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In massless QCD coupled to QED in an external magnetic field, a photon with the linear polarization in
the direction of the external magnetic field mixes with the charge neutral pion through the triangle anomaly,
leading to one gapless mode with the quadratic dispersion relation ω ∼ k2 and one gapped mode. We show
that this gapless mode can be interpreted as the so-called type-B Nambu-Goldstone (NG) mode associated
with the spontaneous breaking of generalized global symmetries and that its presence is solely dictated by
the anomalous commutator in the symmetry algebra. We also argue a possible realization of such
nonrelativistic NG modes in 3-dimensional Dirac semimetals.
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I. INTRODUCTION

Spontaneous symmetry breaking (SSB) is one of the most
important notions in modern physics that explains various
physical phenomena from superfluidity to the origin of
hadron masses. In general, when a continuous global sym-
metry is spontaneously broken, a gapless collective excitation
called the Nambu-Goldstone (NG) mode emerges [1–3]. In a
relativistic systemwith Lorentz invariance, the NGmode has
the dispersion relation ω ¼ k and the number of NG modes,
NNG, is equal to the number of broken symmetry generators,
NBS [4]. This is not always the case in a system without
Lorentz invariance, where the NG mode can have the
dispersion ω ∼ k2 and NNG can be smaller than NBS [5–7].
Whether an NG mode has the linear or quadratic

dispersion relation is classified by the quantity
ρab ≡ h½Qa;Qb�i ≠ 0, withQa broken symmetry generators
and the expectationvalue taken in the vacuum: theNGmode
characterized by nonvanishing ρab typically has the quad-
ratic dispersion relation and is called type-B, while the rest
typically has the linear dispersion relation and is called type-
A. The generic counting rule for the numbers of the type-A
and type-BNGmodes,NA andNB, is summarized as [8–10]

NNG ¼ NA þ NB; ð1Þ
NA ¼ NBS − 2NB; ð2Þ

NB ¼ 1

2
rankρab: ð3Þ

So far, the notions of the SSB and NG modes have been
mostly applied to the ordinary symmetries for pointlike
objects. Yet, these notions can be generalized to symmetries
for extended objects (such as strings and branes), called the
generalized global symmetries or higher-form symmetries
[11]. In particular, themassless photon canbeunderstood as a
type-A NG mode associated with the SSB of a generalized
global symmetry. More recently, it has been shown that
photons with the quadratic dispersion relation (or non-
relativistic photons) appear in the axion electrodynamics
with a spatially varying and periodic θ term and that itmay be
interpreted as a type-B NGmode [12,13]. Such a situation is
indeed expected to be realized in dense nuclear or quark
matter in a magnetic field [12,14] and a periodic array of
topological and normal insulators [15] (see also Ref. [16]).
In this paper, we show that the emergence of the type-B

NG mode of generalized global symmetries is more generic
than previously thought and it appears in a much more
simple setup: strongly interacting massless Dirac fermions
coupled to a dynamical U(1) gauge field in a background
magnetic field. One example is QCD coupled to QED in the
external magnetic field. In particular, translational sym-
metry breaking by the spatially varying θ term in the
previous examples [12,14,15], which was conjectured in
Ref. [14] to be the only way to realize the nonrelativistic
photon, is not necessary in this case.
Our main purpose of this paper is to show further that the

presence of this type-B NG mode is solely dictated by the
anomalous commutator related to the triangle anomaly in
the symmetry algebra. In this sense, this phenomenon is
universal depending on the SSB of generalized global
symmetries, SSB of chiral symmetry, and the presence of
the triangle anomaly. As we shall also discuss, this type-B
NG mode should be experimentally testable, e.g., in Dirac
semimetals in 3-dimensional solids.
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II. EXAMPLE

A. Setup

As an example, we consider massless two-flavor QCD
coupled to QED in an external homogeneous magnetic
field Bex. A similar setup with finite quark mass was
previously studied in Ref. [17]. The presence of the external
magnetic field explicitly breaks chiral symmetry down to
Uð1Þτ3V × Uð1Þτ3A , which is the invariance under the trans-
formation q → eiαVτ3eiαAτ3γ5q, with τ3 being one of the
SU(2) generators. This partial chiral symmetry is sponta-
neously broken to Uð1Þτ3V in the vacuum. The low-energy
degrees of freedom below the energy scale of charged pions
are the charge neutral pion π0 and massless photons, which
we shall focus on below.
At the leading order in derivatives, the effective

Lagrangian for π0 and electromagnetic field Fμν is

L ¼ 1

2
∂μπ

0∂μπ0 −
1

4
FμνFμν −

C
4

π0

fπ
FμνF̃μν; ð4Þ

where the last term is the Wess-Zumino-Witten (WZW)
term [18,19] that accounts for the triangle anomaly in this
low-energy effective theory with C ¼ 1=ð4π2Þ, fπ the pion
decay constant, and F̃μν ¼ 1

2
ϵμναβFαβ. (The factor 1=4 in

front of the WZW is just for later convenience.) We assume
the local charge neutrality in the vacuum.
Let us consider the fluctuations of Ei ¼ −F0i,

Bi ¼ −F̃0i, and π0 around the QCD vacuum in the back-
ground magnetic field. We set B ¼ Bex þ δB, E ¼ δE, and
π0 ¼ δπ0 and we focus on the first order in fluctuations.
The equations of motion for π0 and electromagnetic
fields are

ð∂2
t − ∇2Þδπ0 ¼ C

fπ
Bex · δE; ð5Þ

∇ · δE ¼ −
C
fπ

∇δπ0 · Bex; ð6Þ

−∂tδEþ ∇ × δB ¼ C
fπ

∂tδπ
0Bex; ð7Þ

respectively. The right-hand sides of Eqs. (6) and (7) are the
anomalous charge and current induced by the pion fluc-
tuation. In particular, the latter is the counterpart of the
chiral magnetic effect (CME) in the hadronic phase [12]
(see also Ref. [20]). Indeed, if one identifies ∂tδπ

0=fπ with
the “chirality imbalance” of chiral fermions defined by
μR − μL ≡ 2μ5, it exactly takes the form of the CME given,
e.g., in Ref. [21]. This is similar to the fact that ∂tθ plays the
role of the chirality imbalance in the axion electrodynamics
[22]. Note that the anomalous Hall effect of the form
ðC=fπÞ∇δπ0 × δE [12] is higher order in fluctuations and is
ignored in the right-hand side of Eq. (7).

Taking the time derivative of Eq. (7), and then using the
Faraday’s law ∂tB ¼ −∇ × E and Eq. (6), we obtain

ð∂2
t − ∇2ÞδE ¼ C

fπ
½∇ð∇δπ0 · BexÞ − ∂2

t δπ
0Bex�: ð8Þ

It is clear from Eqs. (5) and (8) that, when δE and ∇δπ0 are
perpendicular to Bex, the photon does not receive any
anomalous correction expressed by the right-hand sides,
and the dispersion relation is just given by the usual one
ω ¼ k. On the other hand, when δE · Bex ≠ 0 and/or
∇δπ0 · Bex ≠ 0, the behavior of the photon is qualitatively
modified by the anomalous effects.

B. Dispersion relations

Without loss of generality, we take the direction of the
external magnetic field in the z direction and set
Bex ¼ Bexẑ. As the simplest case, we assume that π0 and
photon are propagating in the x direction; we also assume
that the linear polarization δE is along the z direction,
δE ¼ δEzẑ. (From the argument above, the other linear
polarization in the y direction does not receive any
correction.) The extension to more generic directions is
straightforward. We look for the solutions of the form
δπ0 ∝ e−iωtþikx and δEz ∝ e−iωtþikx. From Eqs. (5) and (8),
the equations of motion for δπ0 and δEz in momentum
space can be summarized in the matrix equationDijaj ¼ 0,
where

D≡
�
ω2 − k2 α

αω2 ω2 − k2

�
; a≡

�
δπ0

δEz

�
: ð9Þ

Here we defined

α≡ CBex

fπ
: ð10Þ

We can derive the particle spectrum and dispersion
relations by the diagonalization of D. As a result, we
obtain one gapless mode with the quadratic dispersion
relation and one gapped mode,

ω ¼ k2

α
þOðk4Þ; ω ¼ αþOðk2Þ; ð11Þ

respectively.
Without the external magnetic field, we originally have

three gapless modes—photon with two polarizations and
π0. This result shows that the mixing between the photon
with one of the polarizations and π0 due to the WZW term
leads to one gapless mode with the quadratic dispersion
relation (while the photon with the other polarization
remains unchanged and has the linear dispersion relation).
This phenomenon looks seemingly similar to the emer-
gence of the type B NG modes, whose previous examples
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include magnons in ferromagnets and NG modes in
relativistic Bose-Einstein condensation [6,7].

C. Temporal gauge

It is easy to show that the nonrelativistic gapless mode in
Eq. (11) can also be understood as a type-B NG mode in a
particular choice of gauge—the temporal gauge At ¼ 0. In
this gauge, the WZW term in Eq. (4) to the second order in
fluctuations reduces to

Lmix ¼ απ0∂tAz: ð12Þ

At sufficiently low energy, the kinetic terms for π0 and Fμν

are negligible compared with this mixing term. In this
regime, we can see from Eq. (12) that Az and π0 are
canonically conjugate degrees of freedom, and the corre-
sponding NG mode must be just one, but not two, and
hence, it is the type-B mode.
Note here that, without the background magnetic field,

the leading term in the WZW term is third order in
fluctuations of E, B and π0, and then Az and π0 would
not be canonically conjugate. This may simply be under-
stood from the fact that a type-B NGmode could not appear
in the absence of the explicit breaking of Lorentz invariance
when the background magnetic field is turned off.
Note also that the structure of Eq. (12) is similar to

the Lagrangians considered in Refs. [6,7,23]. However, the
nonrelativistic gapless mode here is distinct from the
previous examples of type-B NG modes in that this is
an NG mode not associated with a usual symmetry for
pointlike objects, but with a generalized global symmetry
for extended objects.

III. SYMMETRY ALGEBRA

A. Photon as a type-A NG mode of 1-form symmetries

Before considering the relation of the nonrelativistic
gapless mode in Eq. (11) to the SSB of a 1-form symmetry,
we first recall, following Ref. [11], that the usual photon
with the dispersion relation ω ¼ k can be interpreted as a
type-A NG mode associated with the SSB of 1-form
symmetries.
In the vacuum without π0 and Bex, we have

∂μFμν ¼ 0; ð13Þ

∂μF̃μν ¼ 0; ð14Þ

where Eq. (13) follows from the equation of motion in the
vacuum and Eq. (14) follows from the Bianchi identity.
These two equations can be regarded as the conservation
laws for the 2-form currents, jμνE ≡ Fμν and jμνM ≡ F̃μν,
which physically stand for the conservation laws of the
electric and magnetic fluxes through a codimension-2
surface. They are the consequences of the 1-form

symmetries, Aμ → Aμ þ λμ (electric symmetry) and Ãμ →
Ãμ þ λ̃μ (magnetic symmetry) in Maxwell theory without
matter, where F̃μν ¼ ∂μÃν − ∂nuÃμ, and λ and λ̃ are flat
connections.
The operators charged under the 1-form electric and

magnetic symmetries are theWilson loop and ’t Hooft loop,

WðCÞ≡ exp

�
i
Z
C
A

�
; TðCÞ≡ exp

�
i
Z
C
Ã

�
; ð15Þ

respectively, where C is a 1-dimensional closed loop. One
can easily show that, in the vacuum (Coulomb phase),
hWðCÞi ≠ 0 and hTðCÞi ≠ 0 under proper normalizations
[11], and both the electric and magnetic symmetries are
spontaneously broken. We then have
Z
Σ
h½j0iE ðxÞ;WðCÞ�i ≠ 0;

Z
Σ
h½j0iMðxÞ; TðCÞ�i ≠ 0; ð16Þ

where the integral is taken over the codimension-2 surface
Σ normal to the i direction. Equation (16) suggests that the
total number of broken symmetry generators is six.
However, not all of them are independent because of the
commutation relation,

½EiðxÞ; BjðyÞ� ¼ −iϵijk∂kδðx − yÞ; ð17Þ
and Gauss’s law ∇ · E ¼ 0; as a result, only two of the
broken symmetry generators are independent, which cor-
respond to the two polarizations of photons. In this way,
massless photons with the dispersion relation ω ¼ k and
with two polarizations can be understood as type-A NG
modes associated with the SSB of the 1-form symmetries
[11,24,25].

B. Type-B NG mode of the 1-form symmetry

Let us turn to the original setup of QCD coupled to QED
with Bex. In this case, not only the 1-form electric and
magnetic symmetries, but also the Uð1Þτ3A symmetry is
spontaneously broken in the vacuum, and so we have the
additional corresponding symmetry broken generator,

Q5 ¼
Z
V
n5ðxÞ; n5 ¼ q̄γ0γ5τ3q: ð18Þ

Here
R
V stands for the integral over the 3-dimensional

spatial volume. However, Q5 is not conserved in the
presence of electromagnetic fields due to the triangle
anomaly, and what is conserved instead is the combination,

Q̃5 ≡
Z
V
ðn5 þ CA · BÞ: ð19Þ

Here, the second term is the so-called magnetic helicity,
which is gauge invariant under the proper boundary
conditions.
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From the Lagrangian (4), the equation of motion (13) is
modified to

∂μFμν ¼ −
C
fπ

F̃μν
ex∂μπ

0; ð20Þ

while the Bianchi identity (14) remains unchanged. Here
we defined F̃μν

ex ≡ ðδμzδν0 − δμ0δνzÞBex. Then, j
μν
M is again

conserved, but jμνE itself is not. We can define the following
conserved current by absorbing the right-hand side of
Eq. (20) into the current:

j̃μνE ≡ Fμν þ C
fπ

F̃μν
exπ0: ð21Þ

We shall now work out the commutators between the
symmetry broken generators,

R
Σz
j̃0zE ,

R
Σz
j0zM, and Q̃5. For

this purpose, we need the commutation relations for the
charges j̃0iE , j

0i
M, and n5:

½j̃0iE ðxÞ; j0jMðyÞ� ¼ iϵijk∂kδðx − yÞ; ð22Þ

½j̃0iE ðxÞ; n5ðyÞ� ¼ −iCð2F̃0i − F̃0i
exÞδðx − yÞ; ð23Þ

and the other commutators are vanishing. In order to derive
Eq. (23), we used

½π0ðxÞ; n5ðyÞ� ¼ ifπδðx − yÞ; ð24Þ

and the anomalous commutator [26],

½F0iðxÞ; n5ðyÞ� ¼ −2iCF̃0iδðx − yÞ; ð25Þ

which is related to the triangle anomaly in relativistic
quantum field theory. From Eq. (19) and the commutation
relations (17), (23), and

½AiðxÞ; EjðyÞ� ¼ −iδijδðx − yÞ; ð26Þ

we find

1

SðΣzÞ
Z
Σz

h½j̃0zE ðxÞ; Q̃5�i ¼ −iCBex; ð27Þ

where the integral is taken over the codimension-2 surface
Σz normal to the z direction and SðΣzÞ is the area of Σz.
Note that the right-hand side of Eq. (27) originates from the
second term in Eq. (23) alone, since the anomalous
contribution from the first term in Eq. (23) is absorbed
as the magnetic helicity into Q̃5. Equation (27) will play a
key role in what follows.
We are now ready to apply the counting rule of the NG

modes in Eqs. (1)–(3). Without the external magnetic field,
we have three independent symmetry broken generators,R
Σz
j̃0zE ,

R
Σz
j0zM, and Q̃5, which correspond to three type-A

NG modes. In the presence of the external magnetic field,
Eq. (3) together with the anomalous commutator (27)
dictates that NB ¼ 1, which corresponds to the NG mode
with the quadratic dispersion in Eq. (11). Since NBS ¼ 3,
Eq. (2) in turn leads to NA ¼ 1, which corresponds to the
photon with the other polarization. This is consistent with
the results above, demonstrating that the nonrelativistic NG
mode in Eq. (11) is nothing but the type-B NG mode of the
1-form symmetry.1

We remark that, because the generator for the 1-form
electric symmetry,

R
Σz
j̃0zE , is restricted to the 2-dimensional

surface Σz, the type-B NG mode appears only in the plane
transverse to the external magnetic field. This is a feature
specific to type-B NG modes of 1-form symmetries; in
contrast, those of usual 0-form symmetries live in the whole
3-dimensional space.

IV. REALIZATION IN DIRAC SEMIMETALS

So far, we have focused on QCDþ QED in the external
magnetic field as an example. As is clear from the
derivation, our results above are universally applicable to
the chiral symmetry broken phase of a massless Dirac
fermion coupled to a U(1) gauge field in an external
magnetic field.
One realization of our prediction in condensed matter

systems is 3-dimensional Dirac semimetals, where charged
massless Dirac fermions emergently appear as quasipar-
ticles close to the band touching points. Since the effective
coupling constant αeff ≡ α=vF, with α ≃ 1=137 being the
coupling constant, can become strong due to the smallness
of the Fermi velocity vF ≪ 1 in candidate materials for
Dirac semimetals, the strong Coulomb interaction may lead
to the spontaneous breaking of U(1) axial symmetry and the
corresponding NG mode—in a way somewhat similar to
the QCD vacuum. In fact, a gapped phase (or insulating
phase) for sufficiently large αeff has been theoretically
predicted using the strong-coupling expansion [27,28],
Schwinger-Dyson equation [29], ladder approximation
[30], and lattice Monte Carlo simulations [31,32]. When
that happens, one can show from our argument above that
the type-B NG mode of the 1-form symmetry with the
quadratic dispersion relation emerges, when the external
magnetic field is turned on. It would be interesting to search
for such a new type of NG mode experimentally.

1This should be contrasted with the nonrelativistic photon that
appears in the axion electrodynamics with a spatially varying and
periodic θ term in the previous studies [12,14,15]. In those cases,
the quadratic dispersion relation of photons follows from the
commutator (17) in the presence of a nonvanishing h∇θi [13],
which is different from our present situation. Also, the type-B NG
mode appears in the 2-dimensional plane perpendicular to Bex in
our setup, while the nonrelativistic photon in Refs. [12,14,15]
exists only in the 1-dimensional line in which θ is spatially
varying.
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V. CONCLUSION

In this paper, we found a novel type-B NGmode of the 1-
form symmetry in a theory of strongly interacting massless
Dirac fermion coupled to U(1) gauge field in an external
magnetic field. We have shown that the existence of this
mode is dictated by the anomalous commutator in the
symmetry algebra. Although we limit ourselves to systems
at zero temperature in this paper, one can show, similarly to
Ref. [10] based on the Langevin-type low-energy effective
theory, that this type-B NG mode appears even at finite
temperature [33].
The presence of this type-B NG mode is expected to

affect the low-energy dynamics dramatically. One example
is the dynamic critical phenomenon, which is governed by
the symmetries and low-energy degrees of freedom of a

given system. In fact, one can show that the dynamic
critical phenomenon at finite temperature affected by this
NG mode is different from those known so far, providing a
new dynamic universality class beyond the conventional
classification. This will be reported elsewhere [33].
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