
 

Thermodynamics and entropy of self-gravitating matter
shells and black holes in d dimensions
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The thermodynamic properties of self-gravitating spherical thin matter shells and black holes
in d > 4 dimensions are studied, extending previous analysis for d ¼ 4. The shell joins a Minkowski
interior to a Tangherlini exterior, i.e., a Schwarzschild exterior in d dimensions with d ≥ 4. The junction
conditions and the first law of thermodynamics enable one to establish that the entropy of the thin shell
depends only on its own gravitational radius. Endowing the shell with a power-law temperature equation
of state allows one to determine a precise form for the entropy and to perform a thermodynamic stability
analysis for the shell. An interesting case is when the shell’s temperature has the Hawking form, i.e., it is
inversely proportional to the shell’s gravitational radius. It is shown in this case that the shell’s heat
capacity is positive, and thus there is stability, for shells with radii in between their own gravitational
radius and the radius of circular photonic orbits, unexpectedly reproducing York’s thermodynamic
stability criterion for a d ¼ 4 black hole in the canonical ensemble. Moreover, the Euler relation for the
matter shell is derived, the Bekenstein and holographic entropy bounds are studied, and the large d limit
is analyzed. Within this formalism the thermodynamic properties of black holes can be studied, too.
Putting the shell at its own gravitational radius, i.e., at the black hole stage, obliges one to choose
precisely the Hawking temperature for the shell which in turn yields the Bekenstein-Hawking entropy.
The stability analysis implies that the black hole is thermodynamically stable, substantiating that in this
configuration our system and York’s canonical ensemble black hole are indeed the same system. In
addition, within this formalism the Smarr formula for black holes in d dimensions appears naturally and
surprisingly.
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I. INTRODUCTION

Black holes are thermodynamics systems that have an
internal energy [1,2], an entropy [3], and a temperature [4].
A statistical physics thermodynamic treatment can be given
through a path integral approach [5], and in a consistent
manner black holes can be put in a canonical ensemble by
defining a temperature for a heat bath in a given region of
space [6–8]. Theseworkswere performed for Schwarzschild
and Reissner-Nordström black holes in four dimensions.
Self-gravitating matter systems also possess thermody-

namic properties. Perhaps, the simplest self-gravitating
matter system is a thin shell. Thermodynamic studies of

thin shells in Schwarzschild and Reissner-Nordström
four-dimensional spacetimes have been performed in
Refs. [9–12], in which the entropy and the stability of
the shells were displayed.
Since black holes and self-gravitating matter systems are

thermodynamic systems, it is natural to mix both. This has
been done by putting the combined system of black hole
plus matter in a canonical ensemble [13]. One can also
conceive of a black hole surrounded by a thin shell and
study the compound system thermodynamically [14,15].
One can then collapse the matter into the initial black hole.
The collapse should be done quasistatically and in thermo-
dynamic equilibrium so that the whole setup makes sense
thermodynamically. Yet another way is to suppose no initial
black hole and some initial self-gravitating matter in
thermal equilibrium, for instance, the thin shells considered
in Refs. [9–12]. Suppose then the shell gravitationally
collapses again quasistatically up to its own gravitational
radius, i.e., up to the formation of a black hole. On the verge
of the black hole formation, the matter entropy must change
in order to give rise to the final black hole entropy [10–12].
In this way, one can test how matter entropy transforms into
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black hole entropy; see also Refs. [16]. For a self-
gravitating matter continuum, a generic spacetime matter
structure that includes thin shells, one can also address the
entropy when the matter is forming a black hole, a situation
that has been fully developed within the quasiblack hole
formalism [17,18]. An analogous procedure to find black
hole properties is the membrane paradigm approach
[19–21].
It is surely interesting to see if the thermodynamic

properties for black holes and self-gravitating matter are
reproduced in dimensions different from 4 and in space-
times with a cosmological constant. In three dimensions,
thermodynamic properties of thin shells in BTZ nonrotat-
ing and rotating spacetimes have been studied [22–25] with
results that, even in one lower dimension and with the
inclusion of a cosmological constant and rotation, some-
how repeat the four-dimensional results, confirming that
the BTZ spacetime is a good test bed for four-dimensional
general relativity. On the other hand, the study of higher
d-dimensional self-gravitating shells has not been per-
formed. Since there is the intriguing possibility that the
Universe has higher hidden dimensions that might be large
or small, it is interesting to study how shells and black holes
and their thermodynamics properties develop in higher
d > 4 dimensions. Here, wemake a thermodynamic study of
shells for which the inner spacetime is spherically symmetric
Minkowski and the outer spacetime is a Tangherlini space-
time, i.e., a Schwarzschild spacetime in d dimensions, d ≥ 4.
We also take the self-gravitating d-dimensional shell to its
own gravitational radius and obtain the thermodynamic
properties of a d-dimensional black hole, such as its entropy,
its stability, and the corresponding Smarr formula.
We use known results in d dimensions. For particle orbits

in d dimensions, see Ref. [26]; for the Hawking temper-
ature in d dimensions, see Ref. [27]; and for the Smarr
formula in d dimensions, see Ref. [28]. We adopt the
thermodynamic formalism presented in Ref. [29]. We also
study the Bekenstein [30] and the holographic [31–33]
entropy bounds for the d-dimensional shells. We benefit
from the result given in Ref. [34], in which it is shown that
to be divergent free quantically black holes must be at the
Hawking temperature.
The paper is organized as follows. In Sec. II, the d-

dimensional interiorMinkowski and exterior Schwarzschild,
or Tangherlini, metrics are given, and themechanical proper-
ties of the self-gravitating thin shell thatmakes the junctionof
the two spacetimes are found. The thermodynamic properties
of the shell are prescribed, the first law of thermodynamics
applied to the shell is studied, and a generic expression for the
entropy of the shell is found. In Sec. III, it is assumed a
power-law equation of state for the temperature, an analysis
of the local thermodynamic stability is performed, the Euler
relation between the relevant thermodynamic quantities is
found, the holographic and Bekenstein entropy bounds are
studied, and the large d limit is considered. In Sec. IV, the

black hole limit is taken, and its properties follow. In Sec. V,
conclusions are drawn.

II. MECHANICS AND THERMODYNAMICS
OF SELF-GRAVITATING STATIC
THIN SHELLS IN d DIMENSIONS

A. Mechanics of static thin shells: ADM and rest
masses and the equation of state for the pressure

We write the Einstein field equation in d dimensions in
the form

Gab ¼ 8πTab; ð1Þ

where a, b are spacetime indices that run from 0 to d − 1,
Gab is the Einstein tensor, Tab the energy-momentum
tensor, and it is clear that with this choice for Eq. (1)
the d-dimensional Einstein field equation has the same
form as the four-dimensional one. We put the d-dimen-
sional gravitational constant Gd to 1 and the speed of light
c to 1.
Consider a spherically symmetric timelike (d − 1)-

hypersurface Σ that partitions a d-dimensional spacetime
into two regions. The region on the inside is denoted by an i
subscript sign, and the outside region is denoted with an o
subscript. The partition is given by a thin shell, and we
assume that the inside is a d-dimensional flat metric with
d ≥ 4 and the outside is a Tangherlini, or d-dimensional
Schwarzschild with d ≥ 4, metric.
On the inside, the coordinates are xαi ¼ðti;r;θ1;…;θd−2Þ,

where ti is the time coordinate inside, r is the radial
coordinate, and θk are the angular coordinates on a (d − 2)-
dimensional sphere. The metric on the flat inside is thus

ds2i ¼ −Fidt2i þ
dr2

Fi
þ r2dΩ2; ð2Þ

with

Fi ¼ 1; ð3Þ

and

dΩ2 ¼ dθ21 þ
Xd−2
k¼2

�Yk−1
j¼1

sin2θj

�
dθ2k ð4Þ

is the line element on a (d − 2)-dimensional sphere.
On the outside, the coordinates are xαo ¼ ðto; r; θ1;

…; θd−2Þ, where to is the time coordinate outside, r is
the radial coordinate, and θk are the angular coordinates.
The metric on the Tangherlini outside is thus

ds2o ¼ −Fodt2o þ
dr2

Fo
þ r2dΩ2; ð5Þ
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with

Fo ¼ 1 −
γm
rd−3

; ð6Þ

where

γ ≡ 16π

ðd − 2ÞΩd−2
; ð7Þ

and

Ωd−2 ¼
2πðd−1Þ=2

Γðd−1
2
Þ ; ð8Þ

dΩ2 is the same line element on a (d − 2)-dimensional
sphere as in Eq. (4),m is the spacetime ADMmass, and Γ is
the gamma function. In d ¼ 4, one has Γð3=2Þ ¼ ffiffiffi

π
p

=2,
Ω2 ¼ 4π, and γ ¼ 2. The spacetime gravitational radius is

rþ ¼ ðγmÞ1=ðd−3Þ: ð9Þ

In d ¼ 4, one recovers rþ ¼ 2m. It is useful to define the
gravitational area Aþ given by

Aþ ¼ Ωd−2rd−2þ : ð10Þ

If the spacetime is a black hole spacetime, then rþ and Aþ
are the horizon radius and the horizon area of the black
hole, respectively. There is an additional radius that pops
out naturally in our context. This is the radius of the photon
sphere [26]

rph ¼
�
d − 1

2

� 1
d−3
: ð11Þ

For d ¼ 4, it gives 3m, and recall that rph ¼ 3m is the
photon sphere, where photons can have circular trajectories
in the Schwarzschild spacetime. The generalization
of the photon sphere radius to d dimensions is indeed
Eq. (11) [26].
The self-gravitating shell is at the hypersurface Σ

defined by

r ¼ R: ð12Þ
Letting τ be the proper time on the shell, the shell’s
evolution is parametrized as RðτÞ, T iðτÞ≡ tijΣ, and
ToðτÞ≡ tojΣ. Define the metric and coordinates on the
shell by hab and ya ¼ ðτ; θ1;…; θd−2Þ, respectively, such
that on the shell the line element ds2Σ ¼ habdyadyb is

ds2Σ ¼ −dτ2 þ R2ðτÞdΩ2: ð13Þ

The first junction condition demands continuity of the
metric across the shell. This is obtained by assuring

½hab� ¼ 0, where square brackets ½ � denote the jump in
the quantity across the hypersurface. The first junction
condition then yields − _T i

2 þ _R2 ¼ −Fo
_To
2 þ _R2

Fo
¼ −1,

where a dot denotes differentiation with respect to τ and
we have used Fi ¼ 1. We can now proceed to the second
junction condition. The shell is assumed to be a perfect
fluid, so its stress tensor is given by Sab ¼ ðσ þ pÞuaubþ
phab, where σ is the rest energy density, p is the tangential
pressure acting on the (d − 2)-sphere at radius R, and ua is
the fluid’s d-velocity. Denoting the rest mass of the shell by
M, one has that the relation between M, the area A of the
shell, and σ is

M ¼ σA; ð14Þ
where A is

A ¼ Ωd−2Rd−2: ð15Þ
The second junction condition is Sab¼− 1

8πð½Kab�−½K�habÞ,
with Kab and K standing for the extrinsic curvature and its
trace, respectively. The static case is characterized by
R̈ ¼ _R ¼ 0. The junction then yields

m ¼ M −
γM2

4Rd−3 ; ð16Þ

p ¼ ðd − 3ÞγM2

4ðd − 2ÞΩd−2Rd−2ðRd−3 − γM
2
Þ : ð17Þ

The shell can surely be put at infinity, R ¼ ∞. On the other
hand, the static shell concept only makes sense if the radius
of the shell R bounds from above the spacetime gravita-
tional radius rþ. For R ¼ rþ, the shell turns into a black
hole. For R < rþ, there is no static shell. Thus, R obeys

R ≥ rþ; ð18Þ

with the inequality being valid up to infinity. The redshift
function k at the shell’s position R is a quantity that appears
quite often. It is defined by

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
rþ
R

�
d−3

s
: ð19Þ

We see from Eqs. (18) and (19) that

0 ≤ k ≤ 1: ð20Þ

We can then put the rest massM and the tangential pressure
p given in Eqs. (16) and (17), respectively, in terms of the
redshift function k given in Eq. (19) to find

M ¼ 2Rd−3

γ
ð1 − kÞ; ð21Þ
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p ¼ ðd − 3Þð1 − kÞ2
16πRk

: ð22Þ

B. Thermodynamics on the shell: First law, functional
form of the temperature equation of state, and entropy

Consider the self-gravitating thin shell to be thermally
isolated; i.e., it is an adiabatic system. In any infinitesimal
neighborhood of a point in the shell, one defines a local
temperature T at the shell, a local entropy density s, a local
rest mass density σ, a local tangential pressure p, and a
local element area a. The first law of thermodynamics for
this small region in the shell is Tds ¼ dσ þ pda. This can
be integrated on angles at radius R to give the first law of
thermodynamics for the shell

TdS ¼ dM þ pdA; ð23Þ

where S is its entropy,M is its rest mass, p is the tangential
pressure, and A is its area. We work in the entropy
representation [29], i.e., we consider S as function of M
and A,

S ¼ SðM;AÞ. ð24Þ

The temperature T and the pressure p are given by
equations of state T ¼ TðM;AÞ and p ¼ pðM;AÞ, respec-
tively. The equation of state for the temperature T ¼
TðM;AÞ is free and has to be specified. The equation of
state for the pressure p ¼ pðM;AÞ is imposed on us
through the junction conditions and is given by Eq. (17)
or Eq. (22) with the help of Eq. (15). Both TðM;AÞ
and pðM;AÞ are formally given by TðM;AÞ ¼ ð ∂S∂MÞA
and pðM;AÞ ¼ ð∂S∂AÞM. It is useful to define the inverse
temperature β,

β ¼ 1

T
; ð25Þ

where also β ¼ βðM;AÞ. Equation (23) is then
dS ¼ βdM þ βpdA, and it can only be an exact differential
for the entropy if the integrability condition

�∂β
∂A

�
M
¼

�∂ðβpÞ
∂M

�
A

ð26Þ

is satisfied. Then, given β ¼ βðM;AÞ and p ¼ pðM;AÞ
obeying Eq. (26), S ¼ SðM;AÞ in Eq. (24) can be deter-
mined explicitly by integration.
Using Eqs. (9), (15), and (16), we can make the

thermodynamic variable change ðM;AÞ → ðrþ; RÞ and
upon using Eq. (17) or Eq. (22) find that the differential
for the entropy is given solely by a differential on the
gravitational radius rþ, with Eq. (23) taking the form

dS ¼ βðrþ; RÞ
d − 3

γk
rd−4þ drþ: ð27Þ

In terms of ðrþ; RÞ, the integrability condition (26) reads

�∂β
∂R

�
rþ

¼ β
ðd − 3Þð1 − k2Þ

2k2R
; ð28Þ

which has for solution an inverse temperature Tolman
formula at the shell’s location, i.e.,

βðrþ; RÞ ¼ bðrþÞkðrþ; RÞ; ð29Þ

where bðrþÞ is an arbitrary function of rþ alone. Since
k → 1 as R → ∞, b provides the inverse temperature if the
shell were placed at infinity. An alternative interpretation is
to consider the Tolman redshift formula. Suppose that there
is some negligible but effective leaking in the form of
radiation from the thermally isolated shell to infinity. From
the Tolman formula, we have that the inverse temperature at
a given radius r of the leaked radiation is given by
βðrþ; rÞ ¼ bðrþÞkðrþ; rÞ. At infinity, kðrþ;∞Þ ¼ 1, and
so the inverse temperature of the radiation there is bðrþÞ.
Now, inserting Eq. (29) into the entropy differential
equation (27), one gets dS ¼ d−3

γ bðrþÞrd−4þ drþ. Thus,
the total entropy of the shell is given by the sum of all
the entropy differentials up to that rþ, i.e.,

SðrþÞ ¼
d − 3

γ

Z
rþ

0

bðrÞrd−4dr: ð30Þ

In Eq. (30), the integration constant is fixed under the
condition that Sð0Þ ¼ S0, and we put S0 ¼ 0. Equation (30)
provides the equation for the shell’s entropy for any
acceptable equation of state for bðrþÞ, and it shows that
the entropy does not depend on the shell radius R; it
depends only on the gravitational radius rþ. In other words,
shells with different radius R but with the same rþ have the
same entropy. This is a known, but nevertheless striking,
result.

III. SHELLSWITH A POWER-LAWEQUATIONOF
STATE IN d DIMENSIONS: ENTROPY, LOCAL

THERMODYNAMIC STABILITY, EULER
RELATION, ENTROPY BOUNDS, AND LARGE d

A. Entropy of a shell with a temperature
power-law equation of state

We still have the freedom to choose the equation of state
for the inverse temperature of the shell given in the function
bðrþÞ. To proceed, we assume as equation of state for
bðrþÞ a power-law function of the form

bðrþÞ ¼ 4πη
aþ 1

d − 3
raðd−2Þþ1
þ ; ð31Þ

ANDRÉ, LEMOS, and QUINTA PHYS. REV. D 99, 125013 (2019)

125013-4



where η and a are free parameters without units and aþ1
d−3

appears for convenience. We have put the Boltzmann
constant equal to 1 so that temperature has units of mass.
We also put the Planck constant ℏ equal to 1. Then, the

Planck length for a d-dimensional spacetime lp ¼ ðGdℏ
c3 Þ

1
d−2

is 1, and the Planck massmp ¼ ðc5−dℏd−3Gd
Þ 1
d−2 is also 1; i.e., all

quantities are measured in Planck units. The choice in
Eq. (31) for bðrþÞ is analogous to the choice in Ref. [9].
Note that the case a ¼ 0 is of particular interest as the
inverse temperature has the inverse Hawking temperature
form; it is proportional to rþ [see Eq. (31)]. If further we
choose η ¼ 1, then bðrþÞ ¼ 4π

d−3 rþ, and the shell has
precisely the Hawking temperature in d dimensions [27].
Putting Eq. (31) into Eq. (30) leads to the following

expression for the entropy of the self-gravitating shell:

S ¼ 1

4
ηΩd−2r

ðaþ1Þðd−2Þ
þ : ð32Þ

From this expression, note that

a > −1; ð33Þ

otherwise, the entropy would diverge in the limit rþ → 0, a
situation we avoid. The case a ¼ 0 that has the Hawking
inverse temperature form yields an entropy proportional to
it is proportional to rd−2þ , i.e., proportional to Aþ and so has
the Bekenstein-Hawking form.

B. Intrinsic thermodynamic stability

1. Generics

Following Ref. [29], one can analyze thermodynamic
local stability of a system in relation to the entropy
fundamental equation S ¼ SðM;AÞ. Stable solutions are
considered using Le Chatelier’s principle, which states that
a stable system will tend to restore its equilibrium homo-
geneity state when a small nonhomogeneous change is
performed on it. The thin matter shell solution is a good
approximation to a layer of matter with a very small
thickness. Let us divide this layer into an inner layer
and an outer layer with proper mass M, say, each and with
no thermic contact. The fundamental equation for
each layer is S ¼ SðM;AÞ. So, the initial entropy of the
total system is 2SðM;AÞ. Now, remove some mass ΔM
from one subsystem to the other, and get for the entropy
of total system SðM þ ΔM;AÞ þ SðM − ΔM;AÞ. If the
thermic contact is removed, heat flows from one side
to the other. By the second law of thermodynamics
the entropy should increase and for the system to be
stable it should return to its original value 2SðM;AÞ. So,
2SðM;AÞ ≥ SðM þ ΔM;AÞ þ SðM − ΔM;AÞ. Taking the
limit ΔM → 0 stability means

� ∂2S
∂M2

�
A
≤ 0: ð34Þ

The heat capacity is given by CA ≡ ð∂M∂T ÞA ¼ −T−2ð ∂2S∂M2Þ−1A .
So, Eq. (34) is equivalent to requiring a positive heat
capacity at constant area CA.
Analogously, one can consider the thermodynamic

stability in relation to the area A and obtain�∂2S
∂A2

�
M
≤ 0: ð35Þ

For a small change of both M and A simultaneously, the
stability condition is� ∂2S

∂M2

��∂2S
∂A2

�
−
� ∂2S
∂M∂A

�
2

≥ 0: ð36Þ

Note that one can analyze each condition at a time.
Condition (34) is the actual stability condition if the self-
gravitating shell is held at fixed A, i.e., at fixed radius R.
Condition (35) is the actual stability condition if the shell is
held at fixed proper mass M. If the area A and the proper
mass M are not fixed, then condition (36) also counts, and
one needs to check it.

2. Stability for free proper mass M and at fixed area A,
i.e., at fixed shell radius R

Condition (34) is the stability condition if the proper
mass M is free to change and the shell is held at fixed area
A, i.e., fixed radius R. Since the heat capacity is given by
CA ≡ ð∂M∂T ÞA ¼ −T−2ð ∂2S∂M2Þ−1A , Eq. (34) is equivalent to
requiring a positive heat capacity at constant area CA, i.e.,

CA ≥ 0: ð37Þ

Equation (32) together with Eqs. (9) and (16) yields
ð ∂2S∂M2ÞA ¼ 2ð1þaÞðd−2ÞSðM;AÞ

ðd−3Þ2M2ð1−kÞ2 ½k2ðd− 1þ 2aðd− 2ÞÞ−ðd− 3Þ�.
Thus, Eq. (34) or Eq. (37) gives

k2ðd − 1þ 2aðd − 2ÞÞ − ðd − 3Þ ≤ 0: ð38Þ

If a ≤ −ðd − 1Þ=ð2ðd − 2ÞÞ, Eq. (38) is always satisfied.
Since we have imposed a > −1, Eq. (33), we have for
−1 < a ≤ −ðd − 1Þ=ð2ðd − 2ÞÞ that Eq. (38) is satisfied.
On the other hand, for a > −ðd − 1Þ=ð2ðd − 2ÞÞ, Eq. (38)
is satisfied when −k1 ≤ k ≤ k1, with k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d−3

d−1þ2aðd−2Þ
q

.

Since we have 0 ≤ k [recall Eq. (19)], this condition can be
rewritten as 0 ≤ k ≤ k1. Now, note that the expression
inside the square root in k1, i.e.,

d−3
d−1þ2aðd−2Þ, is always

greater than 1 if a < −1=ðd − 2Þ. Then, since k ≤ 1 [recall
again Eq. (19)], we have that from the equation above, if
a ≤ −1=ðd − 2Þ, Eq. (38) is always satisfied. Since we
found that for −1 < a ≤ −ðd − 1Þ=ð2ðd − 2ÞÞ Eq. (38) is
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satisfied, we can extend this range to −1 < a ≤
−1=ðd − 2Þ. Now, for a > −1=ðd − 2Þ, the expression
inside the square root in k1, i.e., d−3

d−1þ2aðd−2Þ, is always

smaller than 1. This imposes a requirement on k indeed,
i.e., k ≤ k1, with k1 ≤ 1.
In brief, stability for free proper mass M and at constant

area A means that Eq. (34) holds, which in turn means that
Eq. (37) also holds; i.e., the heat capacity CA is positive,
CA ≥ 0. Specifically, we found that for freeM and fixed A,

stability always for − 1 < a ≤ −
1

d − 2
; ð39Þ

and Eq. (38) is satisfied when 0 ≤ k ≤ k1 for
−1=ðd − 2Þ < a < ∞, i.e.,

stability when 0 ≤ k ≤ k1; for −
1

d − 2
< a < ∞; ð40Þ

with

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d − 3

d − 1þ 2aðd − 2Þ

s
: ð41Þ

Note anew that 0 < k1 ≤ 1 in this case, i.e., for
−1=ðd − 2Þ < a. Using Eq. (19), we can put condition
(40) in terms of R=rþ,

1 ≤
R
rþ

≤
1

ð1 − k21Þ
1

d−3
; ð42Þ

for −1=ðd − 2Þ < a < ∞. Changing from rþ to M through
Eqs. (9) and (16), we obtain that the thin shell’s radius is
bounded from above as 2Rd−3

γM ≤ 1
1−k1

.
The case a ¼ 0 is of particular interest as the inverse

temperature has the inverse Hawking temperature form; it
is proportional to rþ [see Eq. (31)]. Putting a ¼ 0 in k1 [see

Eq. (41)], we get k1 ¼
ffiffiffiffiffiffi
d−3
d−1

q
, and the stability is given then

by Eq. (40). One can solve for R
rþ

[see also Eq. (42)], to

obtain 1 ≤ R
rþ

≤ ðd−1
2
Þ 1
d−3. Looking at Eq. (11), we see this is

rþ ≤ R ≤ rph; ð43Þ

i.e., the shell is thermodynamically stable if its radius R is
in between the gravitational radius rþ and the photon
sphere radius rph. For d ¼ 4, Eq. (43) is rþ ≤ R ≤ 3

2
rþ, and

putting rþ ¼ 2m, one gets 2m ≤ R ≤ 3m. This is a striking
outcome as it reminds one of York’s result for the thermal
stability of the d ¼ 4 black hole in the canonical ensemble
[6]. York’s approach implies that for a Scharzschild black
hole in a heat reservoir of fixed radius R at temperature T,
i.e., in a canonical ensemble, the heat capacity of the black
hole system is positive only if 2m ≤ R ≤ 3m, so in this

range, the system is stable. Our result says that for a ¼ 0,
the heat capacity is positive if the shell is in the range
2m ≤ R ≤ 3m. The shell’s heat capacity is measured for A
fixed, i.e., R fixed, and the shell itself acts as a heat
reservoir. The two systems thus have similarities but are
different. One is a black hole in a heat reservoir at
temperature T and the Schwarzschild solution holds inside
that reservoir, the other is a massive shell at temperature T
and the Minkowski solution holds inside that shell. This is
an unexpected result and hints that what is important for
thermodynamic stability is the place of the shell alone,
whether it is a heat reservoir massless shell or a mas-
sive shell.
In Fig. 1, we plot the stability regions in the parameter

space given by the equation of state exponent a vs the
number of dimensions d, an integer number with d ≥ 4.
Adjacently, we also plot the quantity k1 given in Eq. (41) in

FIG. 1. Intrinsic stability of the shell for free proper massM and
at fixed area A, i.e., fixed radius R, given in Eqs. (39) and (40), for
a self-gravitating shell with a power-law temperature equation of
state. Stability at fixed area A is equivalent to having a heat
capacity CA obeying CA ≥ 0. Top: The stability regions in the
parameter space given by the equation of state exponent a vs the
number of dimensions d, an integer number with d ≥ 4, are
displayed. In the region a ≤ − 1

d−2, the shell is always stable. In
the region a > − 1

d−2, the shell is only stable if 0 ≤ k ≤ k1.
Bottom: Plot of k1 given in Eq. (41) as a function of a for three
different values of d, d ¼ 4, 5, 11. The shell is stable if k is below
the respective k1. See the text for details.
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terms of the equation of state exponent a for three different
dimensions d, d ¼ 4, 5, 11. This makes it easier to follow
the stability parameters.

3. Stability for fixed proper mass M and for free area A

Condition (35) is the stability condition if the proper mass
M of the shell is held fixed and the area A is free to change.
Equation (32) together with Eqs. (9), (15), and (16) yields
ð∂2S∂A2ÞM ¼ ð1þaÞSðM;AÞ

A2ðd−2Þð1−kÞ ½ð1 − kÞð2 þ aÞðd − 2Þ − 2ð2d − 5Þ�.
Thus, Eq. (35) gives

−kðd − 2Þðaþ 2Þ − 2ð2d − 5Þ þ ðd − 2Þðaþ 2Þ ≤ 0:

ð44Þ

The solution for Eq. (44) is k ≥ k2 where k2 ¼ a−2d−3d−2
aþ2

.
Recalling from Eq. (33) that a > −1, we note that k2 ≤ 0
for −1 < a ≤ 2ðd − 3Þ=ðd − 2Þ and, since 0 ≤ k ≤ 1,
Eq. (44) is always satisfied. For a > 2ðd − 3Þ=ðd − 2Þ, we
have 0 < k2 < 1, so Eq. (44) is satisfied if k2 ≤ k ≤ 1.
So, in brief, stability for fixed M and free A means that

Eq. (35) holds. Specifically, we found that for fixed M and
free A,

stability always for − 1 < a ≤ 2
d − 3

d − 2
; ð45Þ

and Eq. (38) is satisfied when k2 ≤ k ≤ 1 for
a > 2ðd − 3Þ=ðd − 2Þ, i.e.,

stability when k2 ≤ k ≤ 1 for a > 2
d − 3

d − 2
; ð46Þ

with

k2 ¼
a − 2 d−3

d−2
aþ 2

: ð47Þ

Using Eq. (19), we can write condition Eq. (46) in terms of
R=rþ,

R
rþ

≥
1

ð1 − k22Þ
1

d−3
; ð48Þ

for a > 2ðd − 2Þ=ðd − 2Þ. Changing from rþ toM through
Eqs. (9) and (16), we obtain that the thin shell’s radius is
bounded from below as 2Rd−3

γM ≥ 1
1−k2

.
For the particularly interesting case a ¼ 0, we see from

Eq. (45) that the a ¼ 0 shell is thermodynamically stable
for any radius, as the condition is independent of it.
In Fig. 2, we plot the stability regions in the parameter

space given by the equation of state exponent a vs the
number of dimensions d, an integer number with d ≥ 4.
Adjacently, we also plot the quantity k2 given in Eq. (47) in
terms of the equation of state exponent a for three different

dimensions d, d ¼ 4, 5, 11. This makes it easier to follow
the stability parameters.

4. Stability for free proper mass M and free area A

In the case M and A are free, condition (36) also counts,
and one needs to check it. It will be seen that Eq. (36) yields
the most stringent conditions between the three conditions.
Equation (32) together with Eqs. (9), (15), and (16) yields
∂2S

∂M∂A ¼ 2ð1þaÞSðM;AÞ
Mðd−3Þð1−kÞ ½−ð1 − kÞð1 þ aÞðd − 2Þ þ 2d − 5þ

aðd − 2Þ�. Thus, Eq. (36) gives

k2ð2þ aðd − 1ÞÞ þ 2kðd − 3Þð1þ aðd − 2ÞÞ
d − 2

þ aðd − 3Þ ≤ 0: ð49Þ

For − 1 < a ≤ −2=ðd − 1Þ, the inequality is always satis-
fied by any 0 ≤ k ≤ 1. For a > −2=ðd − 1Þ, the inequality
is satisfied by k3− ≤ k ≤ k3, where k3− and k3 are the roots

FIG. 2. Intrinsic stability for free area A and fixed proper mass
M, given in Eqs. (45) and (46), for a self-gravitating shell with a
power-law temperature equation of state. Top: The stability
regions in the parameter space given by the equation of state
exponent a vs the number of dimensions d, an integer number
with d ≥ 4, are displayed. In the region a ≤ 2 d−3

d−2, the shell is
always stable. In the region a > 2 d−3

d−2, the shell is only stable if
k2 ≤ k ≤ 1. Bottom: Plot of k2 as a function of a for three
different values of d, d ¼ 4, 5, 11. The shell is stable if k lies
above the respective k2. See the text for details.
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in Eq. (49). Since k3− < 0, it can be discarded, and the
inequality is satisfied by any 0 ≤ k ≤ k3, where

k3 ¼ − ðd−3Þð1þaðd−2ÞÞ
ð2þaðd−1ÞÞðd−2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−3Þðd−3−2að1þaðd−2ÞÞðd−2ÞÞ

p
ð2þaðd−1ÞÞðd−2Þ . How-

ever, for −2=ðd − 1Þ < a ≤ −1=ðd − 2Þ, note that k3 ≥ 1,
so that the inequality is satisfied by any 0 ≤ k ≤ 1. For
−1=ðd − 2Þ < a ≤ 0, we have that 0 ≤ k3 < 1, so that the
inequality is satisfied by 0 ≤ k ≤ k3. For a > 0, note that
k3 < 0, so the inequality cannot be satisfied.
So, in brief, stability for free M and free A means that

Eq. (36) holds. Specifically, we found that for free M and
free A, the solutions have

stability always for − 1 < a ≤ −
1

d − 2
; ð50Þ

and Eq. (49) is satisfied when 0 ≤ k ≤ k3 for
−1=ðd − 2Þ < a ≤ 0, i.e.,

stability when 0 ≤ k ≤ k3 for −
1

d − 2
< a ≤ 0 ð51Þ

with

k3 ¼−
ðd−3Þð1þaðd−2ÞÞ
ð2þaðd−1ÞÞðd−2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd−3Þðd−3−2að1þaðd−2ÞÞðd−2ÞÞp

ð2þaðd−1ÞÞðd−2Þ 1; ð52Þ

and for a > 0, there are no thermodynamically stable
configurations, i.e.,

no stability for a > 0: ð53Þ

Using Eq. (19), Eq. (51) can be written in terms
of R=rþ as

1 ≤
R
rþ

≤
1

ð1 − k23Þ
1

d−3
ð54Þ

for −1=ðd − 2Þ < a ≤ 0. Changing from rþ to M through
Eqs. (9) and (16), we obtain that the thin shell’s radius is
bounded from above as 2Rd−3

γM ≤ 1
1−k3

.
For the particularly interesting a ¼ 0 case, the stability

condition is given in Eq. (51). It involves the quantity k3
given in Eq. (52), which for a ¼ 0 gives k3 ¼ 0. This
means that to be thermodynamically stable under these
perturbations, the radius of the shell R obeys R ¼ rþ. For
a ¼ 0, this is the only thermodynamic stable case.
In Fig. 3, we plot the stability regions in the parameter

space given by the equation of state exponent a vs the
number of dimensions d, an integer number with d ≥ 4.
Adjacently, we also plot the quantity k3 given in Eq. (52) in
terms of the equation of state exponent a for three different

dimensions d, d ¼ 4, 5, 11. This makes it easier to follow
the stability parameters.

5. Summary of the stability analysis:
All three cases together

Collecting the results for the stability of a self-gravitating
shell, we see that the third condition is the stricter one for
stability. Indeed: (i) Equations (39) and (50) give the same
result and are stricter than (45) in the range of a. (ii) In the
range −1=ðd − 2Þ < a ≤ 0 of Eq. (51), k3 < k1 always, so
Eq. (51) makes Eq. (40) spurious in this range of a. (iii) In
the range a > 0 of Eq. (53), all solutions are unstable, so
Eqs. (40) and (46) are irrelevant in this range. Thus,
Eqs. (50)–(53) are the ones necessary and sufficient for
intrinsic local thermodynamic stability. Nonetheless,
Eqs. (39) and (40) are valid for thermodynamic stability
at fixed A, and Eqs. (45) and (46) are valid for thermo-
dynamic stability at fixed M.

FIG. 3. Intrinsic stability for free proper mass M and free area
A, given in Eqs. (50), (51), and (53), for a self-gravitating shell
with a power-law temperature equation of state. Top: The stability
regions in the parameter space given by the equation of state
exponent a vs the number of dimensions d, an integer number
with d ≥ 4, are displayed. In the region −1 < a ≤ − 1

d−2, the shell
is always stable. In the region − 1

d−2 < a ≤ 0, the shell is only
stable if 0 ≤ k ≤ k3. In the region a > 0, the shell never satisfies
the thermodynamic stability criterion. Bottom: Plot of k3 as a
function of a for three different values of d, d ¼ 4, 5, 11. The
shell is stable if k lies above the respective k3. In the region a > 0
one has k3 < 0 and there is no stability. See the text for details.
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C. Euler relation

From the entropy S in Eq. (32), and using the expression
for the ADM mass m in terms of the proper mass M given
in Eq. (16), one finds that

γM
2Rd−3 ¼ 1 −

�
1

Rd−3

�
4S

ηΩd−2

� d−3
ðaþ1Þðd−2Þ

�1
2

: ð55Þ

Applying Euler’s theorem on homogeneous functions [29]
to M, which is homogeneous of degree d−3

ðaþ1Þðd−2Þ in S and
d−3
d−2 in A, yields the Euler relation for this system,

M ¼ ðaþ 1Þðd − 2Þ
d − 3

TS −
d − 2

d − 3
pA: ð56Þ

From the presence of the free parameter a, we see that the
Euler relation is dependent on the equation of state for the
temperature.
The scaling laws for the self-gravitating shell are

M → λM, S → λ
ðaþ1Þðd−2Þ

d−3 S, and A → λ
d−2
d−3A. This makes

sense. Indeed, under this rescaling, one has from
Eq. (31) T → λ−1−aðd−2ÞT and from Eq. (22) p → λ−

1
d−3p,

which altogether make M → λM in Eq. (56).
Taking the differential of Euler’s relation, Eq. (56), and

taking into account the first law, Eq. (23), one obtains the
Gibbs-Duhem relation for this system:

ðaþ 1Þðd − 2ÞSdT þ ð1þ aðd − 2ÞÞdM
þ aðd − 2ÞpdA − ðd − 2ÞAdp ¼ 0: ð57Þ

An interesting case is a ¼ 0. So, let us put a ¼ 0 in the
equation of state for the shell’s temperature. Then, from
Eq. (56), we find then that the Euler relation for such a shell
readsM ¼ d−2

d−3TS − d−2
d−3pA, and the shell’s proper mass is a

homogeneous function of degree d−3
d−2 in S and A. The

scaling laws for the self-gravitating shell in this a ¼ 0

case are M → λM, S → λ
d−2
d−3S, and A → λ

d−2
d−3A. Taking the

differential of Euler’s relation, Eq. (56), and taking
into account the first law, Eq. (23), one obtains the
Gibbs-Duhem relation for this system ðd − 2ÞSdTþ
dM − ðd − 2ÞAdp ¼ 0.

D. Other topics on entropy

1. Bekenstein entropy bound for the d-dimensional shell

The Bekenstein bound relates the entropy and the energy
of a system. We follow the argument presented by
Bekenstein for four dimensions in Ref. [30] and turn it
into a d-dimensional bound. Given a d-dimensional spheri-
cal object with energy E, size l, and entropy SE, and a black
hole with horizon radius rþ, area Aþ, and entropy
Sþ ¼ 1

4
Aþ, one has that the initial entropy Si of the system

is Si ¼ 1
4
Aþ þ SE. If the object is swallowed by the black

hole, this will grow by an area ΔAþ, so the final entropy is
Sf ¼ 1

4
ðAþ þ ΔAþÞ. From rd−3þ ¼ γm [see Eq. (9)] and

Aþ ¼ Ωd−2rd−2þ [see Eq. (10)], we get ΔAþ ¼
γΩd−2ðd−2d−3ÞErþ, where we have naturally put E ¼ Δm.
For the generalized second law of thermodynamics to hold,
one must have Si ≤ Sf , so then SE ≤ γΩd−2

4
ðd−2d−3ÞErþ. If l is

not small compared to rþ, then a bound like SE <

α γΩd−2
4

ðd−2d−3ÞElmust exist, for some value of α which cannot
be set by this argument. We choose α as α ¼ d−3

d−2 for reasons
given below. Using γΩd−2 ¼ 16π

d−2 [see Eq. (7)], the bound is

SE ≤
4π

d − 2
El: ð58Þ

Now, although the bound was suggested here through a
definite example involving matter and a black hole,
Eq. (58) is assumed to be valid for all matter in all kinds
of situations and is called the Bekenstein bound. In
particular, it can be applied to the self-gravitating shells
we have been considering.
Let us suppose a self-gravitating shell with energy E and

typical length l. In the shell case, the quantity E can have
two interpretations. It can be interpreted either as the rest
mass M of the shell, E ¼ M, or as the ADM mass of the
spacetime, E ¼ m. The length l can be put equal to the
radius of the system l ¼ R.
For E ¼ M, the bound Eq. (58) for the entropy S of the

shell is

S ≤
4π

d − 2
MR: ð59Þ

Using Eq. (21) together with Eq. (7), this can be put
as S ≤ 1

2
Ωd−2ð1 − kÞRd−2.

For E ¼ m, the bound (58) for the entropy S of the
shell is

S ≤
4π

d − 2
mR: ð60Þ

Using Eq. (9) together with Eq. (19), this yields
S < 1

4
Ωd−2ð1 − k2ÞRd−2.

Which bound shall one choose, the one given in Eq. (59)
or the one given in Eq. (60), cannot be settled by this
analysis.

2. Holographic entropy bound for the d-dimensional shell

The holographic entropy bound [31,32] claims that in a
full developed theory of quantum gravity, the entropy SA in
a region enclosed by an area A is always less than or equal
to A=4 in Planck units,

SA ≤
A
4
: ð61Þ
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One insight for the bound came from the gravitational
collapse of a star of area A and the entropy law governing
black holes [32]. For a black hole, the entropy is precisely
equal to one-quarter of its horizon area, so black holes
saturate the inequality (61). It is further conjectured that the
bound also holds for higher d dimensions, with the area A
being a d − 2 surface A enclosing a d − 1 volume [33].
In the case in hand, we have a thermodynamic self-

gravitating shell with a particular equation of state,
Eq. (31). It is thus relevant to know whether the holo-
graphic entropy bound is automatically satisfied or if both
the junction and stability conditions still allow for con-
figurations the entropy of which exceeds the bound. Since
the holographic bound questions the feasibility of a
physical system that exceeds it, it is relevant to see how
it works for shells.
For the shell’s area (15) and the shell’s entropy (30), the

entropy bound (61) is satisfied if ηrðaþ1Þðd−2Þ
þ ≤ Rðd−2Þ, i.e.,

R
rþ

≥ η
1

d−2raþ: ð62Þ

Given a and η, the bound is irrelevant if η
1

d−2raþ ≤ 1, since in
this case R

rþ
≥ 1 [see Eq. (18)] puts a stronger limit on R and

so the bound is always obeyed. For instance, for −1 <
a ≤ 0 and 0 < η ≤ 1, the bound is irrelevant. We have
found that solutions where −1 < a ≤ 0 are thermodynami-
cally stable solutions for all dimensions d. It is notable that
stable solutions for all d obey automatically the holo-
graphic entropy bound. If η

1
d−2raþ > 1, then only those

configurations of which R obeys Eq. (62) are the ones
that satisfy the bound.

3. Entropy of the shell for large d

When generalizing a physical system to higher dimen-
sions, one should understand how the physical quantities,
in particular the entropy, change with the dimension. In
particular, for the entropy, this might have some implica-
tions on whether or not the system stays within one or both
entropic bounds. In this connection, the d → ∞ limit is
useful and interesting. We will take the limit d → ∞ and
see how the entropy of a self-gravitating thin shell acts in
response. To do so, we write the solid angle given in Eq. (8)
in the following way, using the Stirling approximation:

Ωd−2 ¼
ffiffi
2
e

q
ð2πed−3Þ

d−2
2 ð1þOð1dÞÞ. Although the approxima-

tion works better as d → ∞, it is also a good fit for any
d ≥ 4. For the shell’s entropy given in Eq. (32), we find

S ¼
�
2πe
d

�
d=2

ηrdðaþ1Þ
þ : ð63Þ

Clearly, we have that S → 0 as d grows, and this is because
the solid angle converges very quickly to zero, with 1=dd=2.
Instead of setting η as a constant, we could include the

1=dd=2 factor into ηd ≡ η=dd=2 and set it as our problem’s
constant. But we will not do this here. One can also see how
the large d limit affects the distance to the holographic
bound. Computing the ratio between the two, the solid

angle terms cancel out, and we find S
A=4 ¼ ηðraþ1

þ
R Þd. Now, as

mentioned previously, if a ≤ 0 and η ≤ 1, the bound is
always satisfied, and we see that, as d increases, the shell’s
entropy will distance itself farther from the bound; i.e., in
this case, it holds that S

A=4 ≤ 1.
We can additionally study the behavior of the other

physical quantities of the shell. Since (1 − k) goes to zero
with ðrþR Þd [see Eq. (19)], both the shell’s rest mass M and
pressure p go to zero, as one can check in Eqs. (21) and
(22). Because k → 1, the temperature is T ¼ 1=b, and its
behavior at the large d limit depends on the sign of the
equation of state exponent a, as can be seen in Eq. (31). For
a ≤ 0, the temperature T diverges with dr−adþ , whereas for
a > 0, T goes to zero in the d → ∞ limit.

IV. BLACK HOLES IN d DIMENSIONS: ENTROPY,
LOCAL THERMODYNAMIC STABILITY, SMARR
FORMULA, ENTROPY BOUNDS, AND LARGE d

A. Black hole equation of state and entropy

We are now interested in studying black hole properties
in d dimensions using the results from thin shells. For that,
we take the d-dimensional shell to its gravitational radius
R → rþ, i.e., we take the quasiblack hole limit [17,18]. At
this quasiblack hole stage the exterior spacetime to the shell
is that of a d-dimensional Schwarzschild black hole, i.e., a
Tangherlini black hole.
To do this, note that one possible equation of state for the

temperature of the shell is the Hawking temperature Tþ
given by Tþ ¼ d−3

4π
1
rþ

[27]; i.e., the inverse temperature is

bþ ¼ 4π
d−3 rþ. From Eq. (31) for the inverse temperature

bðrþÞ of the shell at infinity, one sees that putting a ¼ 0
and η ¼ 1, one recovers precisely bþ. In this case, from
Eq. (32), the entropy S of the shell with radius R is
S ¼ 1

4
Aþ. We now can take the limit and send the radius R

of the shell to its own gravitational radius rþ, R → rþ.
Before we do that, we note that when performing the

quasistatic collapse of the shell into rþ, the only reasonable
equation of state for the inverse temperature is indeed bþ.
The analysis we have been doing demands thermal equi-
librium so that we can safely use the first law of thermo-
dynamics (23). If then we take into account that quantum
fields are present just outside the shell at its own gravita-
tional radius R ¼ rþ, the shell’s inverse temperature must
be the black hole inverse temperature, so bðrþÞ in Eq. (31)
must have the expression bðrþÞ ¼ bþ ¼ 4π

d−3 rþ in order to
have equilibrium. Moreover, it has been shown in some
particular instance [34] that the thermal energy-momentum
tensor Ta

b for a field at temperature Tfield is of the form [34]

ANDRÉ, LEMOS, and QUINTA PHYS. REV. D 99, 125013 (2019)

125013-10



Ta
b ¼ T4

field−T
4
þ

g2
00

fab, for some tensor fab finite at the horizon,

with g00 being the time-time metric component of the static
spacetime. Assuming this is also valid in d dimensions, we
see that, since g00 is zero at R ¼ rþ, Ta

b diverges unless the
temperature of the field Tfield is the Hawking temperature
Tþ, Tfield ¼ Tþ, and so bfield ¼ bþ.
So, when one collapses the shell quasistatically into a

black hole, i.e., R ¼ rþ, Eq. (31) must take the form

bþðrþÞ ¼
4π

d − 3
rþ: ð64Þ

Then, the entropy from Eq. (32) is

Sþ ¼ 1

4
Aþ: ð65Þ

This is the Bekestein-Hawking entropy in d dimensions,
obtained here from the self-gravitating shell formalism with
the input of the Hawking temperature.

B. Black hole intrinsic thermodynamic stability

For a black hole, a ¼ 0 and η ¼ 1. In the black hole
limit, we take in addition R → rþ implying k → 0. The
stability equations we are interested in are given in
Eqs. (40), (45), and (51). We first take a ¼ 0 in the stability
conditions and see the properties for the shell with this a.
Then, we take the black hole limit R → rþ and discuss the
features in this case.
For a fixed shell’s area A, a ¼ 0, and R → rþ, thermo-

dynamic stability is taken from Eq. (40) or Eq. (43).
Clearly, one finds that the shell is thermodynamically
stable at the gravitational radius for d ≥ 4. Indeed, when
the shell with a ¼ 0 is at its gravitational or horizon radius,
i.e., k ¼ 0, it satisfies marginally the intrinsic thermody-
namic stability criterion (40). This is because the heat
capacity CA ¼ T−2ð ∂2S∂M2Þ−1A goes to zero with T−2 in this

limit. Since CA is also defined as CA ¼ ð∂M∂T ÞA, CA ¼ 0

means that the mass of the shell cannot be altered by any
change on the infinitely high temperature. In this limit, we
cannot increase the mass M of the shell with A ¼ Aþ, i.e.,
R ¼ rþ, constant, since from Eq. (21) in this limit one has
γ
2
M ¼ rd−3þ . So, to change M, one has to change the radius

R ¼ rþ. Moreover, York’s results for black holes in a
canonical ensemble [6] imply that when the heat reservoir
is placed at R ¼ rþ, the black hole is thermodynamically
marginally stable. The two results are indeed the same as
the two situations deal with the same black hole, namely, a
black hole in a heat reservoir at its horizon at temperature T.
So, York’s heat reservoir at the black hole horizon and the
massive shell at the gravitational radius are the same thing,
and York’s criterion for thermodynamic stability is pre-
cisely reproduced.
For fixed proper mass M, a ¼ 0, and R → rþ, thermo-

dynamic stability comes from Eq. (45), and we have seen

that the a ¼ 0 shell is stable under this condition for all
radii, in particular for R ¼ rþ.
For free A and M, a ¼ 0, and R → rþ, thermodynamic

stability comes from Eq. (51). Since in this case k3 ¼ 0 as
we have seen, the only stable case is precisely R ¼ rþ; i.e.,
the black hole is stable.

C. Smarr formula

For a black hole, a ¼ 0, and the black hole Euler relation
has to be taken from Eq. (56) by putting a ¼ 0. In the black
hole limit, we take in addition R → rþ, implying k → 0.
Since both the temperature T and pressure p go with k−1,
one has kM ¼ d−2

d−3TþSþ − d−2
d−3pþAþ, where Tþ ¼ 1=bþ

is the Hawking temperature with bþ given in Eq. (64), Sþ is
the Bekenstein-Hawking entropy given in Eq. (65), pþ is
the redshifted pressure pþ ¼ pk with p given in Eq. (22),
and Aþ is the horizon area given in Eq. (10). So, since
k → 0 in this limit, this translates into 0 ¼ d−2

d−3TþSþ−
ðd−2ÞΩd−2

16π rd−3þ , which upon using Eqs. (7) and (9) yields
0 ¼ d−2

d−3TþSþ −m, i.e.,

m ¼ d − 2

d − 3
TþSþ; ð66Þ

the Smarr formula for a black hole in d dimensions; see also
Ref. [28]. In four dimensions, this is m ¼ 2TþSþ, the
original Smarr formula [1].
Smarr formula in d dimensions has been provided

before, but it is remarkable that one can derive it from
the shell mechanics and thermodynamics in a nontrivial
way. The rest mass term M that surely appears in the Euler
relation for the shell gives no contribution, and it is the term
pA that contains the spacetime energy and thus yields the
mass m term. This is in line with the black hole mass
formula derived in Ref. [21] for d ¼ 4 using the membrane
paradigm approach, where the term 2pþ is indeed the usual
black hole surface gravity κ divided by 4π and was shown
to be also the horizon surface energy density σ measured at
infinity [21]. When σ is multiplied by Aþ one obtains the
total energy m.

D. Other topics on black hole entropy

1. Bekenstein entropy bound for
the d-dimensional

black hole

Let us now take the d-dimensional Bekenstein bound,
Eq. (58), in the black hole limit R → rþ. For the shell, this
bound is provided in Eq. (59) if we choose E ¼ M and in
Eq. (60) if we choose E ¼ m.
For E ¼ M, the bound Eq. (59) is then

SE < 2Sþ; ð67Þ
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where Sþ ¼ 1
4
Aþ is the black hole entropy given in

Eq. (65).
For E ¼ m, the bound Eq. (60) is

SE < Sþ: ð68Þ

Which case shall we choose, E ¼ M or E ¼ m? If we
stick to SE < Sþ, i.e., to the statement that the maximum
entropy for an area A is when there is a black hole in this
area, then we should have Eq. (68), and so we should
choose E ¼ m; see also Ref. [9]. But all this relies on our
previous choice of α, and so the argument is only of
heuristic value.

2. Holographic entropy bound for
the d-dimensional black hole

When the holographic entropy bound of Eq. (61) is
applied to the shell, we get Eq. (62). In the particular case in
which the shell is a black hole, then a ¼ 0 and η ¼ 1, and
we get that the bound is satisfied for any R ≥ rþ: This
means that in this case all the shells, including the black
hole limit, satisfy the bound. That the black hole satisfies
the bound is expected, since black holes pose the highest
entropy outcome from gravitational collapse.

3. Entropy of the black hole for large d

The entropy of a self-gravitating shell for large d is given
in Eq. (63). For the black hole case, one puts a ¼ 0 and
η ¼ 1 to obtain

Sþ ¼ 1

dd=2
rdþ: ð69Þ

Note that Sþ is still Sþ ¼ 1
4
Aþ but in the large d limit, one

has rþ → 0, Aþ → 0, so the entropy of the black holes
vanishes in the large d limit.

V. CONCLUSIONS

The first law of thermodynamics on a d-dimensional
self-gravitating spherical thin shell is used in its entropy
representation, where the entropy is a function of the shell’s
rest mass and the shell’s area A or, since A ¼ 4πR2, the
shell’s radius, S ¼ SðM;RÞ. The pressure equation of state
p ¼ pðM;RÞ is fixed by the spacetime junction conditions,
and the inverse temperature equation of state β ¼ βðM;RÞ
must have the form β ¼ kðrþ; RÞbðrþÞ, with bðrþÞ arbi-
trary, in order to satisfy the integrability condition for the

entropy, where rþ ¼ rþðM;RÞ. Integrating the first law, we
find that the shell’s entropy is given as a function of the
gravitational radius rþðM;RÞ alone.
With the inverse temperature equation of state now

controlled completely by bðrþÞ, we specify a power-law
equation for bðrþÞ with its exponent governed by a
parameter a and such that when a ¼ 0 the inverse temper-
ature bðrþÞ has the Hawking form. The thermodynamic
stability conditions can be worked out generically, and, in
particular, for a ¼ 0, it is found that the shell is stable when
its radius is in between its own gravitational radius and the
photonic radius, i.e., the radius of circular photon orbits,
reproducing unexpectedly York’s thermodynamic stability
criterion for a d ¼ 4 black hole in a heat reservoir canonical
ensemble. Since the two systems are different, this is an
unexpected result and hints that what is important for
thermodynamic stability is the place of the shell alone,
whether it is a heat reservoir massless shell or a massive
shell. An Euler formula for the matter is derived.
When put at its own gravitational radius, the shell

spacetime turns into a black hole spacetime. In this limit,
it is mandatory that the self-gravitating shell is at the
Hawking temperature, which in turn renders through the
formalism developed here, the Bekenstein-Hawking
entropy in d dimensions. The black hole is marginally
stable as the heat capacity is zero. In this case, the physical
situation is the same as in the d ¼ 4 York case; York’s heat
reservoir shell and the massive shell at the gravitational
radius are the same thing, and so York’s criterion for
marginal stability is precisely reproduced. The Smarr
formula for black holes pops out naturally and surprisingly.
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Instituto Superior Técnico, Lisbon, 2015.

[27] C. M. Harris and P. Kanti, Hawking radiation from a
(4þ n)-dimensional black hole: Exact results for the
Schwarzschild phase, J. High Energy Phys. 10 (2003) 014.

[28] R. Banerjee, B. R. Majhi, S. K. Modak, and S. Samanta,
Killing symmetries and Smarr formula for black holes in
arbitrary dimensions, Phys. Rev. D 82, 124002 (2010).

[29] H. B. Callen, Thermodynamics and an Introduction to
Thermostatistics (Wiley, New York, 1985).

[30] J. D. Bekenstein, Entropy bounds and the second law for
black holes, Phys. Rev. D 27, 2262 (1983).

[31] G. ’t Hooft, Dimensional reduction in quantum gravity, in
Salamfestschrift, A Collection of Talks from the Conference
on Highlights of Particle and Condensed Matter Physics,
edited by A. Ali et al. (World Scientific, Singapore, 1994).

[32] L. Susskind, The world as a hologram, J. Math. Phys. (N.Y.)
36, 6377 (1995).

[33] S. Hod, Holographic entropy bound in higher-dimensional
spacetimes, Phys. Rev. D 97, 126012 (2018).

[34] D. J. Loranz, W. A. Hiscock, and P. R. Anderson, Thermal
divergences on the event horizons of two-dimensional black
holes, Phys. Rev. D 52, 4554 (1995).

THERMODYNAMICS AND ENTROPY OF SELF-GRAVITATING … PHYS. REV. D 99, 125013 (2019)

125013-13

https://doi.org/10.1103/PhysRevLett.30.71
https://doi.org/10.1103/PhysRevLett.30.71
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.13.2188
https://doi.org/10.1103/PhysRevD.33.2092
https://doi.org/10.1103/PhysRevD.42.3376
https://doi.org/10.1103/PhysRevD.42.3376
https://doi.org/10.1103/PhysRevD.59.124007
https://doi.org/10.1103/PhysRevD.53.7062
https://doi.org/10.1103/PhysRevD.91.104027
https://doi.org/10.1016/j.physletb.2015.08.065
https://doi.org/10.1103/PhysRevD.93.084008
https://doi.org/10.1103/PhysRevD.93.084008
https://doi.org/10.1103/PhysRevD.40.2124
https://doi.org/10.1103/PhysRevD.40.2124
https://doi.org/10.1103/PhysRevD.34.1700
https://doi.org/10.1103/PhysRevD.34.1700
https://doi.org/10.1103/PhysRevD.40.1336
https://doi.org/10.1103/PhysRevD.40.1336
https://doi.org/10.1103/PhysRevD.57.6311
https://doi.org/10.1103/PhysRevD.57.6311
https://doi.org/10.1103/PhysRevD.81.064012
https://doi.org/10.1016/j.physletb.2010.11.033
https://doi.org/10.1016/j.physletb.2010.11.033
https://doi.org/10.1103/PhysRevD.33.915
https://doi.org/10.1103/PhysRevD.84.064017
https://doi.org/10.1103/PhysRevD.97.064008
https://doi.org/10.1103/PhysRevD.97.064008
https://doi.org/10.1103/PhysRevD.89.084051
https://doi.org/10.1103/PhysRevD.92.064012
https://doi.org/10.1103/PhysRevD.95.044003
https://doi.org/10.1103/PhysRevD.96.084068
https://doi.org/10.1103/PhysRevD.96.084068
https://doi.org/10.1088/1126-6708/2003/10/014
https://doi.org/10.1103/PhysRevD.82.124002
https://doi.org/10.1103/PhysRevD.27.2262
https://doi.org/10.1063/1.531249
https://doi.org/10.1063/1.531249
https://doi.org/10.1103/PhysRevD.97.126012
https://doi.org/10.1103/PhysRevD.52.4554

