0.5Þ curve in the
log-log plot is 2.002, which automatically discards any
possible departure from the area law. This area dependence
of entanglement entropy in polymer quantization is
enthralling in its own right since it validates the generality
of the area law in quantizations other than Fock.

IV. DISCUSSION

In usual formulation, procurement of the area curve for
entanglement entropy [3–9] is simplified using the math-
ematical structure of Gaussian ground state wave function
from Schrodinger quantization. However, not all quanti-
zation procedures provide this Gaussian nature of ground
state and polymer quantization is one of them. We note
that though entanglement entropy for two coupled har-
monic oscillators is specifically evaluated for polymer
quantization in [56], the framework to obtain entangle-
ment entropy for a large number of coupled oscillators is
not provided; thus one cannot obtain the area law. In this
work we have treated the interaction between coupled
harmonic oscillators in a perturbative manner. Our pro-
cedure is different than the ones discussed in [49–51,57],
where the eigenvalues of the reduced density matrix and

FIG. 5. (a) The entanglement entropy of a massless free scalar
field with respect to ðnþ 0.5Þ2 using first order perturbation in
polymer quantization. This plot shows the area law in polymer
quantization with slope 6.12 × 10−6. (b) The log-log plot of the
entanglement entropy vs ðnþ 0.5Þ in perturbative formulation
using polymer quantization. The total lattice size is taken to be
N ¼ 60 and the obtained slope is 2.002.

FIG. 6. The plot of entanglement entropy in polymer quantiza-
tion for different values of γ ¼ l⋆=a.

FIG. 7. The log-log plot of entanglement entropy in polymer
quantization for different values of γ ¼ l⋆=a.
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momentum space entanglement are estimated using per-
turbation. For two coupled harmonic oscillators we
noticed a disentangling nature from polymer quantization
at the high frequency regime. We observed that in
Schrodinger quantization the entanglement entropy is
unchanged while in polymer quantization it decreases
at high oscillator frequencies, keeping the ratio of inter-
action strength to frequency square fixed. We showed that
in our formulation, by considering the free scalar field,
one obtains the area law of entanglement entropy for
Fock quantization. As the mass of the scalar field
increases the individual oscillator frequency increases;
thus perturbation strength increases and the obtained area
curve approaches the area curve from usual formulation.
Furthermore, we showed that in polymer quantization also
this formulation provides a similar area law, but with a
very decreased slope. We inferred that this decrease of
slope is due to the disentangling nature of polymer
quantization at higher energies. We further noticed that
as the effect of polymer quantization becomes smaller,
by lowering the value of the ratio of polymer length
scale l⋆ to interatomic distance a, the area curve from
polymer quantization using first order perturbation tends
to approach the area curve from Fock quantization.
This phenomenon is not quite surprising as in the limit
l⋆=a → 0, the physical result from polymer quantization

would converge to the result obtained from the standard
Fock quantization. The disentangling nature of polymer
quantization is very intriguing in its own right as it is
known that usual quantization loses its predictability in
trans-Planckian energy regimes [58,59]. We note that this
disentangling phenomenon in polymer quantization is
analogous to the suppression of propagation at large
energies. We mention that there are other derivations to
obtain the area law and harvest entanglement entropy for
the scalar field [60–76] and it would be interesting to see
whether an exact form of the entanglement entropy can be
found using these derivations in polymer quantization.
In conclusion we address that our formulation opens up
an avenue to understand entanglement entropy in terms of
perturbative corrections.
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