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We construct exact pp-wave solutions of ghost-free infinite derivative gravity. These waves described
in the Kerr-Schild form also solve the linearized field equations of the theory. We also find an exact
gravitational shock wave with nonsingular curvature invariants and with a finite limit in the ultraviolet
regime of nonlocality which is in contrast to the divergent limit in Einstein’s theory.
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I. INTRODUCTION

Among the small scale modifications of Einstein’s theory
of general relativity (GR), infinite derivative gravity (IDG)
[1–3] seems to be a viable candidate to have a complete
theory in the UV scale (short distances). A particular form of
IDG is free from the Ostragradsky type instabilities and
black hole or cosmological type singularities. The theory is
described by a Lagrangian density built from analytic form
factors which lead to nonlocal interactions. The propagator
of ghost and singularity free IDG in flat background is
obtained by the modification of a pure GR propagator via
an exponential of an entire function that has no roots in the
finite domain [2,4]. This modification provides that the
theory does not have ghostlike instabilities and an extra
degree of freedom (DOF) other than the massless graviton.
On the other hand, an infinite derivative extension of GR
describes nonsingular Newtonian potential for a pointlike
source at small distances [2,5]. This result is extended to the
case where pointlike sources also have velocities, spins, and
orbital motion which leads to spin-spin and spin-orbit
interactions in addition to mass-mass interactions [6]. It
was shown that not only mass-mass interaction but also spin-
spin and spin-orbit interactions are nonsingular in the UV
regime of nonlocality. Hence, the theory is well behaved in
the small scale unlike GR. Furthermore, power counting
arguments have been recently studied for the renormaliz-
ability discussion and it is shown that loop diagrams beyond
one-loop may give finite results with dressed propagators
[3,7–11]. Moreover, IDG may be devoid of black hole and
cosmological big bang type singularities at a linear and
nonlinear level [1,2,9,12–19]. These encouraging develop-
ments led us to study exact solutions of the theory.
There are many works and some books on finding and

classifying the exact solutions of Einstein’s gravity [20].
Furthermore, some exact solutions are studied in detail in
some specific modified gravity theories, such as the

quadratic gravity [21–26], higher order theories of gravity
[27], fðRiemannÞ theories [28], fðRμνÞ theories [29], and
fðRÞ theories [30]. On the other hand, although IDG
received attention in the recent literature, exact solutions
of the theory have not been studied at a nonlinear level1

since the field equations are very lengthy and complicated.
At the linearized level around a flat background, some
specific solutions have been found: a nonsingular rotating
solution without ring singularity was studied in [32], a
solution for an electric point charge was found in [33], a
conformally flat static metric was constructed in [34], and
a metric for the nonlocal star was given in [35]. However, at
the nonlinear level, we are not aware of any known exact
solution for the theory. Nevertheless, since Kundt Einstein
spacetimes of Petrov (Weyl) type N are universal [36–40],
these spacetimes are exact solutions of IDG.
In this work, we would like to construct exact pp-wave

solutions of the IDG. Therefore, we consider the pp-wave
metric in the Kerr-Schild form which leads to a remarkable
simplification in finding exact solutions. We show that
pp-wave spacetimes are exact solutions of the IDG. We
also show that these waves solve not only generic nonlinear
field equations but also the linearized ones. Furthermore,
pp-wave solutions of Einstein’s theory also solve the IDG
since they are Kundt spacetimes of Petrov type N with zero
curvature scalar [36–40]. We also discuss the pp-wave
solution of the theory in the presence of the null matter
which contains the Dirac delta type singularity; namely, we
construct an exact nonsingular gravitational shock-wave
solution at the nonlinear level. We show that curvature
tensors are regular at the origin. Although, the exact
gravitational shock-wave solution of Einstein’s theory
generated by a massless point particle is singular at the
origin, gravitational nonlocal interactions in IDG
leads to the cancellation of such a singularity at the
nonlinear level.

*ercan.kilicarslan@usak.edu.tr

1Some exact solutions of weakly nonlocal gravity theories are
discussed in [31].
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The layout of the paper is as follows: In Sec. II, we will
briefly review the IDG. Section III is devoted to some
mathematical preliminaries of the pp-wave metrics in the
Kerr-Schild form. In that section, we write the generic field
equations of IDG for pp-wave spacetimes. In Sec. IV, we
give the explicit form of the exact solution for ghost-free
IDG. In addition to the nonlinear theory, we show that
pp-wave solutions of the generic theory also satisfy the
linearized field equations. In Sec. V, we construct the exact
nonsingular gravitational shock-wave solutions of IDG for
the proper choice of form factors [see Eq. (29)].

II. INFINITE DERIVATIVE GRAVITY

The most general quadratic, parity-invariant and torsion-
free Lagrangian density of IDG is [1–3]

L ¼ 1

16πG
ffiffiffiffiffiffi
−g

p ½Rþ αcðRF 1ð□ÞRþ RμνF 2ð□ÞRμν

þ CμνρσF 3ð□ÞCμνρσÞ�; ð1Þ

where G ¼ 1
M2

p
is the Newton’s gravitational constant and

αc ¼ 1
M2

s
is a dimensionful parameter where Ms is the scale

of the nonlocality, R is the scalar curvature, Rμν is the Ricci
tensor, and Cμνρσ is the Weyl tensor. We work with the
(−;þ;þ;þ) signature. In the αc → 0 (or Ms → ∞) limit,
the theory reduces to Einstein’s gravity with a massless
spin-two graviton. Note that IDG is a special case of ghost-
free quadratic curvature theories of gravity. On the other
hand, the three form factors F ið□Þ’s containing infinite
derivative functions are defined as2

F ið□Þ≡X∞
n¼0

fin
□

n

M2n
s
; ð3Þ

in which fin are dimensionless coefficients. The form
factors lead to nonlocal gravitational interactions and fin
play an important role to avoid ghostlike instabilities. The
source-free field equations are [12]

Gαβ þ αc
2
ð4GαβF 1ð□ÞRþ gαβRF 1ð□ÞR − 4ð▿α∇β − gαβ□ÞF 1ð□ÞRþ 4Rα

νF 2ð□ÞRνβ − gαβRν
μF 2ð□ÞRμ

ν

− 4▿ν▿
βðF 2ð□ÞRναÞ þ 2□ðF 2ð□ÞRαβÞ þ 2gαβ▿μ▿νðF 2ð□ÞRμνÞ − gαβCμνρσF 3ð□ÞCμνρσ þ 4Cα

μνσF 3ð□ÞCβμνσ

− 4ðRμν þ 2▿μ▿νÞðF 3ð□ÞCβμναÞ − 2Ωαβ
1 þ gαβðΩ1ρ

ρ þ Ω̄1Þ − 2Ωαβ
2 þ gαβðΩ2ρ

ρ þ Ω̄2Þ
− 4Δαβ

2 − 2Ωαβ
3 þ gαβðΩ3γ

γ þ Ω̄3Þ − 8Δαβ
3 Þ ¼ 0: ð4Þ

Here, the symmetric tensors are given as [12]

Ωαβ
1 ¼

X∞
n¼1

f1n
Xn−1
l¼0

∇αRðlÞ∇βRðn−l−1Þ; Ω̄1 ¼
X∞
n¼1

f1n
Xn−1
l¼0

RðlÞRðn−lÞ;

Ωαβ
2 ¼

X∞
n¼1

f2n
Xn−1
l¼0

Rν
μ;αðlÞRμ

ν;βðn−l−1Þ; Ω̄2 ¼
X∞
n¼1

f2n
Xn−1
l¼0

Rν
μðlÞRμ

νðn−lÞ

Δαβ
2 ¼ 1

2

X∞
n¼1

f2n
Xn−1
l¼0

½Rσ
νðlÞRðβjσj;αÞðn−l−1Þ − Rσ

ν;ðαðlÞRβÞσðn−l−1Þ�;ν

Ωαβ
3 ¼

X∞
n¼1

f3n
Xn−1
l¼0

Cμ;αðlÞ
νρσCμ

νρσ;βðn−l−1Þ; Ω̄3 ¼
X∞
n¼1

f3n
Xn−1
l¼0

CμðlÞ
νρσCμ

νρσðn−lÞ

Δαβ
3 ¼ 1

2

X∞
n¼1

f3n
Xn−1
l¼0

½CρνðlÞ
σμCρ

ðβjσμj;αÞðn−l−1Þ − Cρν
σμ

;ðαðlÞCρ
βÞσμðn−l−1Þ�;ν ð5Þ

where we used the notation RðnÞ ¼ □
nR for the tensors which are built from the curvature tensors and their derivatives and

semicolon denote the covariant derivative. Note that since the field equations are highly complicated and nonlinear, finding

2These three form factors are not independent and are constrained. For example, in flat background to conserve general covariance
and the massless spin-two nature of graviton, these form factors satisfy the following constraint equation [2,12]:

6F 1ð□Þ þ 3F 2ð□Þ þ 2F 3ð□Þ ¼ 0; ð2Þ
which provides that theory has only a transverse-traceless massless spin-two graviton degree of freedom.
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exact solutions to the theory might seem hopeless. In the
next section, we will give some mathematical preliminaries
of the pp-wave spacetimes and show that these spacetimes
are the exact solution of the theory for a proper choice of
the profile function.

III. pp-WAVE SPACETIMES IN IDG

Here we want to find the pp-wave solution of the theory.
For this purpose, let us consider the pp-wave (or plane-
fronted parallel waves) metric described in the Kerr-Schild
form as3

gμν ¼ ημν þ 2Hλμλν: ð6Þ

Here ημν denotes the flat metric and the covariantly constant
null vector λμ satisfies the following relations:

λμλμ ¼ 0; ∇μλν ¼ 0; ð7Þ

which give λμ∂μH ¼ 0. The null vector λμ is nonexpanding
∇μλ

μ ¼ 0, nontwisting ∇μλ
ν∇½μλν� ¼ 0, and shear-free

∇μλ
ν∇ðμλνÞ ¼ 0; hence, the pp-wave metrics belong to

class of the Kundt spacetimes [20]. The inverse metric
reads as

gμν ¼ ημν − 2Hλμλν: ð8Þ

To find the pp-wave solution of IDG, one needs to
calculate relevant tensors (such as the Riemann, Ricci,
and scalar curvature) corresponding to metric. For this
purpose, let us note that the Christoffel connection can be
computed to be

Γσ
μν ¼ λσλμ∂νH þ λσλν∂μH − λμλνη

σβ∂βH; ð9Þ

which satisfies λσΓσ
μν ¼ 0, λμΓσ

μν ¼ 0. Now we are ready to
calculate Riemann, Ricci, and Weyl tensors. The Riemann
tensor can be found as [38]

Rρσμν ¼ λρλν∂σ∂μH þ λσλμ∂ρ∂νH

− λρλμ∂σ∂νH − λσλν∂ρ∂μH; ð10Þ

with which one gets the Ricci tensor as

Rμν ¼ −λμλν∂2H; ð11Þ

where ∂2 is a flat space Laplace operator defined as
∂2 ¼ ημν∂μ∂ν. It is straightforward to see that the scalar
curvature is zero as a consequence of the fact that λμ is null.
Note that any contraction of λμ with Weyl, Riemann, and
Ricci tensors vanishes:

λμCρσμν ¼ 0; λμRρσμν ¼ 0; λμRμν ¼ 0: ð12Þ

Furthermore, all the curvature scalars vanish for the
pp-wave metric [44,45]. On the other hand, the pp-waves
have some remarkable algebraic properties which provide
simplicity in calculations. For example, any nontrivial
second rank tensor built from the Riemann tensor or its
covariant derivatives can be described by a linear combi-
nation of traceless Ricci4 and higher orders of traceless-
Ricci (□nSμν’s) tensors [27]. With this property and
vanishing of all scalar invariants, the pp-wave spacetimes
are Weyl type N. Another remarkable property of the pp-
wave metric is that the contraction λμ vector with ∇nH’s
vanish [27]

λμ1∇μ1∇μ2…∇μnH ¼ 0; ð13Þ

which will be frequently used in the paper. Therefore,
the λ contraction with other λ’s or with ∇nH’s give zero.
Finally, let us consider the structure of a nonzero term given
in the form

∇ν1∇ν2…∇α…∇β…∇ν2n−2C
βμαν ¼ 1

2
∇ν1∇ν2…∇ν2n−2□Rμν;

ð14Þ

where we have used the following twice-contracted Bianchi
identity of the Weyl tensor for the pp-wave metric (6):

∇α∇βCβμαν ¼ 1

2
□Rμν: ð15Þ

A. Field equations of the IDG
for pp-wave spacetime

Now we are ready to write the field equations of the IDG
for the pp-wave spacetimes. By using relations obtained
above for each term in the field equations, thanks to the fact
that pp-waves have a Riemann tensor of type N together
with all its derivatives (and also R ¼ 0), only terms linear in
the curvature give nonzero contribution in (4) [38,40], and
the field equations take the form

½1þ αcð□F 2ð□Þ þ 2F 3ð□Þ□Þ�Rμν ¼ 0: ð16Þ

Note that the pp-wave metrics which satisfy Rμν ¼ 0 also
solve IDG field equations (16). Using the Ricci tensor
definition (11) for the pp-wave metric ansatz, the complete
field equations (16) can be recast as

½1þ αcð□F 2ð□Þ þ 2F 3ð□Þ□Þ�∂2H ¼ 0; ð17Þ

3For the detailed properties of pp-waves, see [27,41–43].
4By traceless-Ricci tensor, we mean Sμν ≡ Rμν − 1

4
gμνR where

Sμν is the traceless-Ricci tensor.
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where we also used the fact that the null vector is covariantly
constant. Since the form factorsF 2 andF 3 can be described
in terms of generic operator of d’Alembert as

F 2ð□Þ ¼
X∞
n¼0

f2n
□

n

M2n
s
; F 3ð□Þ ¼

X∞
n¼0

f3n
□

n

M2n
s
; ð18Þ

one needs to evaluate the □nH. For this purpose, first let us
consider the box operator acting on H

□H ¼ gμν∇μ∇νH ¼ ημν∂μ∂νH − ημνΓσ
μν∂σH: ð19Þ

By using Eq. (9), it can be easily shown that the last term
vanishes since ημνΓσ

μν ¼ 0. Then Eq. (19) takes the form

□H ¼ ∂2H: ð20Þ

Consequently, one can show that□n∂2H ¼ ∂2nð∂2HÞ, with
which the field equations of IDG (17) reduce to

½1þ αcð∂2F 2ð∂2Þ þ 2∂2F 3ð∂2ÞÞ�∂2H ¼ 0; ð21Þ

whose most general solution can be given as

HIDG ¼ HE þℜðHIÞ; ð22Þ

where HE refers to the solution of pure Einstein gravity
and satisfies the equation ∂2HE ¼ 0, HI is the solution
to IDG theory solving equation ½1þ αcð∂2F 2ð∂2Þþ
2∂2F 3ð∂2ÞÞ�HI ¼ 0, and ℜ denotes the real part of the
solution of HI . Here, one should notice that the pp-wave
metric solution of Einstein’s theory also solves IDG theory.
For the choice of the form factor F 2 ¼ F 3 ¼ 0 which

yields the theory

L ¼ 1

16πG
ffiffiffiffiffiffi
−g

p ½Rþ αcðRF 1ð□ÞR�; ð23Þ

which has the nonsingular bouncing solution which may
avoid cosmological singularity problem [1]. The associated
field equations for the pp-wave spacetimes reduce to
∂2H ¼ 0. This shows that the pp-wave solutions of
Einstein’s theory are the exact solution of the theory.

IV. pp-WAVE SOLUTIONS

In order to obtain the explicit form of solution (21), one
can describe the pp-wave metric in null coordinates with
the appropriate choice of λμ as [20]

ds2 ¼ 2dudvþ 2Hðu; x; yÞdu2 þ dx2 þ dy2; ð24Þ

in which u and v are light-cone background coordinates
defined as u ¼ 1ffiffi

2
p ðx − tÞ and v ¼ 1ffiffi

2
p ðxþ tÞ. Here, since

λμ ¼ δuμ which yields λμ ¼ δμv, we have

λμdxμ ¼ du; λμ∂μH ¼ ∂vH ¼ 0: ð25Þ

With these properties and using the Laplacian for the metric
(24) as ∂2 ¼ 2 ∂2

∂u∂v þ ∂2⊥, here ∂2⊥ ¼ ∂2
x þ ∂2

y, and Eq. (20)
takes the form

□H ¼ ∂2⊥H; ð26Þ

where we used the fact that ∂vH ¼ 0, and similarly one has

□
nH ¼ ∂2n⊥ H ð27Þ

and (21) reduces to

½1þ αcð∂2⊥F 2ð∂2⊥Þ þ 2∂2⊥F 3ð∂2⊥ÞÞ�∂2⊥H ¼ 0; ð28Þ

which is the general equation that we want to solve. To
proceed further we need the explicit form of form factors
F 2ð□Þ and F 3ð□Þ.

A. Explicit solutions

For the sake of simplicity, one can choose the following
form factors that satisfy ghost freedom [1,2]:

F 2ð□Þ ¼ −2F 1ð□Þ ¼ −1þ e
− □

M2
s

□

M2
s

; F 3ð□Þ ¼ 0; ð29Þ

which satisfies the constraint equation (2). With this setting,
the theory has only a massless spin-two graviton about the
flat background. The corresponding field equation (28)
takes the form

e
−
∂2⊥
M2
s∂2⊥H ¼ 0: ð30Þ

To solve this differential equation, use the redefinition as

e
−
∂2⊥
M2
sH ¼ V5 and later, plugging this into Eq. (30), one

obtains

∂2⊥V ¼ 0; ð31Þ

which is the same field equation satisfied by the pp-wave
solutions of Einstein’s gravity. All analytic solutions are
known [20] for Eq. (31). For the sake of simplicity, we
consider the following solution6:

5To solve this type of differential equation, see [33].
6This solution is the gravitational plane wave solution of

Einstein’s theory [46]. Observe that this solution is not singular at
the origin unlike the gravitational shock-wave solutions produced
by the point particle.
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Vðu; x; yÞ ¼ AðuÞðx2 − y2Þ þ BðuÞxy; ð32Þ

where AðuÞ and BðuÞ are any arbitrary smooth functions of
null coordinate u. By using this solution, one has

Hðu; x; yÞ ¼ e
∂2⊥
M2
s ðAðuÞðx2 − y2Þ þ BðuÞxyÞ: ð33Þ

To find the solution, one must calculate the action of e
∂2⊥
M2 on

Vðu; x; yÞ via the Fourier transform. Therefore, after using
the Fourier transform and calculating related integrals, the
pp-wave solution for IDG can be found as

Hðu; x; yÞ ¼ AðuÞMs

��
2

M2
s
þ x2

�
e−

M2
s y

2

4

−
�

2

M2
s
þ y2

�
e−

M2
s x

2

4

�
þ BðuÞxy: ð34Þ

B. Linearized field equations of IDG
as exact field equations

In this part, we wish to consider the pp-wave solutions
of the linearized form of IDG. In fact, one can recognize
from (16) that the pp-wave metric solves both the full IDG
field equations and the linearized version. In other words,
by defining the metric perturbation hμν ¼ gμν − ημν ¼
2Hλμλν, the exact field equations of the IDG take the form
of the linearized field equations. To show this explicitly,
let us turn our attention to the source-free linearized field
equations of the IDG around the flat background of
gμν ¼ ημν þ hμν

að□ÞRL
μν −

1

2
ημνcð□ÞRL −

1

2
fð□Þ∂μ∂νRL ¼ 0; ð35Þ

where L denotes the linearization and infinite derivative
nonlinear functions are described as

að□Þ ¼ 1þM−2
s ðF 2ð□Þ þ 2F 3ð□ÞÞ□;

cð□Þ ¼ 1 −M−2
s ð4F 1ð□Þ þ F 2ð□Þ − 2

3
F 3ð□ÞÞ□;

fð□Þ ¼ M−2
s ð4F 1ð□Þ þ 2F 2ð□Þ þ 4

3
F 3ð□ÞÞ; ð36Þ

which yield the constraint að□Þ − cð□Þ ¼ fð□Þ□. In the
metric perturbation hμν ¼ gμν − ημν ¼ 2Hλμλν for the Kerr-
Schild form, after using the linearized form of curvature
tensors [47], the linearized Ricci and scalar curvature will
read, respectively,

RL
μν ¼ −

1

2
∂2hμν ¼ −Hλμλν; RL ¼ 0: ð37Þ

Observe that the metric perturbation hμν is transverse
traceless: h ¼ 0 and ∇μhμν ¼ 0, hence the linearized

scalar curvature RL vanishes. Furthermore, the theory
describes only massless transverse-traceless spin-two
DOF. Accordingly, by plugging the linearized tensors
(37) into the linearized field equations, one gets

að□Þð□HÞ ¼ 0: ð38Þ

To further reduce (38), using the definition of nonlinear
function að□Þ (36), one gets

½1þ αcðF 2ð□Þ þ 2F 3ð□ÞÞ□�ð□HÞ ¼ 0: ð39Þ

This shows that all solutions of the linearized field
equations for the metric perturbation hμν satisfy the non-
linear field equations of the IDG. Furthermore, the field
equations of linearized theory coincide with nonlinear
theory for the pp-wave metric. Moreover, in order to
have ghost freedom, að□Þ should be an entire function. The
simplest choice is að□Þ ¼ e

− □

M2
s [2]. Thus, the field equa-

tions reduce to

e
− □

M2
s ð□HÞ ¼ 0: ð40Þ

For the metric (24), the final result for the linearized field
equations is

e
−
∂2⊥
M2
s∂2⊥H ¼ 0: ð41Þ

V. EXACT NONSINGULAR GRAVITATIONAL
SHOCK WAVE SOLUTION OF IDG FOR THE

SPECIFIC CHOICE OF FORM FACTORS

In this section, we would like to extend the pp-wave
solutions in the presence of the pure radiation sources
(null dust). Gravitational shock-wave solution can provide
understanding of the gravitational interactions between
high energy massless particles in IDG. Shock waves are
a special class of axisymmetric pp-waves and its metric
produced by a fast moving massless point particle can be
described as follows [46,48]7

ds2 ¼ −dudvþ δðuÞgðx⊥Þdu2 þ dx2⊥; ð42Þ

where u ¼ t − z and v ¼ tþ z are the null-cone back-
ground coordinates,8 ðxiÞ ¼ x⊥ where i ¼ 1, 2 are the
transverse coordinates to the wave propagation and gðx⊥Þ is

7In fact we can use the pp-wave metric given in the form (24),
but the form of Eq. (42) is commonly used in the literature.
Therefore, we use this form. Note that the metric (42) can also be
described in the Kerr-Schild form as gμν ¼ ημν þ Vλμλν which
leads to Rμν ¼ − 1

2
λμλν∂2V where V ¼ δðuÞgðx⊥Þ.

8(t, x⊥, z) are the coordinates in the Minkowski space.
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the wave profile function. To find the exact shock-wave
solution of IDG, one needs to find the form of the wave
profile function. For this purpose, let us consider the
massless point particle traveling in the positive z direction
with momentum pμ ¼ jpjðδμt þ δμzÞ. The associated null
source creating the shock-wave geometry can be described
as Tuu ¼ jpjδðx⊥ÞδðuÞ. For the shock-wave ansatz (42), the
only nonvanishing components of the Ricci tensor is

Ruu ¼ Guu ¼ −
δðuÞ
2

∂2

∂2⊥
gðx⊥Þ: ð43Þ

On the other hand, the energy-momentum tensor in the
Kerr-Schild form can be written as Tμν¼jpjδðx⊥ÞδðuÞλμλν.
Therefore, the null source coupled IDG field equations (28)
reduce to the much simpler form

½1þ αcð∂2⊥F 2ð∂2⊥Þ þ 2∂2⊥F 3ð∂2⊥ÞÞ�∂2⊥gðx⊥Þ
¼ −16πGjpjδðx⊥Þ: ð44Þ

For the simplest choice of the form factors as in (29),
Eq. (44) becomes a modified Poisson type equation

e
−
∂2⊥
M2
s∂2⊥gðx⊥Þ ¼ −16πGjpjδðx⊥Þ: ð45Þ

After using the Fourier transform and evaluating related
integrals, the axial symmetric solution can be obtained as

gðrÞ ¼ −8Gjpj
�
ln

�
r
r0

�
−
1

2
Ei

�
−
r2M2

s

4

��
; ð46Þ

where r is the distance to the origin defined as r ¼
ffiffiffiffiffiffi
x2⊥

p
and r0 is integral constant. Here, Ei is the exponential
integral function.9 Note that in the Ms → ∞ limit, the
profile function becomes [51–53]

gðrÞ ¼ −8Gjpj ln
�
r
r0

�
; ð48Þ

which is the Einstein’s gravity result as expected. Thus, the
exact gravitational shock-wave solution metric for IDG is

ds2 ¼ −dudv − 4GjpjδðuÞ
�
ln

�
r2

r20

�

− Ei
�
−
r2M2

s

4

��
du2 þ dx2⊥: ð49Þ

Note that there is a distributional term in the null coordinate
u, but this discontinuity can be removed by redefining
new coordinates [51]. On the other hand, for small
distances (in the UV regime of nonlocality), expanding
the exponential integral function into the Puiseux series
around r ¼ 0 gives [49,54]

EiðrÞ ¼ γ þ ln jrj þ rþOðr2Þ; ð50Þ

where γ is Euler-Mascheroni constant. In the nonlocal
regime Msr ≪ 2, the profile function is nonsingular and
reduces to

lim
Msr→0

gðrÞ ¼ g0 ¼ 4Gγjpj; ð51Þ

which is a constant. Here, for the sake of simplicity we set
r0 ¼ 2

Ms
. It is important to note that this choice does not

affect the result in (51) to be constant. Interestingly, the
gravitational shock-wave solution of IDG is nonsingular in
the UV regime of nonlocality Msr ≪ 2 while the result of
pure GR diverges. Even though the shock wave is produced
by the null matter source which contains the Dirac delta
function type singularity in the radial direction, the solution
is nonsingular at the origin due to the improved behavior of
the propagator in the UV scale.
In fact, the discussion given above is not enough to

conclude that the singularity disappears. One must also
analyze whether the curvature tensor diverges at the origin or
not. Even if some modified gravity theories which contain
four derivatives or less such as quadratic gravity have a
nonsingular profile function,10 some component of the
Riemann tensor diverges logarithmically [57,58]. Now, let
us show that curvature tensors and invariants are nonsingular
at the position of the particle for the nonsingular metric (49)
in the ghost-free IDG. One can demonstrate that the only
nonzero components of the Riemann tensor are

Rv
rur ¼ 8GjpjδðuÞ

0
B@ð1 − e

− r2

4M2
s Þ

r2
−
e
− r2

4M2
s

2M2
s

1
CA;

Rv
ϕuϕ ¼ 8GjpjδðuÞð1 − e

− r2

4M2
s Þ;

Rϕ
uuϕ ¼ 4GjpjδðuÞ ð−1þ e

− r2

4M2
s Þ

r2
;

Rr
uur ¼ 4GjpjδðuÞ

0
B@ð1 − e

− r2

4M2
s Þ

r2
−
e
− r2

4M2
s

2M2
s

1
CA; ð52Þ

wherein the components for the Msr → 0 limit behave as

9The exponential integral function for negative arguments
defined by the integral [49,50]

EiðrÞ ¼ −
Z

∞

−r

e−t

t
dt; ð47Þ

and its derivative is Ei0ðrÞ ¼ d
drEiðrÞ ¼ er

r .

10For regularity properties of higher derivative gravity theories
which contain at least six derivatives, see [55,56].
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Rv
rur ∼ −

2GjpjδðuÞ
M2

s
; Rv

ϕuϕ ∼ 0;

Rϕ
uuϕ ∼ −

GjpjδðuÞ
M2

s
Rr

uur ∼ −
GjpjδðuÞ

M2
s

; ð53Þ

which are finite at the origin. So, all the nonzero components
of the Riemann tensor are nonsingular in the UV regime of
nonlocality Msr ≪ 2. On the other hand, the only non-
vanishing component of the Ricci tensor is

Ruu ¼ 2GjpjδðuÞ e
− r2

4M2
s

M2
s
; ð54Þ

which approaches to a constant in the nonlocal region.
Finally, the scalar curvature vanishes, all components of
Weyl tensor are zero (Cρσμν ∼ 0) in the inMsr → 0 limit and
all the curvature invariants squared are given by

R2 ¼ 0; RμνRμν ¼ 0;

K ¼ RμνρσRμνρσ ¼ 0; CμνρσCμνρσ ¼ 0; ð55Þ

where K is the Kretschmann scalar. In fact, the results given
in (55) are a direct consequence of the fact that all the
curvature scalars vanish for the pp-wave metric [44,45].
With this discussion, we have shown that the gravitational
shock-wave solution of IDG is nonsingular at the origin. It is
also important to note that to investigate the nonsingular
nature, one usually chooses a geodesic and constructs a
frame parallelly transported along the geodesic completeness
[59,60]. For this purpose, say eμðaÞ are such parallelly

transported frames, then one needs to compute Rabcd ¼
eμðaÞe

ν
ðbÞe

ρ
ðcÞe

σ
ðdÞRμνρσ and show the finiteness of Rabcd. But,

since this is beyond scope of the core of the current study, we
will not do this here.

VI. CONCLUSIONS

In this work, we studied exact pp-wave metrics of the
ghost and singularity-free IDG and showed that these

metrics are exact solutions. The pp-wave metrics also
solve linearized field equations of the IDG. That is, the field
equations of nonlinear theory coincide with the linearized
field equations for the pp-wave metrics. Undoubtedly,
finding the exact solution is not an easy task since the field
equations of the theory are highly nontrivial and nonlinear.
But, writing the metric in the Kerr-Schild form leads to a
remarkable simplification on the field equations.
We have also concentrated on the special class of

axisymmetric pp-waves. Here, we studied the nonpertur-
bative solution of the theory in the presence of the null
source and found the exact nonsingular gravitational shock-
wave solution of the theory. We have shown that unlike the
case in Einstein’s gravity, although gravitational shock-
wave solution are created by a source having a Dirac
delta type singularity, the solution and curvature tensors are
regular in the nonlocal regime due to gravitational nonlocal
interactions. Even though some nonsingular solutions of
the IDG at the linearized level are known [32–34], we find
a nonsingular gravitational shock-wave solution for the
theory at the nonlinear level.
Although, we considered the exact solutions in the ghost-

free IDG with a zero cosmological constant, this work can
be extended to the case of the nonzero cosmological
constant as was done for quadratic gravity [27]. For
example, anti–de Sitter plane waves are potential exact
solutions of the theory. On the other hand, studying the
Kerr-Schild class of metrics in nonlocal gravity models
[61–63] which are the infrared modification of GR, where
the form factors are nonanalytic functions of the
d’Alembert operator, would also be interesting.
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