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In this paper, a large family of topological black hole solutions of dimensionally continued gravity are
derived. The action of Lovelock gravity is coupled to the exponential electrodynamics and the equations of
motion are solved in the presence of a pure magnetic source. We work out the metric functions in terms of
the parameter f of exponential electrodynamics, and magnetic charge. Further, we couple Lovelock gravity
to power-Yang-Mills theory and construct black holes, in diverse dimensions, having Yang-Mills magnetic
charge. We also discuss the asymptotic behavior of metric functions and curvature invariants at the origin
for both models. The thermodynamics of resulting magnetized black hole solutions in the framework of
two different models is also studied. The thermodynamical quantities like Hawking temperature, entropy,
and specific heat capacity at constant charge are found and we show that the resulting quantities satisfy the
first law of black hole thermodynamics. We also study the magnetized hairy black holes of dimensionally

continued gravity.
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I. INTRODUCTION

Since the theory of general relativity is nonrenormaliz-
able, therefore, higher derivative gravitational theories
have been investigated, because the higher derivative
corrections to the familiar Einstein’s theory produce a
power-counting renormalizable theory [1]. Further, modi-
fying gravity gives an alternative way to understand the
acceleration and expansion of the universe without the
introduction of dark energy in the model. Thus, this is
another reason to study higher derivative theories. Among
the different higher derivative modified theories, Lovelock
gravity [2], which contains dimensionally continued Euler
characteristics, has a unique property that, in four dimen-
sions, it reduces to general relativity. The field equations
corresponding to the Lovelock gravity contain only the
metric and its first two derivatives, thus the linearized
form of this theory is free of ghosts. The second order
Lovelock gravity, i.e., the Gauss-Bonnet gravity emerges
in string theory in the low energy limit [3,4]. However,
due to the presence of a lot of Lovelock coefficents in
Lovelock gravity, it is very difficult to interpret the
physical meaning of the solution, therefore Banados,
Teitelboim and Zanelli [5] proposed a suitable choice
of these coefficients which allows us to write the solution
in an explicit form. This theory of gravity that is obtained
from this particular choice of Lovelock coefficients is
known as dimensionally continued gravity (DCG). In the
literature [5—7] neutral and charged black hole solutions of
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DCG have been studied. The hairy black holes of DCG
have also been constructed recently [8,9].

It has been shown that the standard Maxwell’s theory is not
always workable for studying electromagnetic fields. In 1934
nonlinear electrodynamics was proposed by Born and Infeld
which has the property of cancelling the divergences of
electron’s self-energy [10]. Later in 1936, Heisenberg and
Euler also put forward a nonlinear electromagnetic theory to
explain the quantum electrodynamics phenomena [11]. The
Born-Infeld electrodynamics could also be reproduced in the
framework of string theory [12]. The action of Born-Infeld
theory also governs the dynamics of D3-branes [13]. Other
theories, that have recently been found from a particular form
of Bomn-Infeld theory, include Dirac-Born-Infeld inflation
theory and Eddington-inspired Born-Infeld theory [14,15].
These theories have also been used in the study of dark energy,
holographic entanglement entropy and holographic super-
conductors [ 16—18]. The first black hole solution of Einstein’s
theory with Born-Infeld electrodynamical source was given
by Hoffmann [19]. Subsequently, many spherical black hole
solutions which are asymptotic to the Reissner-Nordstrom
solution were derived with other nonlinear electrodynamical
sources [20,21]. The exponential electrodynamics model [22]
is also used to construct the asymptotic Reissner-Nordstrom
black hole solution having magnetic charge.

Black hole solutions of modified gravities have also
been studied in the framework of nonlinear electromagnetic
theory. For example, nonsingular magnetically charged
black hole solutions [23] and electrically charged black
hole solutions of DCG have been constructed [24] where
exponential and Born-Infeld electromagnetic fields are
taken as sources. In the present work we derive magnetized
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black hole solutions of DCG coupled with exponential
electrodynamics and then generalize our solution to black
holes which contain scalar hair.

More recently black hole solution has been found where
the nonlinear electromagnetic source is expressed in powers
of Maxwell’s invariant (F,,F*)7, where ¢ is an arbitrary
real number [25]. The nonlinearity involved in this power-
Maxwell theory is radically different from the familiar Born-
Infeld electrodynamics. One property of power-Maxwell
formalism is that for the special case of ¢ = d/4, where d
represents the dimension of spacetime, it yields the traceless
matter tensor which indicates the satisfaction of confor-
mal invariance. Instead of considering the power-Maxwell
theory, we investigate black hole solutions with power- Yang-
Mills source [26] in this paper, that is, we can choose the
source of gravity as (F ,(,‘,’,)F (@m)4a where F ,(fé) denotes the
Yang-Mills field with 1 <a <1(d—1)(d—2) and g is a
real number. In Ref. [26] Lovelock black holes with a power-
Yang-Mills source have been studied and magnetically
charged solutions are obtained. In this paper we construct
black hole solutions and hairy black hole solutions of DCG
in the presence of power-Yang-Mills field.

Thermodynamics of black holes is an interesting
aspect of the subject that attracts much attention not only
in linear Maxwell’s theory but also in the nonlinear theories
[27,28]. For instance, thermodynamics of spherically sym-
metric black holes with exponential electromagnetic source
has been discussed [22]. Similarly, thermodynamics of
Lovelock black holes in the presence of power-Yang-Mills
theory has been studied [26]. In our work we also study
thermodynamics of the resulting black hole solutions in
DCG within the two different models.

The plan of the paper is as follows. In Sec. II, the expo-
nential electrodynamics model is coupled with Lovelock
gravity and we find a family of magnetized black hole
solutions of DCG depending on the parameter f of
exponential electrodynamics. In this section the metric
functions are calculated and we study thermodynamics of
black holes with exponential electrodynamical source.
We also work out the hairy black hole solution of DCG
within this model. In Sec. III, we couple Lovelock gravity
to power-Yang-Mills theory and obtain the magnetized
black hole solutions with and without scalar hair of DCG.
We also study thermodynamics of these black hole sol-
utions. Section IV deals with the Yang-Mills hierarchies.
Finally we conclude our results in Sec. V.

II. TOPOLOGICAL BLACK HOLES OF DCG
COUPLED TO EXPONENTIAL
ELECTRODYNAMICS

A. Magnetized black hole solution

The action function for Lovelock gravity with exponen-
tial electromagnetic source [22,24] in diverse dimensions is
written in the form

1 Ly sy o,
I = 16ﬂG/ddx‘ /_—g[zoz—iéflmfzﬁRmm...
p:

where

L(F) = —Fexp (=FF). (2.2)
and F = F,,p* = (B* — E?)/2, f is the parameter of our
model, B is the magnetic field, and E is the electric field.
Here G is the Newtonian constant, 5’;:522,’ is the general-
ized Kronecker delta of order 2p and d = n + 2 where n is
a natural number. The coefficients a,, in (2.1) represent
arbitrary constants, however, in the particular case of DCG,
they are chosen in the form

ey (d=2p—1)!

A A e (23)
where [ is related to cosmological constant. It is worth
noting that DCG becomes Born-Infeld theory in even
dimensions and Chern-Simons theory in odd dimensions
[5,6]. Varying (2.1) with respect to the electromagnetic
potential A, yields the equations of motion of nonlinear
electromagnetic field

0,[V=GF* (1~ ) exp (~fF)] = .

After taking the variation of the action (2.1) with respect to
the metric tensor, g,,, one can arrive at the equations of the
gravitional field

(2.4)

n—1

Ap vy
S SO R R =T (25)
p=0
where T, represents the matter tensor given by
T}, = exp (=BF)[(BF — VP Fy + Fg*].  (2.6)

One can easily find the trace of the matter tensor in the form

T = —4pF* exp (—fF). (2.7)
which implies that for this model, the scale invariance is
completely broken down, however, in the limit # — 0 one
comes to the classical Maxwell’s electrodynamics because
the trace of the matter tensor becomes zero.

The causality principle [21,22] says that the group
velocity of excitations in the background should not
exceed the speed of light or we can say that tachyons will
not appear. This principle will hold if JL/JF < 0. Now
from (2.2) we have
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oL

o = (Br — 1) exp (=FF),

(2.8)

which shows that causality is satisfied for our model if
(BF — 1) < 0. This gives us the requirement for the case of

pure magnetic field
2 \==
"=

According to the unitarity principle the norm of every
elementary vacuum excitation will be positive definite,
which means (OL/OF +2F9*L/0F?) <0 and 9*L/0f? > 0
[22]. Thus, this principle holds if and only if

(0.44>2;_4
<]
po*

The weak energy condition (WEC) is fulfilled if and only
if the relations p>0 and (p+ P,) >0, where m =
1,2,3...,d — 1 are satisfied. Note that, p represents the
energy density and P,, are the principle pressures for each
m. Thus, using matter tensor (2.6) it can easily be verified
that WEC is satisfied if and only if (2.9) holds. From
Eq. (2.6) it is also easy to verify that the dominant energy
condition (DEC) and strong energy condition (SEC) are
also satisfied for our model if and only if

(2.9)

(2.10)

2
pO*|

Note that, DEC guarantees that the speed of sound does
not exceed the speed of light, while SEC says that there
cannot be acceleration of the universe in the framework of
exponential electrodynamics coupled with DCG.

Since the action of Lovelock gravity (2.1) is the sum
of the dimensionally extended Euler densities, it is shown
that there are no more than second order derivatives with
respect to the metric tensor in its equations of motion.
Moreover, the Lovelock gravity has been shown to be a
ghostfree theory when expanding on a flat space, evading
any problems with unitarity [29]. Here, note that although
the Lagrangian density corresponding to Lovelock gravity
contains some curvature terms with higher order deriva-
tives, in essence it is not a higher derivative gravity theory
because its equations of motion do not contain terms
higher than second derivatives of the metric. From this it
becomes clear that the Lovelock gravity is a ghostfree
theory [30]. The action function (2.1) corresponding to
DCG looks very complicated due to the presence of so
many terms. However, the static spherically symmetric
black hole solutions can indeed be found [31] with the
help of a real root of the corresponding polynomial
equation. Since the gravity (2.1) contains many arbitrary
coefficients a,, it is not an easy task to extract physical

P24 < (2.11)

information from the solution. Some authors [5,6] choose
a special set of coefficients which make the metric
function simpler. These solutions could be explained as
spherically symmetric solutions. Further, the black hole
solutions having nontrivial horizon topology in this
gravity with the special choice of coefficients have been
studied [7,32].

Here we determine the magnetically charged static
black hole solution of DCG. For this we assume a pure
magnetic field such that E =0, which yields from
Maxwell’s invariant, the form p=(B(r))?/2=Q?*/2r*" 4,
where O represents the magnetic charge. Now, for the
general case of arbitrary coefficients a,, the static and
spherically symmetric line element [33] was obtained in the
form

—f(r)ar + ;l(—r:) + P2 (hydxidxd),

where h;;dx'dx’ is the metric of n-dimensional hypersur-
face having constant curvature. Now using the above line
element and substituting (2.6) in Eq. (2.5), the equation of

motion becomes [31,34]
k—=f(r)\»
-1
: (=10

—_p02 4 2
= 327G exp <2£dQ_4) ( 'BQ_ - zr%d-“)’ (2.13)

2}"4d 8

ds? = (2.12)

d [ a,(d-2)!
dr :02d 2p—1)!

where k =0,1,—1 associated to the codimensions-2
hypersurface with planar, spherical, and hyperbolic top-
ology respectively. If we chose a from Eq. (2.3), that is, for
the case of DCG, the above equation becomes [31,34]

£ty

-pO*\ ([ pO*  Q?
2r2d—4) <2r4d—8 - 2r2d—4>' (2.14)

= 647G exp <

Integration of the above equation with respect to r yields

£ir) = r? { 162Gm &,

2
FE Ty

7G Q7 s (245 PO
(d 2) 21 l()d d—1 2d_4’2r2d—4

4d-9 pO*> \\ &=
_2F<2d—4’2r2d-4>)] ’

where m is a constant of integration which is associated to
the ADM mass of black hole, X ,_, represents the volume of
n-dimensional hypersurface. The reason for the appearance
of additional constant 6§, in Eq. (2.15) is that one can expect

(2.15)
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the horizon of the black hole to shrink to a single point
when m — 0 and the function I'(s,x) is the incomplete
gamma function.

It is worth mentioning here that black strings and black
branes can be thought of generalizations of black holes and
they play a significant role in the AdS/CFT correspon-
dence. It has been rightly pointed out [35] that while it is
easy to construct black string and black brane solutions in
the vacuum Einstein gravity by adding Ricci flat directions

|

to Schwarzschild and Kerr solutions, it is nontrivial to
obtain such solutions in Lovelock gravity, and numerical
and other techniques have been used to construct such
solutions.

Now we discuss the asymptotic behavior of the metric
function at r = 0. We take k = 1 here (the cases k = 0, —1
can be studied in a similar manner). Thus for even-
dimensional spacetime, the asymptotic value of the metric
function becomes

r? i 13} G —p0?
g | 2k d2s 25-5
fr) =145 = {r Tns-3)  Tms-3)2s-2) P \5He
32r4s_4(3 - 25) QZlefgi:ilﬁ‘%rm_s Q22% O(r10s-12
Bs=2) m-a 2 ToUrT))
d=2s,s=1,23.... (2.16)
Similarly, for odd-dimensional spacetime we have
) =1+ P |2y G4zt g =G %
2 2m(s —1) 2m(s— (25— 1) P\2%=2
64r23‘3(1 _ s) Q2s|—3222§:;]ﬂ%r63_5 QQ% 057
X( pas—1)  ds-2 e o )ﬂ
d=2s+1,5s=1,2.3.... (2.17)

From the above asymptotic expressions, it is clearly seen
that for the case of even-dimensions, metric function f(r) is
finite as r — 0 for all values of s > 3. In the case of odd-
dimensions, f(r) yields finite value for all s > 2 at the
origin, while at s = 1 the function is infinite. The event
horizons can be found by solving the equation f(r,) = 0.
From Eq. (2.15), we can write the ADM mass of the black
hole in the form as
AR 04

1 k d-3
"= " l6nG (z_ﬁ%) " 167G

_OTEf {F (2d -5 B’

(d —2)2%% 2d—4° 2rid—4>

_ 2
_or(H=0 PO N1
2d —4 27244

(2.18)

Figure 1 shows that there exists a minimum value m,, of m
which corresponds to an extremal black hole. Extremal
black holes are the black holes whose horizons coincide,
which can be obtained by solving f(r) = 0and df /dr =0
simultaneously. For r;, = 0, m takes a finite value m for
d>3. If my, <m < mgy, there are two horizons, if
m > my, there is a single horizon and if m < mg,,, there

|
is no event horizon. In Fig. 2, the point where curve
touches the horizontal axis indicates the position of the
event horizon.

In general, the Ricci scalar for the line element (2.12) is

(d+1) df 5 dzf
R = 1-— ——rt—, 2.19
r? flr)=r dr ’ dr? ( )
150}
100}
m |
so;
o:I
0.0
FIG. 1. Plot of function m [Eq. (2.18)] vs ry, for fixed values of

Q0 =001,4=0.01,and [ = 1.
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while the Kretschmann scalar is given by 2 if Gf_
Qd+2)(f() -1)  ([@d+DE? (&r)?
K = 4 + 2 L + —2 .
r r dr

600000
(2.20)

400000

For arbitrary value of d the metric function (2.15) gives
very lengthy and complicated expression for the Ricci

scalar which we cannot write here. Avoiding these lengthy T
calculations we discuss the asymptotic behavior of curva- 20 409 60 00 1000

ture invariants for d = 5. Differentiating (2.15) for the
5_dimensional case we can write FIG. 2. Plotof function f(r) [Eq. (2.15)] vs r for fixed values of
m=10, Q =0.01, f=0.01 and [ = 1.

3 2wl G2) )
ispenen(22) () -2 ()

5 Bo? 5 Bo?
— (3845 + 48mn)for’ — 257 Q3 <F<6,ﬂ2Q6> 2r (6’?))}

[(35d5 + 48mz)fi + 25w Qs (r(é /; ?2> (% ?))] (2.21)

200000

N

Similarly, the second derivative of the metric function is

Lfo2 2 327:Q2ﬁ%n2+ 32113 +3%‘r%“n6
1

CF_=_ = = —° (2.22)
dr? 2 3% rg 311, 3%,.%1-[%; Hi
where
I, = 36,5 + 48mx 4+ 250367 (T 5 PO\ _yp(3 52 (2.23)
b 6’ 2r° 6'2r°) ) '

o2 o () wen () -ow(a) ()] e
()2 oo someit 4 210l (1(222) -ar(22))]. e

2 - - a2
.= 34w 107 (1)) (1(5)) e (22)

2o (3 INT L g2 o (5 P2 5 pQ°
Jo(2) ()] 2tae [r(3.22) -ar(3.22)], 226
2 2
n5:35d,5+48mn+2%ng%ﬁé[ (2 ﬂ2Q6> 2r(§,ﬂ2%>}, (2.27)

_ 2 1 2 ” s 5 2 5 2
= 9670 exp( po ) Ljr(%) - rlgl“é)} — 12645 — 192mn — 25 nQ54% (F (6@%) =2 (6@%)) (2.28)
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Using the above values in Eq. (2.19), we conclude that
R(r) — oo as r tends to zero. This shows that our resulting
solution has a true curvature singularity at the origin r = 0,
which indicates that our solution represents a black hole.
Furthermore, the metric function f(r) given by (2.15)
becomes infinite as » — oo, which means that it represents
nonasymptotically flat spacetime.

B. Thermodynamics of black holes of DCG
with exponential magnetic source

The Hawking temperature of the black hole is given by

[\S}

r r I _
Ty(ry) = 2hlz ﬁ[G(rh)]ﬁ_ﬁ[G(”h)}%W(rh)’
(2.29)
where
162Gm & 7G QTP
G(ry) = s a1 d—idl WH(’%)’
Zd 2Ty r, (d 2)2 a4,
(2.30)
162Gm(1 —=d) (1 -d)s
W(rh) _ dz( ) ( d) d
Thp&d-2 Ty
7GQ7(1 — d)fH (1)
(d —2)2°7"rd
162G Q? oo [ — pO?
(d—2)rid-8 2r304
((2d )=t 4 (4 = 2d)pr2%d “é’) (2.31)
and
2d-5 BQ> 4d -9 BO?
H(r) =T[(=—=,2=—_) -2r =
() <2d—4 2r§d—4> (2d—4 2174

(2.32)

To obtain the expression for heat capacity, we first find
the black hole’s entropy. A consistent approach which is
very fruitful in getting conserved charges of a black hole
was developed by Wald [36,37]. Black hole thermody-
namics can be developed by using the derived conserved
quantities. This Wald’s formalism is applicable in general
diffeomorphism-invariant theories and even in those types
of theories where higher order derivatives are found. Wald’s
formalism has been helpful in studying thermodynamics of
black holes in different theories, for example, Einstein-
scalar theory [38,39], Einstein-Proca theory [40], Einstein-
Yang-Mills theory [41], gravity with quadratic curvature
invariants [42], Lifschitz gravity [43] etc. In our work too,

i.e., the case of DCG we use the general formalism of Wald
for obtaining the black hole’s entropy. Hence the Wald
entropy for our solution (2.15) is defined by

OL
S = —275}4 d"xx/f_laR—eﬂbem

HUpA
- d d-3 -
:(d 3)Z o1 %+l2 F, 1’a”8 d r2h
4kG(6 — d) [ 27 2 Tkl
(2.33)
where €, is the normal bivector of the 7 = constand r = r,

hypersurface such that e,,lef’ = =2, F| is the Gaussian
hypergeometric function. The magnetic potential conjugate
to the magnetic charge Q is given by

o 9m_ T exp [ — pO* \[20 2pQ°
"T00 " (d-2) P\ 200 ) 245 T A

T2 QP BH (1))
(d-2)257

(2.34)

Using the thermodynamical quantities obtained above,
we can now easily verify that the first law of thermody-
namics [44]

dm = TydS + ®,,dQ, (2.35)

is satisfied. Now the specific heat capacity [45-47] at a
constant charge Q is given by

oM
Co=Typ— 2.36
o=Tugr |, (236)
Differentiating (2.29) we get
8TH o 1 _G(rh)ﬁ_ ry dG(rh)
or, 2xnl? 2r 2ﬂ(d—3)G(rh)% dry,
. d-2)r’ G
_ <ﬁg<rh>z% (@=2r _ W) W(ry)
2 4n(3—-d)G(ry)= dry
r2G(r )d—z dW(r,)
Tn h h
_ , 2.37
dr drh ( )

where
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dW(r,) 162Gmd(d—1) d(d-1)8, =Gd(d—1)Q#H(r,) = 2G(1—d)Qm dH(r;)
dry, — Zgrit] rt! (d = 2)25m ' grmrdt!  (d —2)2% Mg dry
167G Q*(2d — 4)? N —p0O? n 8xGQ*B(2d — 4)? 3 322GQ*(2d — 4)?
(d=2)r3i=3 P 2rd=4 rod=1(d - 2) (d—2)ryd7
_ﬂQZ 2[[ 4 3d—7 . 6d—14 9-4d
XeXp W ﬂﬂQ74224 (238)
h
dG(ry) 16aGm(1 —d) (1 —d)s GO s dH(r
) 167Gm =) (0= oa | ZGOPC (1= () + r, T, (2.39)
a'rh Zd_zrh ' (d — 2) h2 2a-4 dl"h
and
dH 4 2d 4d—9 _4d—-9 _ 2 7 2d—4
(r) _ (4=24)fHQE ( /;Q_4> [1 _pE ] (2.40)
dry, W 4d 8 2r;, 0
Putting Eqgs. (2.29), (2.33), and (2.37) in the general expression of heat capacity (2.36) we obtain
2 d-3
A I 2d (d=3)ZyriZ(ry) (1 1
Cp = | =25 = L[G(rp))7 = L [G(r))]W : 241
o <271'12 27[[ (rh)]l 4”[ (rh)]d (rh)> 4G(6 d) ( ) + 12 ( )
where
d 8§8—d —r (d-3)ril? 2r,d d+2 10—-d —r?
z Fy|l,= ot - F,|2, : |, 2.42
(ra) = ‘{ 22 12]< rh+12 ) 28 —d) ' 2 2 R (242)
and
1 G(ry)™ dG o= d-2)r;  dG
X(rh) 5 S (rh) _ T'p — (rh) _ <QG(rh);—§+ ( )rh _— (rh)>W(Vh)
nl 2z 2z(d—-3)G(ry)m  dry 2n 47(3 — d)G(ry)=  dry
2 d=2
rh(;(rh)df'z dW(rh)
2.43
4 drh ( )
|
The above Eq. (2.41) represents the general expression for y ! p st
black hole’s heat capacity for any value of nonlinear = 162G / d’x\/— [22—5’:1 vy (@ Ry . R2-1%20
electrodynamical parameter . The black hole is stable if p=0
the Hawking temperature and heat capacity are positive. ddp @12 oyt
The black hole becomes unstable in the region where +162Gh, ¢ Syl . S*710) + 4aGL(F) |
Hawking temperature or heat capacity become negative. (2.44)

The point at which the sign of Hawking temperature
changes corresponds to the first order phase transition of
black hole. The maximum of Hawking temperature corre-
sponds to the second order phase transition since the heat
capacity at that point is singular.

C. Hairy black holes of DCG with exponential
magnetic source

The action describing Lovelock-scalar gravity with
nonlinear exponential electrodynamics source [48] is
defined by

where L(F) corresponds to the Lagrangian density des-
cribing the exponential electromagnetic field [22,48].
The second term in the integrand which contains
@47 denotes the Lagrangian density of the scalar field,
where [49]

0o __
S =

PRI — 26/87)0:0°p — 45,0107

+ 485,00 . (2.45)
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Note that, by putting the scalar function ¢ equal to zero
we get the action function defined in (2.1). The matter
tensor corresponding to the scalar field is given by

&b, Aid.. 2
v(s) — § d—4p sPA14a---A2p opipa
[TM] 2p+1 ¢ 5#/71/02 Pszﬂ At
p=0

Sﬂ7p 1P2p

PRETNE (2.46)

Thus the equation of motion for the scalar field becomes

d-3
bP (d ~ 2]7) ¢d—4p—1511’12"'}”21’ S/’lﬂz P2p-1P2p
0721, P1P2-P2p 0y P dy By

p=

(2.47)

Taking variation of (2.44) with respect to metric tensor,
we get the field equations in the form [31,34]

n—1
a
DS O R RO
p=0
= 162G[T4)™ + 167G[T4])*) (2.48)
where [T,”,]<M> corresponds to the matter tensor of expo-
nential electromagnetic field and a, corresponds to the

value defined as in Eq. (2.3) so that the Lovelock gravity
becomes DCG. If we take the scalar configuration as [48]

the equation describing the scalar field becomes

b ( (d* —d+4p?)

d 2p—1)!

i N~ = 0.

(2.50)
p=0

Using the assumption of pure magnetic field and sub-
stituting Eqgs. (2.46) and (2.47) in Eq. (2.48) we get the
metric function in the form

2Y 5,

+ -
Zd 2’,.d—l rd rd—l

—k+l—2—r

G Q72 <r <2d -5 pO* >

(d—2)2% " \2d —4 2,24

4d-9 pO* \\1#=
- <2d - 4’2r2d—4>>] ’

where we have

£r) r {167:Gm

(2.51)

d-2p
Y = Zb d 2p 2)N : (2.52)

Now we 1nvest1gate the asymptotic behavior of metric
function (2.51). In what follows, we take k = 1 and the

b= ﬂ (2.49) cases k = 0, —1 can be studied in similar manners. Thus,
r’ ' for the odd-dimensional spacetimes we obtain
|
2 1 32AYFS  Syg rl rG OBy S=n
— 1 o o= 1 25+
1) + g 2[ + 2m(s=1)  2m(s=1) (45 —2)(s — 1)m2" 51"
—BO? 25 45 -3 2map3=ds
o) (e - )
2r fra Q1 4s —2 ﬁers I
d=2s+1,s=1,23.... (2.53)
Similarly, for even-dimensional spacetime we have
r? BYIEs 5010 GO fin f o5
f()—]+——m2; |:]+ nYriz 425123 T Qz 3ﬂ rz
2 2s—=3  m(2s-3) 2(s —1)(2s — )m22:—l
_aO2 o=y ds —5 Ty pS5—4s
oo (52057 (g (-2 70) i) |
27‘ ne Qz 4s — 4 f -4Q2s 2
d=2s,s=1,2,3.... (2.54)

The above asymptotic expressions of metric functions show that in the case of both odd and even dimensions, metric
functions are regular and finite at » = O for all values of s > 1. This finiteness of metric functions is due to the non-Maxwell
behavior of Lagrangian density (2.2) corresponding to exponential electrodynamics. Furthermore, at » — oo the metric
functions become infinite and hence this shows that the spacetime is nonasymptotically flat.
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FIG. 3. Plotof function f(r) [Eq. (2.51)] vs r for fixed values of
m=10,d =6, Q =10.0, = 10.0 and [/ = 0.001.

Figure 3 shows the graph of function f(r) vs r, for fixed
values of f, m, Q, and d. Note that the values of all other
parameters are taken as unity. The point at which the curve
touches the horizontal axis indicates the position of event
horizon.

Furthermore, by using (2.51) with Egs. (2.19) and (2.20),
one can easily check that both the Ricci scalar and
Kretschmann scalar give infinite values at » = 0 for any
value of d. This shows that the metric function possesses
true curvature singularity at the origin. Hence, the line
element (2.12) with metric function given by (2.51)
describes a hairy black hole solution of DCG sourced by
exponential electrodynamics. For the four-dimensional
case, it is seen from Eq. (2.50) that all the coefficients
b, vanish, thus in the case of d = 4, hairy black holes do
not exist. It is easy to see that, by taking ¥ = 0, this black
hole solution reduces to the black hole with no scalar hair
which we derived earlier in Sec. II. B.

III. TOPOLOGICAL BLACK HOLES OF DCG
COUPLED TO POWER-YANG-MILLS THEORY

A. Black hole solution with power-Yang-Mills source

The action function describing the Lovelock-power-
Yang-Mills theory is given by

1 S
I = 16”G/ddx‘/_g|:2256511'”52-"R”‘”2m

X RYp-1V2p (T)q} , (3.1)
where Y is the Yang-Mills invariant defined as
n(n+1/2)
T= > (FF@) (3.2)
a=1

q is a positive real parameter, and the Yang-Mills field is
defined by

AL A Al (3.3)

where, C EZ; (c) Tepresents the structure constants of @ -

parameter Lie group G, n = d — 2, n denotes the coupling
constant and A(?) are the So(n + 1) gauge group Yang-
Mills potentials. The structure constants have been deter-
mined in Ref. [50]. We should keep in mind, that the
internal indices [a, b, ...] make no difference whether we
write them in contravariant or covariant form. Taking
variation of action defined in (3.1) with respect to the
metric tensor yields the Lovelock field equations (2.5) with
matter tensor of Yang-Mills field given by

W 1 @) 1+(a -
T,g) — —5[5;:Tq _4qTr(FfM)F< iy,

(3.4)
The equations of Yang-Mills field can be obtained if we
vary the action with respect to gauge potentials A(%)

I (a
d(*FOTe) + =) TTAD A% FO =0, (3.5)
n

where * denotes the duality of a field. By taking the static
metric in the form (2.12), it can easily be checked that
power-Yang-Mills equations are satisfied for the choice of
Yang-Mills gauge potential one-forms [51,52] defined as

a Q (@) i,; 2 - 2
A():ﬁC. j)xdx/, r :Zx,-,

() (3.6)
i=1

where Q represents the Yang-Mills magnetic charge and
2<j+1<i<d-1. Thus the symmetric matter tensor
(3.4), with

_ 2 _ _ 2
yoMns DO _(@=2U=30
becomes
(a)v | U
T, :—Equlag[l,l,C,é’,...,C],
4
(= (1 - (d_qz))' (3.8)

The causality principle is satisfied for power-Yang-Mills
model if (OL/OY) < 0 and unitarity principle is satisfied
when (OL/OY +2Y9*L/0Y?) <0 and O*L/OY? > 0.
One can show that the causality does not hold in this
model for all values of positive integer d > 3. However, for
d < 3 this principle holds. By using the Lagrangian density
of power-Yang-Mills theory it is shown that the unitarity
principle holds for all values of d > 3 and ¢ < (1/2). When
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FIG. 4. Plotof function f(r) [Eq. (3.10)] vs r for fixed values of
m=10,d =135, Q =0.01, g = 0.001, and [ = 0.01.

d < 3, this principle is satisfied for all values of g > 3 for
power-Yang-Mills magnetic field.

The SEC in DCG coupled to power-Yang-Mills field
holds for all values of ¢ > (d — 1) /4. This energy condition
tells us that the universe did not experience any acceleration
in this model. However WEC and DEC do not hold for all

|

P s 322GQ(2s —2)7(2s — 3)77!

values of d > 3, in contrast to the exponential model
coupled to DCG. Therefore, WEC and DEC hold only
for (2 4 1)-dimensional black holes of DCG with power-
Yang-Mills source. Now by using Egs. (2.12) and the
matter tensor (3.8) in the field equations (2.5), we get

)

_ —322GQ%[(d - 2)(d - 3)]

rt

(3.9)

Direct integration with respect to r yields the metric
function

r? 7GQ*|[(d — -3)
f(r):k+— 2|:32 GQ [(d 2)(d 3)]

lZ -r (4q_ 1)r4q+d—2
162Gm k=
T =1 pa-1 '

(3.10)

Now we discuss the asymptotic behavior of our solution at
r = 0. For this we will work out for k = 1 as follows:

45—8-8¢gs+12q

f(r):l—l—l—z—Mrz\-_—s—

23

(4g-1)
51272G2Q% (25 — 2)%4(2s — 3)2472

65—11-16gs+24q 85—15-24¢5+36¢q

a3+ O(rT),

M(4q—1)?
d=2s,s=1,2,3..., (3.11)
2 29(Dg — 1)4 —2)¢-1 ‘
F) =1+ r_2 = 322GQ*1(2s — 1)1(2s — 2) sttty
) (4g—-1)
512722G? Q4‘I (2S - 1)2112(23‘ - 2)211—2 r63—8—21l‘(i-725+1()q n 0<r8x—15;§i1275+24q)’
M(4q—1)
d=2s+1,s=1,2,3.... (3.12)
|
These two expressions indicate that both for even and odd- ks 327G (d —2)4(d — 3)41Q% it
dimensional spacetimes the metric function (3.10) is M, = Jhd—d—1 - 4g—1 . (3.13)
regular and finite for all values of s > 1. Note that in ¢
the above we assumed (m + 8;2,2,,1)"/973 = M. Further- o
more, at r — oo the metric goes to infinity which shows (d—3)"-4(1 - 4q)k%r‘f —9d°+23d+44-10
that the spacetime is nonasymptotically flat. Q.= 162G(d — 2)4(4q + 1)

Figure 4 shows the graph of f(r) vs r for fixed values of
the parameters involved in metric function (3.10). The
curve touching the horizontal axis indicates the position of
the event horizon. We get extremal black holes when
horizons coincide, and they are obtained by solving
f(r)=0 and df/dr=0 simultaneously. This set of
simultaneous equations for metric function (3.10), without
cosmological constant, i.e., for [ — oo, yields

N rIH2 () — 4q) (1 - d)kes
322G(d - 2)1(d - 3)1(4q + 1) \_ -2 )’

(3.14)
where M, = 16zGm, /X, + 6, related to the extremal

mass m,, r, is the extremal radius and Q, is the extremal
charge.
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Now, we confirm that our resulting solution possesses a central essential singularity. For this, we discuss the asymptotic
behavior of curvature scalars at r = 0 as follows. Differentiating (3.10) we obtain

df 2r

{ 162Gm 8,

dr 12 Zd_zrd_l r‘l_l

322G Q% (d - 2)(d — 3)7] 7
(4q _ ])r4q+d—2

r* [16zGm &,
d—3 Zd_zrd_l rd_l

322G Q¥ (d — 2)7(d — 3)7]
(4q _ 1)r4q+d—2

Zd_zrd rd

y (167sz(1 —d) | (1=d)é;  321GQ*(d ~2)(d ~3)'(2 ~d ~ 4q)

Differentiating again we get

dzf 2 2P; 4rP2%{§idP VZP?!%{ d2P
—_— == - - — - o
rr I d-3dr (d-3)dr
(4 —d)PF [(dP\?
T d=32 \ar)’ 3.16
(d—3)2 <dr> ( )
where
p(r) = 070m | 04 | 322GO(d—2)(d = 3)1
Xyttt (4q — 1)rtatd=2 ,
(3.17)
dp _16aGm(l —d) (1 -d)s,
dr— Zyor! rd
32G2qd—24d_3q2_d_4
Tt Al el Catil 9D (318

(4q _ 1)r4q+d—1 ’
and
dZP_167erd(d—1) d(d—1)é,
ﬁ_ zd_zrd+1 a1

327G0%(d—2)1(d—3)9(2—d—4q)(1—d—4q)
! (4g— 1) |

). (3.15)

(4q _ 1)r4q+d—1

|
We can work out the Ricci scalar for any value of d and,
therefore, with the help of Eq. (2.19) and the above
equations of metric function and its derivatives, we find
that R — oo as r — 0. Similarly, Kretschmann scalar (2.20)
also possess singularity at r = 0. Thus the line element
(2.12) with the metric function (3.10) represents higher
dimensional magnetized black hole solution of DCG for
any value of the parameter g. However, it indicates that
g =1 will give the solution of DCG coupled to the
standard Yang-Mills theory and for ¢ = 1/4 the solution
does not exist. By substituting the Yang-Mills magnetic
charge O = 0, we get the neutral solution in DCG.

B. Thermodynamics of black holes of DCG
with power-Yang-Mills magnetic source

It is observed from the metric function (3.10) that the
physical properties of such type of black holes depend on the
parameter ¢g. The horizons of the black hole are given by
f(ry) = 0, where r, represents the location of horizon. Thus

Zoory (Et %)H X420

m = 162G 167G
B 20%%,,((d - 24)(_‘f —3)) . (3.20)
(4g — 1)r,!

Equation (3.20) gives the ADM mass of the black hole in
terms of horizon radius and Yang-Mills magnetic charge Q.

(3-19) " The black hole’s Hawking temperature [45] is given by
|
1 df
Ty =——
T 4z dr r—r,
T [32nGQ2"(d -2)4(d-3)1 162Gm i]ﬁ
27l 2x (4g — 1);»2‘7”_2 Tyordt ot
3 r [327:GQ2‘1(d -2)4(d-3)1 16aGm i]“ﬁ‘
4n(d - 3) (4g — 1)rrte=2 Sy
322G(2—d—49)0*(d-2)1(d-3)? (1-d)16aGm (1 —d)5
X { dgtd=T + T T — - (3.21)
(4g = 1)r), Zy-al Th
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The entropy of the black hole in this case using Wald’s
method [36,37] becomes

(d— 3)20{_21’% k 1)d-3 d d
§ =~ m2h e Y 2 e
#G6-d \2 P I Ty
(3.22)

The Yang-Mills magnetic potential conjugate to Yang-
Mills magnetic charge Q is given by

—647Gq(d —2)4(d — 3)10%""!

Thus, using the above thermodynamical quantities, it can
be seen that the first law of black hole thermodynamics
given by (2.35) is satisfied. The free energy density of the
resulting black hole can also be calculated as [44]

E:m—THS,

(3.24)

where m,Ty, and S are the ADM mass, Hawking
temperature and entropy of the black hole given by

D, = s (3.23)  Egs. (3.20)—(3.22), respectively. Similarly, the heat capac-
(49— )ry ity at constant charge is given by
|
rZ+l r}d+lH¢II—1 r,d 1 -3
> =2 o ’3 Hg_— (d=3)Z. 2H2(rh)( + )
CQ = - d _% : o = 2 7{1234 (3-25)
H{  nH{ an &PH d-4)H{ aH
4kG [ﬁ_zl_n_ I(dIS)dThl_étzl;(d 3)—1"' h47zd 3)? (dr/l)
where
327GQ*[(d —2)(d—3)]Y 16aGm 1)
() = ZOLU AN, o, 2 (3.26)
(4g — 1)r,? Zy-aly T
dH\(r,) 322GQ*1(2—-4q—d)[(d-2)(d-3)]? 162G(1—d)m (1—d)s
= 4q+d—1 + d d (3.27)
dry, (4 - 1)r, d ol T
d*H,(r,) 322GQ*(2—-4q—d)(1 —4q—d)[(d—-2)(d-3)]4 n 16z2Gd(d —1)m d(d—1)6 (3.28)
dr%l (4q 1) 4q+d Ed zrd+l ri+l ’ :
I
and where (Y) corresponds to the power-Yang-Mills invariant
defined by (3.2) and (3.3) and we have used the Lagrangian
d ril’(d-3) d 8—d —r density of the scalar field given by
H —_ = h F 1’ , h
2(r) [rﬁ P+ 7 ] ‘< 272 k12> it
2r,d d+2 10-d —r Ly="> Lad=dvgl sy | s, (331)
t+— i 2 |- =02
kl*(d—2) 2 2 kl r

(3.29)  where Sy, is given by Eq. (2.45). Note that, by putting

C. Hairy black holes of DCG with power-Yang-Mills
magnetic source

The action function for Lovelock-scalar gravity with
power-Yang-Mills source [48] is defined by

1 ”_la < H2p vivy 1Z 1%
o | | XS R R
p=0
+167Gb 4P Si22 . Svr-v20) +4xG(T)1 |, (3.30)

scalar function ¢ equal to zero, the above action function
reduces to the case of DCG coupled to power-Yang-Mills
field, i.e., (3.1).

Taking variation of (3.30) with respect to the metric
tensor, we get the field equations as

n—1
a Adap opip
Zzpi] 61;/711 /722])R;. 5.22 *
p=0
= 162G[T%)™ + 167G[T4)"),

.RP2w-1P2p

(3.32)

where [TZ](M ) corresponds to the matter tensor of power-
Yang-Mills field while a,, corresponds to the value defined
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as in Eq. (2.3) so that the Lovelock gravity becomes DCG.
The stress-energy tensor corresponding to the scalar field is
given by (2.46) and the equation of motion of scalar field is
given by (2.47). Choosing the scalar configuration (2.49)
and using Egs. (2.46) and (2.47) in Eq. (3.32), we get the
metric function in the form

r? 162Gm 32z 5,
f<r):k+l_2_r2{2d_2rd‘1 - Pl
322GQ%*(d —2)(d — 3)1] 7=
(4q _ 1)r4q+d—2 ’

(3.33)

where Y is given by (2.52).

Now, we discuss the asymptotic behavior of metric func-
tion (3.33) at r = 0. So, assuming M = 162Gm/%,_, and
U =204+ M we can write the asymptotic expressions as
follows:

2 45-9
r 1 25-6 HUT25-3
=14+—=——327Y)3|rp34+—0o—-—
fr)=1+7=(32nY) [” 322y (25-3)
G 2q 2s—2)4(2s =3 g-1 s—12-845+12¢ 12
d=2s,5=123.... (3.34)
F) = 145 = (2yys [ 2 -
= _— - 252 25—2 —_—
' T T T Y (25 - 2)
GO (2s —1)9(2s —2)97! gomsys -
d=2s+1,5=1273.. (3.35)

The above asymptotic expansions show that for the even-
dimensional spacetime, the metric function is finite and
regular for all values of s at the origin. However, for the
case of odd dimensions, the metric function is regular and
finite at the origin when s > 1. Note that this finiteness is
due to the nonlinear behavior of Lagrangian density
corresponding to power-Yang-Mills theory. Furthermore,
the solution given by (3.33) is nonasymptotically flat as it
grows infinitely for large values of r.

Figure 5 shows the graph of f(r) vs r, for fixed values of
parameters involved in metric function (3.33). The event
horizon is the value of r at which the curve meets the

|

f
250000 |
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150000 |
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50000 [
- 1 2 3 1 s |
FIG.5. Plotof function f(r) [Eq. (3.33)] vs r for fixed values of

m =100, d =15, Q =0.10, ¢ = 0.001, and [/ = 0.01.

horizontal axis. Extremal quantities corresponding to
extremal black hole solution [27] can be obtained by
solving f(r) =0 and df/dr =0 simultaneously. This
set of simultaneous equations for our metric function
(3.33), without cosmological constant, i.e., for [ — oo, is
given by

M- ks 32z 322G(d - 2)7(d —3)10%r, "
R 4g -1 :
(3.36)
0, = (d=3)"(1 - 4q)k%r§3_9d2+23d+4q—10
‘o 167G (d — 2)(4q + 1)
4 rg+4q—2(1 _4q)
322G(d - 2)%(d = 3)"(4g + 1)
(1-d)kis  32zY
* < pPd-d=2 ) (3.37)

where M, = 16zGm, /X, + &,, related to the extremal
mass m,, r, is the extremal radius and Q, is the extremal
charge.

Now we confirm that our resulting solution represents a
black hole. This can be done by studying the asymptotic
behavior of curvature invariants at the origin. For this we
differentiate Eq. (3.33) and obtain

322G Q% (d — 2)7(d — 3)4] 75

(4q _ 1)r4q+d—2

df . 2r 162Gm 32xY Oy4
dr P {Ed_zrd_l pd ot
r? 162Gm 32xY Oy
_d—3 |:Zd_zrd_1 + rd m

322GQ*(d —2)%(d - 3)4} P

(4q -1 )r4q+d—2

y <167sz(1 —d) _32mdY | (1-d)s;  32aGQ¥(d~2)'(d~3)(2~ d - 4q)

- +
SN A+ d

>. (3.38)

(4q _ ])r4q+d—1
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Similarly, by differentiating again we get

Bf_2 s, drPHar_rpH P
ar* PP - d-3dr (d-3)dr
r2(4 —d)PF (dP\?
- — ], 3.39
(d— 3) dr ( )
where
P(r) 162Gm +327IY Sy
r) = —
X0 -1 ] -1
32ﬂGQ2q(d —2)1(d - 3)1
, 3.40
(4q _ 1)r4q+d—2 ( )
dj - 162Gm(1 — d) 327rdY+ (1 —d)éy,
dr or? pdt! rd
2 24(d—=2)1(d-3)92—-d—-4

(461 _ 1) A4g+d—1 ’
and

J2P716nGmd(d—1) 32ﬂd<d+1)Y d(d—l)éd
W - S P+ a2 + pd+1
Jr3271GQ2‘1(a7—2)‘1(01—3)‘1(2—111—4q)(1 —d—4q)
(4g—1)rta+d '

(3.42)

Thus using Egs. (3.33), (3.38), and (3.39) and the general
expression of Ricci scalar (2.19), one can easily check that
in the limit » — O Ricci scalar becomes infinite. Thus, we
conclude that metric function (3.33) represents an object
which has true curvature singularity at r = 0. Therefore,
line element (2.12) with metric function given by (3.33)
represents a hairy black hole solution of DCG in the
background of power-Yang-Mills field. Hence, we derive a
large family of black hole solutions for any value of real
parameter g except for the case g = 1/4. It is easy to see
that, by taking ¥ = 0, this black hole solution reduces to
the black hole with no scalar hair which we derived in
Sec. III. A.

IV. BLACK HOLES OF DCG AND YANG-MILLS
HIERARCHIES

In this section we study the possible black holes of DCG
whose gravitational field is sourced by the superposition of
different power-Yang-Mills field. The Yang-Mills hierar-
chies in diverse dimensions have been discussed in the
literature [53]. Here we begin with an action defined as

1 l P qHi---H2p privy
- 1671G/ [;2_5”""”25R”I”2"‘
X RV2p-1¥2p Z cj(T)J],
=0

where T represents the Yang-Mills invariant defined in
(3.2), ¢j, j =2 1 is a coupling constant. The variation of the
above actlon with respect to the metric tensor gives (2.5)
with the matter tensor given by

(4.1)

Q

1 ; o a)ve

J=0

The Yang-Mills equations are determined by varying (4.1)
with respect to the gauge potential A(®)

N
Fl@xi-1) +_CEb;(C)TJ—1A(h) A* FO| = 0.
n

(4.3)
Our d = n + 2-dimensional line element ansatz is given by

(2.12) and the power-Yang-Mills field ansatz would be
chosen as before such that the matter tensor takes the form

1< o
T = _Ez ¢, Vidiag[l,1,£,&, ..., (4.4)
j=0
where { =1 — ( ) Thus using Eqgs. (2.3), (2.12) and (4.4)
in (2.5) we get the metric function
(d—2)/(d - 3)1Q2’
f( )—k+——r {32 G
LRI
1672mG k=S
s W}d % (4.5)
2ol r

The above equation indicates that for j = 0 the neutral
black hole solution is obtained, for j =4 the solution is
undefined, and for taking a unique value of j = g we get
the solution obtained in Sec. III. A. The ADM mass in
terms of the outer horizon radius r; is

d-3
Zyary (llz +%) DI

m =

167G 167G
N~ 20YE4,[(d-2)(d=3)) 46
; (4] 1) 4j—-1 . ( . )

When superposition of different power-Yang-Mills sources
are taken into account, the metric function corresponding to
the hairy black hole solution of DCG takes the form
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r 1. (d-2)/(d-3)/Q¥%
f(r):k+l—2—rza{32”G]Z; (4] — 1)7+d=2

16amG ) 327rY] ﬁ’ (47)

Zd—z }"d_l I"d_l rd

where Y is given by (2.52). The asymptotic behavior of
these solutions is similar to those obtained earlier in the
case of DCG coupled to power-Yang-Mills source. Also,
one can easily check that for metric functions (4.5) and
(4.7), the curvature invariants possess an essential singu-
larity at the origin » = 0 which is the mathematical aspect
of the black hole.

V. SUMMARY AND CONCLUSION

In this paper, new magnetized black hole solutions of
DCG are constructed. In order to do this we studied black
holes of DCG in the framework of both exponential
electrodynamics and power-Yang-Mills theory. First, we
derived both topological black hole solutions and hairy
black hole solutions of DCG with pure exponential
magnetic source. These solutions depend on the parameter
p of exponential electrodynamics. For the model of
exponential electrodynamics, there is no need to impose
the condition on the matter tensor for making it traceless,
so we conclude that the scale and dual invariances are
completely violated here. Further, the components of the
matter tensor obtained from the Lagrangian density of this
model satisfy all the energy conditions along with causality
and unitarity principles in some specified region of the
radial coordinate. For any value of parameter f, it is

possible to obtain a solution which is regular at the origin.
Moreover, these solutions are nonasymptotically flat for
nonzero value of constant / while in the limit / approaches
to infinity one can get the asymptotically flat solutions. It is
shown that the metric functions are finite at the origin;
this finiteness property of metric functions is due to the
nonlinear behavior of electromagnetic field characterized
by Lagrangian density (2.2). Second, we use a model of
power-Yang-Mills theory and derive a large family of
topological black hole solutions in DCG. These solutions
depend on the parameter ¢ and are also nonasymptotically
flat for any nonzero value of /. The case g = 1 gives the
solutions of black holes with standard Yang-Mills source
and for ¢ = 1/4 the solution does not exist. The hairy black
hole solutions are also derived in the framework of power-
Yang-Mills theory which are reducible to black holes
with no scalar hair for ¥ = 0 and to neutral black holes
for Q0 = 0.

The thermodynamics of topological black holes is also
studied within both the exponential electrodynamics and
power-Yang-Mills theory. Thermodynamical quantities
such as entropy, Hawking temperature and specific heat
capacity at constant charge of resulting magnetized higher
dimensional black holes of DCG have been worked out.
The first law of black hole thermodynamics has also been
shown to hold for these black hole solutions.
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