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We study the nonminimal supersymmetric heterotically deformed N ¼ ð0; 2Þ sigma model with the
Grassmannian target space GM;N . To develop the appropriate superfield formalism, we begin with a
simplified model with flat target space, find its beta function up to two loops, and prove a non-
renormalization theorem. Then we generalize the results to the full model with the Grassmannian target
space. Using the geometric formulation, we calculate the beta functions and discuss the ’t Hooft and
Veneziano limits.
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I. INTRODUCTION

Sigma models have a long history dating to 1960 [1].
In 1975, Polyakov [2] was the first to observe that the
Oð3Þ sigma model is asymptotically free and provides a
laboratory for modeling four-dimensional gauge theories,
allowing one to study similar phenomena in a simplified
setting. Heterotically deformed supersymmetric models
are of particular interest due to their close connection to
the world-sheet theories on vortex strings supported in
the N ¼ 1 Super-Yang-Mills theories in four dimensions
[3]. Additionally, such models are also interesting from the
mathematical viewpoint [4–9]. In recent years heterotic
sigma models have attracted significant attention [10–28]
(for a review see [29]).
The most widely considered target spaces of the sigma

models studied in the literature are SN ¼ SOðN þ 1Þ=
SOðNÞ [2] and CPðNÞ ¼ SUðN þ 1Þ=SUðNÞ × Uð1Þ
[30–32]. Their supersymmetric versions were introduced
in [32] and [33–35], respectively. These arise naturally
as the world-sheet effective low-energy theories of the
nonAbelian string solutions. In this paper, we turn to the
generalization of CPðNÞ, the Grassmannian target space
[36–39],

GM;N ¼ SUðN þMÞ
SUðNÞ × SUðMÞ × Uð1Þ : ð1Þ

Since the Grassmannian is a Kähler manifold, the
Lagrangian of the (2,2) model can be written as

Lð2;2Þ ¼
Z

d4θKðΦ;Φ†Þ; ð2Þ

where KðΦ;Φ†Þ is the Kähler potential. In our paper, we
consider the so-called nonminimal model in which super-
symmetry is broken down to (0,2) by the addition of an
extra deformation term to the Lagrangian (2). In this way,
one ends up with two types of interactions and two
corresponding coupling constants. The interaction of the
first type is owing to geometry of the target space, while
the interaction of the second type is due to the heterotic
deformation.
In Sec. I, we develop the superfield formalism and study

the limit of the heterotic deformation assumed to be much
stronger than the interaction due to the target-space
geometry. To this end, we consider the simplified flat
target-space model, a straightforward generalization of the
case considered in [18]. In Sec. II, we prove a non-
renormalization theorem for this model. In Sec. III, we
consider the full model, with both the curved target space
and the heterotic deformation. There are two ways of
analyzing interactions induced by the target-space con-
straint: (a) by approaching the curved geometry directly,
and (b) by introducing extra gauge fields. In the current
work we rely on the former approach. For its implementa-
tion, several basic tools from the geometry of the
Grassmannian are required. A brief review of this machi-
nery is also provided in Sec. III. In Sec. IV, we write down
the beta functions of the full model, while their ’t Hooft and
Veneziano limits are discussed in Sec. V. Our notation, as
well as the background field method, is reviewed in the
appendixes.
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II. FLAT TARGET-SPACE MODEL

The nonminimal heterotic (0,2) model combines the
original (2,2) model and its deformation that partly breaks
supersymmetry. Before exploring their interplay, let us take
a separate look at the two parts—the interaction imposed
by geometry and the interaction generated by deformation.
The case of the undeformed (2,2) model is well studied
in the literature [38–41]. In this section we start by
exploring the opposite limit—the heterotically deformed
flat target-space model. Since its target space is just the
complex linear CMN, we call this model linearized. It is a
generalization of the case considered in [18], and is used to
develop the appropriate (0,2) formalism. This theory
corresponds to the limit of the vanishing target-space
curvature of the full model, or, in other words, to the
interaction caused by the heterotic deformation much
stronger than the interaction arising from geometry.
For this linearized model with a trivial metric, we study
the heterotic deformation and discuss the running of the
coupling constant. Then, we generalize the results to the
full model (29).
The complex dimension of the Grassmannian manifold

is MN. Accordingly, we introduce MN chiral superfields
labeled by two indices,

Φiα ¼ ϕiα þ
ffiffiffi
2

p
θψ iα þ θ2Fiα; n ¼ 1…N; α ¼ 1…M:

ð3Þ

In terms of the (0,2) superfields, Φi;α can be written as

ΦiαðxR þ 2iθ†RθR; xL − 2iθ†LθL; θR; θLÞ
¼ AiαðxR þ 2iθ†RθR; xL − 2iθ†LθL; θRÞ
þ

ffiffiffi
2

p
θLBiαðxR þ 2iθ†RθR; xL; θRÞ: ð4Þ

The superfield Aiα represents the chiral supermultiplet; on
mass shell it consists of the scalar field and the left-moving
fermion,

Aiα ¼ ϕiαðxR þ 2iθ†RθR; xLÞ þ
ffiffiffi
2

p
θRψ

iα
L ðxR þ 2iθ†RθR; xLÞ;

ð5Þ

where

xL ¼ 1

2
ðx0 þ x1Þ; xR ¼ 1

2
ðx0 − x1Þ: ð6Þ

The field Biα describes the Fermi supermultiplet that on
mass shell contains only the right-moving fermion (Fiα is
an auxiliary field),

Biα ¼ ψ iα
R ðxR þ 2iθ†RθR; xLÞ þ

ffiffiffi
2

p
θRFiα

ψ ðxR þ 2iθ†RθR; xLÞ:
ð7Þ

To break supersymmetry down to (0,2), we introduce
another supermultiplet B,

B ¼ ζRðxR þ 2iθ†RθR; xLÞ þ
ffiffiffi
2

p
θRFζðxR þ 2iθ†RθR; xLÞ:

ð8Þ

It has no target-space indices.
In the (0,2) formalism, the Lagrangian of the linearized

model acquires the form of1

Lflat ¼
1

2

Z
d2θR

�
1

2
ZAðiA†

iα∂RAiαÞ þ ZBB†
iαBiα

þ ZBB†B − ZγðγBBiαA†
iα þ H:c:Þ

�
: ð9Þ

Here we have already introduced the Z-factors. The last
term is the one breaking the supersymmetry down to (0,2).
We see that such a model corresponds toMN copies of the
linearized CPð1Þ considered in [18], with A and B fields
interacting only via the deformation field.
After eliminating the auxilary fields Fiα

ψ and Fζ, Eq. (9)
reads in components as

Lflat ¼ ∂μϕ†
iα∂μϕ

iα þ iψ̄ iα=∂ψ iα þ iζ†R∂LζR

þ ðγζRψ iα
R ∂Lϕ

†
iα þ H:c:Þ

þ γ2ðζ†RζRÞðψ†
Liαψ

iα
L Þ þ γ2ðψ†

Riαψ
iα
R Þðψ†

Liαψ
iα
L Þ:

ð10Þ
The diagrams for one-loop wave function renormaliza-

tion are shown in Fig. 1, for two loop in Figs. 2(a) and 2(b)
(we don’t need them now due to the nonrenormalization of
A, but they will be used later in the full model), Figs. 3(a)
and 3(b) and Figs. 4(a) and 4(b). They give

(a) (b) (c)

FIG. 1. One-loop corrections. The wavy line is A, the solid line is B, and the composition of the wavy and solid lines is B.

1In this section, due to the flatness of the target space, the
position of the fields’ indices is not of importance. For the same
reason, here we do not use the barred indices either.
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ZB ¼ 1þ iγ2I þ 1

2
MNγ4I2; ð11aÞ

ZB ¼ 1þ iMNγ2I þ 1

2
MNγ4I2; ð11bÞ

where

I ¼
Z

d2−ϵp
ð2πÞ2−ϵ

1

p2 − μ2
¼ −

i
2πϵ

þOðϵ0Þ

¼ −
i
2π

log

�
Muv

μ

�
: ð12Þ

At the one-loop level, there are no diagrams contributing to
renormalization of γ, and so the beta function is determined

solely by the Z factors (11). Consequently, the two two-
loop beta function for γ2 is

βðγ2Þ ∂γ2
∂ log μ2 ¼

ðMN þ 1Þγ4
2π

: ð13Þ

As was shown in [18], not only is the beta function for
the coupling γ exact to all orders in perturbation theory; it
does not receive nonperturbative corrections either. The
superfield A is also not renormalized due to the theorem
proven in [18].
The positivity of the beta function (13) implies the

existence of the Landau pole, which indicates that the
model should be considered as an effective low-energy
theory having some UV completion. We shortly see that

(b)(a) (c)

(d) (e) (f)

FIG. 2. Two-loop corrections for A. The diagrams (a) and (b) are common for both the linearized and the full models, while the
remaining ones involve vertices with more than three lines that appear only in the geometric model.

(a) (c)(b)

(d) (f)(e)

FIG. 3. Two-loop corrections for B. In the same way as above the first two diagrams are applicable for both the linearized and the full
models, while the other diagrams appear only in the latter one.
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under certain conditions the full model exhibits the same
type of behavior.

III. NONRENORMALIZATION

We now prove a version of the nonrenormalization
theorem for the interaction term and the kinetic term of
the A field. To this end, we use the symmetries and analytic
properties analogous to those from [18], and follow the way
of reasoning similar to that in [42]. Our theorem is to be
valid to all orders in the perturbation theory and, most
importantly, nonperturbatively as well.
Let us take a look at the R-symmetry. Most of the terms

in the Lagrangian are neutral combinations of the type A†A,
B†B, and B†B. The only term we have to care about is

γBBA†: ð14Þ
For this term, we are free to choose three independent Uð1Þ
phases, while the fourth one is defined by the condition
of the overall neutrality. So, we have a three-dimensional
space whose sample basis is provided in Table I.
Assume that we have a function of γBBA† and A†A. The

most general function of the neutral combinations can be
expressed as

f

�
γBB
A

; γBBA†
�
: ð15Þ

The integral over d2θR must be invariant under the linear
shifts

A† → A† þ a†; ð16Þ

which requires the integrand to be a combination of
holomorphic and antiholomorphic functions. Its Laurent
expansion in powers of γBBA† is exhausted by the constant
and linear terms,

f ¼ f0

�
γBB
A

�
þ f1

�
γBB
A

�
γBBA†: ð17Þ

At γ ¼ 0 the theory is free, so there should be no negative
powers of γ in the Laurent series for f0;1. A in the deno-
minator and the shift symmetry (16) restrict the positive
powers, so f0;1 should be constants. We see that there is no
dependence on A†A; in the same way we can prove the
absence of jBj2, jBj2, and jγj2. After the integration over
d2θR, f0 vanishes,

Z
d2θRf0 ¼ 0: ð18Þ

Since f1, being a constant, does not depend on γ, it has to
be the coefficient from the classical Lagrangian (9).
The renormalized kinetic term for A will look like

FA†∂RAþ F†A∂RA†: ð19Þ

Invariance under the shift symmetry

A → Aþ a1ðt − zÞ; A† → A† þ a2ðt − zÞ ð20Þ

requires ZA to be 1.

(a) (b) (c)

(d) (e) (f)

FIG. 4. Two-loop corrections for B. Once again, the diagrams (a) and (b) are common for both models while the diagrams (c)–(f)
are applicable only in the full model.

TABLE I. Uð1Þ charges of the model.

Uð1Þ1 Uð1Þ2 Uð1Þ3
A 1 1 1
B 1 0 0
B 0 1 0
γ 0 0 1
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IV. THE FULL MODEL AND ITS GEOMETRY

The complex Grassmannian manifold is a manifold con-
sisting of all M-dimensional subspaces of an (M þ N)-
dimensional complex vector space. Since a subspace is
uniquely determined by its complement, it can also be
treated as a manifold of N-dimensional subspaces, which
makes GM;N and GM;N equivalent. The Grassmannian is a
homogenous space, i.e., a space that can be represented as a
quotient of a group, acting transitively on a manifold, over
the stabilizer of a certain element. In the present case,
SUðN þMÞ acts onCNþM whoseM-dimensional subspace
is invariant under its rotations, given by SUðMÞ, and
rotations of the complement, given by SUðNÞ, which
justifies the definition (1). The complex Grassmannian
admits a Kähler-Einstein metric—the one that is both
Kählerian [i.e., is defined by a single real closed (1,1)
form, the Kähler potential, see Eq. (24) below] and is
proportional to the Ricci tensor,

Rij̄ ¼ b
g2

2
Gij̄; ð21Þ

where g is the coupling constant and b is the dual Coxeter
number.
The complex dimension of the Grassmannian manifold

is MN. In terms of the MN chiral superfields, labeled by
two indices, that were introduced above,

Φiα ¼ ϕiα þ
ffiffiffi
2

p
θψ iα þ θ2Fiα; n ¼ 1…N;

α ¼ 1…M; ð22Þ

a generic undeformed N ¼ ð2; 2Þ model the Lagrangian
can be written as

Lð2;2Þ ¼
Z

d4θKðΦ;Φ†Þ; ð23Þ

where KðΦ;Φ†Þ is the Kähler potential, which depends on
the chiral and antichiral fields.
Since interactions in the undeformed model are caused

by geometry, we now review some details about geometric
structure of the target space. The Kähler potential of the
Grassmannian manifold is given by

K ¼ 2

g2
Tr lnðδnm̄ þΦnγΦ† γ̄ m̄Þ; ð24Þ

where the trace is taken over the latin indices. Obviously,
we could also define K ¼ Tr lnðδαβ̄ þΦnαΦ†β̄ n̄Þ and take
the trace with respect to the greek indices. The subscripts
are reserved for lowering with the aid of the metric
tensor. The first derivatives of the Kähler potential have
the form of

Kβ̄ j̄ ≡ ∂
∂Φ†β̄ j̄

K ¼ 2

g2
Φnβ½ð1̂N þΦΦ†Þ−1�j̄n;

K̄αi ≡ ∂
∂Φαi K ¼ 2

g2
Φ†n̄ ᾱ½ð1̂N þΦΦ†Þ−1�īn: ð25Þ

The Kähler metric is obtained as follows:

Gij̄αβ̄ ¼
∂

∂Φiα

∂
∂Φ†β̄ j̄

K ¼ 2

g2
Trfδniδαβ̄½ð1̂N þΦΦ†Þ−1�j̄m

−Φnβ½ð1̂N þΦΦ†Þ−1�j̄iΦ†ᾱ l̄½ð1̂N þΦΦ†Þ−1�l̄mg

¼ 2

g2
½ð1̂N þΦΦ†Þ−1�īj½ð1̂M þΦΦ†Þ−1�ᾱβ: ð26Þ

The small-Φ expansion of the metric, which is to be used
in the background-field method, has the form

Gij̄αβ̄ ¼
2

g2
½δij̄δαβ̄ − δαβ̄ΦjγΦ† γ̄ ī − δij̄ΦnβΦ†ᾱn� þ… ð27Þ

where the dots stand for the higher-order terms.
The Ricci tensor is proportional to the metric,

Rij̄αβ̄ ¼
g2

2
ðM þ NÞGij̄αβ̄; ð28Þ

which is a particular case of (21). Further details can be
found in a review paper [40], Sec. IV B.
We are now in a position to apply these results to the full

model. which combines the geometric structure with the
partial supersymmetry breaking. To break supersymmetry,
we add another term to the Lagrangian, which is similar to
the one in the previous section.
Since B is a singlet with respect to the isometry group, its

introduction does not affect the geometry of the model.
Thus, we get the following expression for the Lagrangian of
the full model in the (0,2) formalism:

LGM;N
¼ 1

4
d2θ½K̄αiðA; A†Þði∂RAαi − 2κBBαiÞ þ H:c:�

þ 1

2

Z
d2θ½ZBGij̄αβ̄ðA; A†ÞB†β̄ j̄Bαi þ ZBB†B�:

ð29Þ

Next, we proceed to finding the beta functions of
this model.

V. BETA FUNCTIONS OF THE FULL MODEL

In components, the Lagrangian of the full model (29)
reads as
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LGM;N
¼Gij̄αβ̄½∂Lϕ

†j̄ β̄∂Rϕ
αiþψ†j̄ β̄

L i∇Rψ
αi
L þZBψ

†j̄ β̄
R i∇Lψ

αi
R �

þZBRij̄kl̄αβ̄γδ̄ψ
†j̄ β̄
L ψαi

L ψ
†l̄ δ̄
R ψγk

R þZBζ
†
Ri∂LζR

þ½κζRGij̄αβ̄ði∂Lϕ
†j̄ β̄ψαi

R ÞþH:c:�

þjκj2
ZB

ζ†RζRðGij̄αβ̄ψ
†j̄ β̄
L ψαi

L Þ

−
jκj2
ZB

ðGij̄αβ̄ψ
†j̄ β̄
L ψαi

R ÞðGkl̄γδ̄ψ
†l̄ δ̄
R ψγk

L Þ: ð30Þ

Here κ is the heterotic deformation parameter. At κ ¼ 0,
the field B becomes sterile, and the (2,2) supersymmetry is
restored for other fields (ZB is not running at κ ¼ 0, and can
be taken to be 1).
In the κ2=g2 → ∞ limit, the theory reduces to the

linearized model (9). The constants κ and γ are related as

γ2 ¼ κ2

ZBZB
: ð31Þ

Note that the Lagrangian (29) does not contain ZA,
which can be absorbed in g. Thus, the bare parameters of
the model are g, γ, ZB, and ZB. Their renormalization can
be calculated either using the superfield formalism, as was
done in [18], or by means of the background-field method,
which we briefly review in Appendix B.
Extending the analysis to the two-loop level (see Figs. 2,

3, 4 for the corresponding diagrams) gives

βðg2Þtwo-loop ¼ −
g2

4π

�
g2ðM þ NÞ

�
1þ γ2

2π

�

− ðMN þ 1Þ γ
4

2π

�
; ð32Þ

βðγ2Þtwo-loop ¼ −
γ2=ð2πÞ

1 − ðγ2=4πÞ
�
ðM þ NÞg2 − ðMN þ 1Þγ2

þ γ2

8π
ððM þ NÞg2 − 2ðMN þ 1Þγ2Þ

�
: ð33Þ

As expected, Eqs. (32) and (33) reproduce the results
for the CPðN − 1Þ model as one substitutes fM;Ng →
f1; N − 1g [24].

VI. LARGE-N LIMIT

We now briefly discuss what we can learn from the
results above regarding the large-N expansion of this
theory.
From (32) one can immediately read off the ’t Hooft

large-N expansion parameter

t≡ g2ðM þ NÞ: ð34Þ

There are a number of limits one can study:

(a) M fixed; N → ∞.
(b) ν ¼ M=N fixed, ν ≪ 1; N → ∞.
(c) ν ¼ M=N fixed, ν ∼ 1; N → ∞.
The second case is somewhat analogous to the

Veneziano limit it QCD [43]. In such a setting, a larger
number of planar diagrams, as compared to the case of
ordinary large N, survives. By examining (32) and (33), we
deduce that, in order to have a sensible limit, the second
expansion parameter has to be defined as

t̃≡ γ2MN; ð35Þ

and be finite. Qualitatively, we can understand from the B
one-loop propagator that has no external loops and theMN
degrees of freedom (indices) running in the loop and γ at
each of the vertices. The limit above makes such a diagram
finite.
In this case, the beta functions can be defined purely in

terms of the t’ Hooft parameters,

βðtÞtwo-loop ¼ −
t2

4π
; ð36Þ

βðt̃Þtwo-loop ¼ −
t̃
2π

ðt − t̃Þ: ð37Þ

The higher-order corrections vanish in this approximation,
as it can be seen from (32) and (33), and the expressions
above reduce to one loop. It should be noted that the
’t Hooft limit here is defined at UV. In IR the coupling
constants grow while M and N remain the same, so the
limit is not valid anymore.
What are the other consequences of considering such a

limit? Let us take a look at the fixed-point behavior of the
theory. The ratio γ

g2, being a constant in the superpotential, is
not getting renormalized. However, one may be interested
in the ratio

ρ≡ γ2

g2
; ð38Þ

appearing in front of the four-fermion interaction. The
corresponding one-loop beta function acquires the form of

βðρÞ ¼ ρg2

4π
½2ðMN þ 1Þρ − ðM þ NÞ�: ð39Þ

It has a fixed point

ρ� ¼
1

2

M þ N
MN þ 1

: ð40Þ

Its behavior as a function ofM and N is illustrated in Fig 5.
The fixed point (40) remains at two loops; the appropriate
numerical result is shown in Fig. 6. For M being constant,
this fixed point approaches the asymptotic value
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ρ� →
1

2M
ðN → ∞;MfixedÞ: ð41Þ

ForM ¼ 1 one recovers the result ρ� ¼ 1=2 for the CPðNÞ
model [44]. By looking at (40) we conclude that, if M
scales with N, the fixed-point value becomes

ρ� → 0

�
N → ∞; ϰ ≡M

N
¼ const ≠ 0

�
; ð42Þ

which is the case for the Veneziano limit. Interestingly, we
obtain that the value for the fixed point does not depend on
ϰ onceM scales with N. There is no difference between the

Veneziano limit of a small but finite ϰ and the case when
M ∼ N and ϰ ∼ 1.
From (39) we see that for consistency we have to choose

ρ ≤ ρ� ð43Þ
in order to avoid the Landau pole. In the opposite case, one
faces the situation similar to that in the linearized
model [18].

VII. CONCLUSIONS

In this paper, we have discussed the perturbative aspects
of the heterotically deformed (0,2) Grassmannian GM;N
model, as well as of its linearized version. In the latter case,
the only coupling constant is the deformation parameter,
whose running is determined by the renormalization of the
fields solely—which can be proved nonperturbatively. The
beta function stays positive, and the theory possesses a
Landau pole in UV.
A similar kind of behavior takes place in the full

model—however, only for a certain range of parameters.
There, in contradistinction with the linearized model, for a
different set of parameters one may also end up with a well-
defined asymptotically free theory, reaching its conformal
point at the UV.
Lastly, we have discussed the large-N and Veneziano

limits of the model, which will be subject to more detailed
research in the upcoming publication [45]. We found that
the large-N behavior of the coupling’s fixed-point value
depends crucially on the type of limit used.
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APPENDIX A: CONVENTIONS

Gamma matrices, metric, ε-symbols:

γ0 ¼ σ2 ¼
�
0 −i
i 0

�
; γ1 ¼ iσ1 ¼

�
0 i

i 0

�
;

γ5 ¼ γ0γ1 ¼ σ3 ¼
�
1 0

0 −1
�
: ðA1Þ

ϵαβ ¼ iσ2 ¼
�

0 1

−1 0

�
; ϵαβ ¼ iσ2 ¼

�
0 −1
1 0

�
:

ðA2Þ

UV IR

0.00 0.02 0.04 0.06 0.08
0.000

0.005

0.010

0.015

0.020

g 2

FIG. 6. The renormalization group flow of the coupling
constants g2 and γ2, based on the two-loop expressions (32)
and (33). Here M ¼ 10, N ¼ 30. The dashed line has the slope
ρ� ¼ MþN

2ðMNþ1Þ, so the curves above and below correspond to ρ

being greater and smaller than ρ�, respectively. We see that the
coupling constants flow to that ratio at the IR.
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FIG. 5. Fixed point ρ� for the ratio ρ≡ γ2=g2 as a function ofM
and N. The value of ρ� is denoted by brightness (the scale is on
the right) while M and N run along both axes. We see that if one
of the parameters scales with the other one, ρ� approaches 0 no
matter what that ratio is.
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gμν ¼
�
1 0

0 −1

�
; gμν ¼

�
1 0

0 −1

�
: ðA3Þ

γμγν þ γνγμ ¼ 2gμν: ðA4Þ

α; β ¼ 1; 2≡ R;L; μ; ν ¼ 0; 1 ¼ t; z: ðA5Þ

Spinors:

ψ ¼
�
ψR

ψL

�
; ψ† ¼

�
ψ†
R ψ†

L

�
; ψ̄ ¼ ψ†γ0 ðA6Þ

Light cone coordinates:

xL ¼ 1

2
ðx0 þ x1Þ; ∂R ¼ ∂t − ∂z; ðA7aÞ

xR ¼ 1

2
ðx0 − x1Þ; ∂L ¼ ∂t þ ∂z: ðA7bÞ

Supercharges:

fQR; Q̄Rg ¼ −2i∂R ¼ −2ðHþ PÞ;
fQL; Q̄Lg ¼ −2i∂L ¼ −2ðH − PÞ: ðA8Þ

Spinor contraction:

ψθ ¼ ψαθα ¼ ψαϵαβθ
β ¼ ψRθL − ψLθR; ðA9aÞ

ψ̄θ ¼ ψ̄ 1̂ θ ¼ iðψ†
LθR − ψ†

RθLÞ;
ψ̄γ5θ ¼ iðψ†

LθR þ ψ†
RθLÞ; ðA9bÞ

ψ̄γ0θ ¼ iðψ†
RθR þ ψ†

LθLÞ; ψ̄γ1θ ¼ iðψ†
RθR − ψ†

LθLÞ:
ðA9cÞ

Integration:

ðθ̄θÞ ¼ iðθ†LθR − θ†RθLÞ; ðθ̄θÞðθ̄θÞ ¼ −2θRθLθ
†
Rθ

†
L:

ðA10Þ

Z
dθRθR ¼ 1;

Z
dθLθL ¼ 1;

Z
dθ†Rθ

†
R ¼ 1;

Z
dθ†Rθ

†
R ¼ 1; ðA11aÞ

Z
dθRdθ

†
Lðθ̄θÞ ¼ i;

Z
dθLdθ

†
Rðθ̄θÞ ¼ i; ðA11bÞ

Z
dθRdθLdθ

†
Rdθ

†
Lðθ̄θÞðθ̄θÞ ¼ 2: ðA11cÞ

Chiral coordinates:

yμ ¼ xμ þ θ̄γμθ: ðA12Þ

APPENDIX B: BACKGROUND-FIELD METHOD

Following the lines for CPðN − 1Þ [17,46], we start with
calculating the beta function for the Grasmannian model.
The beta function can be read off from the renormalization
of the coupling constant, which we calculate using the
background-field method.
We begin with splitting the quantum field ϕðxÞ in two

parts,2

ϕðxÞ ¼ ϕ0ðxÞ þ qðxÞ; ðB1Þ

Here ϕ0ðxÞ denotes the background field, which can be
chosen arbitrarily, while qðxÞ is the quantum correction
to it.3

We then can calculate the renormalized coupling con-
stant by integrating out the quantum corrections to the field
configuration ϕ0ðxÞ,

exp

�
−
Z

d2xL½gr;ϕrðxÞ�
�

≡
Z

Dϕ exp
�
−
Z

d2xL½gb;ϕðxÞ�
�

¼
Z

Dq exp

�
−
Z

d2xL½gb;ϕ0ðxÞ þ qðxÞ�
�
; ðB2Þ

where gb and gr denote the bare and renormalized cou-
plings, correspondingly. The rhs of (B2) is calculated by
expanding the exponent into the series in qðxÞ. As we see
shortly, once the background field ϕ0ðxÞ has been chosen in
a convenient way, the expansion of the Lagrangian acquires
the form of

9L½gb;ϕ0 þ q� ¼ L½gb;ϕ0� þ q × ð…Þ
þ C½ϕ0�ð∂qÞ2 þ Vðq; ∂qÞ: ðB3Þ

The first term is the background Lagrangian to which the
quantum corrections are to be calculated. The term linear in
q has to vanish within the background field method. This
either happens automatically when ϕ0 obeys the classical
equations of motion, or is otherwise achieved by adding the

2In Eqs. (B1)–(B3) it is implied that all possible indices
are suppressed/contracted.

3Strictly speaking, the presented approach is noncovariant
from the target-space point of view. Under the assumption that
both ϕðxÞ and ϕ0ðxÞ in (B1) belong to the target space, their
difference qðxÞ is not a well-defined geometric structure. A more
careful treatment can be found in [47], where qðxÞ is replaced by
ξðxÞ, a unit tangent vector along the target-space geodesic
connecting ϕðxÞ and ϕ0ðxÞ.
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appropriate source terms. The third term defines the free
propagator of the field q (C½ϕ0� is the quadratic coefficient
in the Taylor expansion of L½gb;ϕ0 þ q�). By calculating
the loop corrections to it, we obtain the wave function
renormalization. Lastly, by Vðq; ∂qÞ we have denoted all
the remaining terms in the expansion of L½gb;ϕ0 þ q�.
Those contain an infinite number of terms that can be
represented by diagrams with ϕ0-dependent vertices.
For definiteness, we present the calculation of the one-

loop beta function of the bosonic Grassmannian model.
Following the steps from Sec. 28 of [46], we obtain, in
analogy with (28.29) in ibid.,

L½2� ¼ 2∂μq̄nα∂μqnα − 2k2jfj2
�XN

n¼1

q̄n1qn1 þ
XM
α¼1

q̄1αq1α
�
:

ðB4Þ

Comparing the equation above with the CPðN − 1Þ case,
we deduce that4

βðg2Þone-loop ¼ −
g4ðM þ NÞ

4π
; ðB5Þ

which matches the result of [38]. We recognize the dual
Coxeter number TSUðMþNÞ ¼ M þ N, which also appears
in the metric, and in the Ricci tensor.
Next, we follow the steps of [17] and calculate the

Z-factors for the heterotically deformed (0,2) model. We
keep using the background-field method and perform the

calculations in components. The only vertex relevant for
the one-loop calculation is ðγζRGij̄αβ̄ði∂Lϕ

†β̄ j̄Þψ iα
R þ H:c:Þ.

To the lowest order, the diagram for the wave function
renormalization takes the form

γ2ζRðxÞδij̄δαβ̄δkl̄δγδ̄ψ iα
R ðxÞði∂Lq̄β̄ j̄ðxÞÞ

× ð−i∂LqkγðyÞÞψ̄ δ̄ l̄
R ðyÞζ†RðyÞ: ðB6Þ

For each of ψ iα
R ðxÞ, the diagram is identical to the CPð1Þ

case, while for ζR we are getting an additional MN factor
corresponding to the number of fields in the loop.
This way, for the ψ iα

R ðxÞ field one gets

Zψ ¼ 1þ iγ2I; ðB7Þ

while for ζR

Zζ ¼ 1þMNγ2I: ðB8Þ

Here

I ¼
Z

ddp
ð2πÞd

1

p2 − μ2
¼ 1

2π
log

�
Muv

μ

�
: ðB9Þ

To the first order, the bosonic beta function (B5) remains
intact, while the beta function for the deformation param-
eter is

βðγÞone-loop ¼
γ

4π
½ðM þ NÞg2 − ðMN þ 1Þγ2�: ðB10Þ

To proceed further, we take into account the diagrams
contributing to the renormalization of B and B at two loops.
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