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Recent work has analyzed how deformations due to the insertion of a defect in a flat hexagonal lattice
affect the ground state structure of an interacting fermion field theory. Such modifications result in an
increase of the order parameter in the vicinity of the defect and can be explained by a kirigami effect, that is
the combined effect of the curvature, locally introduced by the deformation in the lattice tessellation, and of
a synthetic gauge field induced by the boundary conditions along the cut, performed to introduce the defect.
In this work, we extend the formalism and previous results to include finite temperature effects.

DOI: 10.1103/PhysRevD.99.125010

I. INTRODUCTION

Quasiparticles in quantum materials are influenced by
the configuration of the crystals in which they move. In
realistic crystals, in fact, the unavoidable presence of
defects induces an effective change in the topology and
the geometry of the lattice, with drastic consequences on
quasiparticles propagation. The rapid development of this
new subject in the context of quantum fields in condensed
matter systems has sparked the interest in the rejuvenation
of methods and results of semiclassical gravity. In the
continuum limit, one can think of the lattice in which these
particles move as a curved background, and apply some of
the well-established techniques of quantum field theory in
curved space [1,2].
Most of all, graphene [3] is the example that recently has

attracted attention on both the theoretical and applicative
grounds. Graphene is the archetype of the quantummaterial
realizing an emergent system of relativistic fermions
moving in a bidimensional space. Since its first synthesis
in 2004 [4,5] (but even before, following some pioneering
experiment in the 1960s [6–8]), much work has been
devoted to the methodic engineering of those conditions
that alter the conductivity properties of graphene. Fermions
self-interactions [9,10], impurities arising in the fabrication
process [11,12], the substrate on which the monolayer
graphene sample lies [13], all of them could in principle be
responsible for the appearance of a mass gap in the energy

spectrum of the quasiparticles propagating on the carbon
sheet. The case of crystal defects is particularly interesting:
several kinds of structural defects have been isolated and
investigated since early experiments, among the others
Stone-Wales defects (a pair of pentagons, separated by a
pair of heptagons) [14], mitosis defects (a pair of hepta-
gons, separated by a pair of pentagons) [15], single and
multiple vacancies, line defects (chains of pentagons,
heptagons and hexagons gluing two patches of the crystal)
[16], or out of plane carbon adatoms. Quite surprisingly, the
competition between the topological features and curvature
arising after the introduction of the defects has shown
definitely nontrivial aspects [17].
Similar considerations have been raised for general

hexatic membranes (see e.g., [18–22]) and even for more
complex crystalline structures: it is the case, for example, of
Weyl semimetals [23–32], three-dimensional topological
materials whose low energy excitations are Weyl particles,
that is massless Dirac particles with fixed chirality. Novel
developments have enlightened the response of these
materials to geometrical deformation and/or electromag-
netic stimulation. In such a context, classical Einstein-
Cartan geometry (see [33] and reference therein) provides
the best framework within which modeling the effective
theories that describe exotic quantum phases, with torsion-
induced defects contributing in a critical way to current
anomalies [34–40].
Fermion conductivity of quantum materials is in general

sensible not only to the intrinsic conformational properties
of the hosting lattices but also to the temperature of the
system and eventually to the occurrence of inhomogeneous
and anisotropic phases. Electrical conductivity in graphene
has been the object of investigation in the framework of
the Dirac model, at arbitrary values of temperature and
chemical potential, in both the gapless and gapped con-
figurations (see, e.g., [41]). Here we are interested in
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studying the interplay between the effects due to finite
temperature and finite density with those related to geo-
metrical issues on a system of interacting particles lying on
a hexagonal (graphenelike) lattice.
As previously mentioned, four-fermion interactions are

amongst the possible causes for the emergence of a non-
vanishing mass gap in graphene: collective excitations arise
as a consequence of some symmetry breaking mechanism
(for graphene this could happen for example for breaking
both Z2 and the discrete sublattice symmetry, which leads
to staggered magnetization). However, the occurrence of
symmetry breaking in a nonflat manifold is modified by the
presence of curvature [42], with the Ricci scalar entering
the gap expression in terms of an effective mass, thus
contributing to the total mass of the condensate. The
problem that this paper will address can be formulated
as how the gap shift determined by geometry affects the
phase diagram of the interacting field theory on the
honeycomb lattice. Previous results on QCD phase tran-
sitions in a strong gravity environment [43,44] have tracked
the route for the development of a formalism based on
the use of the effective action and zeta function regulari-
zation to study particle condensation under the influence
of external fields in a nonperturbative way. In the next
sections, we will see how this proposal can be extended
to the case of symmetry breaking on engineered curved
lattices.

II. THE MODEL

A simple, while still effective, description of strongly
correlated particles on a lattice is given by the single-band
Hubbard model [45]: being u†, u and n respectively
creation, annihilation and number operators, the Hubbard
Hamiltonian reads

H ¼ −t
X
hj;li;σ

ðu†j;σul;σ þ Herm conjÞ

þ U
X
j

nj↑nj↓ − μ
X
j

ðnj↑ þ nj↓Þ; ð1Þ

the first term expresses the kinetic energy of the system: a
particle with spin projection σð¼ ↑;↓Þ is destroyed in the
l-site and created in the j-site; in the Hubbard approxima-
tion, this particles’ hopping is allowed only between two
adjacent sites (this is the meaning of the symbol hj; li),
corresponding to the positions of two first neighbor atoms
on the hexagonal lattice; this assumption is justified by the
exponential drop-off of the particles’ wave functions
profiles, with the hopping energy scale t set by the overlap
of two contiguous wave functions. The second term in (1)
controls the Coulombian repulsive interaction energy
between two particles with opposite spin occupying the
same site j, with a coupling strength set by the parameter
U > 0. Finally, the third term, introduced by a nonvanishing

chemical potential μ, describes the particles filling of the
lattice sites.
The Hubbard Hamiltonian is invariant under a global

SU(2) spin transformation and a U(1) (charge) redefinition
of the one-particle wave function. On top of these, further
symmetries arise if the space where the particles live is a
lattice with a bipartite structure. A bipartite lattice is
obtained from the union of two interpenetrating sublattices
A and B (e.g., the red and blue dots triangular sublattices of
Fig. 1) such that the first neighbors of an A site are all B
atoms. Hexagonal and square lattices are bipartite lattices.
Triangular lattices are not. Bipartite lattices’ energy is
trivially minimized by Néel states, where the spins of one
sublattice are all parallel among them and antiparallel to
the spins of the second sublattice. In lattices which are not
bipartite, instead, the Néel state is generally degenerate
with other classical configuration obtained from the former
by a local spin flip; these systems are said to be geomet-
rically frustrated: half-filled lattice configurations, i.e.,
systems for which each site in the lattice has one and only
one fermion, always have at least a pair of contiguous sites
occupied by particles spinning in the same direction.
When the background on which the particles move is a

bipartite lattice, the Hubbard Hamiltonian enjoys addi-
tional symmetries: it is invariant under a particle-hole
transformation, that is under the change of creation into
annihilation operators (and vice versa), v†j;σ ¼ ð−1Þjuj;σ ,
such that v†j;σvj;σ ¼ 1 − u†j;σuj;σ. Moreover, its spectrum
remains unchanged under a sign flip of the hopping
parameter t.
The influence of temperature and geometry on the

occurrence of symmetry breaking is more conveniently
studied in a covariant functional-integral formulation of the
Hubbard model associated partition function, which can be
straightforwardly achieved [46–48] bosonizing the density-
density product in the interaction term of (1). An explicitly
SU(2)-invariant Hubbard-Stratonovich transformation of
the interaction term may be obtained, for spin-1=2 fer-
mions, by introducing an arbitrary unit vector n along the
spin-quantization axis of the particles, such that

FIG. 1. The hexagonal honeycomb lattice with the two tri-
angular sublattices (blue and red spheres).
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nj↑nj↓ ¼ 1

4
ðnj↑ þ nj↓Þ2 − ðS · nÞ2

S ¼ 1

2

X
σ;τ

u†j;σΣ⃗στuj;τ; ð2Þ

where Σ⃗ ¼ ðσx; σy; σzÞ is the usual Pauli vector. Introducing
two auxiliary fields ϕ and Δ, the density-density operator
can be rewritten as

eU
P

j
nj↑nj↓

¼
Z Y

j

dϕjdΔjd2nj

4π2U
e

h
ϕ2
j
Uþ{ϕjðnj↑þnj↓Þþ

Δ2
j
U −2Δjnj·Sj

i
: ð3Þ

The effective Lagrangian for the fluctuations is then derived
integrating out the fermionic degrees of freedom.
The procedure here described is entirely general; however,

to ease the calculation, wewill consider only one scalar order
parameter, ϕj, breaking at the same time the Z2 and the
discrete sublattice symmetry of the half-filled Hubbard
model on a hexagonal lattice. This order parameter can be
identified with the staggered magnetization—the conjugated
of the density operator—defined as the net difference
between the number of negatively and positively spinning
fermions, ϕj ≡ nj↑ − nj↓.
For sake of compactness, it is possible to introduce a new

wave function ψσ such that ψT
σ ≡ ðψA1

σ ;ψB1
σ ;ψA2

σ ;ψB2
σ Þ,

where X ¼ A and B refer to the two sublattices, # ¼ 1 and
2 are the two inequivalent Fermi points K# of the half-filled
honeycomb lattice, and ψX;#

σ are the inverse Fourier trans-
forms of the sublattice annihilation operators uX;σðpþ K#Þ.
With these assumptions the effective Lagrangian finally
reads

L ¼ ψσð{γa∂a þ μγ0Þψσ þ ασψσϕψσ þ
ϕ2

2λ
; ð4Þ

expressed in terms of the usual flat space γ-matrices, γa;
here λ is a constant, proportional to the coupling strength
parameter U up to an irrelevant factor, and α↑;↓ ¼ �1.

III. KIRIGAMI AND LATTICE GEOMETRY

The Japanese term kirigami describes a particular ori-
gami technique which, apart for folding the paper, allows
for cutting parts of it. Two-dimensional carbon allotropes
have recently been shown to be perfect candidates for
engineering robust three-dimensional microscale structures
with tunable mechanical properties (see for example [49]),
making of them a sort of “lattice kirigami.” The most
straightforward procedure to obtain such kirigami is typ-
ically via defect insertion in the (honeycomb, in the present
case) lattice, as shown in Fig. 2. Starting from a locally flat
lattice where a hexagonal cell is marked as the center, one
can design two kinds of defects, bringing to two different

geometries: reducing the number of the central cell sides of
N > 0 sides corresponds to cut and pulling out a Nπ=3
section of the lattice; gluing together the two sides results
then in a conical configuration with positive curvature.
On the other side, augmenting the number of sides (which
in our notation corresponds to consider a negative N) of
the central cell is equivalent to pull into the lattice a jNjπ=3
sector, resulting in a saddle geometry with negative
curvature. We will only consider lattices with an even
number of defects, preventing possible frustration effects
from veiling or even obscuring the main quantum mech-
anisms here studied.
The kirigami procedure, as stated above, alters the

topological and geometrical features of the material sheet:
the very same fermions propagation is sensitive to these
conformational properties of the underlying lattice. As a
result, the study of the vacuum structure and the symmetry
breaking behavior exhibited by a continuous field theory like
(4) defined on the curved lattice, relies on the description of
an effective continuous geometry of the lattice itself.
In the continuum limit, this configuration of the lattice

can be described by a conical metric [50–52]. Away from
the central defect (corresponding to a conical singularity),
the associated spacetime is accurately described by a
locally flat geometry, ds2con ¼ dt2 − dr2 − r2dθ̃2, but with
an important caveat: it is not globally Euclidean, since
the angular coordinate does not run on a 2π circle; instead,
0 ≤ θ̃ < 2π − Δ, with Δ > 0 (Δ < 0) being the deficit
(excess) angle: surfaces at constant t are cones (saddles),
not planes. Interestingly, the dþ 1 generalization of the
conical metric, dσ2 ¼ dt2 − dr2 − r2dθ̃2 − dz2, describes a
static straight cosmic string (see e.g., [53]) lying along the
ðd − 2Þ-z coordinates, namely an infinitely long thin tube
of false vacuum generated in the sudden temperature-driven
transition from a phase to another (here, the transverse size
of the cosmic string is neglected while “sudden transition”
means a transition with a rate that is fast if compared with
the size of the system).
It is worthwhile to stress that in the case under

examination (lattice with a hexagonal base) Δ does not
take continuous values: it is clear that it should be
Δ ¼ Nπ=3, with jNj even to avoid the frustration of
the system mentioned above. Note also that there is a
constitutive bound on N: while the only positive value

FIG. 2. The flat space is modified through the insertion or the
extraction of a piece of lattice. Adding a section with a given angle,
one finds a saddle; subtracting the same section, and then sewing
on the cut, a cone. CCDC codes: ½4�-circulene ⇒ ð747755Þ,
½6�-circulene ⇒ ð1129883Þ, ½8�-circulene ⇒ ð1106253Þ.
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allowed is N ¼ 2 (corresponding to the square defect),
negative values are allowed up to jNj ∼ 16, on top of
which the geometrical structure is supposed to collapse
onto a helical conformation [54].
The conical metric, ds2con, is singular on the tip, where it

is not possible to introduce a tangent space and conse-
quently, is not possible to calculate the curvature. This
singularity is only an artefact of our mathematical descrip-
tion of the cone: the deformed lattice does not present
any singularity in correspondence of the defect. A better
approximation of the physical lattice is achieved smoothing
the geometry into that of a snub-nosed cone (resp. saddle),
with metric ds2ϵ regulated by a parameter ϵ. The biggest is
the regulator ϵ, the smoothest the tip of the cone. The proper
conical metric ds2con is recovered as the limiting case of
a sequence of such smoothed cones, when ds2con ¼
limϵ→0ds2ϵ (see Fig. 3). In the lattice language, the regulator
ϵ is never vanishing, rather it parametrizes the minimum
physical distance between adjacent atoms.
Let us introduce a new angular coordinate θ ¼ θ̃=α, with

α ¼ 1 − Δ=2π, such that 0 ≤ θ < 2π. The line element of
the regularized tip can then be written as

ds2ϵ ¼ dt2 − fðr; ϵÞdr2 − α2r2dθ2; ð5Þ

where the smooth function fðr; ϵÞ satisfies the following
asymptotics: (i) limr→0fðr;ϵÞ¼α2 and (ii) limr≫ϵfðr;ϵÞ¼1.
The simplest choice implementing these requirements is the
sequence of spaces with metric

ds2ϵ ¼ dt2 −
r2 þ ϵ2α2

r2 þ ϵ2
dr2 − α2r2dθ2: ð6Þ

The covariant extension of the model (4) to the curved
spaces (6) is obtained under the minimal coupling ansatz:
the flat metric is substituted by the metric tensor gμν defined
in (6) and such that gμν ¼ eμaeνbη

ab, being eμa the vielbein
and ηab the Minkowski metric; the ordinary partial deriva-
tive is replaced by the covariant derivative and the flat

γ-matrices by γμ ¼ γaeμa, which are the γ-matrices in
curved space.
There is still one geometrical issue arising in the kirigami

procedure. The cut-and-paste technique to induce lattice
defects changes the topology of the system. One can show
[55] that the boundary conditions satisfied by the spinors
along the cut read as what is evocatively called the Moebius
stripe conditions: rotation around the defect brings to a
configuration where the two triangular sublattices are
exchanged, while one more rotation brings the system
back to the initial state,

ψðr; θ þ 2πÞ ¼ − exp

�
−i

π

2
NR

�
ψðr; θÞ; ð7Þ

where R ¼ ið 0
−σ2

σ2

0
Þ ¼ −γ5 (last equality holds in the

standard planar representation, where γ0 is diagonal, but
changes in other representations of the Clifford algebra).
Note that R anticommutes with all the γ-matrices. Using a
gaugelike transformation mapping ψ into a new field ψ̃
such that

ψ̃ ¼ exp

�
{θ
N
4
R

�
ψ ⇒ ψ ≡ AðθÞψ̃ ¼ exp

�
−{θ

N
4
R

�
ψ̃ ;

ð8Þ

it is possible to rearrange the Moebius boundary condition
(7) to resemble the flat space (antiperiodic) condition

ψ̃ðr; θ þ 2πÞ ¼ −ψ̃ðr; θÞ: ð9Þ

The effective Lagrangian (4), under the fields redefini-
tion (8), acquires an extra contribution in the form of a
(constant) effective gauge connection term,1 Bμ ≡ −δθμ N

4
R,

so that now the bosonized Hubbard model reads

L ¼ ψ̃ σ{γμDμψ̃σ þ μψ̃σγ
0ψ̃σ þ ασψ̃σϕψ̃σ þ

ϕ2

2λ
; ð10Þ

whereDμ ¼ ∇μ þ {Bμ. In what follows, we will drop all the
tilde’s from the previous equation to shorten the notation,
having in mind the caveat that spinor fields have already
undergone a Moebius stripe rotation.

IV. FINITE TEMPERATURE EFFECTS

The effects due to finite temperature T can be straight-
forwardly incorporated using the Euclidean Matsubara
approach [61,62], that is Wick-rotating the metric (6),
compactifying the (imaginary) time onto the interval
0 ≤ τ < β ¼ 1=T and imposing antiperiodic boundary
conditions on the fermion fields in the τ direction,

FIG. 3. A sequence of regular surfaces with smoothed tips
corresponding to the spatial part of (6), with α ¼ 2=3
(Δ ¼ 2π=3). The sequence approximates the conical metric,
where ϵ vanishes identically.

1For a similar role of synthetic gauge fields in condensed
matter physics see also [56–60].
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ψðτ ¼ 0; xÞ ¼ −ψðτ ¼ β; xÞ. The boundary conditions
imply that fermion fluctuations can be Fourier expanded
in the Euclidean time as

ψðτ; xÞ ¼
X
ωn

e{ωnτψnðxÞ; ð11Þ

where ωn ¼ ð2nþ 1Þπ=β are the quantized (Matsubara)
frequencies.
In order to understand the phase diagram of the lattice

kirigami we need to study the behavior at different
temperature of the staggered magnetization parameter
ϕ, which can be calculated solving numerically the
effective equations of motion for the system. Keeping
this strategy in mind, we start by evaluating the Euclidean
effective action for the model (10) on the Wick-rotated
curved background (6),

Γ ¼ −
Z

d3x
ffiffiffi
g

p �
ϕ2

2λ

�
þ

X
σ¼↑;↓

lnDetð{γμDμ þ ασϕþ μγ0Þ

≡ −
Z

d3x
ffiffiffi
g

p �
ϕ2

2λ

�
þ δΓ: ð12Þ

As it is, this expression of the effective action does not
allow to obtain directly the curvature counterterms to the
one loop divergences of the Dirac operator [the second
term in (12)]; this is due to the circumstance of O≡
ð{γμDμ þ ασϕþ μγ0Þ being a linear differential operator
of the first order, rather than being of second order.
A possible way out is to apply standard techniques
and square the Dirac operator: the eigenvalues of the
squared (Dirac) functional determinant on the Riemannian
spin manifold are then related to those of the sum of
the spinor Laplacian with the space curvature, through
the Schrödinger–Lichnerowicz–Weitzenböck formula,
D2 ¼ ∇�∇þ I ·ℛ=4 (see for example [63]). Following
this prescription, the one loop effective action (12) is
rewritten as

δΓ ¼ 1

2

X
σ¼↑;↓

lnDetð□ − μ2 − 2{μ∂t þVÞ

¼ 1

2

X
σ¼↑;↓

X∞
n¼−∞

lnDetðω2
n − Δ − μ2 − 2{μωnVÞ;

�
V ¼ ℛ

4
þ ϕ2 þ ασ

ffiffiffiffiffiffi
grr

p
ϕ0
�

ð13Þ

where it should be taken into account that the d’Alembertian
operator, □̂, is built out of the total covariant derivative
including the contribution from the effective gauge con-
nection and calculated on the Euclidean version of the
regularized metric, ds2ϵ (see also [43,64] for further details);
in the last line we have taken advantage of the mode

expansion (11) in the Matsubara frequencies. The expres-
sion of the effective action (13) can be obtained through
different techniques, usually always quite cumbersome.
In the present case, we will use zeta-function regularization
(see for example [1,65–69]). Given an operator O, its
functional determinant is the product of theN eigenvalues
κN , such that

ln Detðl2OÞ ¼
X
N

lnðl2κN Þ ¼ lim
s→0

X
N

κ−sN lnðl2κN Þ; ð14Þ

where l is some renormalization length. Defining the
function

ζðsÞ ¼
X
N

κ−sN ;

�
ζ0ðsÞ ¼ −

X
N

κ−sN ln κN

�
ð15Þ

it is possible to rewrite the expression (14) as

ln Detðl2OÞ ¼ ζð0Þ ln l2 − ζ0ð0Þ; ð16Þ

provided that ζ and its first derivative are regular in zero.
In three dimensions, ζðsÞ converges for ℜ½s� > 3=2, and
can be analytically continued to a meromorphic function of
s forℜ½s� < 3=2; in particular it will be regular in zero, and
will encounter simple poles for s ¼ ð3=2 − pÞ; p ∈ N.
Under these assumptions, and using the integral represen-
tation of the function ΓðsÞ, it is possible to relate the zeta-
function to the Mellin transform of the heat trace, which in
the case of the differential operator in (13) reads

ζðsÞ ¼ 1

ΓðsÞ
Z

∞

0

dττs−1Tre−τO

¼ 1

ΓðsÞ
X
σ¼↑;↓

X∞
n¼−∞

Z
∞

0

dττs−1Tre−τðω2
n−Δ−μ2−2{μωnþVÞ

ð17Þ

In curved space, the heat kernel of a second order differential
operator like the one appearing in (17) has a particularly
enjoyable proper time expansion, exhibiting a resummation,
among the curvature invariants contributions, of all the power
terms in the scalar curvature ℛ [70–73],

Tre−τðω2
n−Δþℛ

4
þϕ2−μ2−2{μωnþασ

ffiffiffiffi
grr

p
ϕ0Þ

¼ e−τðω2
nþℛ

12
þϕ2−μ2−2{μωnþασ

ffiffiffiffi
grr

p
ϕ0Þ

ð4πτÞ3=2
X∞
k¼0

TrðDiracÞDðkÞ
σ τk; ð18Þ

where the traces are taken on the Dirac indices and the first

three DðkÞ
σ coefficients read
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Dð0Þ
σ ¼ 1;

Dð1Þ
σ ¼ 0;

Dð2Þ
σ ¼ 1

180
ðℛμνρσℛμνρσ −ℛμνℛμνÞ þ 1

120
Δℛ

þ 1

6
Δðϕ2 þ ασ

ffiffiffiffiffiffi
grr

p
ϕ0Þ þ 1

12
WμνWμν; ð19Þ

with Wμν ¼ ½Dμ;Dν� ¼ ð−1=4Þℛμνρσγ
ργσ .

In order to calculate the zeta-function (17) we will follow
the strategy delineated in [43]: the sum on the quantum
number n can be expressed in a more convenient way
observing that (see also [74]),

Xþ∞

n¼−∞
e−τðωn−{μÞ2 ¼ β

2
ffiffiffiffiffi
πτ

p θ3

�
e−

β2

4τ ;
π− {βμ

2

�

¼ β

2
ffiffiffiffiffi
πτ

p
�
1þ2

Xþ∞

n¼1

ð−1Þne−β2n2

4τ coshðβμnÞ
�
;

ð20Þ

using (20) and (18) in (17) one finds, after some lengthy
calculation, an expression for the zeta-function. In odd
dimensions, the analytic continuation of ζðsÞ to s ¼ 0
vanishes, while the first derivative turns out to be

ζ0ð0Þ¼ β
1

ð4πÞ2
X∞
k¼0

X
σ

�
akD

ðkÞ
σ X

3
2
−k
σ

þDðkÞ
σ

2k−
5
2

ðXσÞ34−k
2

X∞
n¼1

ð−1Þn coshðβμnÞðnβÞ3=2−k Kk−3
2
ðnβ

ffiffiffiffiffiffi
Xσ

p
Þ
�
;

ð21Þ

where K’s are the modified Bessel functions of the second
kind (which have the nice property to be exponentially
suppressed) and

ak ¼ lim
s→0

Γðsþ k − 3=2Þ
ΓðsÞ ðF ðsþ k − 3=2Þ − F ðsÞÞ

Xσ ¼
ℛ
12

þ ϕ2 þ ασ
ffiffiffiffiffiffi
grr

p
ϕ0; ð22Þ

being F the digamma function (the logarithmic derivative
of the gamma function Γ). Considering only terms up to the
second order in the heat kernel expansion, (21) reads

ζ0ð0Þ¼ β

ð4πÞ3=2
X
σ

�
4

3

ffiffiffi
π

p
X3=2
σ þ ffiffiffi

π
p

Dð2Þ
σ X−1=2

σ

þ
ffiffiffi
2

p X∞
n¼1

ð−1Þn coshðβμnÞ
�
4

X3=4
σ

ðnβÞ3=2K3=2ðnβ
ffiffiffiffiffiffi
Xσ

p
Þ

þDð2Þ
σ

X−1=4
σ

ðnβÞ−1=2K1=2ðnβ
ffiffiffiffiffiffi
Xσ

p
Þ
��

; ð23Þ

which, given that ζð0Þ vanishes, straightforwardly gives
the logarithm of the functional determinant, and hence
equal to the effective action. Substituting into (14),
one can finally use the obtained expression to calculate
the effective action corresponding to the theory with
Lagrangian (4) and metric (6).
The effective action can now be numerically evaluated.

As an example, Figs. 4 and 5 show the results for zero
chemical potential, positive curvature (cone) at different
values of the temperature. The two figures in Fig. 4 show,
respectively, the trends of the effective potential close
to the apex of the regularized cone (left panel) and far
away from the defect (right panel), as a function of the
temperature. Note that, as expected, increasing the
temperature corresponds to pushing the system toward
a disordered phase. The numerical integration of the
effective equations of motion finally gives an explicit
profile for the order parameter, Fig. 5: the approach to the
central defect enhances the symmetry breaking and the
formation of the condensate, further confirmation of

FIG. 4. The effective potential on a cone with opening angle α ¼ 2=3, as a function of the temperature and at vanishing chemical
potential. The potential is calculated very close to the defect (left panel) and at infinity (right panel). The regulating parameter is taken to
be ϵ ¼ 0.001.
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the effect discovered in [17], with temperature favoring
the phase transition.
It is extremely tempting to link our results to the quantum

field theoretical description of graphene reflectivity and
conductivity obtained, for a flat (without defects) lattice
and at finite temperature, from the components of the
polarization tensor [41,75–77],

Πμνðω;k; TÞ ¼ −8πᾱT
X
n

Z
dq

ð2πÞ2 trSðqnÞγ
F
μSðqn − kÞγFν ;

ð24Þ

where ᾱ is the fine-structure constant, the sum is taken on
the n Matsubara frequencies, SðqÞ are the fermion propa-
gators and γFμ are the equivalent of γ-matrices inside a
(flat) graphene sheet, where the speed of light is replaced
by the Fermi velocity, vF. The generalization of (24) as for
accommodating four-fermion interactions on defective
lattices, while possible, needs in any case some caution.
In particular, one should take into account that the fermion
propagator SðqÞ has now to be the solution of a modified
Schwinger-Dyson equation including the contributions of
(i) the fermion condensate ϕ and (ii) the synthetic gauge
field Bμ.

V. CONCLUSION

In quantum field theory, the Coleman-Weinberg
mechanism [78] explains how symmetries may sponta-
neously break as a result of quantum effects, predicting a
phase transition (of the first order in scalar electrody-
namics) from a broken to a restored symmetry phase as
the mass is increased. Once the background geometry

underlying the field theory is curved, the same mecha-
nism leads to expecting a similar transition when the
scalar curvature is increased. However, this is not the
whole story, and when the topology of the background
becomes nontrivial, new effects may take place. An
example of the sort has been studied in Ref. [17], with
the background geometry emerging from the continuum
limit of a deformed hexagonal lattice, with the deforma-
tion being due to the presence of a defect in the lattice
tessellation. This “kirigami-engineered” background is
quite special, since aside for altering the curvature it also
modifies the boundary conditions that fields should obey
when circulating the defect. These nontrivial boundary
conditions can be mimicked by a synthetic gauge field
localized near the apex and compete with the curvature in
altering the ground state, inducing condensation close to
the defect.
A relevant question is how additional external conditions

change the picture. To address this problem, we have
adapted to the present case the imaginary time formalism
and zeta function regularization techniques to arrive at a
partially resummed form of the effective action, whose
minimization has been carried out by numerical approxi-
mation. We have studied what happened when effects of
finite temperature are included, resulting in a technically
nontrivial modulation of the order parameter, as illustrated
in Fig. 5. Given a certain temperature, the condensate is
always enhanced when approaching the defect, as a
consequence of the kirigami effect.
An intriguing possibility is to tune the temperature to

obtain a more complicated pattern of the condensate as a
function of the distance from the defect. The black curve
of Fig. 5, for example, shows the possible profile of a
condensate obtained decreasing the temperature as step-
ping away from the defect. Here, the interesting aspect is
in the value of the condensate, that increase with distance,
rather than decreasing. The situation pictured in this
way, however, is valid only as a first approximation.
Temperature anisotropies, in fact, induce extra variation in
the local density of the condensate and could make the
effect of inhomogeneities (and hence of the contribution
of the chemical potential part to the effective action) non-
negligible.
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FIG. 5. Condensate profile as a function of the temperature, at
zero chemical potential. Adjacent profiles are separated by
δβ ¼ 4. At a fixed temperature, the ordered phase is enhanced
when approaching the defect. The black trajectory is an example
of a condensate obtained modulating the temperature along with
the distance from the defect.
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