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We investigate the universality of some features for the extremal phase transition of black holes and unify
all the approaches which have been applied in different spacetimes. Unlike the other existing approaches
where the information of the spacetime and its dimension is directly used to get various results, we provide
a general formulation in which those results are obtained for any arbitrary black hole spacetime having an
extremal limit. Calculating the second order moments of fluctuations of some thermodynamic quantities we
show that the phase transition occurs only in the microcanonical ensemble. Without considering any
specific black hole we calculate the values of critical exponents for this type of phase transition. These are
shown to be in agreement with the values obtained earlier for metric specified cases. Finally we extend our
analysis to the geometrothermodynamics formulation. We show that for any black hole, if there is an
extremal point, the Ricci scalar for the Ruppeiner metric must diverge at that point.
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I. INTRODUCTION

The remarkable discovery of Bekenstein [1] and
Hawking [2] in the 1970s laid the foundation of black
hole thermodynamics, which has been the subject of ardent
research in the following decades until the present date.
Identifying the thermodynamic parameters (such as
entropy, temperature, energy etc.) from the geometrical
quantities of the black hole sapcetime (such as the area of
the horizon, surface gravity of the black hole horizon etc.),
four laws of black hole mechanics were formulated in 1973
[3]. These works clearly imply the existence of thermo-
dynamic structure of the black hole horizon. Since then,
many thermodynamic phenomena have been observed in
black hole spacetime. The study of phase transition, which
is an important phenomenon in ordinary thermodynamics,
has also been explored in black hole mechanics since the
1970s. It was introduced by Davies [4] and subsequently
followed by many other researchers [5–8]. Davies endorsed
that a black hole goes through a second order phase
transition when it passes through a point (Davies’ point)
where the heat capacity becomes infinitely discontinuous.
However, later Kaburaki et al. [9–12] claimed that Davies’
point is not a critical point. Instead, it is merely a turning
point, where stability changes.
Although, Davies’ claim was later falsified, other groups

argued that a second order phase transition indeed takes

place when a nonextremal black hole transforms to an
extremal one and the extremal limit was identified as a
critical point. It was first concluded by Curir in [13,14]. Later
Pavón and Rubí [15,16] calculated second order moments of
fluctuation of mass, angular momentum etc. using Landau-
Lifshitz hydrodynamic fluctuation theory (see chapter 17 of
[17]) and have shown that those second order moments
diverge in the extremal limit of Kerr and Reissner-Nordström
(RN) black holes but those moments are finite in the
nonextremal limit and for the Schwarzschild black hole.
Also, those second order moments remain finite at the
Davies’ point. Both analyses are in agreement with each
other and suggest that the extremal limit of the black hole is a
critical point, and the divergence of second order moments of
fluctuation should signal a second order phase transition of
the black holes which are changing from its nonextremal
phase to the extremal phase. Later, this phase transition in the
extremal limit has been rigorously studied for different
(Kerr-Newman [12], Banados-Teitelboim-Zanelli (BTZ)
[18–20] etc.) black holes and critical exponents were
obtained. These exponents satisfy the well-known scaling
laws [21,22] of thermodynamics.
The works, which are mentioned above, are performed in

different spacetimes to come to the same central conclusion
that the extremal limit is a critical point and the trans-
formation from a nonextremal to an extremal black hole is a
second order phase transition. Moreover, in those cases, the
information of the spacetime has directly been used to
obtain the results. One question naturally appears: is it
really necessary to start with a particular spacetime to reach
this conclusion? The results present in different papers
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suggest us to believe that probably the conclusion is true
irrespective of spacetime metric and its dimension. But
until now there has not been any such proof. Moreover,
there are few major questions which have not been
addressed properly. Some of these are: Are the critical
exponents universal? Is the effective spatial dimension one
in every extremal black hole etc.? In this paper we address
all of these issues systematically.
Our analysis is valid for all the black holes which

are extremal at a certain limit. Without introducing any
particular spacetime we show that the transformation of
black hole from nonextremal to extremal is a second
order phase transition with the extremal limit being the
critical point. To prove that, we calculate the second order
moments of fluctuation modes of some thermodynamic
quantities using equilibrium fluctuation theory of statistical
mechanics [11,12,23] and show that those moments diverge
in the microcanonical ensemble. Thereby we show that the
phase transition is well described only by the micro-
canonical ensemble instead of the canonical or the grand
canonical ensembles. Later, we proceed with our analysis
to obtain the values of critical exponents in a general way.
These exponents match with the results, obtained earlier by
considering the explicit form of the spacetime. Also these
have been shown to satisfy the scaling laws. We emphasize
that in our whole analysis the only underlying information
one requires is: one should consider the particular class of
black hole spacetimes which exhibit such nonextremal to
extremal transition at certain limit and additionally, the
thermodynamics of those black holes are governed by the
usual first law of black hole mechanics at the nonextre-
mal limit.
We also analyze another interesting aspect in our

paper. It has been known for a long time that classical
thermodynamics can also be studied by geometric method.
This is the geometrothermodynamics (GTD) formulation.
In Weinhold’s approach the metric is defined as the Hessian
of the internal energy and in the Ruppeiner’s approach the
metric is defined as the Hessian of the entropy. It has been
shown that Ruppeiner curvature scalar diverges at the
extremal limit of the BTZ black hole[19,20]. In the present
paper we have proved this result for any arbitrary black hole
which has an extremal point.
Very recently it has been claimed that neither the

Weinhold nor Ruppeiner formulation is Legendre invariant
and, hence, they are inappropriate to analyze the thermo-
dynamics. So, we proceed one step further to find the
thermodynamic behavior at the extremal point using the
Legendre-invariant metric. We do this for two Quevedo
GTD metrics and find that the Ricci scalar for both of those
metrics are finite at the extremal point. Thus, our work
connects all the previous diverse conclusions about
extremal phase transitions, all of which are black hole
specific. In this sense, our work is unique and fills an
important gap in the literature.

Before we proceed further, let us mention the organiza-
tion of our paper. In the second section we discuss the black
hole thermodynamics at the extremal point without using
any particular form of spacetime. Second order moments of
fluctuation are calculated for microcanonical, canonical
and grand canonical ensembles in three subsections.
It is observed that the phase transition is compatible with
the first ensemble. The next section is dedicated to calculate
the values of different critical exponents. Then in Sec. IV,
thermogeometric analysis has been performed separately
for Weinhold, Ruppeiner and two Legendre-invariant
metrics. It is shown that the curvature scalar diverges only
for the Ruppeiner metric. Finally, in the last section, we
draw conclusions of our work.

II. THERMODYNAMIC ANALYSIS
OF EXTREMAL POINT IN
DIFFERENT ENSEMBLES

We have already mentioned that the extremal phase
transition is regarded as a second order phase transition.
This was first claimed by Curir [13,14]. According to
Pavón and Rubí [15,16], the divergence of the second order
moments of fluctuations of thermodynamic quantities is a
signature of this phase transition. Following this argument,
here we calculate these second order moments in different
ensembles. We show that only in the microcanonical
ensemble extremal limit of the black hole (if it exists) is
a second order phase transition.
Here, we calculate the second order moments using the

well-defined equilibrium fluctuation theory of statistical
mechanics. In that case, the required thermodynamical
quantities are obtained from the Massieu function, which
are the Legendre transformations of the entropy. In that
formalism, the state of a given environment is completely
characterized by the Massieu function [11,12] Φ, whose
variation is given by

dΦ ¼ X idYi: ð1Þ

Here, the summation convention has been adopted. In the
above relation, the Massieu function is a function of
the intrinsic variables Yi. X i, which is the conjugate
variables of Yi, is defined as X i ¼ ð∂Φ=∂YiÞȲi . In our
notation, Ȳi is the set of all intrinsic variables excluding
Yi. Throughout our analysis, a bar overhead will imply a
similar thing. Now for a given environment, the sponta-
neous fluctuation from the equilibrium occurs only in
the conjugate variables X i. This is because the reservoirs
are considered to be large compared to the system and,
as a result, the intrinsic variables are fixed. Then
the probability of the deviation from the equilibrium is
proportional to exp½−ΣλiðδX iÞ2=ð2kBÞ� [12], where kB
is the Boltzmann constant. The eigenvalues of the fluc-
tuation modes are defined as
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λi ¼
∂Yi

∂X i

����
Ȳi

¼
�∂2Φ
∂Yi2

�
−1

Ȳi
: ð2Þ

Here it should be mentioned that the probability is
accurate only up to the second order. The averages of
modes of fluctuations always vanish [23] and the second
order moments are given by

Mij ¼ hδX iδX ji ¼ kB

�∂2Φ
∂Yi2

�
Ȳi
δij ¼

kB
λi

δij: ð3Þ

In the following analysis, we investigate the behavior of
these quantities in each ensemble. Since the extremal limit
is not a turning point [12], the divergence of the second
order moments will imply the presence of second order
phase transition.

A. Microcanonical ensemble

Let us consider an isolated black hole by definition
which exchanges nothing with the environment. In this
case, the proper Massieu function Φ1 is the entropy S.
Its change is given by the first law of black hole
mechanics1:

dS ¼ βdM − X̃idYi; ð4Þ

where β ¼ 1=T and X̃i ¼ βXi. According to our notations
Xi are potential, angular velocity etc., whereas Yi are
charge, angular momentum etc. Then the eigenvalues of the
fluctuations are given by

λð1ÞM ¼
� ∂2S
∂M2

�
−1

Yi

¼
�∂M
∂β

�
Yi

¼ −T2CY ð5Þ

and

λð1ÞYi
¼

�∂2S
∂Y2

i

�
−1

M;Ȳi

¼ −
�∂Yi

∂X̃i

�
M;Ȳi

¼ −TIðiÞM : ð6Þ

Here we used the following definitions: CY¼ð∂M=∂TÞYi
¼

−β2ð∂M=∂βÞYi
and IðiÞM ¼ð∂Yi=∂XiÞM;Ȳi

¼βð∂Yi=∂X̃iÞM;Ȳi
.

Therefore the second order moments are given by

hδβδβi ¼ kB

� ∂2S
∂M2

�
Yi

¼ −kB
β2

CY
ð7Þ

and

hδX̃iδX̃ii ¼ kB

�∂2S
∂Y2

i

�
M;Ȳi

¼ −kB
β

IðiÞM
: ð8Þ

In the following section, where we obtain the critical
exponents in a general way, we show that both
ð∂2S=∂M2ÞYi

and ð∂2S=∂Y2
i ÞM;Ȳi

diverge at the extremal
limit [see (30) and (35)]. Therefore, we can conclude from

(5) and (6) that all the eigenvalues λð1ÞM and λð1ÞYi
vanish. As a

result, from (7) and (8) we see that all the second order
moments diverge, which is the signature of phase tran-
sition. Thus, in the microcanonical ensemble, an extremal
phase transition is a second order phase transition with the
extremal limit being the critical point.

B. Canonical ensemble

In a canonical ensemble, the black hole can exchange
only energy with the environment. The proper Massieu
function (Φ2) in this ensemble is Φ2 ¼ S − βM ¼ −βF,
where F ¼ M − TS is the Helmholtz free energy. Note that
dF ¼ −SdT þ XidYi and dΦ2 ¼ −Mdβ − X̃idYi. There-
fore, in this case, the intrinsic variables are β and Yi

whereas the conjugate quantities are ð−MÞ and ð−X̃iÞ. The
eigenvalues are given by

λð2Þβ ¼
�∂2Φ2

∂β2
�

−1

Yi

¼ −
� ∂β
∂M

�
Yi

¼ β2

CY
ð9Þ

and

λð2ÞYi
¼

�∂2Φ2

∂Y2
i

�
−1

β;Ȳi

¼ −
�∂Yi

∂X̃i

�
β;Ȳi

¼ −TIðiÞβ : ð10Þ

In the above, we have used IðiÞβ ¼ ð∂Yi=∂XiÞβ;Ȳi
¼

βð∂Yi=∂X̃iÞβ;Ȳi
. The second order moments, in this case,

are found to be

hδMδMi ¼ kB

�∂2Φ2

∂β2
�

Yi

¼ kBT2CY ð11Þ

and

hδX̃iδX̃ii ¼ kB

�∂2Φ2

∂Y2
i

�
β;Ȳi

¼ −kB
β

IðiÞβ
: ð12Þ

In Appendix A, we show that ð∂2Φ2=∂β2ÞYi
vanishes and

ð∂2Φ2=∂Y2
i Þβ;Ȳi

diverges. As a result λð2Þβ in (9) diverges

and λð2ÞYi
in (10) vanishes. Also, the nature of the second

order moments are evident: hδMδMi of (11) vanishes and
hδX̃iδX̃ii of (12) diverges. Therefore the extremal limit is
not a critical point in the canonical ensemble.

1This is one of the inputs of our present discussion, whereas
the other input is the existence of extremal limit in the black hole
thermodynamics.
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C. Grand canonical ensemble

Finally we consider the black hole in a grand canonical
ensemble. It means the black hole not only exchanges
energy with the environment but also performs work on
the surroundings. The proper Massieu function in this case
is Φ3 ¼ Φ2 þ X̃iYi ¼ S − βM þ X̃iYi ¼ −βG, where G ¼
M − TS − XiYi is Gibbs free energy. The variation of G is
dG ¼ −SdT − YidXi and the variation of Massieu function
Φ3 is dΦ3 ¼ −Mdβ þ YidX̃i. Therefore in this ensemble,
the intrinsic variables are β and X̃i’ whereas the conjugate
variables are ð−MÞ and Yi. The eigenvalues of the
fluctuation modes are

λð3Þβ ¼
�∂2Φ3

∂β2
�

−1

X̃i

¼ −
� ∂β
∂M

�
X̃i

¼ β2

CX̃
ð13Þ

and

λð3Þ
X̃i ¼

�∂2Φ3

∂X̃i2

�
−1

β; ¯̃Xi
¼

�∂X̃i

∂Yi

�
β; ¯̃Xi

¼ β

IðiÞβ
: ð14Þ

In the above, we have used CX̃ ¼ ð∂M=∂TÞX̃i ¼
−β2ð∂M=∂βÞX̃i . The second order moments in grand
canonical ensemble are

hδMδMi ¼ kB

�∂2Φ3

∂β2
�

X̃i
¼ kBT2CX̃ ð15Þ

and

hδYiδYii ¼ kB

�∂2Φ3

∂X̃i2

�
β; ¯̃Xi

¼ kBTI
ðiÞ
β : ð16Þ

In Appendix B, we show that both ð∂2Φ3=∂β2ÞX̃i and

ð∂2Φ3=∂X̃i2Þβ; ¯̃Xi vanish. As a result, we conclude that both

eigenvalues of the fluctuation modes λð3Þβ and λð3Þ
X̃i diverge.

Naturally both second order moments hδMδMi and
hδYiδYii vanish. As a result, the extremal limit is not a
second order phase transition in the grand canonical
ensemble.

III. OBTAINING THE CRITICAL EXPONENTS IN
A GENERAL WAY

In the earlier section, we have generally shown that the
extremal phase transition is indeed a second order thermo-
dynamic phase transition in the microcanonical ensemble.
In this section we obtain the values of the critical exponents
in a general manner. There are several works which studied
extremal criticality and obtained the critical exponents case
by case. For example, in [12] the extremal phase transition
of the Kerr-Newman black hole was studied and critical
exponents were obtained. Similar studies were done for the

BTZ black hole in [18–20]. In our general framework, we
obtain the values of critical exponents in a metric inde-
pendent way.
The critical exponents are defined for the response

coefficients and for the order parameters to show how
those quantities diverge near the critical point [24]. The
response coefficients are defined as the inverse of the
eigenvalues λi’s [11]. For the extremal phase transition and
in the microcanonical ensemble, the response coefficients
are defined as

ζY ¼
� ∂2S
∂M2

�����
Yi

; ð17Þ

ζiM ¼
�∂2S
∂Y2

i

�����
M;Ȳi

: ð18Þ

In the first definition, Yi includes all the charges present in
the theory, whereas, in the second definition, Ȳi includes all
the charges except Yi. In classical thermodynamics, the
order parameters are the difference of some extensive
quantities of the two different phases. For the black hole,
the order parameters are defined as the difference of the
conjugate quantities on the inner and the outer horizon
[18,24–26]. For the presence of multiple charge and
angular momentum, we define the order parameters in a
general manner,

ηYi
¼ X̃iþ − X̃i

−; ð19Þ

where X̃i ¼ ðXi=TÞ ¼ −ð∂S=∂YiÞM;Ȳi
as we have defined

earlier. The subscripts “þ” and “−” stand for the outer
horizon (rþ) and inner horizon (r−) respectively. Now, the
critical exponents are defined as [24]

ζY ∼m−α ðfor Yi ¼ YicÞ ð20Þ

ζY ∼ y−ϕi
i ðfor M ¼ Mc and Ȳi ¼ ȲicÞ ð21Þ

ζiM ∼m−γi ðfor Yi ¼ YicÞ ð22Þ

ζiM ∼ y−σii ðfor M ¼ Mc and Ȳi ¼ ȲicÞ ð23Þ

ηYi
∼mβi ðfor Yi ¼ YicÞ ð24Þ

ηYi
∼ y

δ−1i
i ðfor M ¼ Mc and Ȳi ¼ ȲicÞ: ð25Þ

Here we use the notations m ¼ 1 −M=Mc and
yi ¼ 1 − Yi=Yic, whereas c, in the subscript signifies the
corresponding values at the critical point. Remember that
the critical point, in our present discussion, is the extremal
point where temperature T vanishes.
Now we expand the mass as a function of entropy S and

charge Yi near the critical point. Then
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M ¼ a00 þ a20s2 þ a30s3 þ a40s4 þ � � �
þ að1Þ01 y1 þ að1Þ02 y

2
1 þ að1Þ03 y

3
1 þ að1Þ04 y

4
1 þ � � �

þ að2Þ01 y2 þ að2Þ02 y
2
2 þ að2Þ03 y

3
2 þ að2Þ04 y

4
2 þ � � �

þ � � � þ að1Þ11 sy1 þ að2Þ11 sy2 � � � þ aðkÞij s
iyjk � � � : ð26Þ

Note that here a10 ∼ ð∂M=∂SÞc ¼ Tc ¼ 0. Therefore, it
has not appeared in the expansion of the mass. Now the
contribution up to first order is

�∂M
∂s

�
Yi

∼ A10sþ AðkÞ
01 yk: ð27Þ

Here we have rescaled the coefficients as AðkÞ
ij ¼

ðiþ 1ÞaðkÞiþ1j. One can keep higher order terms in the above
equation without any change of conclusion. Thus the first
order contribution serves our purpose. Now, we calculate
ð∂2S=∂M2ÞYi

in the following way:

� ∂2S
∂M2

�
Yi

∼
� ∂
∂M

�∂M
∂S

�
−1

Yi

�
Yi

∼
� ∂
∂M

�
1

A10sþAðkÞ
01 yk

��
Yi

:

ð28Þ

Therefore using (27) we finally obtain

� ∂2S
∂M2

�����
Yi

∼
1

ðA10sþ AðkÞ
01 ykÞ2

∂s
∂M ∼

1

ðA10sþ AðkÞ
01 ykÞ3

:

ð29Þ

When Yi ¼ Yic we find s ∼m1=2 [from (26)]. Thus from
(29), taking the leading order contribution we get

� ∂2S
∂M2

�����
Yi

∼m−3
2 ðfor Yi ¼ YicÞ: ð30Þ

Therefore from the definition of the critical exponent α [see
(20)], we find α ¼ 3=2.
Again when M ¼ Mc and Ȳi ¼ Ȳic, we obtain s ∼ y1=2i

[from (26)]. Thus, from (29) we get ð∂2S=∂M2ÞYi
∼

ðA10y
1=2
i þ AðiÞ

01yiÞ−3. This implies that the quantity
diverges as

� ∂2S
∂M2

�����
Yi

∼ y
−3
2

i ðfor M ¼ Mc and Ȳi ¼ ȲicÞ: ð31Þ

Therefore from the definition (21), we get ϕi ¼ 3=2.
Next we expand Yi as a function of S, M and other

charge Ȳi:

Yi ¼ a000 þ a200s2 þ a300s3 þ a400s4 þ � � �
þ a010mþ a020m2 þ a030m3þ � � �
þ � � � þ aðpÞjkl s

jmkylp þ � � � : ð32Þ

Similar to the earlier case, here a100 ∼ Tc ¼ 0. Note that Yp

includes all the charges except Yi. Therefore, from (32) we
obtain up to the first order

∂Yi

∂s
����
M;Ȳi

∼ A100sþ A010mþ AðpÞ
001yp: ð33Þ

Again, we have rescaled the coefficients as AðpÞ
jkl ¼

ðjþ 1ÞaðpÞjþ1kl. It should be mentioned that the first order
contribution is enough to serve our purpose. Now, follow-
ing the similar approach as was done earlier, we obtain

∂2S
∂Y2

i

����
M;Ȳi

∼
1

ð∂Yi

∂s Þ3
����
M;Ȳi

∼
1

ðA100sþ A010mþ AðpÞ
001ypÞ3

:

ð34Þ

Now, for all Yi ¼ Yic, we obtain from (32) s ∼m1=2.
This when substituted in (34) gives ð∂2S=∂Y2

i ÞM;Ȳi
∼

ðA100m1=2 þ A010mÞ−3. Therefore, the leading order con-
tribution gives

∂2S
∂Y2

i

����
M;Ȳi

∼m−3
2 ðfor Yi ¼ YicÞ: ð35Þ

Therefore from the definition of γi [see (22)], we
find γi ¼ 3=2.
Again whenM ¼ Mc and Ȳi ¼ Ȳic, we obtain from (32)

s ∼ y1=2i . Therefore from (34) we get the result

∂2S
∂Y2

i

����
M;Ȳi

∼ y
−3
2

i ðfor M ¼ Mc and Ȳi ¼ ȲicÞ: ð36Þ

Therefore, from the definition of the critical exponent σi
[in Eq. (23)] we obtain σi ¼ 3=2.
Again from (33), the leading order contribution provides

X̃i ∼
∂Yi

∂S
����
−1

M;Ȳi

∼
1

A100

m−1
2 ðfor Yi ¼ YicÞ: ð37Þ

The above equation implies

ηYi
¼ X̃iþ − X̃i

− ∼
�

1

A100

����
þ
−

1

A100

����
−

�
m−1

2 ðfor Y ¼ YcÞ:

ð38Þ

Thus, from the definition of βi [see (24)], we get the
value βi ¼ −1=2.
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Furthermore, when M ¼ Mc and Ȳi ¼ Ȳic, we obtain

X̃i ∼
1

AðiÞ
001

y
−1
2

i ðfor M ¼ Mc and Ȳi ¼ ȲicÞ: ð39Þ

In that case,

ηYi
∼ y

−1
2

i ðfor M ¼ Mc and Ȳi ¼ ȲicÞ: ð40Þ

Therefore from the definition of δi in (25), we get δi ¼ −2.
The numerical values of critical exponents obtained so

far are given in Table I.
One can easily check the above exponents satisfy the

following scaling laws of “first kind”:

αþ 2β þ γ ¼ 2; ð41Þ

βðδ − 1Þ ¼ γ; ð42Þ

ϕðβ þ γÞ ¼ α: ð43Þ

The same values of the critical exponents were obtained
earlier in [12,18] considering the specific form of metrics.
On the contrary, here we obtained those without the explicit
information of the black hole spacetime by taking into
account two inputs: (a) the black holes we considered
here belong to the class which exhibits extremal phase
transition and (b) those black holes satisfy the first law of
black hole mechanics. This shows the universality of this
type of critical phenomenon.
Apart from these critical exponents which were obtained

above, there are a few others which are studied in the
context of the extremal criticality. In the following, we shall
discuss those critical exponents and shall obtain their
values in a general manner. Near the critical point, the
asymptotic form of the two point correlation function for
large r is defined by [22]

GðrÞ ∼ eð−r=ξÞ

rd−2−η
: ð44Þ

Here, η is called the Fisher’s exponent, d is the effective
spatial dimension and ξ is called the correlation length.
Near the critical point, the behavior of ξ is given as

ξ ∼m−ν ðfor allYi ¼ YicÞ; ð45Þ

ξ ∼ y−μii ðfor M ¼ Mc and Ȳi ¼ ȲicÞ: ð46Þ

In the theory of quantum gravity, we do not have much
knowledge about the two point correlation function defined
in (44). However, for the extremal Reissner-Nordstrom
black hole, the inverse of the surface gravity is argued
to play the role of the correlation length [27]. This result
also holds for the BTZ black hole [18,28,29] and black
p-branes [26,30]. If we assume this to be true in the
presence of multiple charges in arbitrary dimensions, we
get ξ ∼ 1=κ ∼ 1=T. Using (27), we can further conclude
ξ ∼ ð∂M=∂sÞ−1Yi

. Therefore, from (26), the leading order
contribution gives

ξ ∼m−1
2 ðfor allYi ¼ YicÞ: ð47Þ

From the definition of ν in (45), we get the value ν ¼ 1=2.
Now, whenM and all Y are at their critical values except the
ith charge Yi, we obtain from (26)

ξ ∼ y
−1
2

i ðfor M ¼ Mc and Ȳi ¼ ȲicÞ: ð48Þ

Therefore, from (46) we see that all μi’s are the same
and μi ¼ μ ¼ 1=2.
Now, these critical exponents are supposed to satisfy the

scaling laws of “second kind,” which are given by [21,22]

νð2 − ηÞ ¼ γ; ð49Þ

νd ¼ 2 − α; ð50Þ

μðβ þ γÞ ¼ ν: ð51Þ

Using the obtained value of α, β, γ, μ and ν in the scaling
law of the second kind, we get the value of the remaining
critical exponent η and effective spacetime dimension d.
These are η ¼ −1 and d ¼ 1. Table II shows these values of
exponents.
Remember, in the above analysis we have assumed that

the correlation length is given by the inverse of the surface
gravity. This has been checked and accepted for several
instances [18,26–30]. However, we are not sure if this is
true in general. Therefore, it would be interesting if the
same conclusion can be drawn from a general argument.
For the time being, we leave that analysis for the future.

IV. GTD IN EXTREMAL PHASE TRANSITION

The concept of differential geometry has been used
in thermodynamics for a long time. The underlying
motivation to pursue in this direction is to study various

TABLE I. Values of first set of critical exponents.

α ϕi γi σi βi δi
3
2

3
2

3
2

3
2

− 1
2

−2

TABLE II. Values of remaining critical exponents.

ν μi η
1
2

1
2

−1
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thermodynamic phenomena in terms of the geometric
properties of the phase space of the system. For nonex-
tremal black holes, there are two major approaches of
studying the phase transition of the black hole—one
approach deals with the divergence of heat capacity and
inverse of isothermal compressibility [31–38]. The other
approach [39–42] is for the black holes in the AdS
background, in which the cosmological constant is treated
as the thermodynamic pressure. The latter approach exactly
resembles the phase transition of the van der Waals fluid
system. It must be mentioned that both of these phase
transitions have been studied extensively under the light
of the GTD [43–45]. Here people have formulated ther-
mogeometrical metrics in the thermodynamic phase space
of the black hole and have shown that the corresponding
Ricci scalar diverges at the phase transition point.
In this section, we incorporate those ideas to study the

extremal phase transition. Here, we comment that there are
several ways to formulate the thermogeometrical metric.
First Weinhold [46] introduced a metric, the components of
which are given by the Hessian of the internal thermody-
namic energy. Later, Ruppeiner [47,48] introduced another
metric, which is defined as the negative of the Hessian of
the entropy, and is conformal to the Weinhold metric with
the conformal factor being the inverse temperature. Later,
Quevedo [49–56] came up with the idea of defining the
thermogeometrical metric in a Legendre-invariant way.
In our general procedure of analyzing the extremal phase

transition, we study the behavior of the Ricci scalar near the
critical point for all these metrics.

A. The Weinhold metric

To write the Weinhold metric, one has to write mass
(which plays the role of internal energy) as the function of
entropy and the charges i.e., M ≡MðS; YiÞ. Now for the
sake of simplicity we consider the dependence of mass on a
particular charge Y and keep all other charges fixed.
Therefore the first law of thermodynamics is written as

dM ¼ TdSþ XdY: ð52Þ

Here T ¼ ð∂M=∂SÞY and X ¼ ð∂M=∂YÞS.
Now the Weinhold metric is given by

ds2W ¼ ∂2M
∂xi∂xj dxidxj fx1 ¼ S; x2 ¼ Yg: ð53Þ

The expanded form of the Weinhold metric is

ds2W ¼ −fðS; YÞdS2 þ gðS; YÞdY2 þ 2hðS; YÞdSdY; ð54Þ

where fðS; YÞ ¼ −MSS, gðS; YÞ ¼ MYY and hðS; YÞ ¼
MSY ¼ MYS. The Ricci scalar corresponding to the
Weinhold metric (54) is given by

RðWÞ ¼
1

2ðfgþ h2Þ2 ½fðfYgY − g2S þ 2gYhSÞ

þ gff2Y þ fSð2hY − gSÞ− 2fðfYY þ hSY − gSSÞg
þ hf−gYfS þ fYð2hY þ gSÞ
þ 4hYhS − 2gShS − 2hðfYY þ 2hSY − gSSÞg�; ð55Þ

where fJ ¼ ∂f=∂J and so on. Now, from the expansion of
M [given in (26)] we can conclude that f, g, h and their
derivatives are finite. Therefore, the Ricci scalar of the
Weinhold metric is a finite quantity near the critical point.

B. The Ruppeiner metric

We first write the first law of thermodynamics (52) as
dS ¼ βdM − X̃dY. In this form, the conjugate quantities
are taken as β ¼ ð∂S=∂MÞY and X̃ ¼ −ð∂S=∂YÞM. Now,
the Ruppeiner metric is defined as

ds2R ¼ −
∂2S

∂x0i∂x0j dx
0
idx

0
j fx01 ¼ M; x02 ¼ Yg: ð56Þ

Here, g11 ¼ −SMM, g22 ¼ −SYY and g12 ¼ g21 ¼ −SMY . It
implies that the expansion of the Ruppeiner metric is

ds2R ¼ −f0ðM;YÞdM2 þ g0ðM;YÞdY2 þ 2h0ðM;YÞdMdY;

ð57Þ

where f0 ¼ SMM, g0 ¼ −SYY and h0 ¼ −SMY . The Ricci
scalar of the metric (57) is found to be

RðRÞ ¼
1

2ðf0g0 þh02Þ2 ½f
0ðf0Yg0Y − g02M þ 2g0Yh

0
MÞ

þ g0ff0Y2þ f0Mð2h0Y − g0MÞ− 2f0ðf0YY þh0MY − g0MMÞg
þh0f−g0Yf0M þf0Yð2h0Y þ g0MÞþ 4h0Yh

0
M − 2g0Mh

0
M

− 2h0ðf0YY þ 2h0MY − g0MMÞg�: ð58Þ

Now, we have to calculate each term of the Ricci scalar of
(58) to see its dependence on s. To do that, we find out the
leading order contribution of f0, g0 and their derivatives.
From (29) we see that f0 ¼ −ð∂2S=∂M2ÞY ∼ 1=s3.
Therefore, f0M ¼ ð∂f0=∂MÞY ∼ ð1=s4Þð∂s=∂MÞY . Using
(27), one obtains f0M ∼ s−5. In a similar way, f0MM ∼ s−7.
Now, f0Y ¼ ð∂f0=∂YÞM ∼ ð1=s4Þð∂s=∂YÞM. Again, using
(33) one gets f0Y ∼ s−5. The same arguments yield f0YY ∼
s−7 and f0MY ¼ f0YM ∼ s−7. Following the same procedure,
one similarly obtains g0 ∼ s−3, g0x0i ∼ s−5 and g0x0ix0j ∼ s−7.

Also, h0 ∼ s−3, h0x0i ∼ s−5 and h0x0ix0j ∼ s−7. As a result, we see

that the denominator goes as ∼s−12 and each term in the
numerator goes as ∼s−13. Therefore, the Ricci scalar
diverges as
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RðRÞ ∼ s−1: ð59Þ

The property of the Ruppeiner metric has also been studied
in a different way [19,20] while studying the extremal
phase transition of BTZ black holes. It has been there
argued that the Ruppeiner metric should diverge as
RðRÞ ∼ ξd. Since, in our case ξ ∼ s−1 near the critical point,
we obtain RðRÞ ∼ ξ1. Therefore, we can again conclude that
the effective spatial dimension d ¼ 1 for any extremal
black hole, which is in agreement with the claim of the
recent papers [57,58]. Thus, from the thermogeometric
approach, we can again generally prove that the effective
spatial dimension of an extremal black hole is one.

C. Legendre-invariant metric

Above two thermogeometrical metrics, namely the
Weinhold and the Ruppeiner metric are not Legendre-
invariant. Moreover in some cases, conclusions derived
from the Weinhold metric and the Ruppeiner metric are not
consistent with each other. Later Quevedo et al. claimed
that those inconsistencies appear because these metrics are
not Legendre invariant and hence they came up with
Legendre-invariant metric formalism [49–56]. In the fol-
lowing, we discuss two types of Legendre-invariant ther-
mogeometrical metric. One of them (Quevedo metric: 1) is
mostly used as a Legendre-invariant metric. Here, we see
that the Ricci scalar of the first type of the Legendre-
invariant metric is a finite quantity at the critical point.
So we discuss another type of Legendre-invariant metric
(Quevedo metric: 2). The second metric is not that familiar
but we see that the Ricci scalar corresponding to this metric
vanishes. The formalism which we adopt here was origi-
nally developed by Hermann [59] and Mrugala [60,61],
which was later followed extensively by Quevedo.

1. Quevedo metric: 1

We define a thermodynamic phase space T with coor-
dinates ZA ¼ fS; qa; pag where qa ¼ fM;Yg are the
variables and pa ¼ fSM ¼ β; SY ¼ −X̃ ¼ −βXg are the
conjugate variables. Therefore, in the entropy representa-
tion, the fundamental one form in T � (where, T � is the
cotangent space of T ) is given by

ΘS ¼ dS − βdM þ X̃dY; ð60Þ

which is invariant under the Legendre transformation

MðqÞ ¼ M̃ðq̃Þ − δabq̃ap̃b

with qa ¼ −p̃a and pa ¼ q̃a: ð61Þ

Now, following Quevedo’s formalism, one possible form of
the Legendre-invariant thermogeometrical metric (on T ) is
[Eq. (39) of [49]]

G1 ¼ Θ2
S þ ðβM þ X̃YÞðdβdM þ dYdX̃Þ: ð62Þ

Expanding the conjugate quantities (β and X̃) as a function
of the variables (M and Y), one finds the expression of G1

in the space of equilibrium (ΘS ¼ 0) as

G1 ¼ −f1ðM;YÞdM2 þ g1ðM;YÞdY2; ð63Þ

where f1ðM;YÞ ¼ −ðβM þ X̃YÞSMM and g1ðM;YÞ ¼
−ðβM þ X̃YÞSYY . The Ricci scalar of the metric (63) is
given by

R1 ¼
1

2ðf1g1Þ2
½f1ðf1Yg1Y − g21MÞ

þ g1ff21Y − f1Mg1M − 2f1ðf1YY − g1MMÞg�: ð64Þ

Again, we check the order of each term in the Ricci scalar.
f1 ∼ βSMM ∼ ð∂S=∂MÞYð∂2S=∂M2ÞY . This implies f1∼
s−4. Similarly g1 ∼ s−4. Following the same procedure as
was done in the Ruppeiner case, we obtain f1xi ∼ s−6,
g1xi ∼ s−6, f1xixj ∼ s−8 and g1xixj ∼ s−8. Therefore, we see

that the denominator goes as ∼s−16 and the numerator also
goes as ∼s−16. Therefore, the Ricci scalar is finite in
this case.

2. Quevedo metric: 2

As the choice of Legendre-invariant metric is not unique,
we can formulate other Legendre-invariant metrics.
Following Quevedo’s formalism [Eq. (37) of [49]] we see

G2 ¼ Θ2
S þ c1βMdβdM þ c2X̃YdX̃dY þ dβ2

þ dM2 þ dX̃2 þ dY2 ð65Þ

is Legendre invariant for any value of the real constants
c1 and c2. For the simplicity of calculation, we take
c1 ¼ c2 ¼ 1. Now using dβ ¼ SMMdM þ SMYdY and
dX̃ ¼ −SYMdM − SYYdY in (65) we get in equilibrium
space

G2 ¼ −f2ðM;YÞdM2 þ g2ðM;YÞdY2 þ 2h2ðM;YÞdMdY;

ð66Þ

where f2¼−½1þβMSMMþS2MMþS2MY �, g2¼1−X̃YSYYþ
S2YYþS2MY and h2 ¼ 1

2
ðβM − X̃YÞSMY þ SMMSMYþ

SYMSYY . Thus the Ricci scalar is given by
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R2 ¼
1

2ðf2g2 þ h22Þ2
½f2ðf2Yg2Y − g22M þ 2g2Yh2MÞ

þ g2ff22Y þ f2Mð2h2Y − g2MÞ
− 2f2ðf2YY þ h2MY − g2MMÞg
þ h2f−g2Yf2M þ f2Yð2h2Y þ g2MÞ
þ 4h2Yh2M − 2g2Mh2M

− 2h2ðf2YY þ 2h2MY − g2MMÞg�: ð67Þ

Now, f2 ¼ Oðs0Þ þOðs−4Þ þOðs−6Þ. The leading order
contribution near the critical point will be f2 ∼ s−6. As a
result, f2xi ∼ s−8 and f2xixj ∼ s−10. Leading order contri-
butions of g2 and h2 are the same as f2. Therefore, the
denominator goes as ∼s−24 and the numerator goes as
∼s−22. As a result,

R2 ∼ s2: ð68Þ

Consequently, we see that the Ricci-scalar vanishes near the
critical point.
In this section, we have studied the behavior of the Ricci

scalar for different thermogeometrical metrics and have
shown that the Ricci scalar of the Ruppeiner metric
diverges at the extremal limit. On the contrary, the Ricci
scalar of other thermogeometrical metrics remains finite
(or vanishes) at that point. Therefore, we conclude that the
extremal phase transition shows the behavior of the second
order phase transition not only in the specific ensemble of
thermodynamics (i.e., the microcanonical ensemble), but
also for a specific thermogeometric manifold as well
(the Ruppeiner one). Note that the Legendre-invariant
thermogeometrical metrics, which are mostly used nowa-
days, cannot confirm the second order phase transition in
the present case. A plausible explanation to that might be as
follows. Remember that the Legendre-invariant metrics are
constructed on the line of arguments that a proper thermo-
geometrical metric should be Legendre invariant as the
thermodynamic features are invariant in all ensembles.
Since one thermodynamic potential, by which an ensemble
is characterized, is connected to the same in the other
ensemble by the Legendre transformation, the entire
thermodynamic description is invariant due to the
Legendre transformation, which should reflect on the
thermogeometrical metric. However, as we have noticed
in the present case, the identification of the nonextremal to
extremal transformation with the second order phase
transition is valid only in the microcanonical ensemble.
As a result, the present thermodynamic description is not
invariant across all ensembles. Therefore, the use of a
Legendre-invariant metric might not be suitable in this case.
Nonetheless, we have checked the behavior of the Ricci
scalar of all the thermogeometrical metrics which are
popular in GTD and from that analysis we found that

the Ruppeiner metric is the ideal one for the thermogeo-
metric description of the extremal phase transition.
Interestingly, here entropy S plays the central role both
in microcanonical ensemble (S is chosen as the Massieu
function) and in Ruppeiner geometrical description (the
metric is constructed by considering S as the thermody-
namic potential).

V. CONCLUSIONS

In this work, we have studied the extremal phase
transition of the black hole in a general framework.
There are several works [12–16,18–20,62,63] to show that
the extremal phase transition is a second order phase
transition. These earlier works were done case by case
for a particular spacetime and dimension. The obtained
results in different spacetimes (such as the critical expo-
nents, scaling laws etc.) are in accordance with each other
and strongly suggest that there must be a metric indepen-
dent way to establish those earlier results. This has been the
major motivation for this work.
We have proved that the transformation of the black hole

from a nonextremal to an extremal one is a second order
phase transition. For that, we have calculated the second
order moments of fluctuations in different ensembles and
have shown that those moments diverge for a black hole in
microcanonical ensemble, which is a sign of a second order
phase transition as per the prescription of Pavón and Rubí
[15,16]. Afterwards, we have generally obtained the critical
exponents for this phase transition and have shown that the
critical exponents satisfy the scaling laws. While proving
those results, we have not accounted any particular space-
time, which implies our results are valid for all the black
hole spacetimes which become extremal at a certain limit.
Thus, the universality of results, which were predicted by
earlier works, is proved by our analysis and hence from
now on one need not check the critical behavior case
by case.
Finally, we have extended our analysis to GTD, which is

a recent formalism to describe the phase transition geo-
metrically. We have shown that the extremal critical point
of black holes can be identified as a particular point where
the Ricci scalar corresponding to the Ruppeiner metric
diverges. In addition, we have also shown that the Ricci
scalar of the Weinhold metric and of one type of Legendre-
invariant metric (Quevedo metric: 1) is a finite quantity and
does not show any special behavior. In another Legendre-
invariant metric (Quevedo metric: 2), the Ricci-scalar
vanishes on the critical point. In this analysis we observed
that extremal phase transition is properly explained in
microcanonical ensemble and by Ruppeiner geometry.
Note that in both descriptions entropy plays the central
role: S acts as a Massieu function in the microcanonical
ensemble and thermodynamical potential in GTD. At this
moment, the actual reason for this is not known to us;
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hopefully we shall be able to find the precise reason in the
future.
Thus our paper covers different thermodynamics aspects

of the extremal black hole. Other previous works in this
field confined their analysis to specific cases and hence
cannot explain questions regarding universality. The nov-
elty of our work is, it is very general and does not require
any specific metric. In this sense our paper unifies all other
work on extremal phase transition in an elegant manner. At
last we shall conclude by making the following comments
on our observations we made here on the extremal phase
transition.
In this work, we have examined whether any phase

transition occurs during the transition of a black hole from a
nonextremal to an extremal one. For that, in our general
framework (i.e., without using the explicit expression for
black hole metric), we have taken the help of the fluctua-
tion theory. It has been observed that the presence of a
second order phase transition naturally occurs only in the
microcanonical ensemble, while the other ensembles
(canonical and grand canonical) fail to show that. This
has also been observed earlier in several case by case
studies (i.e., explicitly using the black hole metric expres-
sion) [12,18–20]. The possible reasons for that can be
stated as follows. In this context, let us first mention why
not all ensembles agree upon the same result in the
fluctuation theory. Usually, we see that the mean values
of different thermodynamic quantities are the same in
different ensembles for a given system in equilibrium.
However, it must be noted that the different ensembles
predict different fluctuations of a thermodynamic param-
eter around its equilibrium value [12]. In other words,
average values of thermodynamic quantities are the same in
all ensembles, but fluctuations are not. Thus, the usual
notion of the equivalence of the different ensembles can
break down while investigating the physics with the help of
fluctuations in the macroscopic parameters. We also have
observed the same in the present analysis as well. Only in
the microcanonical ensemble all the second order moments
of the relevant quantities are divergent and imply the
presence of the critical point. While in other ensembles
(canonical and grand canonical) one cannot confirm the
presence of the critical point at T ¼ 0 as all the second
order fluctuation modes do not diverge in those cases.
Let us now understand why the microcanonical ensem-

ble appears to be so special in this case. Remember, in
several cases of black hole thermodynamics, one particular
ensemble (especially the microcanonical ensemble) can be
more preferred than the other ensembles. For example, the
microcanonical ensemble is the most suitable one for the
discussion of the fluctuations of stellar mass or more
massive black holes. This is because the timescale of
particle exchange is much larger than the present age of
the Universe in such cases [12], which means the black hole
hardly exchanges any particle with the environment. On the

contrary, if the black hole is small, more particle exchange
can take place and the grand canonical ensemble becomes
more suitable for the thermodynamic description. Another
example is that the microcanonical ensemble is the proper
ensemble for the thermodynamic description of the micro-
scopic black holes which are not in equilibrium, such as the
radiating black holes [64]. This example is particularly
important in this case because we have accounted the
temperature and entropy of the black holes, which is
obtained only when one considers the quantum (micro-
scopic) effect in the theory. Thus, it can be concluded that
in certain cases, one particular ensemble can be more
favorable than the others in black hole thermodynamics.
From that line of argument, it can be said that the micro-
canonical ensemble can be the appropriate or a proper
ensemble for the thermodynamic description of the
extremal phase transition of black holes.
Later from our thermogeometric analysis, we have found

that the divergence of the Ricci scalar at the critical point
occurs only for the Ruppeiner metric, whereas the scalar
curvature is either finite or vanishing for the Weinhold and
Quevedo (I and II) metrics. First, we mention why the
Ruppeiner metric is unique in this study. It would be
interesting to note that the Ruppeiner metric is the Hessian
of the Massieu function of the microcanonical ensemble
(the entropy), which, as we have observed earlier, can be
regarded as the proper ensemble for the thermodynamic
description of the extremal phase transition of black holes.
From that viewpoint, the Ruppeiner metric is special in this
case, in spite of the fact that this metric is not formulated in
a Legendre-invariant way.
Now, we mention why the Legendre-invariant formalism

by Quevedo has not been able to reflect the extremal phase
transition through the divergence of the corresponding
Ricci scalar. We have already seen, our analysis can predict
the criticality only in the microcanonical ensemble. On the
other hand, the Legendre-invariant way of defining ther-
mogeometrical metric implies the result should be valid in
all the ensembles. Since there is a preexisting inequivalence
among the ensembles in the extremal phase transition, it is
not surprising that the Legendre-invariant formulation is
not suitable in the present case. Again, the root lies in the
fact that we are looking at the average value (here it is Ricci
scalar), not on the moments of the fluctuations (like
hδRδRi) which can be different in different Legendre-
invariant metrics. Having the feel that the fluctuations in
Ricci scalar can be a good quantity in explaining the
extremal phase transition in the context of thermogeometric
study of phase transition, we calculated hδRδRi for both
Quevedo metrics. The details of this are presented in
Appendix C. We found that the moments of fluctuation
of the Ricci scalar diverge at the critical point for the
Quevedo-I metric, which is mostly used in the thermogeo-
metric description. Thus, it can be conjectured that instead
of the Ricci scalar, from the study of the fluctuation of the
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Ricci scalar the presence of the criticality can be well
determined.

APPENDIX A: OBTAINING THE VALUES OF
ð∂2Φ2=∂β2ÞYi

AND ð∂2Φ2=∂Y2
i Þβ;Ȳi

We take the canonical ensemble in which the Helmholtz
function is F≡ FðT; YiÞ. Equivalently one can write
T ≡ TðF; YiÞ. As we have done earlier, we expand T
around the critical point Tc ¼ 0 which yields

T ¼ b10f þ b20f2 þ b30f3 þ b40f4 þ � � �
þ bð1Þ01 y1 þ bð1Þ02 y

2
1 þ bð1Þ03 y

3
1 þ bð1Þ04 y

4
1 þ � � �

þ bð2Þ01 y2 þ bð2Þ02 y
2
2 þ bð2Þ03 y

3
2 þ bð2Þ04 y

4
2 þ � � �

þ bðkÞij f
iyjk; ðA1Þ

where f ¼ F − Fc and so on. In the above expansion, we
have used Tc ¼ 0. Now keeping terms up to first order
we get

∂F
∂T

����
Yi

¼ ∂T
∂F

����
−1

Yi

∼
1

B00 þ B10f þ BðiÞ
11yi

ðA2Þ

and

∂2F
∂T2

����
Yi

∼
∂
∂T

�
1

B00 þ B10f

�����
Yi

∼
1

ðB00 þ B10fÞ2 þ BðiÞ
11yi

∂F
∂T

����
Yi

∼
1

ðB00 þ B10f þ BðiÞ
11yiÞ3

: ðA3Þ

It implies that ð∂2F=∂T2ÞYi
is a nonzero finite quantity

at the critical point, and near that point it goes as
ð∂2F=∂T2ÞYi

∼ B−3
00 .

Now to obtain ð∂2F=∂Y2
i ÞT;Ȳi

, we expand Yi near the
critical point as a function of T, F and Ȳi. This is

Yi ¼ Yic þ b100f þ b200f2 þ b300f3 þ b400f4

þ � � � b010T þ b020T2 þ b030T3 þ b040T4 þ � � �
þ bjklfjTkȳli: ðA4Þ

In the above equation, we have used Tc ¼ 0. Again,
adopting the similar method as earlier, it can be shown
straightforwardly that ð∂2F=∂Y2

i ÞT;Ȳi
is also a nonzero

finite quantity at the critical point.

As Φ2 ¼ −βF, one can straightforwardly obtain
ð∂2Φ2=∂β2ÞYi

¼ −T3ð∂2F=∂T2ÞYi
. Therefore at the criti-

cal point, ð∂2Φ2=∂β2ÞYi
vanishes as

�∂2Φ2

∂β2
�

Yi

∼ T3: ðA5Þ

Again, ð∂2Φ2=∂Y2
i Þβ;Ȳi

¼ βð∂2F=∂Y2
i ÞT;Ȳi

. Therefore, at
the critical point, ð∂2Φ2=∂Y2

i Þβ;Ȳi
diverges as

�∂2Φ2

∂Y2
i

�
β;Ȳi

∼ T−1: ðA6Þ

APPENDIX B: OBTAINING THE VALUES OF
ð∂2Φ3=∂β2ÞX̃i AND ð∂2Φ3=∂X̃i2Þβ; ¯̃Xi

Let us take the Gibbs free energy G≡GðT; XiÞ.
Alternatively temperature is written as T ≡ TðG;XiÞ.
Now expanding T near the critical point, as we have done
earlier, it can be shown that ð∂2G=∂T2ÞXi

is a nonzero finite
quantity. Similarly, expanding Xi in terms of T, G and X̄i,
one finds that ð∂2G=∂Xi2ÞT;X̄i is also a nonzero finite
quantity. Now, as Φ3 ¼ −βG, we obtain ð∂2Φ3=∂β2ÞX̃i ¼
−T3ð∂2G=∂T2ÞXi

. Therefore, we conclude that near the
critical point ð∂2Φ3=∂β2ÞX̃i vanishes as

�∂2Φ3

∂β2
�

X̃i
∼ T3: ðB1Þ

Now using X̃i ¼ βXi, one can show ð∂2Φ3=∂X̃i2Þβ; ¯̃Xi ¼
Tð∂2G=∂Xi2ÞT;X̄i . Hence, near the critical point, ð∂2Φ3=

∂X̃i2Þβ; ¯̃Xi vanishes as

�∂2Φ3

∂X̃i2

�
β; ¯̃Xi

∼ T: ðB2Þ

APPENDIX C: MOMENTS OF FLUCTUATIONS
OF RICCI SCALAR hδRδRi IN LEGENDRE-

INVARIANT METRICS

1. Quevedo-I metric

The expression of the Ricci scalar for the metric
Quevedo I is given in (64). Let us now calculate the
fluctuation of R1. We obtain
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δR1 ¼
1

2ðf1g1Þ2
½δf1ff1Yg1Y − g21M − 2g1f1YY þ 2g1g1MMg þ δg1ff21Y − f1Mg1M − 2f1f1YY þ 2f1g1MMg

þ δf1Yff1g1Y þ 2g1f1Yg þ δf1Mf−g1g1Mg þ δg1Yff1f1Yg þ δg1Mf−2f1g1M − g1f1Mg
þ δf1YYf−2f1g1g þ δg1MMf2f1g1g�

þ δf1

�
−

1

f31g
2
1

ff1ðf1Yg1Y − g21MÞ þ g1ff21Y − f1Mg1M − 2f1ðf1YY − g1MMÞgg
�

þ δg1

�
−

1

f21g
3
1

ff1ðf1Yg1Y − g21MÞ þ g1ff21Y − f1Mg1M − 2f1ðf1YY − g1MMÞgg
�
: ðC1Þ

First, let us concentrate on δf1, the expression of which is
given as

δf1 ¼ −ðMδβ þ YδX̃ÞSMM − ðβM þ X̃YÞδðSMMÞ: ðC2Þ

Note, while obtaining the above fluctuation, we have
considered the control parameters (M, Y) to be fixed as
we are concerned with the off-equilibrium variations and
have accounted the variation of the conjugate quantities δβ
and δX̃ to be independent. Similarly one finds

δg1 ¼ −ðMδβ þ YδX̃ÞSYY − ðβM þ XỸÞδðSYYÞ: ðC3Þ

Our final aim, in this case, is to compute the moments of δR1,
which will be very clumsy if we consider the whole ex-
pression of (C1). Therefore, we consider term by term. In
hδRδRi, we have several terms likeT1 ¼ hδf1δf1iðf1Yg1Y−
g21M − 2g1f1YY þ 2g1g1MMÞ2=ð4f41g41Þ, T2 ¼ hδf1δg1i×
ðf1Yg1Y − g21M − 2g1f1YY þ 2g1g1MMÞðf21Y − f1Mg1M −
2f1f1YY þ 2f1g1MMÞ=ð4f41g41Þ, T3 ¼ hδf1δf1Yiðf1Yg1Y −
g21M − 2g1f1YY þ 2g1g1MMÞðf1g1Y þ 2g1f1YÞ=ð4f41g41Þ and
so on. Now concentrate on the following term:

hδf1δf1i ¼ fM2hðδβÞ2i þ Y2hðδX̃Þ2igS2MM

þ 2SMMðβMþ X̃YÞfMhδβδðSMMÞi
þ YhδX̃δðSMMÞigþ ðβMþ X̃YÞ2hfδðSMMÞg2i:

ðC4Þ

From Eqs. (7), (8) and (29) we see that hðδβÞ2i and hðδX̃Þ2i
diverge as s−3.
For the present case, since we have not considered any

particular spacetime, we are unaware of the expression of
the entropy. So, we cannot definitely obtain the forms of the
terms like δSMM, δSYY , δSMM etc. Therefore, it is hard to
predict the order of the divergences of hðδβδðSMMÞÞi,
hðδX̃δðSMMÞÞi and hfδðSMMÞg2i. But the nature of the
first term of the above at the critical point can be predicted
in out present general approach. Using our earlier results
f1 ∼ s−4, g1 ∼ s−4, f1xi ∼ s−6, g1xi ∼ s−6, f1xixj ∼ s−8 and
g1xixj ∼ s−8, we obtain that the first term on the rhs of (C4)
diverges as ∼s−9. Using the fact that hδf1δf1i diverges as
s−9 near the critical point, we obtain T1 diverges as s−1. In a
similar vein, the calculable or the known divergences in
hδf1δg1i are of the order ∼s−9. The same procedure yields
the known divergences of the following correlators as

hδf1δf1xii ∼ s−11; hδf1δg1xii ∼ s−11; hδg1δf1xii ∼ s−11; hδg1δg1xii ∼ s−11;

hδf1xiδf1xji ∼ s−13; hδf1xiδg1xji ∼ s−13; hδg1xiδg1xji ∼ s−13; hδf1δf1xixji ∼ s−13;

hδf1δg1xixji ∼ s−13; hδg1δf1xixji ∼ s−13; hδg1δg1xixji ∼ s−13; hδf1xaδf1xixji ∼ s−15;

hδf1xaδg1xixji ∼ s−15; hδg1xaδf1xixji ∼ s−15; hδg1xaδg1xixji ∼ s−15; hδf1xaxbδf1xixji ∼ s−17;

hδf1xaxbδg1xixji ∼ s−17; hδg1xaxbδg1xixji ∼ s−17: ðC5Þ

Using these, one can obtain the order of divergences as T2 ∼ s−1, T3 ∼ s−1 and so on. This implies that the second moment
of the fluctuation of Ricci scalar diverges at least to the order of

hδR1δR1i ∼ s−1: ðC6Þ
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2. Quevedo-II metric

The Ricci scalar of the Quevedo-II metric is given by (68). The corresponding fluctuation in R2 is

δR2 ¼
1

2ðf2g2 þ h22Þ2
½δf2fðf2Yg2Y − g22M þ 2g2Yh2MÞ − 2g2ðf2YY þ h2MY − g2MMÞg

þ δg2ff22Y þ f2Mð2h2Y − g2MÞ − 2f2ðf2YY þ h2MY − g2MMÞg
þ δh2f−g2Yf2M þ f2Yð2h2Y þ g2MÞ þ 4h2Yh2M − 2g2Mh2M − 2h2ðf2YY þ 2h2MY − g2MMÞ
− 2h2ðf2YY þ 2h2MY − g2MMÞg þ δf2Mfg2ð2h2Y − g2MÞ − h2g2Yg
þ δg2Mf−2g2Mf2 − f2Mg2 þ f2Yh2 − 2h2Mh2g þ δh2Mf2g2Yf2 þ 4h2Yh2 − 2g2Mh2g
þ δf2Yff2g2Y þ 2g2f2Y þ h2ð2h2Y þ g2MÞg þ δg2Yff2Yf2 þ 2h2Mf2 − f2Mh2g
þ δh2Yf2f2Mg2 þ 2f2Yh2 þ 4h2Mh2g þ δg2MMf−2f2g2 þ 2h22g
þ δf2YYf−2f2g2 − 2h22g þ δh2MYf2f2g2 − 4h22g

þ
�
−δf2

�
g2

ðf2g2 þ h22Þ3
�
− δg2

�
f2

ðf2g2 þ h22Þ3
�
− δh2

�
h2

ðf2g2 þ h22Þ3
��

½f2ðf2Yg2Y − g22M þ 2g2Yh2MÞ

þ g2ff22Y þ f2Mð2h2Y − g2MÞ − 2f2ðf2YY þ h2MY − g2MMÞg
þ h2f−g2Yf2M þ f2Yð2h2Y þ g2MÞ þ 4h2Yh2M − 2g2Mh2M − 2h2ðf2YY þ 2h2MY − g2MMÞg�; ðC7Þ

where f2 ¼ −½1þ βMSMM þ S2MM þ S2MY �, g2 ¼ 1 − X̃YSYY þ S2YY þ S2MY and h2 ¼ 1
2
ðβM − X̃YÞSMY þ SMMSMY þ

SYMSYY as we have obtained earlier. Considering the variations we have

δf2 ¼ −½MSMMδβ þ βMδSMM þ 2SMMδSMM þ 2SMYδSMY �; ðC8Þ

δg2 ¼ ½−YSYYδX̃ − X̃YδSYY þ 2SYYδSYY þ 2SMYδSMY �; ðC9Þ

δh2 ¼
1

2
ðMδβ − YδX̃ÞSMY þ 1

2
ðβM − X̃YÞδSMY

þ SMMδSMY þ SMYδSMM þ SMYδSYY þ SYYδSMY ; ðC10Þ

δf2M ¼ −½SMMδβ þ βδSMM þMSMMMδβ þ βMδSMMM þ 2MSMMδSMM

þ 2SMMδSMMM þ 2SMMMδSMM þ 2SMYδSMYM þ 2SMYMδSMY �; ðC11Þ

and so on for the variations in Eq. (C7). Hence again calculating hδf2δf2i, we see that the known divergence is from the
quantity M2S2MMhðδβÞ2i which is of the order ∼s−9. However we are unable at present to calculate the correlations of the
other terms as per the prescription of the off-equilibrium linear stability analysis in [11]. In the same vein, hδg2δg2i,
hδh2δh2i have a calculable divergence as ∼s−9. For the correlation with derivative terms we have, for example, hδf2δf2Mi
which has a known divergence of ∼s−11 and so on. It must be mentioned that terms like hδf2δg2i or the correlation of their
derivatives have a known/calculable divergence of zero since β and X̃ are independent parameters.
In order to compute the correlation in the fluctuations hδR2δR2i of the Ricci scalar from the Quevedo metric (type 2), we

have from (C7), terms like

1

4ðf2g2 þ h22Þ4
hδf2δf2ifðf2Yg2Y − g22M þ 2g2Yh2MÞ − 2g2ðf2YY þ h2MY − g2MMÞg2

which has a known/calculable order of Oðs7Þ. The same analysis follows for the various self and cross terms in hδR2δR2i
and it can be verified that they have either have a known/calculable order of Oðs7Þ or they vanish (due to the presence of
cross terms like hδf2δg2i). Hence as such it cannot be said with certainty, whether the correlation of the fluctuations of the
Ricci scalar (hδR2δR2i) in the Quevedo metric type 2 diverges or not. We have seen that the terms that can be calculated are
indeed finite or they vanish. However the presence of terms like hδβδSMMi and the like prevents us from making
conclusions here about the divergence of the fluctuations.
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