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We present numerical results for the gravitational self-force and redshift invariant calculated in the
Regge-Wheeler and easy gauges for circular orbits in a Schwarzschild background, utilizing the
regularization framework introduced by Pound, Merlin, and Barack. The numerical calculation is
performed in the frequency domain and requires the integration of a single second-order ordinary
differential equation, greatly improving computation times over more traditional Lorenz gauge numerical
methods. A sufficiently high-order, analytic expansion of the Detweiler-Whiting singular field is gauge
transformed to both the Regge-Wheeler and easy gauges and used to construct tensor-harmonic mode-sum
regularization parameters. We compare our results to the gravitational self-force calculated in the Lorenz
gauge by explicitly gauge transforming the Lorenz gauge self-force to the Regge-Wheeler and easy gauges,
and find that our results agree to a relative accuracy of 10−15 for an orbital radius of r0 ¼ 6M and 10−16 for
an orbital radius of r0 ¼ 10M.
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I. INTRODUCTION

Recent successes of the LIGO Scientific Collaboration to
directly detect gravitational radiation [1–6] have boosted
interests in gravitational-wave astrophysics. With the pro-
posed launch date for the satellite-based LISA mission [7]
steadily approaching, source modeling efforts are rapidly
progressing to build waveform models for candidate LISA
sources. One important candidate signal for the LISA
mission is expected to arrive from the extreme mass-ratio
inspiral (EMRI) of approximately solar-mass compact
objects into supermassive black holes. Such systems will
produce signals that remain in the detector for lengthy time
periods, requiring highly precise models to extract accurate
physical parameters from the data [8]. One important effect
to consider is the interaction of the compact object in the
EMRI with its own gravitational field, the gravitational
self-force, as these lengthy time periods generally extend
into the radiation-reaction time scale [9].
The formulation of the gravitational self-force within

black hole perturbation theory has its foundational roots
stemming from the works of Mino, Sasaki, and Tanaka [10]
and Quinn and Wald [11], who separately introduced an
expression for the self-force to first order in the mass ratio of
the compact object (modeled by a point particle) to the
supermassive black hole; the outcome of this formulation of
the self-force is referred to as the MiSaTaQuWa equation.
Alternative (and in some cases equivalent) regularization
schemes such as mode-sum and zeta function regularization

were subsequently proposed to remove the singularities
introduced to the force by the point-particle source [12,13].
Further work by Detweiler and Whiting [14] allowed for a
regularization scheme designed around the separation of the
metric perturbation into singular and regular pieces, with the
singular contributions physically motivated and akin to the
Coulomb field of a point charge in electrodynamics.
Historically, the choice of Lorenz gauge in perturbation

theory has been tightly linked with self-force calculations.
This gauge choice is well motivated; the Lorenz-gauge field
equations are manifestly hyperbolic, and the local expres-
sion of the particle’s self-field assumes an isotropic form
[15]. Unfortunately, numerical integration of the Einstein
field equations in the Lorenz gauge is nontrivial, as the field
equations do not decouple and the numerics are compli-
cated by gauge instabilities [16,17]. More recent work has
extended self-force regularization procedures to the radi-
ation gauge by adjusting the standard Lorenz-gauge regu-
larization scheme to accommodate string singularities
present in the radiation gauge metric perturbation [18–21].
One might ask whether it is possible to calculate the

gravitational self-force in gauges common to the study of
Schwarzschild black hole perturbations, such as the Regge-
Wheeler (RW) gauge [22] or the similar easy (EZ) gauge
recently introduced in Ref. [23]. These gauge choices allow
for fast and efficient reconstruction of the retarded metric
perturbation generated by a point particle. Early work on
this problem recovered the self-force for radially infalling
trajectories in the RW gauge [13], but follow-up analysis
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showed that the singular contributions to the self-force in the
RW gauge are not adequately regularized by standard
Lorenz-gauge regularization techniques [15]. Regulari-
zation of the RW gauge self-force using a tensor-harmonic
decomposition of the local singular field was performed by
Nakano et al. [24], but only to first order in a post-Newtonian
expansion. These initial works in RW self-force regulariza-
tion, along with advances in the understanding of how gauge
choice affects regularization by Pound et al. [21] and high-
order tensor-harmonic expansion of the Detweiler-Whiting
singular field by Wardell and Warburton [25], form the
foundation for the work presented in this paper.
This paper is structured as follows. We review gravita-

tional self-force regularization in Sec. II, and demonstrate
in Sec. III how the regularization is modified for the tensor-
harmonic modes of the metric perturbation in the RW
gauge. In Sec. IV we review the gauge-invariant framework
used to construct the retarded metric perturbation in the RW
and EZ gauges. Special care is given in Sec. V to the low-
multipole (l < 2) modes of the retarded metric perturba-
tion, which are calculated in the Zerilli gauge [26]. In
Sec. VI we review the method used to construct the tensor-
harmonic modes of the Detweiler-Whiting singular field
introduced by Wardell and Warburton [25], and we outline
the singular gauge transformation used to construct the
singular field in the RWand EZ gauges. Finally, we present
the numerical results in Sec. VIII for the regularized
Detweiler redshift invariant and the gravitational self-force
in both the RW and EZ gauges, and compare our results to
the Lorenz gauge self-force through an explicit gauge
transformation of the Lorenz gauge self-force.
We choose to work in geometrized units c ¼ G ¼ 1.

The background Schwarzschild metric with mass M is
labeled by gab in Schwarzschild coordinates ðt; r; θ;ϕÞ
with signature ð−;þ;þ;þÞ. Lower-case latin letters
fa; b; c;…g indicate spacetime indices and latin letters
fi; j; k;…g indicate purely spatial indices, and we intro-
duce f ¼ 1–2M=r. We use the curvature conventions of
Misner, Thorne, and Wheeler [27]. The symbol x denotes a
spacetime event, and the subscript “0” indicates that a
quantity is evaluated at the location of the point-particle
perturbation, such that x0 ¼ ð0; r0; π=2; 0Þ and r0 is the
constant orbital radius of the circular orbit. The domain of
integration is separated into two distinct regions, with the
“inner” region r < r0 denoted by a “−” sign, and the
“outer” region r > r0 denoted by a “þ” sign.
We use an “L” to specify quantities calculated in the

Lorenz gauge and an “RW” for the Regge-Wheeler and
easy gauges, unless the distinction is important, in which
case we explicitly write “EZ” for the easy gauge. Finally,
for a continuous function FðrÞ with discontinuous deriva-
tive at r ¼ r0, we write,

�
dF
dr

�
�
≡ lim

r→r�
0

dF
dr

ðrÞ: ð1Þ

II. SELF-FORCE REVIEW

We begin with a review of the perturbative analyses used
to solve the Einstein field equations (EFEs) for a compact
mass μ in a circular orbit about a Schwarzschild black hole
of mass M, assuming μ=M ≪ 1. The physical spacetime
metric is approximated as a background Schwarzschild
metric plus a tensor perturbation, gphysab ¼ gab þ hab, and is
a solution to the EFEs. When expanded to first order in the
mass ratio μ=M, the EFEs take the form [17,28],

Eab½h� ¼ −16πTab þOðμ2=M2Þ; ð2Þ

where we have introduced the linearized Einstein operator,

Eab½h� ¼ ∇c∇chab þ∇a∇bh − 2∇ða∇chbÞc
þ 2Ra

c
b
dhcd þ gabð∇c∇dhcd −∇c∇dhÞ; ð3Þ

with h ¼ gcdhcd, and ∇ is the covariant derivative com-
patible with the background Schwarzschild metric.
The perturbing stress-energy of the compact mass is

modeled as a point particle of mass μ moving along a
circular, equatorial geodesic of Schwarzschild spacetime,
zμðτÞ ¼ ftðτÞ; r0; π=2;ΩtðτÞg, where τ denotes the par-

ticle’s proper time and Ω ¼
ffiffiffiffiffiffiffiffiffiffiffi
M=r30

q
is the frequency of the

orbit. The stress-energy for the point particle is written as

Tab ¼ μ

Z
∞

−∞

uaubffiffiffiffiffiffi−gp δ4½xμ − zμðτÞ�dτ

¼ μ
uaub
utr20

δðr − r0Þδðθ − π=2Þδðφ − ΩtÞ; ð4Þ

with four-velocity ua ¼ ð−E; 0; 0;LÞ, and specific energy
and angular momentum E and L, respectively,

E ¼ r0 − 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 − 3MÞp ; L ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

r0 − 3M

s
: ð5Þ

The general force exerted by a vacuum perturbation hab
on the compact mass is given by [21],

F a½h� ¼ −
1

2
μðgab þ ũaũbÞð2∇dhbc −∇bhcdÞũcũd; ð6Þ

written here as a vector field, where ũa is a smooth
extension of the four-velocity off of the particle’s worldline.
To compute the self-force, each term of Eq. (6) is evaluated
at the location of the particle. However, the rhs is formally
singular at the location of the particle if one naively uses the
metric perturbation arising from Eq. (2). This singularity in
the force is not a physical result. Detweiler and Whiting
[14] found that the metric perturbation may be separated
into singular and regular contributions,
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hab ¼ hSab þ hRab; ð7Þ

such that each piece of the decomposition is individually a
solution to Eq. (2),

Eab½hS� ¼ −16πTab; ð8Þ

Eab½hR� ¼ 0; ð9Þ

and hSab does not contribute to the gravitational self-
force, i.e.,

F a
self ¼ −

1

2
μðgab þ uaubÞð2∇dhRbc −∇bhRcdÞucud: ð10Þ

The quantities hSab and hRab are referred to as the Detweiler-
Whiting singular and regular fields, respectively.
The Lorenz gauge is commonly used in gravitational

self-force calculations. By introducing the trace-reversed
metric perturbation h̄ab ¼ hab − 1

2
gabgcdhcd, the Lorenz

gauge condition is compactly written as,

∇ah̄Lab ¼ 0: ð11Þ

In this gauge, the linearized Einstein operator in the EFEs
reduces to a set of coupled wave equations acting on the
trace-reversed metric components,

∇c∇ch̄Lab þ 2Ra
c
b
dh̄Lcd ¼ −16πTab: ð12Þ

We assume that the metric perturbation for the remainder of
this section is computed in the Lorenz gauge, and drop the
“L” descriptor.
The retarded solution to Eq. (12) can be found numeri-

cally, decomposed into a basis of scalar spherical harmonics,

h̄ret;l̂mab ¼ Yl̂mðθ;ϕÞ
Z

2π

0

Z
π

0

h̄retabY
�
l̂m
ðθ0;ϕ0ÞdΩ0; ð13Þ

with differential solid angle dΩ ¼ sin θdθdϕ and � denoting
complex conjugation. Each l̂m mode of the Lorenz-gauge

retarded metric perturbation hret;l̂mab is a finiteC0 function of r
at the location of the particle, but the infinite sum of the
modes diverges as Oðl̂Þ. Furthermore, the l̂m modes of the
force, which involve radial derivatives of the metric pertur-
bation, have bounded jump discontinuities at the particle. To
calculate the regularized self-force, the method of mode-sum
regularization was introduced by Barack and Ori [12],

F a
self ¼

X∞
l̂¼0

½F a;l̂�
ret − Aa;�L̂ − Ba − Ca=L̂� −Da; ð14Þ

with L̂ ¼ 2l̂þ 1. The term F a;l̂�
ret is constructed from the

scalar-harmonic modes of the retarded metric perturbation

and evaluated at x0 in the inner or outer region via the
direction-dependent limit,

F a;l̂�
ret ¼ lim

r→r�
0

Xl̂
m¼−l̂

Yl̂mðπ=2; 0Þ

×
Z

2π

0

Z
π

0

F a½hret�Y�
l̂m
ðθ0;ϕ0ÞdΩ0: ð15Þ

The quantities Aa;�, Ba, Ca, and Da are regularization
parameters, constants in l̂ derived from a local expansion of
the singular field and known analytically in the Lorenz gauge
for generic bound orbits of Schwarzschild [12] and Kerr [29]
spacetimes. When subtracted mode by mode in Eq. (14), the
l̂ modes of the force fall off asOðl̂−2Þ, and the partial sums
converge as Oðl̂−1Þ. For circular orbits in Schwarzschild
spacetime, the parameters Aa;� and Ba vanish for all but the
radial component of the force, and Ca ¼ Da ¼ 0.
Instead of working in the scalar-harmonic l̂m basis of

Eq. (13), one might choose to work in a tensor-harmonic
lm basis, such as the basis introduced for Lorenz-gauge
self-force calculations by Barack and Lousto [16] and
Barack and Sago [17] (which we shall refer to as the BLS
basis). When decomposed into the BLS basis, the field
equations separate into coupled scalar wave equations,
allowing one to employ numerical methods developed for
calculating the scalar self-force [30,31]. To recover the l̂
modes in Eq. (15), one must reproject the tensor-harmonic
l modes onto the scalar-harmonic l̂ modes, a process
which generically requires the calculation of lþ 3 tensor-
harmonic modes [17]. While relatively trivial for circular
orbits in Schwarzschild spacetime, this reprojection
becomes increasingly complicated and time consuming
when working on arbitrary trajectories and more
complicated background spacetimes, such as the Kerr
geometry [32].
Recently, a reformulation of the mode-sum regulariza-

tion scheme was introduced byWardell and Warburton [25]
that uses tensor-harmonic regularization parameters,

F a
self ¼

X∞
l¼0

½F a;l�
ret − ð2lþ 1ÞF a;�

½−1� − F a
½0�� −Da; ð16Þ

where the l modes of the retarded force are computed
directly from the metric perturbation via Eq. (6),

F a;l�
ret ¼ lim

r→r�
0

Xl
m¼−l

F a;lm½hret�
����
θ¼π=2
ϕ¼0

; ð17Þ

and the tensor-harmonic regularization parameters
F a;�

½−1�, F
a
½0�, and Da ¼ 0 are found by decomposing a local

expansion of the Detweiler-Whiting singular field into
the tensor-harmonic basis, as we will outline in Secs. VI
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and VII. This construction eliminates the need for repro-
jection onto a scalar-harmonic basis and reduces the overall
number of computed l modes necessary to compute the
regularized self-force.

III. REGULARIZATION

The approach to self-force regularization outlined in
Sec. II was derived and implemented in the Lorenz gauge
[33]. One might ask whether the same approach to
regularization applies to other gauges, such as the RW
and EZ gauges. This question was investigated by Pound,
Merlin, and Barack (PMB) [21] specifically for the radi-
ation gauge, but their findings are equally applicable here.
Under a change of gauge, xanew ¼ xaold þ ξa, generated by a
gauge vector ξa, the metric perturbation transforms as,

hnewab ¼ holdab − £ξgab: ð18Þ

Such a transformation induces a change in the self-
force [15],

F a
self;new ¼ F a

self;old − δF a
self ; ð19Þ

with

δF a
self ¼ −μ½ðgab þ uaubÞ̈ξb þ Ra

cbducξbud�; ð20Þ

where an overdot denotes a derivative with respect to the
proper time τ of the particle’s background worldline. PMB
introduced a broad class of gauges under which the
asymptotic matching scheme of Gralla and Wald [34]
remains valid. This gauge class is named the sufficiently
regular gauge class. For a particular local gauge trans-
formation away from the Lorenz gauge to remain suffi-
ciently regular, the components of the gauge vector ξa must
satisfy specific conditions [21]:
(SR1) ξτ ¼ f1ðτÞ ln sþ oðln sÞ.
(SR2) ξi ¼ f2ðτ; niÞ þ oð1Þ.
(SR3) τ derivatives do not increase the degree of singu-

larity.
(SR4) Spatial derivatives increase the degree of singu-

larity by at most one order of s.
Here, s is the spatial geodesic distance away from the
worldline and ni is a spatial unit vector, expressed in local
Fermi-like coordinates. For a calculation performed at first
order in the mass ratio, f1 and f2 must be C1 almost
everywhere. We demonstrate in Appendix E that the local
gauge transformation between the Lorenz and EZ gauges
is not sufficiently regular, which motivates the adjusted
approach to regularization used in this paper.

A. Locally Lorenz gauges

To address gauge transformations away from the Lorenz
gauge which are not sufficiently regular, PMB proposed the

“locally Lorenz” gauge (LL) regularization scheme.
Beginning in the Lorenz gauge, the local metric perturba-
tion reads [35],

hLab ¼
2μ

s
ðgab þ 2ũaũbÞ þOð1Þ; ð21Þ

where terms ofOð1Þ are at most bounded but discontinuous
on the worldline. PMB defined a gauge to be LL if it
satisfies two properties: (i) the LL metric perturbation must
have an identical leading-order singular structure as the
Lorenz gauge,

hLLab ¼ 2μ

s
ðgab þ 2ũaũbÞ þ oðs−1Þ; ð22Þ

where terms of oðs−1Þ are not as strongly divergent as s−1

on the worldline, and (ii) the Lorenz and LL gauges differ
locally by at most a continuous gauge vector, ξaC,

hLLab ¼ hLab − £ξCgab: ð23Þ

With these conditions in place, the two metric perturbations
fall within the same class of gauges introduced by Barack
and Ori [15], meaning that the self-forces in each gauge are
related via Eq. (20).

B. Regularization in the RW and EZ gauges

We now outline how we perform regularization in the
RW/EZ gauges, motivated by the LL-gauge regularization
procedure and the work of Nakano et al. [24]. To start, a
gauge transformation is performed locally to bring the
retarded Lorenz gauge metric perturbation into the RW/EZ
gauges,

hRWab ¼ hLab − £ξRWgab: ð24Þ

We perform an identical gauge transformation to a local
expansion of the Detweiler-Whiting singular field hL;Sab in
the Lorenz gauge,

hRW;S
ab ¼ hL;Sab − £ξRW;Sgab; ð25Þ

and define the difference of the two gauge vectors to be,

ξRW;C
a ≡ ξRWa − ξRW;S

a : ð26Þ

Assuming that hL;Sab is known to high-enough order in a
series expansion [36] when constructing ξRW;S, the remain-
der ξRW;C will be at least continuous. What exactly
constitutes a “high-enough” order is outlined in Sec. VI.
Using the continuous gauge vector ξRW;C

a , we now define
the LL metric perturbation from Eq. (23) associated with
the RW gauge transformation to be,

hLLab ¼ hLab − £ξRW;Cgab: ð27Þ
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It must be emphasized that the LL metric perturbation in
Eq. (27) is not unique, as it depends on the final gauge
choice enforced in Eqs. (24) and (25); in general, it will
differ when transforming to the RW gauge compared to the
EZ gauge. Additionally, any continuous term in ξRW;C

a may
be equally attributed to ξRW;S

a , changing hLLab but remaining
in the Barack-Ori class. It is therefore vital that the gauge
vectors ξRWa and ξRW;S

a be specified exactly, so that we may
identify ξRW;C

a in Eq. (26) precisely and specify the exact
LL gauge in which the regularization is performed.
To demonstrate how these gauge transformations pro-

duce an LL metric perturbation in the regularization
procedure, we consider the regularization of a linear
functional constructed from the metric perturbation and
its derivatives, I ½h�ðxÞ, evaluated at the spacetime event x.
This quantity I may stand for the force in Eq. (6) or any
number of gauge-invariant quantities commonly computed
in the self-force literature (see e.g., Shah and Pound [37] for
examples of these gauge invariants). We then write sche-
matically [38],

I ½hLL;R�ðx0Þ ¼ lim
x→x0

I ½hLL − hL;S�

¼ lim
x→x0

fI ½hL − £ξRW;Cgab�ðxÞ − I ½hL;S�g

¼ lim
x→x0

fI ½hL�ðxÞ − I ½£ξRWgab�ðxÞ

−I ½hL;S� þ I ½£ξRW;Sgab�ðxÞg
¼ lim

x→x0
I ½hRW − hRW;S�ðxÞ: ð28Þ

In general, the gauge term relating hLLab and hLab may not be
dropped, and we may express the difference between the
LL and Lorenz gauge quantities,

I ½hLL;R�ðx0Þ ¼ I ½hL;R�ðx0Þ − I ½£ξRW;Cgab�ðx0Þ: ð29Þ

The practical regularization in our work is performed by
subtracting tensor-harmonic regularization terms mode by
mode, as was done by Wardell and Warburton [25] for
Lorenz gauge regularization. For a functional of the metric
perturbation, the regularization of the retarded RW gauge
modes is written as

I ½hLL;R�ðx0Þ ¼
X
l

fIl½hRW�ðx0Þ − Il½hL;S�ðx0Þ

þIl½£ξRW;Sgab�ðx0Þg; ð30Þ

where I is decomposed into a tensor-harmonic basis and
summed over the azimuthal index m, à la Eq. (17). We
assume that the individual l modes of I are continuous at
the particle, and that the gauge vector in Eq. (30) is
constructed solely from a local expansion of the Lorenz
gauge Detweiler-Whiting singular field mode by mode,
ξRW;S;lm
a ¼ ξRW;lm

a ½hL;S�. The gauge transformation from

any gauge to the RW and EZ gauges is unique in the mode
decomposition for l ≥ 2, and we further outline in Sec. V
the specific gauge choice made for l ¼ 0, 1.
Finally, we outline the regularization specifically of the

self-force. Here, the l modes of the retarded force contain
jump discontinuities when evaluated at the particle, and the
mode-sum formula is adjusted to handle these disconti-
nuities and include the additional gauge term,

F a½hLL;R�ðx0Þ ¼
X
l

fF l;�
a ½hRW�ðx0Þ − F l;�

a ½hL;S�ðx0Þ

þF l;�
a ½£ξRW;Sgab�ðx0Þg: ð31Þ

We note that this method of self-force regularization is
similar to the work of Nakano, Sago, and Sasaki [24], who
introduced a regularization scheme for the RW gauge
analytically at first-post-Newtonian order based on gauge
transforming the Lorenz gauge singular field as in Eq. (25).
The methods differ in the choice of monopole and dipole
gauges used in the calculation, as outlined in Sec. V. In
addition, no post-Newtonian expansions are undertaken in
our work.

IV. RETARDED SOLUTION

We now review the method used to integrate the EFEs
and reconstruct the tensor-harmonic modes of the retarded
metric perturbation in the EZ and RW gauges through use
of master functions, originally introduced to the study of
black hole perturbation theory by Regge and Wheeler [22]
and Zerilli [26]. We begin by introducing a tensor-harmonic
basis used to decompose the metric perturbation. From the
tensor-harmonic components of the metric perturbation, we
construct six gauge-invariant fields used to construct the
two master functions utilized in this work.

A. Tensor-harmonic decomposition

Using the A–K framework introduced in Ref. [23], we
take advantage of the spherical symmetry present in the
Schwarzschild spacetime to decompose the metric pertur-
bation into a basis of tensor harmonics,

habðt; r; θ;ϕÞ ¼
X∞
l¼0

Xl
m¼−l

hlmab ðt; r; θ;ϕÞ; ð32Þ

with

hlmab ðt; r; θ;ϕÞ ¼ AvavbYlm þ 2BvðaY
E;lm
bÞ þ 2CvðaY

B;lm
bÞ

þ 2DvðaY
R;lm
bÞ þ ETT0;lm

ab þ FTE2;lm
ab

þ GTB2;lm
ab þ 2HTE1;lm

ab þ 2JTB1;lm
ab

þ KTL0;lm
ab ; ð33Þ

where the ten complex scalar functions A–K have had
their arguments and indices suppressed for simplicity,
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e.g., A ¼ Almðt; rÞ. The vector and tensor harmonics are
listed in Appendix A, and the vector fields va and na are
written in Schwarzschild coordinates as,

va ¼ ð−1; 0; 0; 0Þ; na ¼ ð0; 1; 0; 0Þ:

The projection of the stress-energy, Eq. (4), onto the tensor-
harmonic basis used in Eq. (33) is straightforward, given
the delta functions in the source, e.g.,

Tlm
A ðt; rÞ ¼ f2

Z
vavbTabY�

lmdΩ;

¼ μ
f0E
r20

δðr − r0Þ
Z
Y�
lmδðθ − π=2Þδðφ −ΩtÞdΩ;

¼ μ
f0E
r20

Y�
lmðπ=2; 0Þδðr − r0Þe−imΩt: ð34Þ

Instead of Tlm
A appearing explicitly, we will typically

represent the occurrence of source terms by projections
of the linearized Einstein operator, since by Eq. (2) we have

EA ¼ −16πTA: ð35Þ

All source terms relevant for circular orbits are listed in
Appendix B.
When focusing specifically on circular, equatorial orbits,

the form of the source terms in Eq. (34) motivates a further
refinement to the ansatz of the metric perturbation given in
Eq. (33), whereby each scalar function A–K is written
as a separable function of t and r, with time dependence of
the form,

Almðt; rÞ ¼ ÂlmðrÞe−iωmt: ð36Þ

The allowable frequencies for the metric perturbation are
fixed by the source terms and are multiples of the orbital
frequency,

ωm ¼ mΩ: ð37Þ

This time dependence for circular orbits is equivalent
to working in the frequency domain with Fourier coef-
ficients [24],

Almðt; rÞ ¼ 1

2π

Z
∞

−∞
Almðω; rÞe−iωtdω; ð38Þ

with Almðω; rÞ ¼ ÂlmðrÞδðω − ωmÞ.
Finally, with the introduction of the metric pertur-

bation, certain symmetries present in the background
Schwarzschild spacetime no longer exist in the physical
spacetime. In particular, the vectors ð∂tÞa and ð∂ϕÞa are no
longer Killing in the physical spacetime gphysab , yet a Killing
vector does exist as a combination of the two: the helical

Killing vector (HKV) ka ¼ ð∂tÞa þ Ωð∂ϕÞa. The phy-
sical spacetime obeys the helical symmetry £kgphys ¼
Oðμ2=M2Þ [28], and this symmetry exists for any reason-
able choice of gauge as a consequence of the time
dependence present in Eq. (36) and the mode decompo-
sition of the metric perturbation, Eq. (33). While we will
utilize the time dependence of Eq. (36) in this work for
circular orbits, the expressions in the remainder of
Sec. IV hold for metric perturbations with arbitrary time
dependence.

B. Gauge invariants

The procedure of metric reconstruction is based on the
construction of six gauge-invariant fields introduced in
Ref. [23]; we review this construction here. We begin with
the metric perturbation in Eq. (33) written in an arbitrary
“old” gauge, and write it in a “new” gauge by introducing a
gauge vector ξa. The transformation occurs to first order in
the mass ratio as,

hnewab ¼ holdab − £ξgab þOðμ2=M2Þ: ð39Þ

The gauge vector ξa is decomposed into tensor-harmonic
modes,

ξlma ¼ PvaYlm þ RnaYlm þ SYE;lm
a þ QYB;lm

a ; ð40Þ

with complex scalar functions P, R, and S for the even-
parity components of the gauge vector, and Q for the odd-
parity component. The action of the gauge vector on the
metric perturbation induces the following changes to the
metric components:

ΔA ¼ −2∂tP −
2Mf
r2

R; ð41Þ

ΔB ¼ 1

r
P − ∂tS; ð42Þ

ΔC ¼ −∂tQ; ð43Þ

ΔD ¼ ∂rP −
2M
r2f

P − ∂tR; ð44Þ

ΔE ¼ 2f
r
R −

λþ 2

r
S; ð45Þ

ΔF ¼ 2

r
S; ð46Þ

ΔG ¼ 2

r
Q; ð47Þ

ΔH ¼ 1

r
Rþ ∂rS −

1

r
S; ð48Þ
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ΔJ ¼ ∂rQ −
1

r
Q; ð49Þ

ΔK ¼ 2∂rRþ 2M
r2f

R; ð50Þ

where we write e.g., Anew ¼ Aold − ΔA, and introduce
λ ¼ ðl − 1Þðlþ 2Þ. For l ≥ 2, we may enforce the gauge
choice known as the RW gauge, introduced by Regge and
Wheeler [22], by eliminating Bnew ¼ Fnew ¼ Hnew ¼ 0
through convenient choices of P, S, and R, in Eqs. (42),
(46) and (48), and using Eq. (47) to eliminate Gnew.
Alternatively, using Eq. (45) instead of Eq. (48), we
may set Bnew ¼ Enew ¼ Fnew ¼ 0, which defines the EZ
gauge. Specifically for the low modes l < 2, certain
equations above vanish identically and another gauge
choice is made which we discuss in Sec. V.
By combining various A–K terms and their derivatives,

one may construct quantities which are unchanged under
the action of the gauge vector in Eqs. (41)–(50), making
them gauge invariant:

α ¼ J −
r
2
∂rG; ð51Þ

β ¼ −C −
r
2
∂tG; ð52Þ

χ ¼ H −
1

2f
E −

λþ 2

4f
F −

r
2
∂rF; ð53Þ

ψ ¼ 1

2
K −

r − 3M
2rf2

E −
r
2f

∂rE

−
ðλþ 2Þðr − 3MÞ

4rf2
F −

rðλþ 2Þ
4f

∂rF; ð54Þ

δ ¼ Dþ r
2f

∂tE −
r − 4M
rf

B − r∂rB

−
r2

2
∂t∂rFþ rðλþ 2Þ − 4ðr − 3MÞ

4f
∂tF; ð55Þ

ϵ ¼ −
1

2
A −

M
2r

E − r∂tB −
Mðλþ 2Þ

4r
F −

r2

2
∂2
t F: ð56Þ

Two additional gauge invariants of interest to this work
appear as combinations of certain gauge invariants above,
one for each parity,

ΨW ¼ r2∂tα − r2∂rβ þ rβ; ð57Þ

ΨZ ¼ rf
κ
½2rfψ − rðλþ 2Þχ�; ð58Þ

with κ¼6Mþλr. These two quantities both satisfy a 1þ1-
dimensional wave equation in Schwarzschild time and the
tortoise radial coordinate r� ¼ rþ 2M logðr=2M − 1Þ,

½−∂2
t þ ∂2

r� − VW=ZðrÞ�ΨW=Z ¼ SW=Z; ð59Þ

with potentials,

VWðrÞ ¼
f
r2

�
λþ 2 −

6M
r

�
; ð60Þ

VZðrÞ ¼
f
r2

�
λ2ðλþ 2Þr3 þ 6Mðκλrþ 12M2Þ

rκ2

�
: ð61Þ

We remark on the similarities between the two potentials by
taking the difference,

ΔV ¼ VW − VZ

¼ 24Mf
r2κ

��
1 −

3M
r

�
þ 3Mf

κ

�
: ð62Þ

This difference vanishes at both the horizon and spatial
infinity, and also very near but outside the light ring at
r ¼ 3M. It further vanishes in the limit that l grows to
infinity.
The sources SW=Z are listed in Eqs. (B1) and (B2). From

Eq. (59) and the form of the potentials in Eqs. (60)–(61), it
is clear that the gauge invariants ΨW and ΨZ are master
functions akin to those of Regge-Wheeler and Zerilli,
respectively [39]. These master functions express the
two dynamical degrees of freedom in the Einstein field
equations. Furthermore, it is possible to recover the gauge
invariants in Eqs. (51)–(56) solely from the master func-
tions, along with source terms:

α ¼ −
1

λf
½∂tΨW þ r2fEJ�; ð63Þ

β ¼ −
1

λr
½fΨW þ rf∂rΨW − r3EC�; ð64Þ

χ ¼ −1
ðλþ 2Þκr2f ½fλðλþ 2Þr2 þ 6Mðκ − 2MÞgΨZ

þ2κr2f∂rΨZ þ r5EA�; ð65Þ

ψ ¼ −1
2r2f2κ

½2ðr2λ − 3rMλ − 6M2ÞΨZ

þ 2r2fκ∂rΨZ þ r5EA�; ð66Þ

δ ¼ r
λþ 2

½4f∂tψ − ðλþ 2Þ∂tχ − rED�; ð67Þ

ϵ ¼ f
2
½2χ þ 2rf∂rχ − 2fψ þ r2EF�: ð68Þ

Thus, solving the EFEs at first order in the mass ratio has
been reduced to integrating Eq. (59) for ΨW=Z, up to
considerations of gauge and the low modes l < 2.

GRAVITATIONAL SELF-FORCE REGULARIZATION IN THE … PHYS. REV. D 99, 124046 (2019)

124046-7



C. Numerical integration

The literature is rich with examples of numerical
solutions for a point-particle source in a bound orbit about
a Schwarzschild black hole, both in the time domain
[16,17,30,40,41] and in the frequency domain [42–46].
The numerical techniques used in our work to solve the
frequency-domain representation of Eq. (59),

½∂2
r� þ ω2

m − VW=ZðrÞ�Ψ̂W=Z ¼ ŜW=Z; ð69Þ
align closely with the solution method outlined by Hopper
and Evans [47], but simplified for the case of circular orbits.
The numerical integration of Eq. (69) is performed in
MATHEMATICA [48] to take advantage of MATHEMATICA’s
arbitrary precision framework. We choose to work with a
global minimum precision of 32 digits, which is respon-
sible for the ultimate numerical accuracy of the retarded
field spherical-harmonic modes shown later in this work.

D. Metric reconstruction

The gauge invariants in Eqs. (51)–(56) may be con-
structed from the tensor modes of the metric perturbation in
any gauge, but play a special role in metric reconstruction
specifically in the EZ gauge. When the EZ gauge con-
ditions are enforced, Eqs. (51)–(56) reduce to expressions
which are trivial to invert for the metric components,

AEZ ¼ −2ϵ; ð70Þ

CEZ ¼ −β; ð71Þ

DEZ ¼ δ; ð72Þ

HEZ ¼ χ; ð73Þ

JEZ ¼ α; ð74Þ

KEZ ¼ 2ψ ; ð75Þ
with all other components vanishing. Should one choose to
work in the RW gauge instead, the nonzero metric
components become,

ARW ¼ −2ϵþ 2Mf
r

χ; ð76Þ

CRW ¼ −β; ð77Þ

DRW ¼ δþ r∂tχ; ð78Þ

ERW ¼ −2fχ; ð79Þ

JRW ¼ α; ð80Þ

KRW ¼ 2ψ −
2ðr −MÞ

rf
χ − 2r∂rχ: ð81Þ

The full (l ≥ 2) metric perturbation in either the EZ or RW
gauge is recovered by substituting the expressions for A–K
into Eq. (33) after solving for the gauge invariants viaΨW=Z

in Eqs. (63)–(68). The specific reconstruction for l < 2 is
detailed in Sec. V.

V. RETARDED SOLUTION FOR l= 0, 1

For the low (l < 2) modes, the gauge invariants con-
structed in Sec. IV lose their invariant properties under a
gauge transformation. We investigate these low-order
modes by gauge transforming the Lorenz-gauge retarded
solution. We opt to use the gauge choice for both l ¼ 0 and
l ¼ 1 introduced by Zerilli [26], as the Zerilli gauge
satisfies both the RWand EZ gauge conditions. This gauge
choice differs from that of Nakano et al. [24], who opted to
use the Lorenz gauge monopole (corrected by Hikida et al.
[49]) and a different variant of the Zerilli dipole.
The cases of l ¼ 0 and l ¼ 1 are handled separately,

and the tensor-harmonic lm labels for the metric pertur-
bation are written explicitly for clarity.

A. l= 0

We approach the construction of the Zerilli gauge
monopole initially by finding the gauge transformation
from the Lorenz gauge to the Zerilli gauge. This will lead
directly into the construction of the singular field monopole
in Sec. VI.
At l ¼ 0, all vector and tensor modes of the metric

perturbation vanish identically. Furthermore, all coeffi-
cients of the gauge vector Eq. (40) are evaluated with
ω0 ¼ 0, eliminating any time derivatives from Eqs. (41)–
(50) and yielding a static gauge transformation. The gauge
vector becomes,

ξ̂00a ¼ 1

2
ffiffiffi
π

p ½P̂00va þ R̂00na�; ð82Þ

and induces the following changes to the metric
perturbation:

ΔÂ00 ¼ −
2Mf
r2

R̂00; ð83Þ

ΔD̂00 ¼ dP̂00

dr
−
2M
r2f

P̂00; ð84Þ

ΔÊ00 ¼ 2f
r
R̂00; ð85Þ

ΔK̂00 ¼ 2
dR̂00

dr
þ 2M

r2f
R̂00: ð86Þ

The Zerilli monopole gauge choice uses the two degrees of
gauge freedom to set E00

Z ¼ D00
Z ¼ 0. Starting from the

THOMPSON, WARDELL, and WHITING PHYS. REV. D 99, 124046 (2019)

124046-8



Lorenz gauge, the choice of E00
Z ¼ 0 algebraically deter-

mines R̂00 from Eq. (85),

R̂00 ¼ r
2f

Ê00
L : ð87Þ

Equation (84) is then solved to set D̂00
Z ¼ 0:

f
d
dr

½P̂00=f� ¼ D̂00
L : ð88Þ

When integrating this equation, we find,

P̂00ðrÞ ¼ f
Z

r

r1

f−1ðr0ÞD̂00
L ðr0Þdr0 þ fζ̂00: ð89Þ

The starting value of the integration, r1, is arbitrary, and ζ̂
00

is an arbitrary constant. The gauge function P̂00 is not
present in the metric perturbation (outside of fixing the
condition D̂00

Z ¼ 0), as P̂00 only appears in Eq. (84) for
static gauge transformations. Thus, the monopole contri-
butions to the retarded field in the Zerilli gauge are,

Â00
Z ¼ Â00

L þM
r
Ê00
L ; ð90Þ

K̂00
Z ¼ K̂00

L −
ðr − 3MÞ

rf2
Ê00
L −

r
f
dÊ00

L

dr
; ð91Þ

with all other components set to zero. These remaining
components of the metric perturbation are invariant under
gauge transformations produced by the gauge vector in
Eq. (82) and are unique.
The form of the Lorenz gauge monopole was determined

analytically by Barack and Lousto [50]. The inner (r ≤ r0)
solution is,

hL;−tt ¼ −
AfM
r3

PðrÞ; ð92Þ

hL;−rr ¼ A
r3f

QðrÞ; ð93Þ

hL;−θθ ¼ ðsin θÞ−2hL;−φφ ¼ AfPðrÞ; ð94Þ

and the outer solution (r ≥ r0) is,

hL;þtt ¼ 2μE
3r4r0f0

f3r3ðr0 − rÞ þM2ðr20 − 12Mr0 þ 8M2Þ

þ ðr0 − 3MÞ½−rMðrþ 4MÞ þ rPðrÞf ln f þ 8M3 lnðr0=rÞ�g; ð95Þ

hL;þrr ¼ −
2μE

3r4r0f0f2
f−r3r0 − 2Mrðr20 − 6Mr0 − 10M2Þ þ 3M2ðr20 − 12Mr0 þ 8M2Þ

þ ðr0 − 3MÞ½5Mr2 þ ðr=MÞQðrÞf ln f − 8M2ð2r − 3MÞ lnðr0=rÞ�g; ð96Þ

hL;þθθ ¼ ðsin θÞ−2hL;þφφ ¼ −
2μE

9rr0f0
f3r20M − 80M2r0 þ 156M3

þ ðr0 − 3MÞ½−3r2 − 12Mrþ 3ðr=MÞPðrÞf ln f þ 44M2 þ 24M2 lnðr0=rÞ�g: ð97Þ

The constant A and the functions PðrÞ and QðrÞ were
originally introduced by Barack and Lousto,

A ¼ 2μE
3Mr0f0

½M − ðr0 − 3MÞ ln f0�; ð98Þ

PðrÞ ¼ r2 þ 2Mrþ 4M2; ð99Þ

QðrÞ ¼ r3 −Mr2 − 2M2rþ 12M3; ð100Þ

with f0 ¼ fðr0Þ, and are not to be confused with quantities
elsewhere in this work. Before we perform the gauge
transformation in Eqs. (90)–(91), it is important to realize
that the Lorenz gauge monopole is not asymptotically flat
(in this instance, defined as hþtt → 0 as r → ∞),

hLþtt ¼ −
2μE
r0f0

�
1 −

r0
r

�
þOð1=r2Þ as r → ∞; ð101Þ

and so we choose to perform an additional gauge trans-
formation to adjust this after transforming to the Zerilli
gauge. The asymptotic flatness of the monopole is impor-
tant for the comparison between gauge invariants for the
purposes of this work [51]. We shall see that the gauge
vector required for this transformation does not obey the
HKV symmetry, and would not be attainable via the gauge
vector in Eq. (82).
After constructing the metric components in the Zerilli

gauge via Eqs. (90) and (91) and recovering the full metric
perturbation from Eq. (33), the not asymptotically flat
(NAF) Zerilli gauge metric is,
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hZ;NAF−tt ¼ 0; ð102Þ

hZ;NAF−rr ¼ 0; ð103Þ

hZ;NAFþtt ¼ −
2μEðr − r0Þ

rr0f0
; ð104Þ

hZ;NAFþrr ¼ 2μE
rf

: ð105Þ

To correct hZ;NAFþtt , we introduce a gauge vector taking the
form of a global homogeneous solution to Eq. (84) which
breaks the HKV symmetry, i.e., has nonvanishing time
dependence, but maintains the Zerilli gauge condition,

ξNAFa ¼ μE
r0f0

tfva: ð106Þ

This gauge vector changes the tt component of the metric
via Eq. (41) to,

hZ;−tt ¼ 2μE
r0f0

f; ð107Þ

hZ;−rr ¼ 0; ð108Þ

hZ;þtt ¼ 2μE
r

; ð109Þ

hZ;þrr ¼ 2μE
rf

; ð110Þ

and the perturbation now vanishes at both the horizon and
spatial infinity. We notice that, while hZtt is continuous
across the particle’s orbit, a jump discontinuity has been
introduced to hZrr that was not present in the Lorenz gauge.

B. l= 1 odd parity

For l ¼ 1, the only nonzero odd-parity contribution to
the metric perturbation arises from m ¼ 0. Furthermore,
the spin-2 contribution to the metric perturbation, G10,
vanishes identically, and Zerilli chose to use the one degree
of gauge freedom, Q10, to eliminate J10Z ¼ 0. This gauge
choice is identical to the odd-parity dipole gauge used in
Lorenz gauge calculations [52]. Its derivation may be found
in the literature, for example in Ref. [23], and the analytic
solution is given by,

hZ;−tϕ ¼ −2μLsin2θ
r2

r30
; ð111Þ

hZ;þtϕ ¼ −2μL sin2 θ
1

r
: ð112Þ

C. l= 1 even parity

Restricting to l ¼ 1 even parity, the metric perturbation
vanishes for m ¼ 0, so only the values m ¼ �1 need be
considered. Unlike for l ¼ 0 and l ¼ 1 odd parity, there
are no known analytic solutions for the even-parity dipole
in the Lorenz gauge. Despite this lack of an analytic
solution, we work through the gauge transformation
required to bring the Lorenz gauge solution to the Zerilli
gauge, as this transformation will be required to construct
the even-parity dipole singular field in Sec. VI. Analytic
solutions to the even-parity dipole do exist in the Zerilli
gauge, which we list at the end of this section.
The changes to the metric perturbation under a gauge

transformation reduce for l ¼ 1 even parity to,

ΔÂ1m ¼ 2iωmP̂
1m −

2Mf
r2

R̂1m; ð113Þ

ΔB̂1m ¼ 1

r
P̂1m þ iωmŜ

1m; ð114Þ

ΔD̂1m ¼ dP̂1m

dr
−
2M
r2f

P̂1m þ iωmR̂
1m; ð115Þ

ΔÊ1m ¼ 2f
r
R̂1m −

2

r
Ŝ1m; ð116Þ

ΔĤ1m ¼ 1

r
R̂1m þ dŜ1m

dr
−
1

r
Ŝ1m; ð117Þ

ΔK̂1m ¼ 2
dR̂1m

dr
þ 2M

r2f
R̂1m: ð118Þ

Here, F̂1m ¼ 0 identically but we still have the full even-
parity gauge freedom. The Zerilli dipole gauge is deter-
mined by setting B̂1m

Z ¼ Ê1m
Z ¼ Ĥ1m

Z ¼ 0, and the gauge
vector for this choice is calculated in two steps, where first
P̂1m and R̂1m are found algebraically via Eqs. (114) and
(116) while leaving Ŝ1m free,

P̂1mZ ¼ rðB̂1m
L − iωmŜ

1m
Z Þ; ð119Þ

R̂1m
Z ¼ r

2f

�
Ê1m
L þ 2

r
Ŝ1mZ

�
; ð120Þ

which, when substituted into Eq. (117), yield a first-order
ordinary differential equation for Ŝ1mZ :

d
dr

ðfŜ1mZ Þ ¼ fĤ1m
L −

1

2
Ê1m
L : ð121Þ

The solution may be found by integration,

Ŝ1mZ ¼ Ŝ1mpart þ f−1ζ̂1m; ð122Þ
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where ζ̂1m is a constant and we have written,

Ŝ1mpartðrÞ≡ f−1
Z

r

r0

�
fðr0ÞĤ1m

L ðr0Þ − 1

2
Ê1m
L ðr0Þ

�
dr0: ð123Þ

When transforming from the Lorenz gauge in the region
around the particle’s orbit, Ĥ1m

L ðrÞ and Ê1m
L ðrÞ are both

bounded, C0 functions of r, and thus Ŝ1mpartðrÞ is a C1

function over the same interval. The lower bound for the
integral in Ŝ1mpart is arbitrary and set to the orbital radius for
convenience, such that Ŝ1mpart vanishes at the particle (but
note that its radial derivative does not vanish). In addition,
the unknown constant ζ̂1m is arbitrary. After the gauge
transformation, the remaining nonzero components of the
metric are,

Â1m
L→Z ¼ Â1m

L − 2iωmrB̂
1m
L þM

r
Ê1m
L þ 2r

�
M
r3

− ω2
m

�
Ŝ1mpart − ΔÂ1m

Z ; ð124Þ

D̂1m
L→Z ¼ D̂1m

L −
�
r − 4M
rf

þ r
d
dr

�
B̂1m
L −

iωmr
2f

Ê1m
L þ iωm

�
r
d
dr

−
4M
rf

�
Ŝ1mpart − ΔD̂1m

Z ; ð125Þ

K̂1m
L→Z ¼ K̂1m

L −
�ðr − 3MÞ

rf2
þ r
f
d
dr

�
Ê1m
L −

�
2

f
d
dr

−
2M
r2f2

�
Ŝ1mpart − ΔK̂1m

Z ; ð126Þ

with residual gauge freedom,

ΔÂ1m
Z ¼ −

2r
f

�
M
r3

− ω2
m

�
ζ̂1m;

ΔD̂1m
Z ¼ 6iωmM

rf2
ζ̂1m;

ΔK̂1m
Z ¼ −

6M
r2f3

ζ̂1m: ð127Þ

While it is clear that the metric perturbation in
Eqs. (124)–(126) is in the Zerilli gauge, the additional
gauge freedom in Eq. (127) may be added to the metric
perturbation without changing the gauge condition B1m

Z ¼
E1m
Z ¼ H1m

Z ¼ 0, and so the gauge choice is not uniquely
fixed. We now use this freedom to recover a Zerilli gauge in
which all components of the metric perturbation vanish
outside the particle’s orbit (r > r0). This choice is made to
ensure that the dipole is asymptotically flat.
We begin with the analytic, retarded Zerilli gauge

solution given by Detweiler and Poisson [52],

hZtt ¼
2μr0f0E
r2f

�
1 −

r3Ω2

M

�
sin θ

× cosðϕ −ΩtÞΘðr − r0Þ; ð128Þ

hZtr ¼ −
6μr0f0ΩE

rf2
sin θ sinðϕ −ΩtÞΘðr − r0Þ; ð129Þ

hZrr ¼
6μr0f0ΩE

r2f3
sin θ cosðϕ −ΩtÞΘðr − r0Þ; ð130Þ

where Θðr − r0Þ is the Heaviside step function.
Transforming this solution to one which vanishes in the

outer region via Eq. (127) and factoring out the time
dependence yields the A–K components of the metric
perturbation,

Â1m
Z ¼ 2r

f

�
M
r3

− ω2
m

�
r30Ē

1m
A

12M
Θðr0 − rÞ; ð131Þ

D̂1m
Z ¼ −

6iωmM
rf2

r30Ē
1m
A

12M
Θðr0 − rÞ; ð132Þ

K̂1m
Z ¼ 6M

r2f3
r30Ē

1m
A

12M
Θðr0 − rÞ; ð133Þ

where Ē1m
A is the fully evaluated coefficient of the delta

function source in Eq. (B3). By inspection, this solution is
almost entirely pure gauge; for both r < r0 and r > r0, the
form of Eqs. (131)–(133) is identical to Eq. (127) with
particular choices for ζ̂1m in each domain. Truly, it is the
step function itself that makes the solution physically
meaningful, as otherwise the entire metric perturbation
in this sector may be set to vanish by choosing the
appropriate constant in Eq. (127).
We now wish to refine the gauge transformation used to

recover Eqs. (124)–(126) from the Lorenz gauge to the
particular Zerilli gauge used in Eqs. (131)–(133), which
will exhaust all of the remaining gauge freedom generated
by a gauge vector obeying the helical symmetry. Our choice
is to eliminate the right-hand-sided limit of the Zerilli
metric perturbation generated from the Lorenz gauge
solution at the particle,

lim
r→rþ

0

Â1m
L→ZðrÞ ¼ lim

r→rþ
0

D̂1m
L→ZðrÞ ¼ lim

r→rþ
0

K̂1m
L→ZðrÞ ¼ 0: ð134Þ
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This gauge refinement condition may be enforced at any value of r > r0, but we choose to evaluate (the right-hand-sided
limit) at r ¼ r0, since we have constructed S1mpart to vanish at the orbit, which greatly simplifies Eqs. (124)–(126).
As Ŝ1mpartðrÞ is a differentiable function, we find,

lim
r→r0

dŜ1mpart
dr

ðrÞ ¼ f−10 lim
r→r0

d
dr

Z
r

r0

�
fðr0ÞĤ1m

L ðr0Þ − 1

2
Ê1m
L ðr0Þ

�
dr0 −

2M
r20f

2
0

Ŝ1mpartðr0Þ;

¼ Ĥ1m
L ðr0Þ −

1

2f0
Ê1m
L ðr0Þ: ð135Þ

Then, after taking the limits in Eq. (134),

0 ¼ Â1m
L − 2iωmr0B̂

1m
L þM

r0
Ê1m
L ; ð136Þ

0 ¼ D̂1m
L −

r0 − 4M
r0f0

B̂1m
L − r0

�
dB̂1m

L

dr

�
þ
−
iωmr0
f0

Ê1m
L þ iωmr0Ĥ

1m
L −

6iωmM
r0f20

ζ̂1m; ð137Þ

0 ¼ K̂1m
L þ 3M

r0f20
Ê1m
L −

r0
f0

�
dÊ1m

L

dr

�
þ
−

2

f0
Ĥ1m

L þ 6M
r20f

3
0

ζ̂1m: ð138Þ

The validity of this choice must now be verified.
We begin by analyzing Eq. (136). In the Zerilli gauge,

Â1m
Z is gauge invariant at the particle, which can be seen by

substituting Eqs. (113)–(116) into the combination of
metric components found in Eq. (136),

ΔÂ − 2iωmrΔB̂þM
r
ΔÊ ¼ −2r

�
M
r3

− ω2
m

�
S1m: ð139Þ

This combination vanishes at the particle irrespective of the
choice of Ŝ1m, since ω2

m ¼ Ω2 for m ¼ �1. Thus, if
Â1m

Z ðr0Þ vanishes in one gauge, it must vanish in all gauges

related via the HKV symmetry. This result is unsurprising;
Â1m

Z ðr0Þ is the sole contribution to the even-parity piece of
the Detweiler redshift invariant ūt in the Zerilli gauge
(where htϕ ¼ hϕϕ ¼ 0 for even parity). Since Â1m

Z ðr0Þ
vanishes in both the left- and right-hand-sided limits in
the Zerilli gauge, as shown in Eq. (131), the condition
Eq. (134) is satisfied for Â1m

L→Z.
To show that the remaining two limits are valid requires

more work, and we must solve for ζ̂1m to satisfy the
vanishing conditions. Both Eqs. (137) and (138) provide a
solution for the remaining gauge freedom and the system
appears overdetermined. We solve both equations,

ζ̂1mD ¼ f0
6ωmM

�
iðr0 − 4MÞB̂1m

L þ ir20f0

�
dB̂1m

L

dr

�
þ
− ir0f0D̂

1m
L − ωmr20Ê

1m
L þ ωmr20f0Ĥ

1m
L

�
; ð140Þ

ζ̂1mK ¼ r0f0
6M

�
−3MÊ1m

L þ r20f0

�
dÊ1m

L

dr

�
þ
þ 2r0f0Ĥ

1m
L − r0f20K̂

1m
L

�
; ð141Þ

labeling the solution for ζ̂1mD=K arising from each equation separately. The difference between these two constants is
proportional to a source term,

ζ̂1mK − ζ̂1mD ¼ r30f
2
0

12iMωm
E1m
D ; ð142Þ

and this source term vanishes for the circular orbits of interest in this paper, E1m
D ¼ 0. The constant may then be determined

by use of either Eq. (137) or (138), and the gauge freedom is now entirely fixed. The vanishing right-hand side of Eq. (142)
is verified numerically in Sec. VIII.

THOMPSON, WARDELL, and WHITING PHYS. REV. D 99, 124046 (2019)

124046-12



VI. SINGULAR FIELD CONSTRUCTION

In this section we construct the Detweiler-Whiting
singular field in the EZ and RW gauges. We begin with
a local expansion of the singular field in the Lorenz gauge.
After a decomposition into tensor-harmonic modes, the
gauge invariants (51)–(56) are formed and used to recon-
struct the singular field in both the EZ and RW gauges via
Eqs. (70)–(75) and Eqs. (76)–(81), respectively. We then
detail the specific gauge transformation of the singular field
for the low-order (l < 2) modes.

A. Local Detweiler-Whiting singular field

The trace-reversed Detweiler-Whiting singular field is
found in the Lorenz gauge and expanded covariantly about
the worldline of the particle [36],

h̄L;Sab ¼ 4μgaāgbb̄
�
1

ε

uāub̄
s̄

þOðεÞ
�
; ð143Þ

where uā and gāb̄ are the particle’s four-velocity and the
background metric, respectively, evaluated on the world-
line, gaā is the bivector of parallel transport, s̄ ¼ ðgā b̄ þ
uāub̄Þσāσb̄ is the spatial geodesic distance away from the
worldline, and σ is the Synge world function. ε is an order-
counting parameter in the expansion. (See Ref. [35] for a
review of bitensors and covariant expansions of hS.)
Following conventions established in the self-force liter-
ature [12,31,53], a coordinate expansion of Eq. (143) is
performed in coordinates (Δt, Δr, Θ, Φ) about some
reference Schwarzschild time t0 ¼ 0, such that Δt ¼ 0,
Δr ¼ r − r0, and the angles ðΘ; ΦÞ are related to the
background Schwarzschild angles ðθ;ϕÞ by the rotation,

sin θ cosϕ ¼ cosΘ;

sin θ sinϕ ¼ sinΘ cosΦ;

cos θ ¼ sinΘ sinΦ: ð144Þ

This rotation places the particle at the pole of the rotated
coordinates, ðθ ¼ π=2;ϕ ¼ 0Þ → ðΘ ¼ 0;Φ arbitraryÞ. In
these coordinates the field has the form [25],

h̄L;Sab ¼ 1

ε

cð1Þab

ρ
þ ε0

�
cð2ÞabΔr

ρ
þ cð3ÞabΔr3

ρ3

�
þOðεÞ; ð145Þ

evaluated atΔt ¼ 0, where, for the circular orbits of interest

in this paper, the coefficients cðnÞab are independent ofΔr and
Θ, and we have introduced ρ as the leading-order term in
the coordinate expansion of s̄ [31],

ρ2 ¼ 2γr20
r0 − 3M

ðν2 þ 1 − cosΘÞ; ð146Þ

with

γ ¼ 1 −
M
r0f0

sin2 Φ; ð147Þ

and

ν2 ¼ r0 − 3M
r30f

2
0

Δr2

2γ
: ð148Þ

The full coordinate expansion of h̄L;Sab used for this work is
quite lengthy, so we direct the reader to an online source for
the expansion through Oðε4Þ [54]. We include orders up
through Oðε2Þ, in order to capture the necessary angular
derivatives required to regularize the EZ-gauge self-force.

B. Tensor-harmonic decomposition of hL;S
ab

To find the tensor-harmonic projections of the singular
field, we follow the work of Wardell and Warburton [25],
who calculated the tensor modes of the singular field in the
BLS basis. We outline the relationship between the BLS
basis and the A–K basis in Appendix C. Our construction
of the singular field modes is identical to Ref. [25].
Before we begin, it is worth recalling that in the rotated

coordinates the particle is located at the pole (Θ ¼ 0, Φ
arbitrary). When decomposed into tensor-harmonic lm0
modes in these rotated coordinates, the tensor-harmonic
basis vanishes at the particle for all but select values of m0
(the azimuthal index number associated with Φ), and so
only these nonvanishing m0 modes of the singular field are
required. The required A–K terms for each m0 are listed in
Table I.
We demonstrate the process of finding the tensor-

harmonic decomposition of the singular field for the A
term through OðΔrÞ, for simplicity. Starting with the
projection,

Al00
L;S ¼ f2

Z
vavbhL;Sab Y

�
l0dΩ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r Z
2π

0

Z
π

0

hL;Stt PlðcosΘÞ sinΘdΘdΦ;

ð149Þ

we substitute in the coordinate expansion for hL;Stt ¼ h̄L;Stt −
1
2
gttgcdh̄

L;S
cd , with the trace-reversed singular field given

through OðΔrÞ by,

TABLE I. We list the A–K components of the Lorenz gauge
singular field required for this work at each m0 value considered
in this construction.

m0 Nonvanishing A–K
0 A, E, F, H, K
1 B, C, D
2 A, E, F, G, H, J, K
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h̄L;Stt ¼ 1

ρ

�
4r20f

2
0

r0ðr0 − 3MÞ −
2Δr

r20ðr0 − 3MÞ

×
r20 − 7Mr0 þ 10M2 − 2r0f0ðr0 − 4MÞð1 − γÞ

γ

�
;

ð150Þ

h̄L;Srr ¼ 0; ð151Þ

h̄L;SΘΘ ¼
�
1 −

r0f0ð1 − γÞ
M

�
2

h̄L;Sang; ð152Þ

h̄L;SΦΦ ¼ r0f0ð1 − γÞ
M

�
1 −

r0f0ð1 − γÞ
M

�
sin2Θh̄L;Sang; ð153Þ

with

h̄L;Sang ¼ 1

ρ

�
4Mr20

r0 − 3M
þ 2Mr0Δr

r0 − 3M

×
3r0 − 7M − 2r0f0ð1 − γÞ

r0f0γ

�
; ð154Þ

and the Φ dependence expressed through γ.
The integral over Θ is performed first. Recall from

Eq. (146) that ρ has Θ dependence. As such, the integral
over Θ becomes,

Z
π

0

PlðcosΘÞ sinΘ
ρ

dΘ

∼
Z

1

−1

PlðcosΘÞ
ðν2 þ 1 − cosΘÞ1=2 dðcosΘÞ; ð155Þ

neglecting factors in ρ that do not depend on Θ. The
denominator of Eq. (155) is expandable in terms of
Legendre polynomials [18], and for ν ∼ Δr ≪ 1 but finite,

1

ðν2 þ 1 − cosΘÞ1=2
¼

X
l0

½
ffiffiffi
2

p
− ð2l0 þ 1Þjνj þOðν2Þ�Pl0 ðcosΘÞ: ð156Þ

Equation (155) is written, using Eq. (156) and substituting
u ¼ cosΘ, as,
Z

1

−1

PlðuÞ
ðν2 þ 1 − uÞ1=2 du

¼
X
l0

½
ffiffiffi
2

p
− ð2l0 þ 1Þjνj þOðν2Þ�

Z
1

−1
Pl0 ðuÞPlðuÞdu

¼
X
l0

½
ffiffiffi
2

p
− ð2l0 þ 1Þjνj þOðν2Þ�

�
2

2l0 þ 2

�
δll0

¼
�

2

2lþ 1

�
½

ffiffiffi
2

p
− ð2lþ 1Þjνj þOðν2Þ�; ð157Þ

where the third line follows from the orthogonality of the
Legendre polynomials, and δll0 is the Kronecker delta.
This result is the integral over Θ expanded as a power
series in ν.
After integrating overΘ, we focus on the integral overΦ.

All Φ dependence is now found in fractional or whole
powers of γ, and the integral of these terms becomes a
hypergeometric function [25],

Z
2π

0

γndΦ ¼ 2π2F1

�
n;
1

2
; 1;

M
r0f0

�
: ð158Þ

When n ¼ −1=2, the integral is proportional to the elliptic
integral of the first kind, K̂ð M

r0f0
Þ, and when n ¼ 1=2 it is

proportional to the elliptic integral of the second kind,
Êð M

r0f0
Þ. All integer values of n reduce Eq. (158) to a

polynomial in M
r0f0

, and any other value of n is related to
these three cases by the recursion relation for
FpðkÞ≡ 2F1ðp; 12 ; 1; kÞ,

Fpþ1ðkÞ ¼
p − 1

pðk − 1ÞFp−1ðkÞ þ
1 − 2pþ ðp − 1

2
Þk

pðk − 1Þ FpðkÞ:

ð159Þ
When the dust has settled, Al0

S is given to linear order
in Δr as,

Al00
L;S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

ð2lþ 1Þðr0 − 3MÞ

s �
−
4ðr0 −MÞf1=20 K

πr3=20

− ð2lþ 1ÞjΔrj ðr0 −MÞ
r5=20

þΔr
�
2½r20 − 3Mr0 þ 2M2�E

πr7=20 f1=20

−
4½r20 − 3Mr0 þ 4M2�K

πr7=20 f1=20

��
þOðΔr2Þ: ð160Þ

The final task is to express the singular field projections in terms of the original ðt; r; θ;ϕÞ coordinates. This is
accomplished, in part, by reversing the rotation performed in Eq. (144) through the use of the Wigner-D matrix Dl

m;m0

defined in Appendix A B,

Âlm
L;S ¼

Xl
m0¼−l

Dl
m;m0

�
π;
π

2
;
π

2

�
Alm0

S : ð161Þ
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To recover the r dependence, we simply substitute the
definition of Δr ¼ r − r0. Finally, the singular field pro-
jections are evaluated at Δt ¼ t ¼ 0 in the ðΘ; ΦÞ coor-
dinates. After rotation back to the original Schwarzschild
coordinates, the singular field must obey the helical
symmetry of the physical spacetime, as it is an approxi-
mation of the particular solution to Eq. (2). We then
attribute the same time dependence given to the retarded
metric perturbation, Eq. (36), written in full as,

Alm
L;Sðt; rÞ ¼ e−iωmt

Xl
m0¼−l

Dl
m;m0

�
π;
π

2
;
π

2

�
Alm0

S ð0; rÞ:

ð162Þ

The construction of the singular field in this paper is
identical to Ref. [25] with two additional considerations:
(1) Constructing the gauge invariants (51)–(56) requires

taking additional radial derivatives of the singular
field projections, so terms proportional to Δr2 are
necessary, which were suppressed in the analysis
above (for brevity) and in Ref. [25].

(2) The even-parity gauge invariants (53)–(56) involve
factors of l (contained in λ), which indicate the
presence of additional angular derivatives before the
mode decomposition. Therefore, a higher-order ex-
pansion in m0 is required for certain modes, with the
specific value of m0 for each A–K listed in Table I.

The expressions for the higher-order singular field projec-
tions are unwieldy, and as such, they are made available
electronically [54], constructed in the BLS basis. One may
recover the higher-order projections of the A–K terms used
in this work via Appendix C.

C. Singular field for l ≥ 2

To find the RW/EZ gauge singular field, the gauge-
invariant quantities in Eqs. (51)–(56) are constructed from
the A–K projections of hL;Sab . Taking into consideration the
time dependence in Eq. (162), the radial functions of the
gauge invariants are,

α̂S ¼ ĴL;S −
r
2

dĜL;S

dr
; ð163Þ

β̂S ¼ −ĈL;S þ
iωmr
2

ĜL;S; ð164Þ

χ̂S ¼ ĤL;S −
1

2f
ÊL;S −

λþ 2

4f
F̂L;S −

r
2

dF̂L;S
dr

; ð165Þ

ψ̂S ¼ 1

2
K̂L;S −

r − 3M
2rf2

ÊL;S −
r
2f

dÊL;S

dr

−
ðλþ 2Þðr − 3MÞ

4rf2
F̂L;S −

rðλþ 2Þ
4f

dF̂L;S
dr

; ð166Þ

δ̂S ¼ D̂L;S −
iωmr
2f

ÊL;S −
r − 4M
rf

B̂L;S − r
dB̂L;S

dr

−
iωm½rðλþ 2Þ − 4ðr − 3MÞ�

4f
F̂L;S þ

iωmr2

2

dF̂L;S
dr

;

ð167Þ

ϵ̂S ¼ −
1

2
ÂL;S −

M
2r

ÊL;S þ iωmrB̂L;S

þ 1

2

�
ω2
mr2 −

Mðλþ 2Þ
2r

�
F̂L;S: ð168Þ

The lmmodes of the singular metric perturbation in the EZ
gauge are found via Eqs. (70)–(75), and in the RW gauge
via Eqs. (76)–(81). As the above quantities are gauge
invariant and the metric reconstruction requires no inte-
gration, the (l ≥ 2) modes of the EZ and RW gauge
singular fields are uniquely fixed.

D. Singular field for l= 0, 1

1. l = 0

The Zerilli gauge monopole is gauge invariant under
gauge transformations which respect the HKV symmetry.
Performing the gauge transformation outlined in Sec. VA
on the singular field yields,

Â00
Z;S ¼ Â00

L;S þ
M
r
Ê00
L;S; ð169Þ

K̂00
Z;S ¼ K̂00

L;S −
ðr − 3MÞ

rf2
Ê00
L;S −

r
f
dÊ00

L;S

dr
: ð170Þ

Note that the additional gauge transformation between the
Lorenz and Zerilli gauges to ensure asymptotic flatness,
Eq. (106), is naturally included in the regular piece of the
gauge vector (26), for it is proportional to a homogeneous
solution of the EFEs.

2. l= 1 odd parity

As discussed in Sec. V B, no gauge transformation is
necessary for the odd-parity dipole and the singular field
structure remains identical. As such, the singular field for
the odd-parity Zerilli dipole is equal to the Lorenz gauge
odd-parity dipole,

Ĉ10
Z;S ¼ Ĉ10

L;S: ð171Þ

3. l= 1 even parity

The even-parity dipole singular field is constructed
following the gauge transformation outlined in Sec. V.
The unknown constant ζ̂1m in the even-parity dipole gauge
vector is pure gauge and induces a change to the retarded
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field proportional to a homogeneous solution; we therefore
attribute it to the regular piece of the gauge vector in
Eq. (26). Additionally, the choice of lower bound in the
integral for Ŝ1mpart, Eq. (123), fixes the l ¼ 1 Zerilli gauge
solution recovered after regularization; the choice has been
made so that the regularization itself requires no knowledge
of the retarded Lorenz gauge solution and no integrals of
the singular or retarded field are necessary when evaluated
at the particle.
With these choices in place, the singular field contribu-

tion to the gauge vector is given by,

P̂1mS ¼ rðB̂1m
L;S − iωmŜ

1m
part;SÞ;

R̂1m
S ¼ r

2f

�
Ê1m
L;S þ

2

r
Ŝ1mpart;S

�
;

Ŝ1mS ¼ Ŝ1mpart;S; ð172Þ

with,

Ŝ1mpart;SðrÞ ¼ f−1
Z

r

r0

�
fðr0ÞĤ1m

L;Sðr0Þ −
1

2
Ê1m
L;Sðr0Þ

�
dr0;

ð173Þ

and the singular field for the Zerilli even-parity dipole is,

Â1m
Z;S ¼ Â1m

L;S − 2iωmrB̂
1m
L;S þ

M
r
Ê1m
L;S

þ 2r

�
M
r3

− ω2
m

�
Ŝ1mpart;S; ð174Þ

D̂1m
Z;S ¼ D̂1m

L;S −
�
r − 4M
rf

þ r
d
dr

�
B̂1m
L;S −

iωmr
2f

Ê1m
L;S

þ iωm

�
r
d
dr

−
4M
rf

�
Ŝ1mpart;S; ð175Þ

K̂1m
Z;S ¼ K̂1m

L;S −
�
r − 3M
rf2

þ r
f
d
dr

�
Ê1m
L;S

−
�
2

f
d
dr

−
2M
r2f2

�
Ŝ1mpart;S: ð176Þ

VII. TENSOR-HARMONIC REGULARIZATION

The regularization procedure detailed in Sec. III requires,
as input, the retarded and singular l modes of the quantity
of interest, in this case either the self-force or the redshift
invariant. We now construct the tensor-harmonic lmmodes
of the redshift invariant and the force from the A–K
variables of the metric perturbation in both the EZ and
RW gauges. The sum over m is then done analytically for
the singular contributions to construct the tensor-harmonic
regularization parameters.

A. Mode decomposition of ūt and F r

1. The redshift invariant ūt

The Detweiler redshift invariant is written for circular
orbits in Schwarzschild spacetime as [28],

ūt ¼ ð1 − 3M=r0Þ−1=2
1

2
uaubhRab: ð177Þ

To perform the regularization outlined in Eq. (28), we
require the retarded and singular modes of ūt; we find these
by extending the definition of the redshift invariant off of
the particle’s worldline,

ūt½h� ¼ ð1 − 3M=r0Þ−1=2
1

2
ũaũbhab; ð178Þ

for any smooth extension ũa, taken in this work to be the
rigid extension used by Barack and Ori [12], where the
components of the four-velocity are held fixed to their
values on the worldline while allowing the metric and
Christoffel symbols to vary. It is common to introduce a
second gauge-invariant quantity proportional to ūt [51],

ΔUðxÞ≡ ũaũbhab; ð179Þ

and to perform the regularization on ΔU, recovering ūt

afterwards via,

ūtR ¼ ð1 − 3M=r0Þ−1=2
1

2
lim
x→x0

½ΔUret − ΔUS�ðxÞ: ð180Þ

We now find the mode decomposition ofΔU in each gauge,
as constructed from the tensor-harmonic modes of hab and
evaluated at the particle.
In the EZ gauge, the even- and odd-parity components

are constructed from Eq. (33) and Eqs. (70)–(75) for l ≥ 2,

ΔUEZ;lm
even ðx0Þ ¼

E2

f20
Âlm

EZYlm

�
π

2
; 0
�

¼ −
2r0

r0 − 3M
ϵ̂lmYlm

�
π

2
; 0

�
; ð181Þ

ΔUEZ;lm
odd ðx0Þ ¼ −

2EL
r0f0

Ĉlm
EZ∂θYlm

�
π

2
; 0

�

¼ 2r20Ω
r0 − 3M

β̂lm∂θYlm

�
π

2
; 0

�
; ð182Þ

written in terms of the gauge invariants introduced in
Sec. IV B and substituting in the definitions of the specific
energy and angular momentum from Eq. (5). The lm
modes ofΔU in the RW gauge are similarly constructed via
Eqs. (76)–(81),
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ΔURW;lm
even ðx0Þ ¼

�
E2

f20
Âlm

RW þ L2

r20
Êlm
RW

�
Ylm

�
π

2
; 0

�

¼ −
2r0

r0 − 3M
ϵ̂lmYlm

�
π

2
; 0

�
; ð183Þ

ΔURW;lm
odd ðx0Þ ¼ −

2EL
r0f0

Ĉlm
RW∂θYlm

�
π

2
; 0

�

¼ 2r20Ω
r0 − 3M

β̂lm∂θYlm

�
π

2
; 0

�
: ð184Þ

The gauge invariance of ΔUlm at the particle for the l ≥ 2
modes is now manifestly apparent by comparing the even-
and odd-parity contributions constructed in each gauge.
One may perform a similar exercise starting with the metric
components in the Lorenz gauge, and the expressions for
ΔUL;lm reduce to Eqs. (181) and (182) for even and odd
parity, respectively.
To construct the tensor-harmonic modes of ΔUlm for

l < 2, we turn to the explicit expressions for the A–K
variables in the Zerilli gauge outlined in Sec. V. For the
monopole l ¼ 0, the only nonvanishing contribution to
ΔU arises from Â00

Z ,

ΔUZ;00ðx0Þ ¼
E2

f20
Â00

Z Y00

�
π

2
; 0

�
: ð185Þ

Here we see that ΔUZ;00 inherits its gauge invariance from
Â00

Z , which is gauge invariant under helically symmetric
gauge transformations as discussed immediately following
Eqs. (90) and (91). One may indeed consider Â00

Z to be
proportional to the l ¼ 0 reduction of ϵ̂lm as defined in
Eq. (56),

Â00
Z ¼ −2ϵ̂00; ð186Þ

given that the vector and tensor contributions to ϵ̂lm vanish
identically for l ¼ 0, in which case Eq. (185) is equivalent
to Eq. (181).
The dipole l ¼ 1 contributions are found to be,

ΔUZ;1m
even ðx0Þ ¼

E2

f20
Â1m

Z Y1m

�
π

2
; 0

�
; ð187Þ

ΔUZ;10
odd ðx0Þ ¼ −

2EL
r0f0

Ĉ10
Z ∂θY10

�
π

2
; 0

�
: ð188Þ

Again, Â1m
Z is invariant under helically symmetric gauge

transformations at the particle via Eq. (139), and may be
thought of as the l ¼ 1 reduction of ϵ̂lm,

Â1m
Z ¼ −2ϵ̂1m; ð189Þ

and thus Eqs. (187) and (181) are equivalent. Note that this
correspondence between Â1m

Z and ϵ̂1m does not hold off the

worldline and for radial derivatives of these functions;
radial derivatives of ϵ̂lm remain gauge invariant, but radial
derivatives of Â1m

Z depend on the choice of gauge, even at
the particle, as seen in Eq. (127).

2. The force F r

We next turn to the mode decomposition of the self-
force. The full expression for the gravitational self-force is
given by Eq. (10). We are interested specifically in
regularizing the radial component of the force, which
reduces to a simple form for circular orbits in terms of
the retarded metric perturbation,

F r½h� ¼ f
2
ũaũb∂rhab; ð190Þ

using the same four-velocity extension as in Eq. (178). The
even- and odd-parity contributions to the force in the EZ
gauge are found for l ≥ 2,

F r;lm
EZ;evenðx0Þ ¼

E2

2f0
∂rÂ

lm
EZYlm

�
π

2
; 0

�

¼ −
r0f0

r0 − 3M
∂rϵ̂

lmYlm

�
π

2
; 0

�
; ð191Þ

F r;lm
EZ;oddðx0Þ ¼ −

EL
r20

½Ĉlm
EZ þ r0∂rĈ

lm
EZ �∂θYlm

�
π

2
; 0

�

¼ r0f0Ω
r0 − 3M

½β̂lm þ r0∂rβ̂
lm�∂θYlm

�
π

2
; 0

�
;

ð192Þ

expressed in terms of the gauge invariants ϵ̂lm and β̂lm. In
the RW gauge,

F r;lm
RW;evenðx0Þ ¼

�
E2

2f0
∂rÂ

lm
RW

þ f0L2

2r30
ðr0∂rÊ

lm
RW þ 2Êlm

RWÞ
�
Ylm

�
π

2
; 0

�

¼ −
f0

r0ðr0 − 3MÞ

× ½r20∂rϵ̂
lm þ 3Mf0χ̂lm�Ylm

�
π

2
; 0

�
;

ð193Þ

F r;lm
RW;oddðx0Þ ¼ −

EL
r20

½Ĉlm
RW þ r0∂rĈ

lm
RW�∂θYlm

�
π

2
; 0
�

¼ r0f0Ω
r0 − 3M

½β̂lm þ r0∂rβ̂
lm�∂θYlm

�
π

2
; 0

�
:

ð194Þ
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The even-parity contributions to the force in the EZ and
RW gauges, Eqs. (191) and (193) respectively, differ by a
term proportional to χ̂lm, while the odd-parity contributions
to the force both reduce to identical expressions involving
the gauge-invariant β̂lm. Further, when constructed in the
Lorenz gauge, the odd-parity component of the force
exactly matches Eq. (194), indicating that the odd-parity
contributions to the force are gauge invariant for circular
orbits under the gauge transformations taking the Lorenz
gauge to the EZ or RW gauges. This invariance of the odd-
parity component of the force is investigated further below.
The low modes of the force are calculated in the Zerilli

gauge. For l ¼ 0 the force is,

F r;00
Z ðx0Þ ¼

E2

2f0
∂rÂ

00
Z Y00

�
π

2
; 0

�
; ð195Þ

which, similarly to ΔUZ;00, is equivalent to Eq. (191), and
the l ¼ 1 contributions to the force are given by,

F r;1m
Z;evenðx0Þ ¼

E2

2f0
∂rÂ

1m
Z Y1m

�
π

2
; 0

�
; ð196Þ

F r;10
Z;oddðx0Þ¼−

EL
r20

½Ĉ10
Z þr0∂rĈ

10
Z �∂θY10

�
π

2
;0

�
: ð197Þ

B. Tensor-harmonic regularization parameters

We now construct the singular contributions to the
redshift invariant and the force, and perform the m sum
analytically to recover the tensor-harmonic regularization
parameters introduced in Eq. (16).
Beginning with the gauge-invariant ΔU, the singular

contributions to the l modes are determined by,

ΔUl
RW;S ¼

Xl
m¼−l

ΔUlm
RW;Sðx0Þ; ð198Þ

with

ΔUlm
RW;Sðx0Þ ¼ lim

r→r0
fΔURW;lm

even ðxÞ þ ΔURW;lm
odd ðxÞgjθ¼π=2

ϕ¼0

ð199Þ

and the terms ΔURW;lm
even ðxÞ and ΔURW;lm

odd ðxÞ are con-
structed via Eqs. (181) and (182) for even and odd parity,
respectively, from the singular gauge invariants constructed
in Eqs. (163)–(168). The gauge invariants necessary for the
construction of ΔU do not involve radial derivatives of the
singular field [see Eqs. (164) and (168)]. Thus, the singular
modes of ΔU are continuous across the orbit in all gauges
and the limit in Eq. (199) does not have directional
dependence.
The m sum is performed in the original Schwarzschild

coordinates, unlike in Ref. [25] where the sum was

performed over m0 in the rotated coordinates ðΘ; ΦÞ.
Explicit factors ofm have been introduced into the singular
field via the time derivatives in Eqs. (163)–(168), and so we
perform the sum over azimuthal modes in the unrotated
frame. Performing the sum over m analytically was
addressed in Ref. [24], and we describe its solution in
Appendix A. A method to perform them sum in the rotated
frame has also been outlined by Miller et al. [55].
After taking them sum in Eq. (198), we recover ΔUl

RW;S
as an expansion in l, which we write as two terms,

ΔUl
RW;S ¼ ΔUl

½0� þ ΔUl
½2�; ð200Þ

following the notation for the scalar-harmonic regulariza-
tion parameters introduced in Ref. [36], where a term ΔUl

½n�
scales as Oðl−nÞ. We find,

ΔUl
½0� ¼

4μ

πðr20 þ L2Þ1=2 K̂; ð201Þ

ΔUl
½2� ¼

1

ð2l − 1Þð2lþ 3Þ
6μ

πr20ðr0 − 3MÞ1=2ðr0 − 2MÞ1=2
× ½ð5r20 − 31Mr0 þ 32M2ÞK̂
− ðr0 − 2MÞð5r0 − 11MÞÊ�: ð202Þ

Our result for ΔUl
½0� is identical to the leading-order

tensor-harmonic regularization parameter for ΔU derived
in Ref. [25], the term proportional to l−1 vanishes
identically, and the result for ΔUl

½2� is new for tensor-

harmonic modes. For the purposes of this work, ΔUl
½2� acts

to accelerate the convergence of the regularization in a
similar way to the accelerated convergence techniques used
in scalar-harmonic self-force regularization [31,36], as
visualized in Fig. 1 and detailed further in Sec. VIII.
To construct the regularization parameters for the force,

we perform the m sum as outlined in Eq. (17),

F r;l�
S ¼

Xl
m¼−l

lim
r→r�

0

F r;lm½hRW;S�jθ¼π=2
ϕ¼0

; ð203Þ

where the lm modes of the force are calculated from
the singular gauge invariants, Eq. (163)–(168), using
Eqs. (191) and (192) in the EZ gauge and Eqs. (193)
and (194) in the RW gauge. The modes for l < 2 are found
in the Zerilli gauge as outlined in Eqs. (195)–(197). After
the m sum is performed, the l modes of the singular force
separate into two terms, as in Eq. (16),

F r;l�
S ¼ ð2lþ 1ÞF r;�

½−1� þ F r
½0�;RW; ð204Þ

with the leading-order singular contribution given in both
the EZ and RW gauges as,
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F r;�
½−1� ¼∓ μ2

2r20

�
1 −

3M
r0

�
1=2

�
�
2μ2Mð2M − r0Þ
r5=20 ðr0 − 3MÞ3=2

�
l<1

�
�

μ2M2

2r5=20 ðr0 − 3MÞ3=2
�
l<2

: ð205Þ

This term is independent of the choice of EZ or RW gauge,
and is identical to the leading-order tensor-harmonic
regularization term used for the Lorenz gauge force [25].
We note that this behavior is also observed when regular-
izing the self-force in the radiation gauge, where the
leading-order scalar-harmonic regularization parameters
are found to be identical in both the radiation and
Lorenz gauges [19].
The regularization term F r

½0�;RW does depend on the
choice of gauge. We opt to write the subleading regulari-
zation parameters following Nakano et al. [24], where the
following regularization parameters are defined for all l
and adjustments due to the l < 2 modes are written as
separate corrections. The subleading tensor-harmonic regu-
larization parameters for the EZ and RW gauges are finally
given by,

μ−2F r
½0�;EZ ¼ ðr0 − 2MÞ1=2

πr30ðr0 − 3MÞ3=2 ½ð33M
2 − 18Mr0 þ r20ÞÊ

− 2ð18M2 − 9Mr0 þ r20ÞK̂�; ð206Þ

μ−2F r
½0�;RW ¼ ðr0 − 2MÞ1=2ðr0 − 3MÞ1=2

πr30
½Ê − 2K̂�: ð207Þ

Looking first to Eq. (207), we note that this term is
identical to the Lorenz gauge Br parameter for scalar-
harmonic regularization and the nonvanishing contribution
to F r

½0�;L in Ref. [25]. The only deviation away from the

Lorenz-gauge regularization lies in the adjustments made at
l < 2; as these adjustments arise from the difference
between the asymptotic, high-l behavior of the singular
modes of the force and the local expansion of the singular
force, they are naturally attributed to the Dr parameter in
Eq. (16) [56], which is found to vanish in the Lorenz gauge
but in the RW gauge now takes a nonzero value given
in Eq. (D4).
Thus, regularization may be performed in the RW gauge

by using the Lorenz gauge tensor-harmonic regularization
parameters with the addition of a nonvanishing Dr

RW
parameter. The same may not be said of regularization
in the EZ gauge: the l-independent contribution to F r

½0�;EZ
is not equal to the Lorenz gauge term. Regularization in this
gauge requires an adjustment not only to Dr

EZ given in
Eq. (D2), but also an adjustment to the Lorenz gauge Br

parameter at each l. We show in Fig. 2 the lack of
convergence in the l modes for the EZ-gauge self-force
when the regularization is performed with the lower-order
singular field expansion given in Wardell and Warburton
[25], and the correct 1=l2 fall-off recovered when regular-
izing with F r

½0�;EZ given in Eq. (206). One sees this result

more directly when the singular gauge vector between the
Lorenz andEZ/RWgauges is constructed,whichwenowdo.
The method outlined above for constructing the force

regularization parameters involves first finding the singular
gauge invariants in Eqs. (163)–(168) and then reconstruct-
ing the singular contributions to the force directly in each
gauge. An equally valid approach to finding the regulari-
zation parameters is to explicitly calculate the gauge vector
between the Lorenz gauge and the EZ/RW gauges. The

FIG. 2. The individual l modes of the EZ gauge self-force are
plotted for 2 ≤ l ≤ 90 on a log-log scale at the orbital radius
r0 ¼ 10M. The retarded modes of the EZ gauge self-force, F r;l

ret ,
are calculated from inside the orbit and are shown to diverge with
l. The force F r;l

WW corresponds to the regularization produced
when using the low-order, analytic expansions for the singular
field published in Ref. [25]; this regularization is incomplete and
the self-force diverges in the l sum as 1=s. Finally we plot the
regularized EZ gauge self-force, F r;l

reg, produced in Eq. (216)
using the EZ gauge regularization parameters in Sec. VII.

FIG. 1. We plot the l modes of ΔUl for 2 ≤ l ≤ 90 on a log-
log scale at the orbital radius r0 ¼ 10M. ΔUl

ret denotes the
unregularized, retarded modes of ΔUl constructed in the RW
gauge, while ΔUl

½0� and ΔUl
½2� correspond to the regularized

modes of ΔUl after subtracting first ΔUl
½0� and then ΔUl

½2� from
the retarded modes, respectively, as in Eq. (218).
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force then transforms as in Eq. (20); for a particle traveling
along a circular orbit, the radial component of the force
transforms under gauge transformations which obey the
HKV symmetry as [18],

F r
newðx0Þ ¼ F r

oldðx0Þ −
3μMf0

r20ðr0 − 3MÞ ξ
r: ð208Þ

To construct the regularization parameters in the EZ/RW
gauges, we require the Lorenz gauge tensor-harmonic
regularization parameters (found in Ref. [25]) and the
mode decomposition of the singular gauge vector intro-
duced in Eq. (25). The gauge-transformed regularization
parameters are then given by,

F r;l�
RW;S ¼ F r;l�

L;S −
3μMf0

r20ðr0 − 3MÞ ξ
r;l�
RW;S: ð209Þ

For the l ≥ 2 modes, the radial component of the gauge
vector ξaS is straightforward to find for both gauges [23]
from the tensor-harmonic modes of the Lorenz gauge
singular field,

ξ̂r;lmEZ;Sðx0Þ ¼
r0
2

�
Êlm
L;S þ

λþ 2

2
F̂lmL;S

�
Ylm

�
π

2
; 0

�
; ð210Þ

ξ̂r;lmRW;Sðx0Þ ¼ r0f0

�
Ĥlm

L;S −
r0
2

dF̂lmL;S
dr

�
Ylm

�
π

2
; 0

�
: ð211Þ

The l < 2 modes of the gauge transformation require the
gauge vector from the Lorenz gauge to the Zerilli gauge, as
outlined in Sec. V, with the monopole contribution given by
Eq. (87),

ξ̂r;00Z;S ðx0Þ ¼
r0
2
Ê00
L;SY00

�
π

2
; 0

�
: ð212Þ

For l ¼ 1, only even parity requires a gauge transforma-
tion, and the radial component to the gauge vector is given
by Eq. (120),

ξr;1mZ;S ðx0Þ ¼
r0
2
Ê1m
L;SY1m

�
π

2
; 0

�
: ð213Þ

Recall that a choice was made in Sec. VI to associate the
gauge constant ζ̂1mwith the regular contribution to the dipole
gauge transformation and that Ŝ1mpart vanishes at the orbit.
We list the full expressions for the gauge vectors in

Appendix D, but the results of this calculation are not
surprising and produce the same regularization parameters
presented above. In the RWgauge, ξr;lRW;S contains at leading
order terms which scale as Oðl−2Þ and vanish when
summed from l ¼ 0 to infinity, plus contributions specifi-
cally at l < 2 that generateDr

RW. The EZ gauge vector ξr;lEZ;S

scales as a constant at leading order in l, along with terms
which vanish in the l sum and specific contributions at
l < 2. This constant scaling behavior in the l sum corre-
sponds to a local 1=s singularity in the gauge vector [19] that
matches the local analysis performed in Appendix E.

VIII. RESULTS

We now list the results of our numerical analysis,
beginning with the regularization of the redshift invariant.
We then calculate the regularized LL force from both the
RW and EZ gauge retarded metric perturbations. Finally,
we calculate the gauge vector, ξRW;C, from the regularized
Lorenz gauge metric perturbation and compare the Lorenz
gauge self-force to the forces computed in the EZ and RW
gauges.
To ensure that the comparison occurs at the same event in

all gauges, we work with an asymptotically flat monopole
as discussed in Sec. V, and evaluate all quantities at the
gauge-invariant radius introduced in Ref. [28],

RΩ ≡
�
M
Ω2

�1
3

: ð214Þ

For quantities which are entirely first order in μ=M, e.g., ūt,
we find that ūtðRΩÞ ¼ ūtðr0Þ þOðμ2=M2Þ [51].
The regularized redshift invariant ūtR is calculated by

performing the sum in Eq. (30), subtracting the tensor-
harmonic regularization parameters from retarded lmodes,

ūtR ¼ ð1 − 3M=RΩÞ−1=2
1

2

Xlmax

l¼0

½ΔUl
RW;ret − ΔUl

½0� − ΔUl
½2��;

ð215Þ
with the l < 2modes of ΔUl

RW;ret constructed in the Zerilli
monopole and dipole gauges, respectively, for both the RW
and EZ gauges. To calculate the regularized radial compo-
nent of the self-force in each gauge, we perform the
summation,

F r
self ¼

Xlmax

l¼0

½F r;l�
RW;ret − ð2lþ 1ÞF r;�

½−1� − F r
½0�;RW� −Dr

RW;

ð216Þ

where the retarded modes of the force are calculated in each
gauge following Sec. VII A.
To account for the truncation of the sums above at lmax,

we introduce a “tail” correction [17,20], for ΔU given by,

ΔUtail ¼
X∞

lmaxþ1

ΔUl
res; ð217Þ

with ΔUl
res defined as,
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ΔUl
res ≡ ΔUl

RW;ret − ΔUl
½0� − ΔUl

½2�: ð218Þ

ΔUl
res is found by numerically fitting the l falloff of the

Oðϵ0Þ and higher contributions to the residual, plotted in
Fig. 1, assuming it has the form given by the ansatz,

ΔUl
½4þ� ∼

Xkmax

k¼2

ΔU½2k�
P2kðlÞ

; ð219Þ

where each P2kðlÞ is a polynomial of order l2k chosen
such that each term in the sum (219) vanishes when
summed from l ¼ 0 to infinity (and thus does not formally
contribute to the self-force), and fΔU½2k�gkmax

k¼2 are constant
parameters. We use the polynomials given by,

P2kðlÞ ¼
Yk
k0¼0

ð2l − 2k0 − 1Þð2lþ 2k0 þ 3Þ; ð220Þ

which we note are naturally found in the accelerated term
(202) for k ¼ 0.
To accelerate the convergence of the regularized self-

force, we assume a similar form for the residual,

F r;l
res ≡ F r;l�

RW;ret − ð2lþ 1ÞF r;�
½−1� − F r

½0�;RW; ð221Þ

and fit the data to the ansatz,

F r;l
½2þ� ∼

Xkmax

k¼1

F r
½2k�

P2kðlÞ
; ð222Þ

beginning here at k ¼ 1 to match the l falloff of the
residual data. The acceleration to the convergence is then
seen as [20],

F r
R ¼

Xlmax

l¼0

½F r;l
ret − ð2lþ 1ÞF r;l

½−1� − F r;l
½0� �

þ
X∞

lmaxþ1

Xkmax

k¼1

F r
½2k�

P2kðlÞ
þOðl−ð2kmaxþ1ÞÞ: ð223Þ

The final results for ūtR are tabulated in Table II for a
variety of orbital radii, compared against the results of
Dolan et al. [57]. The results for the regularized self-force
computed in the EZ and RW gauges are given in Table III
for a variety of orbital radii, and the residuals obtained
when accelerating the convergence of the EZ-gauge self-
force are plotted in Fig. 3.

A. Comparison to Lorenz gauge force

As a check of our results, we now calculate the gauge
transformation between the regularized self-force in the

TABLE II. Comparison between the regularized ūt from this work using lmax ¼ 90 and numerical data presented
by Dolan et al. [57] in their Table V, evaluated at the gauge-invariant radius RΩ. The uncertainty in this work’s data is
represented by the first excluded digit and is determined by the error in the numerical data.

RΩ=M ðM=μÞūt [This Work] ðM=μÞūt [Dolan et al.]

5 −4.66652374199560 × 10−1 −4.666523741995578 × 10−1

6 −2.960275092900145 × 10−1 −2.9602750929001455 × 10−1

7 −2.208475274322470 × 10−1 −2.20847527432247320 × 10−1

8 −1.777197435535924 × 10−1 −1.77719743553592433 × 10−1

9 −1.493606089179072 × 10−1 −1.49360608917907227 × 10−1

10 −1.291222743920494 × 10−1 −1.29122274392049459 × 10−1

12 −1.019355723862671 × 10−1 −1.01935572386267132 × 10−1

14 −8.438195340957111 × 10−2 −8.43819534095711226 × 10−2

16 −7.205505742934500 × 10−2 −7.20550574293450112 × 10−2

18 −6.290189942823900 × 10−2 −6.29018994282390090 × 10−2

20 −5.582771860249385 × 10−2 −5.58277186024938513 × 10−2

30 −3.577831357182052 × 10−2 −3.57783135718205099 × 10−2

40 −2.633967741370485 × 10−2 −2.63396774137048419 × 10−2

50 −2.084465653059542 × 10−2 −2.08446565305954225 × 10−2

60 −1.724759329267916 × 10−2 −1.72475932926791548 × 10−2

70 −1.470964636172172 × 10−2 −1.47096463617217204 × 10−2

80 −1.282296057577150 × 10−2 −1.28229605757714959 × 10−2

90 −1.136531560741143 × 10−2 −1.13653156074114270 × 10−2

100 −1.020528273002761 × 10−2 −1.02052827300276055 × 10−2

500 −2.008040444139764 × 10−3 −2.00804044413976405 × 10−3

1000 −1.002005027714143 × 10−3 −1.00200502771414297 × 10−3

5000 −2.000800400443024 × 10−4 −2.00080040044302370 × 10−4
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Lorenz gauge and each of the EZ and RW gauges by
computing the regular gauge vector in Eq. (26). We choose
to begin in the Lorenz gauge and work to find the gauge
transformation to the EZ/RW gauges; this choice is
a matter of convenience, since the gauge transformation
from any gauge to the EZ/RW gauges is relatively simple to
construct using tensor-harmonicmodes [23],while the gauge
transformation from theRWgauge to the Lorenz gauge is not

[58]. The task is further simplified by the need for only the
radial component of the gauge vector, as seen by the
transformation properties of the force for circular orbits
in Eq. (208).
To start, the regularized Lorenz gauge metric perturba-

tion, hL;Rab , is computed using the effective source regulari-
zation techniques outlined in Ref. [25]. The authors were
given this numerical data from Niels Warburton [59],
decomposed into BLS-basis tensor-harmonic modes.
From this numerical data, the regular gauge vector is
constructed mode by mode following Eq. (26).
For l ≥ 2, the radial component of the regular gauge

vector ξaC is constructed identically to the singular gauge
vector ξaS, replacing the singular A–K components of the
Lorenz gauge metric perturbation with the regularized
components,

ξ̂r;lmEZ;Cðx0Þ ¼
r0
2

h
Êlm
L;R þ λþ 2

2
F̂lmL;R

i
Ylm

�
π

2
; 0

�
; ð224Þ

ξ̂r;lmRW;Cðx0Þ ¼ r0f0

�
Ĥlm

L;R −
r0
2

dF̂lmL;R
dr

�
Ylm

�
π

2
; 0

�
; ð225Þ

with monopole and dipole contributions given by,

TABLE III. The gravitational self-force calculated for a variety of radii r0 in the EZ and RW gauges, with
lmax ¼ 90. The uncertainty in this work’s data is represented by the first excluded digit and is determined by the
error in the numerical data.

r0=M ðM=μÞ2F r
EZ ðM=μÞ2F r

RW

5 1.3491385787783 × 10−1 1.4478678123551 × 10−1

6 8.3524207606497 × 10−2 8.6934324131015 × 10−2

7 5.7062560017807 × 10−2 5.8571804183181 × 10−2

8 4.15552621898715 × 10−2 4.23286430116071 × 10−2

9 3.16509341842258 × 10−2 3.20885498792370 × 10−2

10 2.49263586496073 × 10−2 2.51925841277600 × 10−2

12 1.66246017064658 × 10−2 1.67396850792489 × 10−2

14 1.18801077328929 × 10−2 1.19376803778606 × 10−2

16 8.91343515555617 × 10−3 8.94533890457622 × 10−3

18 6.93472364128979 × 10−3 6.95379534903761 × 10−3

20 5.54905996206358 × 10−3 5.56114762804262 × 10−3

30 2.37962509465255 × 10−3 2.38177780442984 × 10−3

40 1.31536713121881 × 10−3 1.31601370250459 × 10−3

50 8.33160391138597 × 10−4 8.33417027210234 × 10−4

60 5.74629392014362 × 10−4 5.74750573327324 × 10−4

70 4.20123225270203 × 10−4 4.20187653749219 × 10−4

80 3.20486589318390 × 10−4 3.20523928418601 × 10−4

90 2.52508907696752 × 10−4 2.52532012109719 × 10−4

100 2.04070927223777 × 10−4 2.04085978386760 × 10−4

500 8.03211169423443 × 10−6 8.03213455900903 × 10−6

1000 2.00400696809141 × 10−6 2.00400838779413 × 10−6

5000 8.00320111329434 × 10−8 8.00320133925429 × 10−8

FIG. 3. Absolute value of the residual after subtraction of each
successive regularization term from the EZ gauge self-force
versus l on a log-log scale from lmin ¼ 35 to lmax ¼ 85 for
r0 ¼ 10M and kmax ¼ 5.
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ξ̂r;00Z;C ðx0Þ ¼
r0
2
Ê00
L;RY00

�
π

2
; 0

�
; ð226Þ

ξ̂r;1mZ;C ðx0Þ ¼
hr0
2
Ê1m
L;R þ f−10 ζ̂1m

i
Y1m

�
π

2
; 0

�
; ð227Þ

where ζ̂1m is the gauge constant used to specify the specific
retarded Zerilli dipole gauge used for the EZ and RW gauge
forces, calculated from the retarded Lorenz gauge metric
perturbation using either Eq. (140) or Eq. (141). The veri-
fication of Eq. (142), along with the comparison between
the analytic Zerilli dipole metric perturbation and the
gauge-transformed Lorenz gauge dipole perturbation pro-
vides a check on the numerical accuracy of the Lorenz
gauge numerical data produced in Ref. [25], listed in
Table IV. The full gauge vector is recovered by summing
over modes,

ξ̂rRW;Cðx0Þ ¼ ξ̂r;00Z;C þ
X1
m¼−1

ξ̂r;1mZ;C

þ
Xlmax

l¼2

Xl
m¼−l

ξ̂r;lmRW;C þ ξ̂rtail;RW; ð228Þ

where we have introduced a tail contribution to compensate
for the truncated l sum, defined as above for F r

tail and fit to
the l falloff of ξ̂r;lRW;C.
Finally, the retarded Lorenz gauge metric begins with a

monopole which is not asymptotically flat (see Sec. V).
Adjusting to an asymptotically flat monopole requires the
gaugevector given inEq. (106)which does not obey theHKV
symmetry; its contribution to the change in the force must be
calculated separately from Eq. (208) using ξNAFa [18],

F r
AFðx0Þ ¼ F r

NAFðx0Þ þ
2μ2M2f0

r3=20 ðr0 − 3MÞ3=2
: ð229Þ

Combining these two gauge contributions, the final result of
the gauge transformation is,

F r
L→RW;Rðx0Þ ¼ F r

L;Rðx0Þ −
3μMf0

r20ðr0 − 3MÞ ξ
r
RW;Cðx0Þ

þ 2μ2Mf0
r3=20 ðr0 − 3MÞ3=2

: ð230Þ

We compare the gauge-transformed Lorenz gauge force
against the self-forces computed in the EZ and RW gauges
in Table V.

IX. CONCLUSIONS

In this work, we produced results for the regularized
gravitational self-force computed in the RW and EZ gauges
for a circular orbit in the Schwarzschild spacetime, and

TABLE IV. We check the accuracy of the Lorenz gauge
numerical data produced in Ref. [25] against the analytic Zerilli
gauge dipole metric perturbation by performing the gauge
transformation and evaluating the relative difference at r0 ¼
6M and r0 ¼ 10M. We also verify that the two gauge constants in
Eq. (142) coincide for circular orbits. All values are given as
relative differences, ΔK ¼ jKL→Z=KZ − 1j, except for the A term
which vanishes in the Zerilli gauge at the particle.

r0 ¼ 6M r0 ¼ 10M

ðM=μÞAL→Z 2 × 10−28 5 × 10−27

Δ∂rA 8 × 10−28 2 × 10−26

ΔD 1 × 10−27 1 × 10−25

Δ∂rD 2 × 10−27 2 × 10−25

ΔK 2 × 10−27 2 × 10−25

Δ∂rK 2 × 10−27 1 × 10−25

Δζ̂ 7 × 10−27 6 × 10−25

TABLE V. We provide a numerical comparison between the self-force computed in the Lorenz gauge from
numerical data produced in Ref. [25] and the self-force constructed in the RW and EZ gauges from numerical data
produced for this work, with lmax ¼ 60 for the Lorenz-gauge data. The regularized Lorenz gauge self-force is
computed using the methods outlined in Ref. [25], and the gauge vectors ξrRW;C and ξrEZ;C are calculated from the
regularized Lorenz gauge metric perturbation as outlined in Eqs. (224)–(227). The computed relative difference is
taken to be jF r

L→RW;R=F
r
RW;R − 1j.

r0 ¼ 6M r0 ¼ 10M

ðM=μÞ2F r
L;R 2.4466497159525 × 10−2 1.338946946191866 × 10−2

ðM=μÞξrRW;C −2.430453614878363 −2.64575603798078264
ðM=μÞ2F r

L→RW;R 8.6934324131015 × 10−2 2.51925841277599 × 10−2

ðM=μÞ2F r
RW;R 8.6934324131015 × 10−2 2.51925841277600 × 10−2

rel. diff. 5. × 10−15 7. × 10−17

ðM=μÞξrEZ;C −2.246307322554369 −2.56810694018625259
ðM=μÞ2F r

L→EZ;R 8.3524207606496 × 10−2 2.49263586496072 × 10−2

ðM=μÞ2F r
EZ;R 8.3524207606497 × 10−2 2.49263586496073 × 10−2

rel. diff. 5. × 10−15 2. × 10−16
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compared directly our values of these forces to the Lorenz
gauge self-force via an explicit gauge transformation.
Our numerical implementation allows for the fast and
efficient calculation of the first-order self-force from the
Regge-Wheeler andZerillimaster functions in theRWgauge
itself for circular orbits, which has heretofore not been done.
The results presented here fill a gap in the literature for

self-force regularization in the RW and EZ gauges at first
order. They also act as a step toward the development of a
framework for gravitational self-force regularization in the
RW/EZ gauges at second order in the perturbation. Thus far,
approaches to the second-order analysis have been rooted in
the Lorenz gauge (see e.g., Ref. [60]). A general approach to
perturbations in the RW gauge at second order in the mass
ratio was introduced by Brizuela et al. [61]. However,
ongoing work to regularize the first-order metric perturba-
tion at spatial infinity [62] and the horizon is necessary
before construction of the second-order sources is tractable.
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APPENDIX A: TENSOR-HARMONIC BASIS

1. Vector and tensor harmonics

We review the pure-spin tensor-harmonic basis intro-
duced in Ref. [65] which is used with the A–K notation in
Eq. (33). The scalar spherical harmonics are defined as
eigenfunctions of the spherical Laplacian and given by,

Ylmðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

ðl −mÞ!
ðlþmÞ!

s
Pm
l ðcos θÞeimϕ; ðA1Þ

where Pm
l ðcos θÞ is the associated Legendre polynomial. In

constructing the vector and tensor harmonics, we require
the two vector fields va and na, introduced in Sec. IV, along
with the Schwarzschild metric on the two-sphere,

σab ¼ gab þ fvavb − f−1nanb: ðA2Þ

The vector harmonics are now defined as,

YE;lm
a ¼ r∇aYlm; ðA3Þ

YB;lm
a ¼ rεabcnb∇cYlm; ðA4Þ

YR;lm
a ¼ naYlm; ðA5Þ

where εabc is the spatial Levi-Civita tensor with vaεabc¼0

and εrθϕ ¼ r2 sin θ. The tensor harmonics are further
defined as,

TT0;lm
ab ¼ σabYlm; ðA6Þ

TL0;lm
ab ¼ nanbYlm; ðA7Þ

TE1;lm
ab ¼ rnða∇bÞYlm; ðA8Þ

TB1;lm
ab ¼ rnðaεbÞcdnc∇dYlm; ðA9Þ

TE2;lm
ab ¼ r2

�
σa

cσb
d −

1

2
σabσ

cd

�
∇c∇dYlm; ðA10Þ

TB2;lm
ab ¼ r2σðacεbÞedne∇c∇dYlm: ðA11Þ

Finally we list the conventions used for finding the A–K
projections introduced in Ref. [23]. For an arbitrary smooth
tensor field Xab, the A–K terms are found via,

XA ¼ f2
Z

vavbY�
lmXabdΩ; ðA12Þ

XB ¼ −
f

lðlþ 1Þ
Z

vaYb�
E XabdΩ; ðA13Þ

XC ¼ −
f

lðlþ 1Þ
Z

vaYb�
B XabdΩ; ðA14Þ

XD ¼ −
Z

vaYb�
R XabdΩ; ðA15Þ

XE ¼ 1

2

Z
Tab�
T0 XabdΩ; ðA16Þ

XF ¼
2ðl − 2Þ!
ðlþ 2Þ!

Z
Tab�
E2 XabdΩ; ðA17Þ

XG ¼ 2ðl − 2Þ!
ðlþ 2Þ!

Z
Tab�
B2 XabdΩ; ðA18Þ

XH ¼ ðl − 1Þ!
ðlþ 1Þ! f

−1
Z

Tab�
E1 XabdΩ; ðA19Þ

XJ ¼
ðl − 1Þ!
ðlþ 1Þ! f

−1
Z

Tab�
B1 XabdΩ; ðA20Þ

XK ¼ f−2
Z

Tab�
L0 XabdΩ; ðA21Þ
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where � denotes complex conjugation and dΩ ¼
sin θdθdϕ.

2. Rotations and m sums

To perform the rotation between the two-sphere angles
ðΘ;ΦÞ and the original Schwarzschild angles ðθ;ϕÞ in
Sec. VI, we use the Wigner-D matrices Dl

m;m0 ,

Dl
m;sðα; β; γÞ ¼ ð−1Þs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
−sY�

lmð−β; αÞe−isγ;
ðA22Þ

written here for the Euler angles α, β, and γ chosen in
Ref. [25] and in terms of spin-weighted spherical harmon-
ics sYlmðθ;ϕÞ using the conventions of MATHEMATICA

[48]. The spin-weighted spherical harmonics may be
constructed from the scalar spherical harmonics [66]; for
s ¼ 0, the spin-weighted and scalar spherical harmonics are
related via the identification

0Ylmðθ;ϕÞ ¼ Ylmðθ;ϕÞ: ðA23Þ
To construct a spin-weighted harmonic sYlm with spin
weight s, raising and lowering operators are defined,
respectively,

ðs ¼ −
∂θ þ i csc θ∂ϕ − s cot θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − sÞðlþ sþ 1Þp ; ðA24Þ

ð̄s ¼
∂θ − i csc θ∂ϕ þ s cot θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ sÞðl − sþ 1Þp ; ðA25Þ

such that any spin-weight s harmonic is achieved by
repeated application of a raising or lowering operator on
Ylm, e.g.,

1Ylmðθ;ϕÞ ¼ ð0Ylmðθ;ϕÞ; ðA26Þ

−2Ylmðθ;ϕÞ ¼ ð̄−1ð̄0Ylmðθ;ϕÞ: ðA27Þ

It is clear that any spin-weighted spherical harmonic may
be written as a combination of scalar spherical harmonics
and their angular derivatives.
We noted in Sec. VII the difficulty involved in perform-

ing the m sum of the singular field analytically, as the sum
is performed in the original, unrotated Schwarzschild
coordinates. After reconstructing the singular field, each
component of hRW;S;lm

ab contains terms with the following
two forms produced by the rotation in Eq. (161):

for even parity;

Dl
m;m0

�
π;
π

2
;
π

2

�
þ ð−1Þm0

Dl
m;−m0

�
π;
π

2
;
π

2

�
; ðA28Þ

for odd parity;

Dl
m;m0

�
π;
π

2
;
π

2

�
− ð−1Þm0

Dl
m;−m0

�
π;
π

2
;
π

2

�
: ðA29Þ

Theseexpressions result fromcombining�m0 values together
and simplifying using the complex conjugation of the A–K
variables, e.g., Al;−m0 ¼ ð−1Þm0

Al;m0�. We write these com-
binations of Wigner-D matrices in terms of spherical
harmonics,

Dl
m;m0

�
π;
π

2
;
π

2

�
þ ð−1Þm0

Dl
m;−m0

�
π;
π

2
;
π

2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
aþlmm0Y�

lm

�
π

2
; 0

�
; ðA30Þ

Dl
m;m0

�
π;
π

2
;
π

2

�
− ð−1Þm0

Dl
m;−m0

�
π;
π

2
;
π

2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
a−lmm0∂θY�

lm

�
π

2
; 0

�
; ðA31Þ

with coefficients,

aþlmm0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −m0Þ!
ðlþm0Þ!

s 8>><
>>:

1 for m0 ¼ 0;

2im for m0 ¼ 1;

2½lðlþ 1Þ − 2m2� for m0 ¼ 2;

ðA32Þ

a−lmm0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −m0Þ!
ðlþm0Þ!

s 8<
:

0 for m0 ¼ 0;

2i for m0 ¼ 1;

−4m for m0 ¼ 2;

ðA33Þ

reducing the necessary sums over m modes to be proportional to either,

Xl
m¼−l

mN jYlmðπ=2; 0Þj2;

or; ðA34Þ
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Xl
m¼−l

mN j∂θYlmðπ=2; 0Þj2: ðA35Þ

The sums in Eqs. (A34) and (A35) were calculated analytically by Nakano et al. [24], who evaluated them by repeated
differentiation of two generating functions,

Xl
m¼−l

mN jYlmðπ=2; 0Þj2 ¼ lim
z→0

dN

dzN

�
2lþ 1

4π
elz2F1

�
1

2
;−l; 1; 1 − e−2z

��
; ðA36Þ

Xl
m¼−l

mN j∂θYlmðπ=2; 0Þj2 ¼ lim
z→0

dN

dzN

�
2lþ 1

4π
eðl−1Þz

Γðlþ 1=2ÞΓð3=2Þ
ΓðlÞ

× 2F1

�
3

2
;−lþ 1;−lþ 1

2
; e−2z

��
: ðA37Þ

APPENDIX B: SOURCE TERMS IN A–K

We first list the source terms for the master functions in
Eq. (59),

SW ¼ fðr2∂rEC þ rEC þ r2∂tEJÞ; ðB1Þ

SZ ¼ −rf
2κ

�
−
r½λðλ − 2Þr2 þ 2Mrð7λ − 18Þ þ 96M2�

2rfκ
EA

þ r2∂rEA þ r2∂tED

þ ðλþ 2Þ
�
rfEH þ rf

2
EK −

κ

2
EF

��
: ðB2Þ

The source terms are constructed from projections
of the stress-energy tensor onto the tensor-harmonic basis,
Eq. (35) and Eqs. (A12)–(A21). When evaluated for a
circular orbit, the nonvanishing source terms are

l ≥ 0;

Elm
A ¼ −16π

μf0E
r20

δðr − r0ÞY�
lm

�
π

2
;Ωt

�
; ðB3Þ

Elm
E ¼ −8π

μΩL
r20

δðr − r0ÞY�
lm

�
π

2
;Ωt

�
; ðB4Þ

l ≥ 1;

Elm
B ¼ 16πim

lðlþ 1Þ
μf0L
r30

δðr − r0ÞY�
lm

�
π

2
;Ωt

�
; ðB5Þ

Elm
C ¼ −16π

lðlþ 1Þ
μf0L
r30

δðr − r0Þ∂θY�
lm

�
π

2
;Ωt

�
; ðB6Þ

l ≥ 2;

Elm
F ¼ −16π

ðl − 2Þ!
ðlþ 2Þ!

μΩL
r20

δðr − r0Þ

× ½lðlþ 1Þ − 2m2�Y�
lm

�
π

2
;Ωt

�
: ðB7Þ

APPENDIX C: A–K AND BARACK-LOUSTO-
SAGO DECOMPOSITIONS

For convenience, we list the A–K variables of the metric
perturbation in terms of the BLS basis of Barack and
Lousto [16] and Barack and Sago [17],

A ¼ 1

2r
ðh̄ð1Þ þ fh̄ð6ÞÞ;

B ¼ −
1

2r
1

lðlþ 1Þ h̄
ð4Þ;

C ¼ 1

2r
1

lðlþ 1Þ h̄
ð8Þ;

D ¼ −
1

2rf
h̄ð2Þ;

E ¼ 1

2r
h̄ð3Þ;

F ¼ ðl − 2Þ!
ðlþ 2Þ!

h̄ð7Þ

r
;

G ¼ −
ðl − 2Þ!
ðlþ 2Þ!

h̄ð10Þ

r
;

H ¼ 1

2rf
1

lðlþ 1Þ h̄
ð5Þ;

J ¼ −
1

2rf
1

lðlþ 1Þ h̄
ð9Þ;

K ¼ 1

2rf2
ðh̄ð1Þ − fh̄ð6ÞÞ:
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APPENDIX D: ADDITIONAL FORCE REGULARIZATION PARAMETERS

In this section, we present the results of the singular gauge transformation, which contributes to the subleading self-force
regularization parameters for the self-force in the EZ and RW gauges. We also display the Dr regularization parameter for
both the EZ and RW gauges.

1. EZ gauge

The l modes of the singular gauge vector from the Lorenz to EZ gauge are found to be,

ξr;lEZ;S ¼ 2μ

πðr0 − 3MÞ1=2ðr0 − 2MÞ1=2 f2ðr0 − 2MÞÊ − ðr0 − 3MÞK̂g

þ
�

16μ

10395πr0ðr0 − 3MÞ3=2ðr0 − 2MÞ1=2 fð2M − r0Þð4805M2 − 14843Mr0 þ 4896r20ÞÊ

þ ðr0 − 3MÞð6820M2 − 14255Mr0 þ 4896r20ÞK̂g
�
δl1: ðD1Þ

The Dr
EZ regularization parameter is given by,

Dr
EZ ¼ 16Mðr0 − 2MÞ1=2

3465πr40ðr0 − 3MÞ5=2 fðr0 − 2MÞð4805M2 − 14843Mr0 þ 4896r20ÞÊ

− ðr0 − 3MÞð6820M2 − 14255Mr0 þ 4896r20ÞK̂g: ðD2Þ

2. RW gauge

The l modes of the singular gauge vector from the Lorenz to RW gauge are found to be,

ξr;lRW;S ¼ −
�

μðr0 − 2MÞ1=2
945πr20ðr0 − 3MÞ3=2 fð21824M

3 − 56310M2r0 þ 32677Mr20 − 4269r30ÞÊ

þ ðr0 − 3MÞð15488M2 − 14416Mr0 þ 2379r20ÞK̂g
�
δl0

þ
�

μðr0 − 2MÞ1=2
10395πr20ðr0 − 3MÞ3=2 fð307520M

3 − 566142M2r0 þ 311041Mr20 − 47145r30ÞÊ

þ ðr0 − 3MÞð218240M2 − 174736Mr0 þ 67935r20ÞK̂g
�
δl1: ðD3Þ

The Dr
RW regularization parameter is given by,

Dr
RW ¼ −

μ22Mðr0 − 2MÞ3=2
3465πr50ðr0 − 3MÞ5=2 fð33728M

3 þ 26634M2r0 − 24203Mr20 − 93r30ÞÊ

þ ðr0 − 3MÞð23963M2 − 8080Mr0 þ 20883r20ÞK̂g: ðD4Þ

APPENDIX E: LOCAL GAUGE TRANSFORMATION FROM LORENZ TO EZ

The EZ gauge condition [23] is typically reported as an algebraic condition on various tensor-harmonic mode
components of the metric perturbation. This form of the gauge condition assumes a global decomposition of the metric
perturbation into tensor-harmonic modes, and the gauge condition is applied mode by mode; such a decomposition is not
locally defined and fails to describe the local behavior of a gauge transformation to the EZ gauge. We wish to study this
local behavior of the gauge transformation from the Lorenz gauge to the EZ gauge, and as such must look at the more
general form of the EZ gauge condition, namely
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hEZθθ ¼ 0; ðE1Þ

hEZϕϕ ¼ 0; ðE2Þ

hEZθϕ ¼ 0; ðE3Þ

sin θðsin θhEZtθ Þ;θ þ hEZtϕ;ϕ ¼ 0: ðE4Þ

The gauge conditions (E1)–(E3) state that the components
of the metric perturbation on the two-sphere are set to zero
(in A–K, the E, F, and G terms), and the gauge condition
(E4) is used to eliminate one even-parity vector piece of the
metric perturbation (the B term). This form of the EZ gauge
condition is well suited for a local investigation of the
gauge vector, and is also satisfied automatically by the
l ¼ 0, 1 Zerilli gauge monopole and dipole.
The gauge transformation from the Lorenz gauge to the

EZ gauge is generated by the vector ξa. To first order in the
gauge vector, this transformation takes the form,

hEZab ¼ hLab − 2∇ðaξbÞ: ðE5Þ

When substituted into the gauge conditions (E1)–(E4), the
gauge vector must satisfy the following equations:

hLθθ ¼ 2ξθ;θ þ 2ðr − 2MÞξr; ðE6Þ

hLϕϕ ¼ 2ξϕ;ϕ þ 2ðr − 2MÞ sin2 θξr
þ 2 sin θ cos θξθ; ðE7Þ

hLθϕ ¼ ξθ;ϕ þ sin2 θðsin−2 θξϕÞ;θ; ðE8Þ

sin θðsin θhLtθÞ;θ þ hLtϕ;ϕ ¼ sin θðsin θξt;θÞ;θ þ ξt;ϕϕ

þ sin θðsin θ_ξθÞ;θ þ _ξϕ;ϕ; ðE9Þ

where an overdot represents a time derivative. To analyze
these equations, we follow the framework laid out by
Barack and Ori (BO) [15]. As the gauge equations do
not contain any radial derivatives, we choose to work
on a constant r ¼ r0 hypersurface. Furthermore, we may
recover Eq. (38) of BO (up to a sign convention) by
combining Eqs. (E6) and (E7) as defined for hang ≡
ðhθθ − sin−2 θhϕϕÞ=2, which eliminates ξr:

sin θðsin−1θξθÞ;θ − sin−2θξϕ;ϕ ¼ hLang: ðE10Þ

The resulting equations naturally separate into condi-
tions on the angular components ξθ and ξϕ, Eqs. (E8) and
(E10), and the time component ξt, Eq. (E9).

1. Solving for ξθ and ξϕ
We reproduce the results of BO here for completeness.

To simplify the work involved, BO observed that Eqs. (E8)

and (E10) do not involve time derivatives, so we may
further restrict our analysis to the surface (t ¼ 0, r ¼ r0).
The local Lorenz gauge singular field may be written for

a perturbing mass μ as in Eq. (21),

hLab ¼
2μ

s
ðgab þ 2uaubÞ; ðE11Þ

where ua is the four-velocity of the particle and s is the
spatial geodesic displacement away from the worldline
along the surface. We may then rewrite Eqs. (E8) and
(E10), introducing the singular fields as a source term on
the rhs:

sin θðsin−1θξθÞ;θ − sin−2θξϕ;ϕ ¼ −
2μL2

s
; ðE12Þ

ξθ;ϕ þ sin2θðsin−2θξϕÞ;θ ¼ 0: ðE13Þ

Following BO, we now perform a change of coordinates on
the two-sphere to be Cartesian-like: y ¼ r0 sin θ sinφ,
z ¼ r0 cos θ. To see how this coordinate transformation
affects s, we use the definition of the space-like interval
along the submanifold spanned by y and z,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgab þ uaub − nanbÞxaxb

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ L2

r20

�
y2 þ z2

s
þ oðyÞ þ oðzÞ:

In their paper, BO defined the quantity

ð1 − v2Þ−1 ¼
�
1þ L2

r20

�
;

where 0 < v < 1 is the local boost velocity. After
expanding out Eqs. (E12) and (E13), we find to leading
order,

ξz;z − ξy;y ¼ −
2μL2

r20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þ−1y2 þ z2

p ; ðE14Þ

ξz;y þ ξy;z ¼ 0: ðE15Þ

Equation (E15) implies that both ξy and ξz can be found by
differentiating a scalar potential Φ,

ξz ¼ Φ;z; ξy ¼ −Φ;y; ðE16Þ

which must satisfy Poisson’s equation,

Φ;zz þΦ;yy ¼ −
2μL2

r20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þ−1y2 þ z2

p : ðE17Þ
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At this point, we transform coordinates again, changing the
local Cartesian coordinates to the polar coordinates
y ¼ ρ cos α, z ¼ ρ sin α, and reexpress Eq. (E17),

1

ρ
ðρΦ;ρÞ;ρ þ

1

ρ2
Φ;αα ¼

a
ρ

ð1 − v2Þ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2sin2α

p ; ðE18Þ

with a ¼ −2μL2=r20. If we suppose an ansatz for the
solution which is decomposed into Fourier modes einα,
we find that the general form of the potential is,

Φðρ; αÞ ¼ cαþ
X∞
n¼−∞

einαΦnðρÞ: ðE19Þ

The term cα in this general solution exists because the
potential Φ need not be single valued, due to the presence
of the singularity at y ¼ z ¼ 0, but its ρ and α derivatives
must be single valued. After substitution into Eq. (E18), the
Fourier modes Φn obey the equation,

1

ρ
ðρΦn;ρÞ;ρ −

n2

ρ2
Φn ¼

a
ρ
fn; ðE20Þ

with coefficients,

fn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

2π

Z
2π

0

e−inαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2sin2α

p dα: ðE21Þ

These coefficients vanish for odd n, and are generally
nonvanishing for even n. In particular,

f0 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

π
Kðv2Þ;

written in terms of the complete elliptic integral of the first
kind,K, is bounded from below away from zero. [This f0 is
not to be confused with fðr0Þ used in the body of this
paper.] BO next constructed the general solution to
Eq. (E20),

Φn ¼
�
b0ρþ γ0 þ β0 ln ρ for n ¼ 0;

bnρþ γnρ
jnj þ βnρ

−jnj for n ≠ 0;
ðE22Þ

with the arbitrary constants γn and βn arising from the
homogeneous solutions and the constants bn determined by
the particular solution,

bn ¼
�
afn=ð1 − n2Þ for even n;

0 for odd n:
ðE23Þ

With the general solution determined, the task is now to
find the most regular behavior of the gauge vector as we
approach the worldline (in this case, as ρ → 0). BO found
the most regular solution to be one which sets βn ¼ 0 for all

values of n, along with c ¼ 0. They then wrote the final
solution in a compact form,

Φðρ; αÞ ¼ γ0 þ ρHðαÞ þOðρ2Þ; ðE24Þ
with

HðαÞ ¼ γ1eiα þ γ−1e−iα þ
X∞
n¼−∞

bneinα:

Finally, the components of the gauge vector are recovered
by differentiating the potential, à la Eq. (E16),

ξy ¼ −H cos αþH;α sin αþOðρÞ; ðE25Þ

ξz ¼ H sin αþH;α cos αþOðρÞ: ðE26Þ

For the components of the gauge vector to be continuous at
the particle, they must be independent of α; otherwise the
ρ → 0 limit takes an indefinite value. BO found, though,
that the first derivatives of the gauge vector components,
ξy;α and ξz;α, do not vanish at the particle, implying a
directional dependence for their values and the presence of
jump discontinuities. They stressed that, while ξy and ξz are
discontinuous at the particle, they remain bounded in the
limit, thereby still satisfying the sufficiently regular criteria.

2. Solving for ξt
We now look to solve Eq. (E9) for ξt. Following the lead

of Pound, Merlin, and Barack [21], we now find a solution
for ξa which is well behaved as a function of time and
satisfies (SR3). As such, the time derivatives in Eq. (E9)
are subdominant to the spatial derivatives when looking at
the most singular behavior, and are ignored, reducing
Eq. (E9) to

sin θðsin θξt;θÞ;θ þ ξt;ϕϕ ¼ sin θðsin θhLtθÞ;θ þ hLtϕ;ϕ: ðE27Þ

For a particle traveling along a circular geodesic of
Schwarzschild spacetime, the rhs of Eq. (E27) becomes,

sin θðsin θhLtθÞ;θ þ hLtϕ;ϕ ¼
�
−4μEL

s

�
;ϕ
: ðE28Þ

We again introduce the locally Cartesian coordinates ðy; zÞ
on the surface (t ¼ 0, r ¼ r0), and expand Eq. (E28),
keeping only the leading terms,

ξt;yy þ ξt;zz ¼
4μELð1 − v2Þ−1y

r0½ð1 − v2Þ−1y2 þ z2�3=2 : ðE29Þ

The lhs is simply the flat-space Laplacian acting on ξt.
When transformed to the polar coordinates used in
Appendix E A, the equation becomes equivalent to
Eq. (E18) with a different source term,
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1

ρ
ðρξt;ρÞ;ρ þ

1

ρ2
ξt;αα ¼

c
ρ2

ð1 − v2Þ1=2 cos α
½1 − v2sin2α�3=2 ; ðE30Þ

with c ¼ 4μEL=r0. When decomposed into Fourier modes,
ξt is expressed as,

ξt ¼
X∞
n¼−∞

einαξnt ðρÞ;

satisfying,

1

ρ
ðρξnt;ρÞ;ρ −

n2

ρ2
ξnt ¼

c
ρ2

dn: ðE31Þ

The Fourier modes of the source now have different
characteristics,

dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

2π

Z
2π

0

e−inα cos α

ð1 − v2sin2αÞ3=2 dα; ðE32Þ

which vanish for all even values of n and are generally
nonvanishing for odd values of n, yielding the opposite
behavior of the coefficients fn. We again construct the most
general solution to Eq. (E30),

ξnt ¼
�
γ0 þ β0 ln ρ for n ¼ 0;

qn þ γnρ
jnj þ βnρ

−jnj for n ≠ 0.
ðE33Þ

The constants γn and βn are again arbitrary, and qn is
defined as,

qn ¼
�
0 for even n;

−cdn=n2 for odd n:
ðE34Þ

It is clear that the most regular solution may be obtained by
setting βn ¼ 0 for all values of n, but we note that β0 ≠ 0 is
still allowed by the regularity condition of (SR1). Finally
we define the function GðαÞ in a similar way to HðαÞ,

GðαÞ ¼ γ1eiα þ γ−1e−iα; ðE35Þ

such that the full gauge vector component ξt is recovered,

ξt ¼ γ0 þ
X∞
n¼−∞

qneinα þ ρGðαÞ þOðρ2Þ: ðE36Þ

The sum in Eq. (E36) converges for any value of
α ∈ ½0; 2πÞ, and thus ξt is well behaved in the ρ → 0 limit
yet still dependent on α, indicating a jump discontinuity.

3. Solving for ξr
Finally, we solve for the radial component of the gauge

vector, ξr, by combining Eqs. (E6) and (E7) as in Eq. (E10)
but by adding the equations instead of subtracting.
Returning once again to the Cartesian coordinates for ξθ
and ξϕ,

ξr ¼
r20

2ðr0 − 2MÞ
�
μð1 − v2Þ−1

s
− ξy;y − ξz;z

�
: ðE37Þ

This equation seems to indicate that ξr (restricted to the
two-sphere intersecting the worldline of the particle)
diverges as 1=s as one approaches the particle. Such a
divergence is too singular to fall within the class of
sufficiently regular gauge transformations, for it does not
satisfy (SR2). On closer inspection, in the local polar
coordinates and using Eqs. (E25) and (E26),

ξr ¼
r20

2ðr0 − 2MÞ
1

ρ

�
μð1 − v2Þ−1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2sin2α

p − cosð2αÞðH þH;ααÞ
�

þOðαÞ þOðρÞ; ðE38Þ

and the term involving HðαÞ reduces to,

H þH;αα ¼
X∞
n¼−∞

ð1 − n2Þbneinα;

¼
X∞
n¼−∞

afneinα;

¼ −
2μL2ð1 − v2Þ1=2
r20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2sin2α

p ;

using Eq. (E23) in the second line and the definition of fn
in the third line. After substitution into Eq. (E38), we are
left with,

ξr ¼
μr20

2ðr0 − 2MÞ
ð1 − v2Þ1=2

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2sin2α

p

×

�
r0 − 4Msin2α

r0 − 3M

�
þOðαÞ þOðρÞ; ðE39Þ

where we have used the value of the specific angular
momentum for a circular orbit, Eq. (5). The gauge vector ξr
vanishes for select values of α when the orbit is within
r0 ≤ 4M, but the 1=s singularity in ξr is entirely unavoid-
able for any physical circular orbit r0 > 4M, and ξr does
not satisfy the sufficiently regular criterion for a gauge
transformation. This result motivates the locally Lorenz
gauge regularization used in Sec. III.
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