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The area dependence of entanglement entropy of a free scalar field is often understood in terms of
coupled harmonic oscillators. In Schrodinger quantization, the Gaussian nature of ground state wave
function for these oscillators is sufficient to provide the exact form of the reduced density matrix and its
eigenvalues, thus giving the entanglement entropy. However, in polymer quantization the ground state is
not Gaussian and the formalism that can provide the exact analytical form of the reduced density matrix is
not yet known. In order to address this issue, here we treat the interaction between two coupled harmonic
oscillators in the perturbative approach and evaluate the entanglement entropy in Schrodinger and polymer
quantization. Contrary to Schrodinger quantization, we show that in the high frequency regime the
entanglement entropy decreases for polymer quantization, keeping the ratio of coupling strength to the
square of individual oscillator frequency fixed. Furthermore for the free scalar field we validate the area
dependence of entanglement entropy in Fock quantization and demonstrate that polymer quantization

produces a similar area law.
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I. INTRODUCTION

The fact that one can incorporate thermodynamical
attributes to a black hole was first introduced in the seminal
work of Bekenstein [1,2]. In these articles and others
[3-13] the authors demonstrated that intrinsic entropy
Spy of a black hole should be proportional to the area
Ay, of its event horizon Spy = § M3, A;,, where My, is the
Planck mass. Then the natural question appeared as to how
to connect the concept of quantum states to this entropy of
event horizon [14—17] as horizon is not different than any
other classical surface with no special local dynamics. To
answer this question and to provide a more general
realization of the entropy associated to a black hole the
authors in [18,19] presented the idea in terms of entangle-
ment entropy. Here it is shown that entanglement entropy of
a free scalar field in a certain spatial region is proportional
to its area. In these articles the reduced density matrix,
essential for estimating the entanglement entropy, is
obtained by tracing over the spatial degrees of freedom
(d.o.f.) of the ground state density matrix residing inside the
considered region.

In the regular formulation of entanglement entropy
estimation [19] first the scalar field is partially Fourier
transformed with respect to the angular coordinates. The
resulting Fourier field Hamiltonian is still dependent on the
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radial coordinate and it is discretized by assuming a lattice
of finite size and interatomic spacing. This discretization
transforms the Fourier Hamiltonian to be a collection of
coupled harmonic oscillators. The ground state wave
function for these coupled harmonic oscillators then pro-
vides the corresponding ground state density matrix for
the field. Subsequently using the Gaussian nature of this
ground state wave function the reduced density matrix and
its eigenvalues are obtained, which would produce the
entanglement entropy. However this Gaussian nature is a
feature specific to the Schrodinger quantization. In polymer
quantization [20-22], the quantization method used in loop
quantum gravity (LQG) [23-25], the ground state wave
functions are expressed in terms of Mathieu functions.
Using these polymer wave functions it is still unknown how
to obtain the analytic form of reduced density matrix.

In this article we consider a perturbative approach to
circumvent these difficulties and obtain the entanglement
entropy for free scalar field using Fock and polymer
quantization. We treat the interaction between coupled
harmonic oscillators in a perturbative manner to get the
related ground state and eigenvalues of the reduced density
matrix. first we use this procedure to evaluate the entan-
glement entropy for two coupled harmonic oscillators in
Schrodinger and polymer quantization. Then by consider-
ing the free scalar field we obtain the area law in Fock
quantization. Furthermore, we apply polymer quantization
in this formulation and verify that the field theoretic
entanglement entropy obeys a similar area law.
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In Sec. II we briefly review the procedures to derive the
entanglement entropy in the usual formulation. In this
section the detailed description of the considered system is
given. Following in Sec. IIl we recall the perturbative
formulation and construct the framework to estimate
the entanglement entropy utilizing this technique. In the
subsequent sections we use this formulation to obtain
entanglement entropy for two coupled harmonic oscillators
in Schrodinger and polymer quantization. The following
parts include the realization of the area law of entanglement
entropy in Fock and polymer quantization utilizing per-
turbative formulation. We argue about the implications of
the obtained results and conclude with the discussion.

II. ENTANGLEMENT ENTROPY AND
THE AREA LAW

In the standard derivations of entanglement entropy
[18,19,26-33] one considers a system of coupled harmonic
oscillators as a basis. In particular, the eigenvalues of the
reduced density matrix for two coupled oscillators give the
entanglement entropy corresponding to a single oscillator.
These eigenvalues are used for a set of coupled harmonic
oscillators, which are obtained from the discretized
Hamiltonian of a free scalar field, to get the area law of
entanglement entropy. In this section we briefly review the
key aspects of these procedures and the considered sys-
tems, which will also be useful to construct the perturbative
formulation.

A. Entanglement entropy for two coupled
harmonic oscillators

In order to understand entropy from entanglement at first
a system of two coupled harmonic oscillators [19,26] is
considered. The two unit mass oscillators are denoted
by their position and momentum (x, p;) and (x,, p;).
The total system can be described by the Hamiltonian

1
H =—[p}+ p3 + &}(x] +x3) + k3 (x; — x,)?]

2
Lo, 22 Lo, 2.2
= B [p: +oixi] + ) [Pz + @ZxZ], (1)

where the normal coordinates x, = (x; £ x,)/V2, py =
(p1 £ p2)/V/2 and normal frequencies w, = wy, w_ =
(w} +2k3)1/? are defined to make the Hamiltonian
decoupled. In decoupled form the ground state wave
function becomes simplified and can be expressed in terms
of the normal coordinates as

W, w_ i 0, X% + w_x2
‘l/o(xl,xz)—< ;2 > exp [_%] (2)

From expression (2) one can find the ground state density
matrix to be p(xy, xp;x), x5) = wolxy, X))y (x), x5).

To discuss the entanglement entropy corresponding to a
single oscillator one needs to find its associated reduced
density matrix. The reduced density matrix is obtained by
tracing out the density matrix with respect to the position
d.o.f. of a single oscillator, expressed as

P (20 ) = / duo(a. )it 5).  (3)

[es]

The reduced density matrix describes whether the system is
in mixed or pure state and the corresponding entanglement
entropy is defined as Sy = —Tr[p” Inp’]. In a suitable basis
one can evaluate the entanglement entropy by obtaining the
eigenvalues of the reduced density matrix. In particular,
for two coupled harmonic oscillators the resulting reduced
density matrix from Eq. (3) has eigenvalues

=(1- " where —7\/(0___@
= (1=8)" where § =202k (4

Then the corresponding entanglement entropy [19,26,34]
becomes

52
1-¢

S(&) == Aulnd, =—=In(1-&) - & ()

B. Entanglement entropy for N-coupled
harmonic oscillators

Now it is important to understand the entanglement
entropy corresponding to N-coupled harmonic oscillators
to get the area law of entanglement entropy for the free
scalar field. The general Hamiltonian for the N-coupled
harmonic oscillator is

Igh , 1&
H = 5]:21 p] +§];1 ijjkxk, (6)

where the matrix K describes the potential and interaction.
The diagonal elements of K give the frequency square of
the individual oscillator and symmetric off diagonal elements
provide the interaction between two adjacent oscillators.
With the help of a suitably chosen orthogonal matrix U this
interaction matrix is diagonalized to K, as K = UK ,U.
The ground state wave function of this N-coupled harmonic
oscillator (6) can be expressed as

xy) = (Dz;sz)% exp [_ x.£22.x] o

where Q = UTK 11)/2U . From this wave function one can
obtain the reduced density matrix when the first n of the total
N oscillators are traced out [19]. The reduced density matrix
is further evaluated using a general form of the matrix €,

wo(xp, ...
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where A is an m X m matrix corresponding to the first n
oscillators, C is a (N —m) X (N —mn) matrix, and B is a
nx (N —n) matrix. In terms of a few newly defined
quantities # = (1/2)BTA~!'B and y = C — 3, the reduced
density matrix becomes

Pout(X, X)) ~exp[-(xyx + X'y xX)/2+ x.p.X], (9)

where x and x’ consist of the (N — n) oscillators after the

integration over the first n d.o.f. x = VTy} y is defined,
where y = VTy,V such that y, is dlagonal and V is
orthogonal. Then one gets po(x, x') ~ exp [—(y.y +Y'.))/
2+ y.fp.y], where f/ = yl_)lﬂVﬁVTyl_)l/z. Now moving to
the basis z= W'y, such that g is diagonalized as
B = WIBW, one gets

H exp [—

Jj=n+1

Pou(2:7) (27 +2%)/24 Piz;2),  (10)

where ﬁ; are the eigenvalues of #'. Then the entanglement
entropy [19] corresponding to (N — m) oscillators turns out
to be S =3, 8(¢;), with S(&) given by Eq. (5) and & =
Bi/[L+ (1= p5)"2].

C. Entanglement entropy for free scalar field
and area law

In order to discuss the area law for entanglement entropy,
a free massive scalar field ®(X) is considered with mass p
and conjugate momenta I1(X). In Minkowski spacetime the
Hamiltonian [35-37] corresponding to the scalar field is

H:%/cpx[l—[z(f)%— VOE)]? + 22 F)]. (1)

In terms of partial Fourier decomposition the field ®(X)
and the conjugate momentum I1(X) are transformed with
respect to the angular coordinates as

)—E) _ Zzlm(g’ ¢) (le(r) i
ILm r

1) = 32, (0.0) ™. (12)
lm

where Z,,,(0, ¢) denotes real spherical harmonics and the
Fourier field modes satisfy a commutation relation
(@1 (7), 7y (F)] = 0818, 6(r — ¥') among  themselves.
With this definition of field decomposition from Eq. (12)
the Hamiltonian now becomes H = ), H;,,, where

ot e ()]

+<l(l:§ ! +ﬂ2)¢%m(r>}. (13)

Next the radial coordinate r is discretized, forming a lattice
with interatomic spacing a and size L = (N + 1)a. The
inverse of the spacing a~! signifies the ultraviolet cutoff
while the inverse system size L~! denotes infrared cutoff.
This discretization makes the Hamiltonian look like a set
of coupled harmonic oscillators

Pim,j+1 > 2

Jj+1

1 & NI
_ 2 . m,j
=z e () (5
I(l1+1
+{ ( ] )+ 2 2}¢lmj:|’ (14)

such that PimN+1 = 0 and [golrrz‘j’”l’m’,j’] = i(sll’émm’éj/
Comparison of this Hamiltonian with the Hamiltonian
for N-coupled harmonic oscillators from Eq. (6) gives [26]

1 9 12
Kjk :J—2 |:l(l+ 1)5ﬂ<+15]l§k1 + <N——> 5]1\’6/{/\’

2
+ (na)* o, + { (J' + %) + (J' - %) 2}5jk(j¢1,1v)]

The discretization of the radial coordinate enables one to
get a finite expression of matrix K denoting the potential
energy and interaction. This in turn would enable one to
obtain the entanglement entropy when a finite number n
of spatial points are traced out in total N 4 1 points. Then
as one plots the entanglement entropy with respect to
(n+1/2)2, one gets a straight line, which represents the
celebrated area law for entanglement entropy [19]. We
present the area curve of entanglement entropy coming
from perturbative formulation along with the curve
obtained from this usual formulation together in the next
section.

III. ENTANGLEMENT ENTROPY IN THE
PERTURBATIVE APPROACH

As discussed in the previous section using the Gaussian
ground state wave function of coupled harmonic oscillators
from Schrodinger quantization Eq. (2), one can easily
evaluate the exact form of the reduced density matrix in
Eq. (3). However, in polymer quantization, a quantization
method used in loop quantum gravity, the ground state
wave function is obtained in terms of Mathieu functions. To
the best of our knowledge evaluation of the exact analytical
form of reduced density matrix is not possible even for two
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coupled oscillators using these polymer wave functions.
This constraint further debars one to obtain the eigenvalues
for N-coupled oscillators in polymer quantization and
motivates us to take help from the perturbation technique.

In this section we apply perturbation to describe entan-
glement entropy of coupled harmonic oscillators. We
express the Hamiltonian corresponding to the coupled
oscillators in terms of a noninteracting free Hamiltonian
H, and a net interaction term AH,, as

H = Hy + AHyy. (16)

When interaction strength is smaller than the strength of the
free Hamiltonian, which is obtained for small A, one can
express the ground state |Q) corresponding to the whole
system in a perturbative manner as

|Q) = 10) + A|0") + 2%|0%) + ..., (17)

where |0) denotes the ground state corresponding to the
noninteracting Hamiltonian H,. On the other hand |0') and
|0?) denotes the first and second order perturbative cor-
rections to the noninteracting ground state. From the time
independent perturbation theory [38-40] one obtains the
first order correction to the ground state as

|01> :Z<H|Hint|0> |I’l>, (18)

n#0 EO - En

where E, denotes the energy of the nth excited state
corresponding to the noninteracting Hamiltonian. The
second order correction to the ground state is expressed as

|02> _ _Z <O|H1nt‘0> <n|H1m|O> |I’l>

n#0 (EO - En)2
m|H1nt|n n|H1nt|0>
+ lm).  (19)
% ; (Eo = En)(Eo = Ey)

We use these perturbative corrections to obtain the actual
ground state up to certain perturbative order in the system
of coupled harmonic oscillators. We mention that while
discussing polymer quantization [22] we consider only the
m-periodic sector for our calculations. In the z-periodic
sector, except for the ground state, the even and odd
energies become degenerate in high energy regimes.
Now as we are interested in the ground state density matrix
it is convenient for us to consider the nondegenerate
perturbation theory.

A. Entanglement entropy for two coupled
harmonic oscillators

We begin with a system of two coupled harmonic
oscillators. We recall the Hamiltonian from Eq. (1) and

observe that it can be expressed in the form of Eq. (16) with
Hy = H, + H, and AH;, = —k}x\x,, where H; = [p? +
?x3]/2 and @ = (w§ + k})'/?. Perturbative methods can
be applied when &2 is smaller than w?, which is always true
for nonzero @y. Then in this system of two coupled
oscillators the correction to the ground state wave function
due to first order perturbation would be
l|01> = A|n)y @ |n); = A,,|n.n), (20)
where in the second compact notation of the wave function
the first index corresponds to the first oscillator and
the second one corresponds to the second oscillator.
Here the operation of %; on the corresponding ground state
is given by

x]lo Zcf)nln (21)

where in general the most dominating term comes from a
single excitation [n);. Then we get for two coupled
oscillators

k2
Ann = m C(l)n C%n : (22)

Considering up to first order perturbation, the normalized
ground state is |Q) = N},[|0,0) + A,,|n, n)], where the
normalization factor N}, = (1 +A2,)"'/2. The corre-
sponding reduced density matrix for the first oscillator
would be

P = Tr(12)(Q) = (V5,)2[10) (0] + A2, I} (nl).  (23)
where the states now correspond to the first oscillator.
This reduced density matrix has eigenvalues (N),)? and
(N},A,,)?%, and it would give the entanglement entropy

Sh = —(NL 0 (V)2 + A%, n (4,,NL,)2). (24)

Now we consider second order perturbation and from
Eq. (19) we observe that the first quantity would vanish
as (0|%,%,|0) = 0, when discussing two coupled oscilla-
tors. Then second order correction to the ground state can
be expressed as

/12|02 |'x1x2|n n

Ann kzz

m£0 m -

m). (25)

We evaluate this quantity explicitly in the Schrodinger
quantization and compare the qualitative difference of
resulting entanglement entropy with the result obtained
from first order perturbation.
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1. Schrodinger quantization

In Schrodinger quantization Cén =61,/ V2w and E, =
(n+1/2)w, then we have £;[0); =1/v2w|1); and
E —Ey =2w.ThenA;; = A = k3 /40” and 2|0") = K3/
4w?|1,1). The entanglement entropy would be given by
Eq. (24). When the interaction k7 is very small compared to
the frequency square @’ (~wj, in that case) of the
individual oscillator, the expression of entanglement
entropy from Eq. (24) can be simplified to

nenfo- ()] (A ST

One can observe that in similar conditions exactly the same
expression for entanglement entropy is obtained from
Eq. (5) using (4). Thus at least for two coupled oscillators,
when the interaction is comparatively much lower than the
frequency square, the first order perturbation produces
reasonable results in accordance with the results from
actual formulation. This fact can also be verified from
Fig. 1(a). Similarly in Schrodinger quantization the second
order correction to the wave function from Eq. (25)
becomes

22(02) = A2[]2,2) +v2(]0,2) + [2,0))].  (27)

0.08

Actual entropy ———

0.06 [ 1%t order - - - g
R
©n 0.04
0.02
0 0.9
12
,
= 15t order - - - Ll
g9 27 order - - - - - s .
) .
S 6f P
3 v, .
e .
S /'.‘
< 3 Lz
2 e
- A
0 0.3 0.6 0.9
k1

FIG. 1. (a) We have plotted the entanglement entropy of two
coupled harmonic oscillators with respect to varying k; in units of
@g, from both actual and perturbative formulation. (b) The
percentage difference of perturbative entanglement entropies
from actual entropy is plotted, with respect to varying k; in
unit of .

Then the normalized ground state wave function would be

Q) = Nof
+ A%

0,0) + Al1,1)
2,2) +V2(

0,2) +

2,00, (28)

where N, = (1 + A? 4+ 5A*)71/2 is the normalization con-

stant. One obtains the reduced density matrix correspond-
ing to the first oscillator as

pr = N3[(1+24%)[0)(0] + A%[1)(1] + 3A4%[2) (2]

+V24%(1 + A%){]2)(0] + |0) 2]}]. (29)
This reduced density matrix has eigenvalues

A =N3A? and

N2
by =2 [1 £S48+ /(1142204 =242+ 1) |, (30)

which would give the entanglement entropy as Sg =
- Z?:l As InAg. This entanglement entropy and the entan-
glement entropy obtained from first order perturbation are
plotted with the actual entropy in Fig. 1(a) with respect to a
varying coupling between the two oscillators. The percent-
age difference of the obtained result using perturbative
techniques from the actual entanglement entropy is plotted
in Fig. 1(b). From these figures we observe that when the
coupling is small compared to the individual frequency
square of the oscillators, the perturbation method is quite
elegant to study entanglement entropy of coupled harmonic
oscillators. Furthermore, from these figures we also
observe that the results from second order perturbation
does not drastically improve compared to first order
perturbation. On the other hand as our main objective is
to understand the qualitative nature of entanglement entropy
from perturbation, it is expected that first order perturbation
would be good enough to satisfy our requirement.

2. Polymer quantization

In this part we discuss entanglement entropy for the
system of two coupled harmonic oscillators in polymer
quantization. Perturbation techniques are used to obtain the
entanglement entropy as the wave functions arising from
polymer quantization cannot be handled analytically like
the Gaussian wave functions. Here we start with a brief
overview of the technical aspects of polymer quantization.

Polymer quantization [22] is a background independent
quantization procedure arising from LQG. In polymer
quantization apart form the Planck constant 7 a new
dimension-full parameter A is introduced. Here the elemen-
tary operators are configuration operator X and translation

operator U, = ¢”*? and their actions are defined as
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ReiPr — iieipxk’ f]ﬁeipxk — eip(x+4) (31)
ap

These operators satisfy the basic commutator [%, U,] =

—AU,. Now with the definition of translation operator from

Eq. (31) and the inner product

1 [T o,
AR —ipx ,ipx' _ ,
(x]x") ]11—{120 2T/_T dpe™'P*e bews  (32)

it is observed that a momentum operator cannot be defined
as the translation operator is not continuous in its param-
eter. However to describe the kinetic energy part of the
Hamiltonian one must have a suitable expression of the
momentum operator. In this case the momentum operator
should be 1 dependent and to be given in terms of the
translation operator. One simple definition of the momen-
tum operator as considered in [22] is

) 1, .
pi==—=(U0,-0)). (33)

One can then express the eigenvalue equation Hy = Ey,
where H = p?/2m + mw?x*/2 represents the Hamiltonian
corresponding to a simple harmonic oscillator with mass
m, as

w () + {0 - ;?cos (zu)} w) =0, (34)

which represents a Mathieu equation [41]. Here A = 4,,
u=2Ap+nr/2, g=mwl’, and 6 = 2E/gw — 1/2¢>. The
above differential equation has periodic solutions for o
representing the Mathieu characteristic value functions

WZn(M) = ﬂ—1/2cen<1/492’ u),
Wour1(u) = 77" 2se, . (1/46% u),

0 = An(g>’

For (n =0,1,...), ce, and se,, represent the elliptic cosine
and sine functions, where for even n they are z periodic
and for odd n they are m-antiperiodic functions. The
corresponding energy eigenvalues are given by

E, = 4—“;[292An<g> +1],

Espii :4_“;[2923"“(9) +1]. (36)

Using the asymptotic expansions of the Mathieu character-
istic value functions A4, (¢g) and B,,(¢g) one can get in small g
limit, i.e., when g < 1,

2 2
R T g+ O(g%).

Ey By _ <n+1> _(2n+1)+1
2

(37)

On the other hand in high g regimes, i.e., when g > 1, one
gets

E 1 1 Ey_y E,, n? 1
_0:_+0_3 s 2 lz 2 :—g+0— .
w 4g g w 0] 2 g

(38)

From the asymptotic expression (37) we observe that when
g < 1 the energy levels corresponding to the z-periodic
and z-antiperiodic sectors become degenerate among
themselves. On the other hand from (38) we observe that
for g > 1 the energy levels within the separate z-periodic
and z-antiperiodic sectors become degenerate. We consider
only the z-periodic sector of the wave functions, containing
the nondegenerate ground state, to discuss the correspond-
ing entanglement entropy. We mention that the asymptotic
expressions of the energy eigenvalues from Egs. (37) and
(38) are also utilized in [42—-44] to observe the Unruh and
Hawking effect for polymer observer. One can also look
into [45-48] where polymer quantization is used in differ-
ent systems to study particle creation.

Entanglement entropy in polymer quantization: In this
part we evaluate the perturbative corrections to the ground
state in polymer quantization, which basically requires the
estimation of A,,,. The operation %;|0) j 1s already discussed

in Eq. (21) and in polymer quantization C},, are given by

. 2t . O . .
jo_ 2 _ j j
Cha = 0}, =2, [y, (29)
where u/ = A, p/ + x/2 and A, is the polymer length scale;
see [22]. There are infinite numbers of nonzero C}, in
polymer quantization, where as in Schrodinger quantiza-

tion there is only one Cén = 6, ,/V2w. In order to compute
polymer corrections we only consider the first and most

dominating nonzero Cén, which is Cé3- In the small g =
w2 limit, i.e., when g < 1, these coefficients are given by

: i 3
Cls =Copy = —— [1 -—g+ (9(92)], (40)

V2w 4

and the corresponding energy correction is given by

The expression of A,,,, now obtained as Asz, is changed
and using Eq. (22) becomes
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K2 3
Ap—Am—— (1.2
. 40*(1 - g/2) ( 29)
ki
z—m(l—g)- (42)

One can observe from this expression of A that as one takes
g — 0, one gets back the result from Schrodinger quanti-
zation. We note that the sign of A does not affect the end
result as the entanglement entropy is obtained using AZ.
In the ultraviolet limit when g > 1, one has the expressions

i _ e ]9 L 1
C03 = C03 =1 2w |:4gz + O(gﬁ>:|, (43)

and

AB = 0|20+ 0[5 . (44)

Then the expression of As; is

k)2 1
do===(52) og )

We know that the reduced density matrix in first order
perturbation has eigenvalues A; = N2 = (1 + A%)~! and
4> = (NA)%. Then for fixed (k;/w) as we take g — oo, we
observe that 4, > 1 and A, — 0, because in this limit
A — 0. Then the entanglement entropy evaluated from
these eigenvalues vanishes, providing a very new feature in
the ultraviolet regime of energy in polymer quantization.

We now intend to express this result in a more general
fashion without using asymptotic forms of the Mathieu
functions. For this we need some numerical help. First the
expression of general energy difference of our concern in
polymer quantization is

EY; — EYy = wg[Bs(g) — Ao(9)]. (46)

where A, (g) and B, (g) are the Mathieu characteristic value
functions corresponding to even and odd Mathieu func-
tions. The expressions of Cy; are obtained from Eq. (39)
with wave functions represented in terms of Mathieu
functions. Then we have

ki
wg[B>(g) — Ao(9)]

and the corresponding eigenvalues are

A:A33:

CosClsr (47)

and

0.03
-------- a=03 ——
0.02 =04 ---
’ a=05 -----
<
n
0.01 AN
~ .~
o .
o e
0 L L S
0.2 0.4 0.6 0.8
g
(a)
a=03 ——
1071 a=04 - - - |4
a=05 -----
o e
k2 . .
102~~~ ~-~-~-=-~- ~
N .
\ “
\\ “
W
10-3 ) N L
1071 10°
gl

(b)

FIG. 2. (a) The entanglement entropy of two coupled harmonic
oscillators using perturbative formulation in polymer quantiza-
tion, with varying g keeping a = k; /@ fixed. (b) The log-log plot
of the entanglement entropy in polymer quantization, with
respect to varying g keeping a = k;/w fixed.

(aCO3//1*)2 }2’ (49)

= {Nl By(g) - Aol9)

where a = k;/w. We have plotted this entanglement
entropy coming from first order perturbation for different
fixed values of @ with varying polymer parameter g, in
Fig. 2. Then the change of g signifies the change in
harmonic oscillator frequency @ for the fixed ratio k;/w
and fixed polymer length scale 4,. In these plots the fixed
ratio (k;/w) is considered to be less than 1. It implies that
the interaction strength is less than 1 and permits the
application of perturbation theory even for high g regimes.
We observe that at high frequency regime as g increases the
entanglement entropy decreases and becomes very low at
large g; see Fig. 2. This situation was not present in
Schrodinger quantization as there the entanglement entropy
is a function of A = k? /4w and its value is fixed for fixed
a=k;/ow. We note that same phenomena can also be
observed in polymer quantization using second order
perturbation with very little quantitative difference. For a
unit mass harmonic oscillator one can interpret the inverse
square root of its frequency to be a length scale character-
istic of the harmonic oscillator. Now as the frequency
increases this length decreases and even reaches polymer
length scale A, when g becomes very high. One then
interprets the above deviation of entanglement entropy in
polymer quantization from usual quantization, as a result of
the physics in very high energy or in a very small length
scale addressed by polymer quantization.
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B. Area law for free scalar field

In this part we use perturbation technique to evaluate the
entanglement entropy corresponding to a massive free
scalar field described by the Hamiltonian (11). We first
provide a prescription for the eigenvalues of the reduced
density matrix corresponding to N-coupled oscillators.
By considering only first order perturbation, one can
express the ground state wave function of N weakly
coupled harmonic oscillators as

|Q)y =1000...) + Ay |nn0...) + - -+ Ay_y]|...0nn), (50)

where Ap,...,Ay_; are coefficients of the first order
perturbative correction to wave function, and they are
functions of the individual frequency and interaction
between different oscillators. In both Fock and polymer
quantization the state [00...n;n;,;...) is obtained from
Xi%;41]00...) = C),Ch'00...n;m,,...), where we have
omitted the sum on 7 as the most dominating contribution
comes from a single term. We first include an appropriate
normalization factor to the wave function from Eq. (50) and
calculate the corresponding density matrix and its eigen-
values for a successively increasing number of coupled
harmonic oscillators. Then the eigenvalues, corresponding
to the reduced density matrix after tracing over m d.o.f.
out of total N-coupled harmonic oscillators, can be found
by guessing from the consecutive eigenvalue evaluation, as

M = N2AZ,

N2 [Nl N—1 2 n—1 N—1 1
S E (A7) 4 DA D4
2 = AT

(51)

where Ay = 1 and subscript s denotes different eigenvalues
that are three in number for any particular reduction n.
N. = (35 A3)71/% is the normalization factor corre-
sponding to the perturbed ground state. As discussed
earlier the entanglement entropy corresponding to these
eigenvalues would be S% = —>"3_ A" InA7.

1. Area law in Fock quantization

In order to obtain the area law of entanglement entropy in
Fock quantization we first consider the discrete
Hamiltonian, formed out of a partially Fourier transformed
field Hamiltonian in a lattice of finite size, from Eq. (14).
With the help of Eq. (15) one can get frequency w; of the
Jjth oscillator and coupling kf between the jth and (j + 1)th
oscillator. Now according to Eq. (22) we want to find the
expressions of the coefficients of first order perturbation
A; = k5 /{2, /@0, (w; + @;;1)}, which are used in
Eq. (51) to get the eigenvalues. We note that the perturba-
tive coefficients Aj are, in principle, functions of / and m

400 Actual —a— o g
Perturbative ---e--- .‘.0'
300 F . i
I
9 200 ,
100 J
200 400 600 800 1000
(n 4 0.5)?
(a)
400 Actual —a— o]
300 X o®
Perturbative ---eo--- ‘..o
200 «®
= ,t‘.
c’) ."'
100 -
o
-",~
15 20 25 30
(n+0.5)

(b)

FIG. 3. (a) The plot of entanglement entropy with respect to
(n + 0.5)? for a free massless scalar field in a lattice of total size
N = 60. Here n is the number of position d.o.f. traced out of the
ground state of the scalar field. This plot shows the area law for
entanglement entropy in both actual and perturbative formu-
lation. Here the ratio of the slopes from perturbative entropy and
actual entropy is ~1.85. (b) This figure provides the log-log plot
of entanglement entropy vs (n + 0.5) in both actual and pertur-
bative formulation. The slope of the curve from actual formu-
lation is about ~1.9 where the slope from perturbative
formulation is ~2.1. We have used first order perturbation to
evaluate the entanglement entropy.

and sums over these quantities are taken to evaluate the
entropy, but for brevity we omitted their index from the
notation. In Fock quantization they are evaluated using
Cén =061,/ /20; and E}, = (n + 1/2)w;. We have numeri-
cally computed the entanglement entropy using the obtained
eigenvalues. In Fig. 3 the entanglement entropy from
perturbative and actual formulation is presented for a mass-
less free scalar field. The entanglement entropy in actual
formulation is obtained nonperturbatively, utilizing the
Gaussian nature of the ground state wave functions. We
have used the results from Eq. (10) and the potential from
Eq. (15) to evaluate the entanglement entropy in actual
formulation [19]. Figure 3 shows that first order perturbation
is sufficient to provide an area law for entanglement entropy.
We note that the slope from this area curve (~0.42) is
different than the one obtained from actual formulation
(~0.29). One can notice from Egs. (14) and (15) that the
ratio of the frequency square to interaction strength decreases
when j increases as we consider a larger system size. Thus
perturbation theory becomes less effective and the results
obtained from first order perturbation deviate more from
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FIG. 4. (a) The plot of entanglement entropy of a massive free
scalar field with respect to (n + 0.5)? for N = 60. Here pa = 2
and the ratio of the slopes from perturbative entropy and actual
entropy is ~1.22. (b) The entanglement entropy vs (m + 0.5)>
plot for massive free scalar field with N = 60. Here ya = 4 and
the ratio of the slopes from perturbative entropy and actual
entropy is ~1.04. In both cases only first order perturbation is
used.

the actual nonperturbative result for large j. We also note that
as second order perturbation is employed in this formulation
the area curve is quantitatively very little improved and gets
closer to the area curve from actual formulation. Now as we
consider a field with increasing mass, the ratio of the
frequency square and coupling strength from Eq. (15)
increases and the perturbative formulation becomes more
effective in describing the original system.

In addition to the massless case we have also considered
a massive scalar field with discretized Hamiltonian from
Eq. (14). We have taken different values for the parameter
ua and for each value obtained the area law in both the
actual and first order perturbation. Then the massless case
becomes a special case when this parameter ua is taken to
be 0. In particular, we have observed that as we increase the
value of this parameter the perturbation becomes stronger
and the slopes of the two area curves corresponding to
actual and perturbative formulation get closer. The plots
corresponding to this feature are shown in Fig. 4.

2. Area law in polymer quantization

We take the Fourier Hamiltonian density for a massive
free scalar field according to Eq. (14). We note that the
field modes ¢,,, ; and their conjugate momenta 7, ; are
dimensionless here. To consistently introduce polymer

quantization in this formulation we make the transforma-
tions 7, ; = 1y, ;/+/a and @y, ; = \/ag,, ; such that the
new field mode and the conjugate momentum become
dimension full. Then the Fourier Hamiltonian density
from Eq. (14) takes the form

= JHN (P Pimjir 2
H, = 72 2 m,j _ Flm,j+
" 2;[”“’”( a ) ( ES
I(I+1 .
+{ (02j2)+/’l2}¢12m,j:|' (52)

This Hamiltonian also describes a system of N-coupled
harmonic oscillators given by Eq. (6). In polymer quan-
tization a new dimension full parameter 4, is introduced
with dimension (length)!/2, inverse of the dimension
of momentum. Here the basic variables are taken to be

Pim,; and U?,;w.:exp {iA, 7y, ;} with Poisson bracket

{@Pim,j» U?,;”} =il, U?n*”. From the above system of
coupled harmonic oscillators we observe that for a general
Jjth oscillator the frequency is

Dl :aij{z(lju 1) +{(j+%>2 + (J"%)z} e

9 N2 1 Qs
+M2l12j2+_5j1+<N—5> 51 :|2: ;’J.

4
(53)

Now we want to get the expressions of perturbative
coefficients A used in Eq. (51). They are constructed using
expressions of CJ and Ej in polymer quantization from
Eq. (39) and (46), which are further given by the dimen-
sionless polymer parameter g, ; = @y, j/li =Q, l./a.
We also note that the interatomic distance a and the
polymer length scale /, = A2 both have the same nature
and should have the same order as they signify the
ultraviolet cutoff. Then we take their ratio y =1, /a to
be unity, which adds further simplification to the evaluation
of entanglement entropy. We have plotted the entanglement
entropy from first order perturbative formulation in Fig. 5
considering massless free scalar fields in polymer quantum
field theory. In these figures we observe that the area law is
valid in polymer quantization too. However the correspond-
ing slope is now very low compared to results from Fock
quantization. One can also get the area law in polymer
quantization for massive free scalar field with a further
decreased slope.

Implication of the result: From [26] we get to understand
that the slope of the area curve for entanglement entropy
can be different due to many reasons, such as different
discretization procedures, inclusion of mass, or taking
excited states instead of the ground state. We mention
here a consistency check to understand whether this result
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FIG. 6. The plot of entanglement entropy in polymer quantiza-
tion for different values of y = [, /a.
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FIG. 5. (a) The entanglement entropy of a massless free scalar
field with respect to (m + 0.5)? using first order perturbation in
polymer quantization. This plot shows the area law in polymer
quantization with slope 6.12 x 107°. (b) The log-log plot of the
entanglement entropy vs (n+ 0.5) in perturbative formulation
using polymer quantization. The total lattice size is taken to be
N = 60 and the obtained slope is 2.002.

from polymer quantization is a plausible one or not. It is
noted in [22] that in low energy regimes polymer quan-
tization reproduces the results from usual Fock quantiza-
tion. Now in this formulation of entanglement entropy
evaluation we observe that one direct influence of polymer
quantization over Fock is dictated by the factor (I,/a).
When this factor is unity the system is completely inter-
preted in terms of polymer quantization. On the other hand
when the value of this quantity decreases the value of
the dimensionless polymer frequency g, ; decreases and
the system becomes more and more Fock-like as the lower
energy regimes of polymer quantization tend to contribute
to the description of the system. We have plotted the
entanglement entropy for different values of this factor
and we observed that as the value decreases the area curve
of entanglement entropy from polymer quantization
approaches the one from Fock quantization; see Figs. 6
and 7. Thus the very low slope of the entanglement entropy
can be described as a feature coming from the disentangling
nature of polymer quantization at high energy regimes. We
note that massive scalar fields also show disentangling
nature and lower the slope of the area curve [49-51].
The entanglement entropy of the free scalar field in
polymer quantization gives rise to another question, which
relates to the corrections to the area law as predicted by

y=03 - - -
=02 ------
100f [ v=01 —-—
v =005 --- - .
v =001 ——- -
Fock 7.
m 10f
0N -",
1k
/:_.-‘:,’
01g -~ ‘ ‘ ‘ i
1.5 5 10 20 30

(m+0.5)

FIG. 7. The log-log plot of entanglement entropy in polymer
quantization for different values of y = 1, /a.

quantum gravity [52-55]. In this manner we note that the
slope of the entanglement entropy vs (n + 0.5) curve in the
log-log plot is 2.002, which automatically discards any
possible departure from the area law. This area dependence
of entanglement entropy in polymer quantization is
enthralling in its own right since it validates the generality
of the area law in quantizations other than Fock.

IV. DISCUSSION

In usual formulation, procurement of the area curve for
entanglement entropy [3-9] is simplified using the math-
ematical structure of Gaussian ground state wave function
from Schrodinger quantization. However, not all quanti-
zation procedures provide this Gaussian nature of ground
state and polymer quantization is one of them. We note
that though entanglement entropy for two coupled har-
monic oscillators is specifically evaluated for polymer
quantization in [56], the framework to obtain entangle-
ment entropy for a large number of coupled oscillators is
not provided; thus one cannot obtain the area law. In this
work we have treated the interaction between coupled
harmonic oscillators in a perturbative manner. Our pro-
cedure is different than the ones discussed in [49-51,57],
where the eigenvalues of the reduced density matrix and
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momentum space entanglement are estimated using per-
turbation. For two coupled harmonic oscillators we
noticed a disentangling nature from polymer quantization
at the high frequency regime. We observed that in
Schrodinger quantization the entanglement entropy is
unchanged while in polymer quantization it decreases
at high oscillator frequencies, keeping the ratio of inter-
action strength to frequency square fixed. We showed that
in our formulation, by considering the free scalar field,
one obtains the area law of entanglement entropy for
Fock quantization. As the mass of the scalar field
increases the individual oscillator frequency increases;
thus perturbation strength increases and the obtained area
curve approaches the area curve from usual formulation.
Furthermore, we showed that in polymer quantization also
this formulation provides a similar area law, but with a
very decreased slope. We inferred that this decrease of
slope is due to the disentangling nature of polymer
quantization at higher energies. We further noticed that
as the effect of polymer quantization becomes smaller,
by lowering the value of the ratio of polymer length
scale [, to interatomic distance a, the area curve from
polymer quantization using first order perturbation tends
to approach the area curve from Fock quantization.
This phenomenon is not quite surprising as in the limit
l,/a — 0, the physical result from polymer quantization

would converge to the result obtained from the standard
Fock quantization. The disentangling nature of polymer
quantization is very intriguing in its own right as it is
known that usual quantization loses its predictability in
trans-Planckian energy regimes [58,59]. We note that this
disentangling phenomenon in polymer quantization is
analogous to the suppression of propagation at large
energies. We mention that there are other derivations to
obtain the area law and harvest entanglement entropy for
the scalar field [60—76] and it would be interesting to see
whether an exact form of the entanglement entropy can be
found using these derivations in polymer quantization.
In conclusion we address that our formulation opens up
an avenue to understand entanglement entropy in terms of
perturbative corrections.
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