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We present numerical results for the gravitational self-force and redshift invariant calculated in the
Regge-Wheeler and easy gauges for circular orbits in a Schwarzschild background, utilizing the
regularization framework introduced by Pound, Merlin, and Barack. The numerical calculation is
performed in the frequency domain and requires the integration of a single second-order ordinary
differential equation, greatly improving computation times over more traditional Lorenz gauge numerical
methods. A sufficiently high-order, analytic expansion of the Detweiler-Whiting singular field is gauge
transformed to both the Regge-Wheeler and easy gauges and used to construct tensor-harmonic mode-sum
regularization parameters. We compare our results to the gravitational self-force calculated in the Lorenz
gauge by explicitly gauge transforming the Lorenz gauge self-force to the Regge-Wheeler and easy gauges,
and find that our results agree to a relative accuracy of 1013 for an orbital radius of r, = 6M and 10~'® for

an orbital radius of ry = 10M.
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I. INTRODUCTION

Recent successes of the LIGO Scientific Collaboration to
directly detect gravitational radiation [1-6] have boosted
interests in gravitational-wave astrophysics. With the pro-
posed launch date for the satellite-based LISA mission [7]
steadily approaching, source modeling efforts are rapidly
progressing to build waveform models for candidate LISA
sources. One important candidate signal for the LISA
mission is expected to arrive from the extreme mass-ratio
inspiral (EMRI) of approximately solar-mass compact
objects into supermassive black holes. Such systems will
produce signals that remain in the detector for lengthy time
periods, requiring highly precise models to extract accurate
physical parameters from the data [8]. One important effect
to consider is the interaction of the compact object in the
EMRI with its own gravitational field, the gravitational
self-force, as these lengthy time periods generally extend
into the radiation-reaction time scale [9].

The formulation of the gravitational self-force within
black hole perturbation theory has its foundational roots
stemming from the works of Mino, Sasaki, and Tanaka [10]
and Quinn and Wald [11], who separately introduced an
expression for the self-force to first order in the mass ratio of
the compact object (modeled by a point particle) to the
supermassive black hole; the outcome of this formulation of
the self-force is referred to as the MiSaTaQuWa equation.
Alternative (and in some cases equivalent) regularization
schemes such as mode-sum and zeta function regularization
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were subsequently proposed to remove the singularities
introduced to the force by the point-particle source [12,13].
Further work by Detweiler and Whiting [14] allowed for a
regularization scheme designed around the separation of the
metric perturbation into singular and regular pieces, with the
singular contributions physically motivated and akin to the
Coulomb field of a point charge in electrodynamics.
Historically, the choice of Lorenz gauge in perturbation
theory has been tightly linked with self-force calculations.
This gauge choice is well motivated; the Lorenz-gauge field
equations are manifestly hyperbolic, and the local expres-
sion of the particle’s self-field assumes an isotropic form
[15]. Unfortunately, numerical integration of the Einstein
field equations in the Lorenz gauge is nontrivial, as the field
equations do not decouple and the numerics are compli-
cated by gauge instabilities [16,17]. More recent work has
extended self-force regularization procedures to the radi-
ation gauge by adjusting the standard Lorenz-gauge regu-
larization scheme to accommodate string singularities
present in the radiation gauge metric perturbation [18-21].
One might ask whether it is possible to calculate the
gravitational self-force in gauges common to the study of
Schwarzschild black hole perturbations, such as the Regge-
Wheeler (RW) gauge [22] or the similar easy (EZ) gauge
recently introduced in Ref. [23]. These gauge choices allow
for fast and efficient reconstruction of the retarded metric
perturbation generated by a point particle. Early work on
this problem recovered the self-force for radially infalling
trajectories in the RW gauge [13], but follow-up analysis
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showed that the singular contributions to the self-force in the
RW gauge are not adequately regularized by standard
Lorenz-gauge regularization techniques [15]. Regulari-
zation of the RW gauge self-force using a tensor-harmonic
decomposition of the local singular field was performed by
Nakano et al. [24], but only to first order in a post-Newtonian
expansion. These initial works in RW self-force regulariza-
tion, along with advances in the understanding of how gauge
choice affects regularization by Pound et al. [21] and high-
order tensor-harmonic expansion of the Detweiler-Whiting
singular field by Wardell and Warburton [25], form the
foundation for the work presented in this paper.

This paper is structured as follows. We review gravita-
tional self-force regularization in Sec. II, and demonstrate
in Sec. IIT how the regularization is modified for the tensor-
harmonic modes of the metric perturbation in the RW
gauge. In Sec. IV we review the gauge-invariant framework
used to construct the retarded metric perturbation in the RW
and EZ gauges. Special care is given in Sec. V to the low-
multipole (7 < 2) modes of the retarded metric perturba-
tion, which are calculated in the Zerilli gauge [26]. In
Sec. VI we review the method used to construct the tensor-
harmonic modes of the Detweiler-Whiting singular field
introduced by Wardell and Warburton [25], and we outline
the singular gauge transformation used to construct the
singular field in the RW and EZ gauges. Finally, we present
the numerical results in Sec. VIII for the regularized
Detweiler redshift invariant and the gravitational self-force
in both the RW and EZ gauges, and compare our results to
the Lorenz gauge self-force through an explicit gauge
transformation of the Lorenz gauge self-force.

We choose to work in geometrized units ¢ = G = 1.
The background Schwarzschild metric with mass M is
labeled by g,, in Schwarzschild coordinates (z,r,8,¢)
with signature (—,+,+,+). Lower-case latin letters
{a,b,c,...} indicate spacetime indices and latin letters
{i, .k, ...} indicate purely spatial indices, and we intro-
duce f = 1-2M/r. We use the curvature conventions of
Misner, Thorne, and Wheeler [27]. The symbol x denotes a
spacetime event, and the subscript “0” indicates that a
quantity is evaluated at the location of the point-particle
perturbation, such that xy = (0, rg,z/2,0) and rq is the
constant orbital radius of the circular orbit. The domain of
integration is separated into two distinct regions, with the
“inner” region r < ry denoted by a “—” sign, and the
“outer” region r > r, denoted by a “+” sign.

We use an “L” to specify quantities calculated in the
Lorenz gauge and an “RW” for the Regge-Wheeler and
easy gauges, unless the distinction is important, in which
case we explicitly write “EZ” for the easy gauge. Finally,
for a continuous function F(r) with discontinuous deriva-
tive at r = ry, we write,

<‘:§>i = 1im & (), (1)

II. SELF-FORCE REVIEW

We begin with a review of the perturbative analyses used
to solve the Einstein field equations (EFEs) for a compact
mass p in a circular orbit about a Schwarzschild black hole
of mass M, assuming p/M < 1. The physical spacetime
metric is approximated as a background Schwarzschild

metric plus a tensor perturbation, ¢*"* = g, + A, and is
a solution to the EFEs. When expanded to first order in the
mass ratio u/M, the EFEs take the form [17,28],

Euh [h] = _167[Tuh + O(Mz/M2)7 (2)
where we have introduced the linearized Einstein operator,

Eup [h] = vCvchab + vavbh - 2V(avchb)c
+ 2Racbdhcd + gab(vcvdhcd - vcvdh)’ (3)

with h = g°h,,, and V is the covariant derivative com-
patible with the background Schwarzschild metric.

The perturbing stress-energy of the compact mass is
modeled as a point particle of mass g moving along a
circular, equatorial geodesic of Schwarzschild spacetime,

##(z) = {#(z), ro,7/2,Qt(7)}, where 7 denotes the par-
ticle’s proper time and Q = |/ M/ r?) is the frequency of the

orbit. The stress-energy for the point particle is written as

R i
ua

= u,ffé’ 5(r = ro)5(0 — 2/2)8(p — Q1) (4)

with four-velocity u, = (=&,0,0, £), and specific energy
and angular momentum £ and L, respectively,

— ' \/ ro f/ISM' )

The general force exerted by a vacuum perturbation 4,
on the compact mass is given by [21],

. I"O—ZM
ro(ro —3M) '

1 e .
Felh] = —Eﬂ(gab + 0i”)(2V yhye — Vipheg)uad,  (6)

written here as a vector field, where #¢ is a smooth
extension of the four-velocity off of the particle’s worldline.
To compute the self-force, each term of Eq. (6) is evaluated
at the location of the particle. However, the rhs is formally
singular at the location of the particle if one naively uses the
metric perturbation arising from Eq. (2). This singularity in
the force is not a physical result. Detweiler and Whiting
[14] found that the metric perturbation may be separated
into singular and regular contributions,
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hap, = Ty, + Mgy (7)

such that each piece of the decomposition is individually a
solution to Eq. (2),

E[h®] = =162T y, (8)
E,[hR] =0, )

and hS, does not contribute to the gravitational self-
force, i.e.,

1
Foy = —Eﬂ(g"b + uu®)(2V4h}. = V,hR Jucud.  (10)

The quantities /5, and AR, are referred to as the Detweiler-
Whiting singular and regular fields, respectively.

The Lorenz gauge is commonly used in gravitational
self-force calculations. By introducing the trace-reversed
metric perturbation %, = hyy — 1 g,,9“heq, the Lorenz
gauge condition is compactly written as,

Vaht, = 0. (11)

In this gauge, the linearized Einstein operator in the EFEs
reduces to a set of coupled wave equations acting on the
trace-reversed metric components,

VeV ht, + 2R, 90, = —162T . (12)

We assume that the metric perturbation for the remainder of
this section is computed in the Lorenz gauge, and drop the
“L> descriptor.

The retarded solution to Eq. (12) can be found numeri-
cally, decomposed into a basis of scalar spherical harmonics,

_ P 2r T o_
R =y, (6, @) A /0 RgYs (0,¢)dQ,  (13)

with differential solid angle dQ2 = sin #d0d¢ and * denoting
complex conjugation. Each Zm mode of the Lorenz-gauge

retarded metric perturbation 2":*™ is a finite C° function of r

at the location of the particle, but the infinite sum of the
modes diverges as O(7). Furthermore, the Zm modes of the
force, which involve radial derivatives of the metric pertur-
bation, have bounded jump discontinuities at the particle. To
calculate the regularized self-force, the method of mode-sum
regularization was introduced by Barack and Ori [12],

=D [Fult - AL - B = /L) - D, (14)
=0

with L. = 27 + 1. The term F 47~ is constructed from the
scalar-harmonic modes of the retarded metric perturbation

and evaluated at x; in the inner or outer region via the
direction-dependent limit,

. 4
Fil* = lim Y ¥;,(2/2,0)
r=r, m=—LA”

2n b4
XA A]—'[h Vs (@ 4)d.  (15)

The quantities A%+, B C¢, and D% are regularization
parameters, constants in ¢ derived from a local expansion of
the singular field and known analytically in the Lorenz gauge
for generic bound orbits of Schwarzschild [12] and Kerr [29]
spacetimes. When subtracted mode by mode in Eq. (14), the
# modes of the force fall off as O(#7?), and the partial sums
converge as O(#!). For circular orbits in Schwarzschild
spacetime, the parameters A%* and B¢ vanish for all but the
radial component of the force, and C* = D* = 0.

Instead of working in the scalar-harmonic Zm basis of
Eq. (13), one might choose to work in a tensor-harmonic
£m basis, such as the basis introduced for Lorenz-gauge
self-force calculations by Barack and Lousto [16] and
Barack and Sago [17] (which we shall refer to as the BLS
basis). When decomposed into the BLS basis, the field
equations separate into coupled scalar wave equations,
allowing one to employ numerical methods developed for

calculating the scalar self-force [30,31]. To recover the 7
modes in Eq. (15), one must reproject the tensor-harmonic

¢ modes onto the scalar-harmonic # modes, a process
which generically requires the calculation of £ + 3 tensor-
harmonic modes [17]. While relatively trivial for circular
orbits in Schwarzschild spacetime, this reprojection
becomes increasingly complicated and time consuming
when working on arbitrary trajectories and more
complicated background spacetimes, such as the Kerr
geometry [32].

Recently, a reformulation of the mode-sum regulariza-
tion scheme was introduced by Wardell and Warburton [25]
that uses tensor-harmonic regularization parameters,

Fiag =y [Fi™ = Q€+ YF{5 = Fiyl =D (16)

=0

where the # modes of the retarded force are computed
directly from the metric perturbation via Eq. (6),

4
]:'fe,tf:t — lim E ]:a,fm[hret}
)

NS
O=n/2
¢=0

and the tensor-harmonic

F Flo
expansion of the Detweiler-Whiting singular field into

the tensor-harmonic basis, as we will outline in Secs. VI

regularization parameters
and D* = 0 are found by decomposing a local
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and VIIL. This construction eliminates the need for repro-
jection onto a scalar-harmonic basis and reduces the overall
number of computed £ modes necessary to compute the
regularized self-force.

III. REGULARIZATION

The approach to self-force regularization outlined in
Sec. II was derived and implemented in the Lorenz gauge
[33]. One might ask whether the same approach to
regularization applies to other gauges, such as the RW
and EZ gauges. This question was investigated by Pound,
Merlin, and Barack (PMB) [21] specifically for the radi-
ation gauge, but their findings are equally applicable here.
Under a change of gauge, x{.,, = x5, + £, generated by a
gauge vector &%, the metric perturbation transforms as,

R = RO — £, (18)

Such a transformation induces a change in the self-
force [15],

S =F gelf.old —6F Grs (19)

self new
with
8F %y = —pl(g™ + uu)é, + R cpquu), (20)

where an overdot denotes a derivative with respect to the
proper time 7 of the particle’s background worldline. PMB
introduced a broad class of gauges under which the
asymptotic matching scheme of Gralla and Wald [34]
remains valid. This gauge class is named the sufficiently
regular gauge class. For a particular local gauge trans-
formation away from the Lorenz gauge to remain suffi-
ciently regular, the components of the gauge vector £ must
satisfy specific conditions [21]:

(SR1) ¢, = fi(z)Ins + o(Ins).

(SR2) & = fr(z,n') + o(1).

(SR3) 7 derivatives do not increase the degree of singu-
larity.

(SR4) Spatial derivatives increase the degree of singu-

larity by at most one order of s.

Here, s is the spatial geodesic distance away from the
worldline and n' is a spatial unit vector, expressed in local
Fermi-like coordinates. For a calculation performed at first
order in the mass ratio, f, and f, must be C' almost
everywhere. We demonstrate in Appendix E that the local
gauge transformation between the Lorenz and EZ gauges
is not sufficiently regular, which motivates the adjusted
approach to regularization used in this paper.

A. Locally Lorenz gauges

To address gauge transformations away from the Lorenz
gauge which are not sufficiently regular, PMB proposed the

“locally Lorenz” gauge (LL) regularization scheme.
Beginning in the Lorenz gauge, the local metric perturba-
tion reads [35],

hbb :%(gah+2ﬁaﬁb)+0(l)’ (21)
where terms of O(1) are at most bounded but discontinuous
on the worldline. PMB defined a gauge to be LL if it
satisfies two properties: (i) the LL metric perturbation must
have an identical leading-order singular structure as the
Lorenz gauge,

2
Bk — Tﬂ (Gup + 2itgity) + o(s71), (22)

where terms of o(s~!) are not as strongly divergent as s~!

on the worldline, and (ii) the Lorenz and LL gauges differ
locally by at most a continuous gauge vector, &,

Ry = hly, — £ gap. (23)

With these conditions in place, the two metric perturbations
fall within the same class of gauges introduced by Barack
and Ori [15], meaning that the self-forces in each gauge are
related via Eq. (20).

B. Regularization in the RW and EZ gauges

We now outline how we perform regularization in the
RW/EZ gauges, motivated by the LL-gauge regularization
procedure and the work of Nakano et al. [24]. To start, a
gauge transformation is performed locally to bring the
retarded Lorenz gauge metric perturbation into the RW/EZ
gauges,

/’ll;;V = h{‘l‘b - £§RWgab' (24)

We perform an identical gauge transformation to a local
expansion of the Detweiler-Whiting singular field hlgi,s in
the Lorenz gauge,

hs;v‘s = h](;bs - £§RW.Sgab, (25)
and define the difference of the two gauge vectors to be,

RVC = g gV, (26)

Assuming that hbl‘qs is known to high-enough order in a
series expansion [36] when constructing £&XW-S, the remain-
der ERV:C will be at least continuous. What exactly
constitutes a “high-enough” order is outlined in Sec. VL.

Using the continuous gauge vector WL we now define
the LL metric perturbation from Eq. (23) associated with
the RW gauge transformation to be,

h{;}]; = h];b - £§RwAcgab. (27)
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It must be emphasized that the LL. metric perturbation in
Eq. (27) is not unique, as it depends on the final gauge
choice enforced in Eqgs. (24) and (25); in general, it will
differ when transforming to the RW gauge compared to the
EZ gauge. Additionally, any continuous term in ExV°C may
be equally attributed to X5, changing hXL but remaining
in the Barack-Ori class. It is therefore v1ta1 that the gauge
vectors £V and ERVS pe specified exactly, so that we may
identify &, RW-L in Eq. (26) precisely and specify the exact
LL gauge in which the regularization is performed.

To demonstrate how these gauge transformations pro-
duce an LL metric perturbation in the regularization
procedure, we consider the regularization of a linear
functional constructed from the metric perturbation and
its derivatives, Z[h](x), evaluated at the spacetime event x.
This quantity 7 may stand for the force in Eq. (6) or any
number of gauge-invariant quantities commonly computed
in the self-force literature (see e.g., Shah and Pound [37] for
examples of these gauge invariants). We then write sche-
matically [38],

TR (x) = EmT[A — A-S)
= i {Z[h- ~ £awcga] (x) = Z[h"]}
= lim {Z[h")(x) = T[£ev g (x)
~Z[A"5] + Z[£govs gap) (%)}
= mZ[ARY — 1RYS) ). (28)

In general, the gauge term relating AL and AL, may not be
dropped, and we may express the difference between the
LL and Lorenz gauge quantities,
Z[hR)(xo) = Z[hVR](x0) — Z[£gwecgap(x0)-  (29)
The practical regularization in our work is performed by
subtracting tensor-harmonic regularization terms mode by
mode, as was done by Wardell and Warburton [25] for
Lorenz gauge regularization. For a functional of the metric
perturbation, the regularization of the retarded RW gauge
modes is written as

Z{If hRW

+Z7 [Eerws gap) (X0) } (30)

hLLR If[hLS]( )

where 7 is decomposed into a tensor-harmonic basis and
summed over the azimuthal index m, a la Eq. (17). We
assume that the individual # modes of Z are continuous at
the particle, and that the gauge vector in Eq. (30) is
constructed solely from a local expansion of the Lorenz
gauge Detweiler-Whiting singular field mode by mode,

RW.S.em . eRW.Zm [h-S]. The gauge transformation from

any gauge to the RW and EZ gauges is unique in the mode
decomposition for £ > 2, and we further outline in Sec. V
the specific gauge choice made for £ =0, 1.

Finally, we outline the regularization specifically of the
self-force. Here, the Z modes of the retarded force contain
jump discontinuities when evaluated at the particle, and the
mode-sum formula is adjusted to handle these disconti-
nuities and include the additional gauge term,

Z{]_-f:thRW )

+F o Eaws gap) (o) }- (31)

We note that this method of self-force regularization is
similar to the work of Nakano, Sago, and Sasaki [24], who
introduced a regularization scheme for the RW gauge
analytically at first-post-Newtonian order based on gauge
transforming the Lorenz gauge singular field as in Eq. (25).
The methods differ in the choice of monopole and dipole
gauges used in the calculation, as outlined in Sec. V. In
addition, no post-Newtonian expansions are undertaken in
our work.

Falh™R](x — Fu[h-5)(xo)

IV. RETARDED SOLUTION

We now review the method used to integrate the EFEs
and reconstruct the tensor-harmonic modes of the retarded
metric perturbation in the EZ and RW gauges through use
of master functions, originally introduced to the study of
black hole perturbation theory by Regge and Wheeler [22]
and Zerilli [26]. We begin by introducing a tensor-harmonic
basis used to decompose the metric perturbation. From the
tensor-harmonic components of the metric perturbation, we
construct six gauge-invariant fields used to construct the
two master functions utilized in this work.

A. Tensor-harmonic decomposition

Using the A—K framework introduced in Ref. [23], we
take advantage of the spherical symmetry present in the
Schwarzschild spacetime to decompose the metric pertur-
bation into a basis of tensor harmonics,

Z Z Rt r,60,¢),  (32)

=0 m=-¢

hap(t,7,6,0) =

with
E.¢m B.Cm
(a Y) —|—2Cv( Y>

70,2 E2.0
(a Yf)fm + ETab " + FTab "

+ GTE™ 4 oHTEL ™ 4 2358
+ KTEMm (33)

REM (8,7, 0,¢) = Av,v,Y gy + 2B0

+ 2Dw

where the ten complex scalar functions A-K have had
their arguments and indices suppressed for simplicity,
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e.g., A = A”"(t,r). The vector and tensor harmonics are
listed in Appendix A, and the vector fields », and n, are
written in Schwarzschild coordinates as,

v, = (=1,0,0,0), n, = (0,1,0,0).
The projection of the stress-energy, Eq. (4), onto the tensor-

harmonic basis used in Eq. (33) is straightforward, given
the delta functions in the source, e.g.,

T (t,r) = f? / v 0T, Y3,,dQ,

= w2 5~ [¥20800 -2/ - 002
0

= nyzg Y5, (m/2,0)5(r — rg)e™mH. (34)
o

Instead of Ti’" appearing explicitly, we will typically
represent the occurrence of source terms by projections
of the linearized Einstein operator, since by Eq. (2) we have

All source terms relevant for circular orbits are listed in
Appendix B.

When focusing specifically on circular, equatorial orbits,
the form of the source terms in Eq. (34) motivates a further
refinement to the ansatz of the metric perturbation given in
Eq. (33), whereby each scalar function A-K is written
as a separable function of 7 and r, with time dependence of
the form,

APM(1 ) = A (r)emiont (36)

The allowable frequencies for the metric perturbation are
fixed by the source terms and are multiples of the orbital
frequency,

®,, = mQ. (37)

This time dependence for circular orbits is equivalent
to working in the frequency domain with Fourier coef-
ficients [24],

1 [ )
At r) = o / A (@, e "dw,  (38)
T J-

with A7 (w, r) = A“(r)6(w — w,,).

Finally, with the introduction of the metric pertur-
bation, certain symmetries present in the background
Schwarzschild spacetime no longer exist in the physical
spacetime. In particular, the vectors (0,)* and (0,)* are no
longer Killing in the physical spacetime gzl;y *, yet a Killing
vector does exist as a combination of the two: the helical

Killing vector (HKV) k= (0,)* +Q(94)*. The phy-
sical spacetime obeys the helical symmetry £,gPhYs =
O(u?/M?) [28], and this symmetry exists for any reason-
able choice of gauge as a consequence of the time
dependence present in Eq. (36) and the mode decompo-
sition of the metric perturbation, Eq. (33). While we will
utilize the time dependence of Eq. (36) in this work for
circular orbits, the expressions in the remainder of
Sec. IV hold for metric perturbations with arbitrary time
dependence.

B. Gauge invariants

The procedure of metric reconstruction is based on the
construction of six gauge-invariant fields introduced in
Ref. [23]; we review this construction here. We begin with
the metric perturbation in Eq. (33) written in an arbitrary
“old” gauge, and write it in a “new” gauge by introducing a
gauge vector £. The transformation occurs to first order in
the mass ratio as,

hsY = h3l = £ega + 02/ MP). (39)

The gauge vector £ is decomposed into tensor-harmonic
modes,

fgm - PUngm + Rnanm + SYgfm + QYgfm’ (40)

with complex scalar functions P, R, and S for the even-
parity components of the gauge vector, and Q for the odd-
parity component. The action of the gauge vector on the
metric perturbation induces the following changes to the
metric components:

2M
aA = —20p - Mg (41)
r
1
AB=-P—95. (42)
r
AC = —9,Q, (43)
AD = 9.P— 22—MP —OR. (44)
rf
AE= g _AT2g (45)
r r
2
AF = s, (46)
r
2
AG =2Q. (47)
r
1 1
AH=-R+09,5—-8. (48)
r r
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AI=0,0-10. (49)
2M
AK =20,R + 3R, (50)

where we write e.g., A, = Agq — AA, and introduce
A= (¢—-1)(¢+2). For £ > 2, we may enforce the gauge
choice known as the RW gauge, introduced by Regge and
Wheeler [22], by eliminating B,., = Fpew = Hpew =0
through convenient choices of P, S, and R, in Egs. (42),
(46) and (48), and using Eq. (47) to eliminate G-
Alternatively, using Eq. (45) instead of Eq. (48), we
may set B.., = Enew = Fpew = 0, which defines the EZ
gauge. Specifically for the low modes ¢ < 2, certain
equations above vanish identically and another gauge
choice is made which we discuss in Sec. V.

By combining various A-K terms and their derivatives,
one may construct quantities which are unchanged under
the action of the gauge vector in Eqgs. (41)—-(50), making
them gauge invariant:

a=1J--0,G, (51)
r
p=-C-— E@,G, (52)
1 A+2 r
1 r—3M r
=—K-—FE-—0,E
v=3K-5 2 E-50
(A+2)(r—3M) r(A+2)
_ F-— F 54
4rf? 4f O.F, (54)
r r—4m
6—D+§8,E— B -r0,B
r2 r(A+2)—4(r-3M)
— E@,a,F + I 0,F, (55)
1 M M@A+2)_
e——EA—ZE—rG,B—TF—E(?,F. (56)

Two additional gauge invariants of interest to this work
appear as combinations of certain gauge invariants above,
one for each parity,

Yy = r20,a — r’0,p + rp, (57)
W, =L gy = 2+ 2], (58)

with k = 6M + Ar. These two quantities both satisfy a 14 1-
dimensional wave equation in Schwarzschild time and the
tortoise radial coordinate r, = r + 2M log(r/2M — 1),

(=07 + 07 = Vwz(r)]¥w/z = Swyz, (59)
with potentials,
6M
V() :iz[/H—Z——}, (60)
r r
f [ (A+2)r + 6M(kAr + 12M?)
Valr) =% . (61)

We remark on the similarities between the two potentials by
taking the difference,

AV =Vy -V,
_ My 3MN | 3Mf
05

r2K r

(62)

This difference vanishes at both the horizon and spatial
infinity, and also very near but outside the light ring at
r = 3M. It further vanishes in the limit that £ grows to
infinity.

The sources Sy are listed in Egs. (B1) and (B2). From
Eq. (59) and the form of the potentials in Egs. (60)—(61), it
is clear that the gauge invariants Wy, and W, are master
functions akin to those of Regge-Wheeler and Zerilli,
respectively [39]. These master functions express the
two dynamical degrees of freedom in the FEinstein field
equations. Furthermore, it is possible to recover the gauge
invariants in Egs. (51)—(56) solely from the master func-
tions, along with source terms:

1
a:—ﬁ[at‘I’W—FrszJ], (63)
1
B ===y + 1f0, ¥y — PEc). (64)
-1
+2Kr2f6,‘PZ + r5EA], (65)
-1 2 2
'8 :2}’2—‘}(_2]([2(}" ﬂ—3l"Mﬂ,—6M )lPZ
+2r2fk0,¥7 + PE,), (66)
6 = 5 fOw = L+ 2)d = rEp) (67)
€ :g[2x+2rf8r;(—2fw+ r?Eg]. (68)

Thus, solving the EFEs at first order in the mass ratio has
been reduced to integrating Eq. (59) for Wy,z, up to
considerations of gauge and the low modes ¢ < 2.
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C. Numerical integration

The literature is rich with examples of numerical
solutions for a point-particle source in a bound orbit about
a Schwarzschild black hole, both in the time domain
[16,17,30,40,41] and in the frequency domain [42—46].
The numerical techniques used in our work to solve the
frequency-domain representation of Eq. (59),

[6%* + w%n - Vw/z(r)]‘ilw/z = Sw/z, (69)

align closely with the solution method outlined by Hopper
and Evans [47], but simplified for the case of circular orbits.
The numerical integration of Eq. (69) is performed in
MATHEMATICA [48] to take advantage of MATHEMATICA’S
arbitrary precision framework. We choose to work with a
global minimum precision of 32 digits, which is respon-
sible for the ultimate numerical accuracy of the retarded
field spherical-harmonic modes shown later in this work.

D. Metric reconstruction

The gauge invariants in Egs. (51)—-(56) may be con-
structed from the tensor modes of the metric perturbation in
any gauge, but play a special role in metric reconstruction
specifically in the EZ gauge. When the EZ gauge con-
ditions are enforced, Eqgs. (51)—(56) reduce to expressions
which are trivial to invert for the metric components,

AFZ — ¢, (70)
C* = -, (71)
DH = 5, (72)
HY =y, (73)
JEZ — ¢, (74)
KEZ = 2y, (75)

with all other components vanishing. Should one choose to
work in the RW gauge instead, the nonzero metric
components become,

ARV = _2¢ + %){ (76)
CRY = -, (77)
DRV =5+ rdy, (78)
ERY = —2fy, (79)
RV = q, (80)
KRW —2w—2(r+fM))(—2r6,)(. (81)

The full (£ > 2) metric perturbation in either the EZ or RW
gauge is recovered by substituting the expressions for A—K
into Eq. (33) after solving for the gauge invariants via Wy,
in Egs. (63)—(68). The specific reconstruction for £ < 2 is
detailed in Sec. V.

V. RETARDED SOLUTION FOR ¢=0, 1

For the low (# < 2) modes, the gauge invariants con-
structed in Sec. IV lose their invariant properties under a
gauge transformation. We investigate these low-order
modes by gauge transforming the Lorenz-gauge retarded
solution. We opt to use the gauge choice for both # = 0 and
¢ =1 introduced by Zerilli [26], as the Zerilli gauge
satisfies both the RW and EZ gauge conditions. This gauge
choice differs from that of Nakano et al. [24], who opted to
use the Lorenz gauge monopole (corrected by Hikida et al.
[49]) and a different variant of the Zerilli dipole.

The cases of £ =0 and ¢ =1 are handled separately,
and the tensor-harmonic £m labels for the metric pertur-
bation are written explicitly for clarity.

A.?=0

We approach the construction of the Zerilli gauge
monopole initially by finding the gauge transformation
from the Lorenz gauge to the Zerilli gauge. This will lead
directly into the construction of the singular field monopole
in Sec. VL

At £ =0, all vector and tensor modes of the metric
perturbation vanish identically. Furthermore, all coeffi-
cients of the gauge vector Eq. (40) are evaluated with
@y = 0, eliminating any time derivatives from Eqgs. (41)—
(50) and yielding a static gauge transformation. The gauge
vector becomes,

A 1 4 A
00 00 00
= P R , 82
0 =5 P+ R (82)
and induces the following changes to the metric
perturbation:
N M
AAY = ——2f R, (83)
r
oo dPY 2M
ADY = —— — =P 84
dr  r~f (84)
. 2f A
AB® — 2 oo, (85)
r
5 dR™ 2M
AK® =2—— 4 =—R%. 86
dr + rf (86)

The Zerilli monopole gauge choice uses the two degrees of
gauge freedom to set EX’ = DY = 0. Starting from the
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Lorenz gauge, the choice of EX’ = 0 algebraically deter-
mines R% from Eq. (89),

—EY. (87)
Equation (84) is then solved to set ]5%0 =0
d 500 300
f=[P"/f]1 =D (88)
dr
When integrating this equation, we find,

PO(r) = f / FHDY)dr + 0. (89)

The starting value of the integration, ry, is arbitrary, and £%°
is an arbitrary constant. The gauge function P% is not
present in the metric perturbation (outside of fixing the
condition DY = 0), as P® only appears in Eq. (84) for
static gauge transformations. Thus, the monopole contri-
butions to the retarded field in the Zerilli gauge are,

o o M .

A7 =AY +— B, (90)
. N —3M) ~,, rdEY®

Roo :Koo_(” poo _ TSR 91

with all other components set to zero. These remaining
components of the metric perturbation are invariant under
gauge transformations produced by the gauge vector in
Eq. (82) and are unique.

The form of the Lorenz gauge monopole was determined
analytically by Barack and Lousto [50]. The inner (r < r)
solution is,

_ AfM
= - p P(r), (92)
A
he™ = WQ(")’ (93)
Wy~ = (sin@)=2hi;, = AfP(r), (94)

and the outer solution (r > ry) is,

hyt = 2ue {3r3(rg = r) + M?(r3 = 12Mr, + 8M?)
37' r()fo
+ (ro =3M)[=rM(r + 4M) + rP(r)fIn f + 8M?3In(ry/r)]}, (95)
L+ _ 2ué 3 2 2 20,2 2
h ——W{—r 70—2M7(0—6Mr0—10M)+3M (70—12M70+8M)
+ (ro—3M) [SMr2 + (r/M)Q(r)fInf — 8M2(2r —3M)In(ry/r)]}, (96)
hgst = (sin @) 2hi, = — 2ue {3r3M — 80M?r, + 156M°
9rr0f0
+ (ro = 3M)[=3r* = 12Mr + 3(r/M)P(r)f In f + 44M? + 24M?* In(ry/7)]}. (97)

The constant A and the functions P(r) and Q(r) were
originally introduced by Barack and Lousto,

2ué
= St M= (o =3M)In ol (98)
P(r) = r*+2Mr + 4M?, (99)

Q(r) =r* = Mr? =2M*r + 12M°, (100)
with fo = f(r), and are not to be confused with quantities
elsewhere in this work. Before we perform the gauge
transformation in Eqs. (90)—(91), it is important to realize
that the Lorenz gauge monopole is not asymptotically flat
(in this instance, defined as h; —0as r— o0),

2
hg+:_Lg<1 r0>+0(1/r) asr— oo, (101)
rofo r

and so we choose to perform an additional gauge trans-
formation to adjust this after transforming to the Zerilli
gauge. The asymptotic flatness of the monopole is impor-
tant for the comparison between gauge invariants for the
purposes of this work [51]. We shall see that the gauge
vector required for this transformation does not obey the
HKYV symmetry, and would not be attainable via the gauge
vector in Eq. (82).

After constructing the metric components in the Zerilli
gauge via Egs. (90) and (91) and recovering the full metric
perturbation from Eq. (33), the not asymptotically flat
(NAF) Zerilli gauge metric is,
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hENAF= — 0, (102)
RENAE= — 0, (103)
2ué(r —
RENAF _ _ uE(r ro)’ (104)
rrofo
2uE
pENARE _ He (105)

rf

To correct h2NAF | we introduce a gauge vector taking the
form of a global homogeneous solution to Eq. (84) which
breaks the HKV symmetry, i.e., has nonvanishing time
dependence, but maintains the Zerilli gauge condition,

NAF _ HE
rofo

tfv,. (106)

This gauge vector changes the f# component of the metric
via Eq. (41) to,

2ué

h~ = pRA (107)
h%™ =0, (108)
hat = %, (109)
net = % (110)

and the perturbation now vanishes at both the horizon and
spatial infinity. We notice that, while h% is continuous
across the particle’s orbit, a jump discontinuity has been
introduced to A%, that was not present in the Lorenz gauge.

B. £=1 odd parity

For # = 1, the only nonzero odd-parity contribution to
the metric perturbation arises from m = (. Furthermore,
the spin-2 contribution to the metric perturbation, G'°,
vanishes identically, and Zerilli chose to use the one degree
of gauge freedom, Q!°, to eliminate J)° = 0. This gauge
choice is identical to the odd-parity dipole gauge used in
Lorenz gauge calculations [52]. Its derivation may be found
in the literature, for example in Ref. [23], and the analytic
solution is given by,

2

_ . r
h :—2ﬂ£51n29r—8, (111)
i 25'291 112
i = —2uLsin - (112)

C. =1 even parity

Restricting to £ = 1 even parity, the metric perturbation
vanishes for m = 0, so only the values m = +1 need be
considered. Unlike for £ = 0 and £ = 1 odd parity, there
are no known analytic solutions for the even-parity dipole
in the Lorenz gauge. Despite this lack of an analytic
solution, we work through the gauge transformation
required to bring the Lorenz gauge solution to the Zerilli
gauge, as this transformation will be required to construct
the even-parity dipole singular field in Sec. VI. Analytic
solutions to the even-parity dipole do exist in the Zerilli
gauge, which we list at the end of this section.

The changes to the metric perturbation under a gauge
transformation reduce for # = 1 even parity to,

. L 2Mf
AA = 2@, P — TfR'”’, (113)
. 1. .
AB'"™ = —P'" i, S!™, (114)
r
. dP'™  2M .. .
ADlm — __le . le 115
dr rf ien ' (115)
. 2f &1 24
agtn = gim _2gin, (116)
r r
. 14 dst™ 1,
AR =R 5 --S, (117)
N drR'™  2M .
AK'"™ =2—— 4 = RI" 118
dr + rf (118)

Here, F'" = 0 identically but we still have the full even-
parity gauge freedom. The Zerilli dipole gauge is deter-
mined by setting BY" = EJ" = A" = 0, and the gauge
vector for this choice is calculated in two steps, where first
P and R'" are found algebraically via Eqs. (114) and
(116) while leaving S'™" free,

A

P = r(B" - iw,, SI™), (119)

X r (A 2 A

le _ Elm _Slm , 120
Z = < Lt oz (120)

which, when substituted into Eq. (117), yield a first-order
ordinary differential equation for S}

d 4 - [N
- Slm _ Hlm ——Elm. 121
S (8l = paf - B (121)
The solution may be found by integration,
Sy = Sf + 11" (122
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where é’ ™ is a constant and we have written,
Alm lm 1 Glm g /
Spa(r) = 7! ZA™(F) - EEL () )dr. (123)

When transforming from the Lorenz gauge in the region
around the particle’s orbit, H!™(r) and E/"(r) are both
bounded, C° functions of r, and thus Sé’&(r) is a C!

M . M
Al", = Al" = 2iw,,rBI" + 7E‘L'" + 2r<ﬁ—

D ﬁlm_ r_4M+ d B]m_
L-7Z — L rf d}"

-3M d\ -~ 2d 2M
KL—>Z — K]]jn _ ((r ) r >E1m _ <__ )Sll)gnrt AKlm,

rf? fd

with residual gauge freedom,

f
ADIM — 6iw, M 4,
Z I‘f2 ’
X 6M ,
AR = 2 tm (127)

While it is clear that the metric perturbation in
Eqgs. (124)—(126) is in the Zerilli gauge, the additional
gauge freedom in Eq. (127) may be added to the metric
perturbation without changing the gauge condition B} =
Elm = HY" = 0, and so the gauge choice is not uniquely
fixed. We now use this freedom to recover a Zerilli gauge in
which all components of the metric perturbation vanish
outside the particle’s orbit (r > r(). This choice is made to
ensure that the dipole is asymptotically flat.

We begin with the analytic, retarded Zerilli gauge
solution given by Detweiler and Poisson [52],

2rofo Q2
0t = 2#0fo <1—r >sin9
r M

°f
x cos(¢p — Q1)O(r — ry), (128)
7 _ 6/“’0f0 . _ _
hf. = P sin@sin(¢p — Q1)O(r —ry), (129)
pz. = SIS0 o cos(h— @i)O(r — 1), (130)

r2 f3

where O(r—ry) is the Heaviside step function.
Transforming this solution to one which vanishes in the

iw,r

2f

function over the same interval. The lower bound for the
integral in Slem is arbitrary and set to the orbital radius for
convenience, such that Spart vanishes at the particle (but
note that its radial derivative does not vanish). In addition,

the unknown constant '™ is arbitrary. After the gauge
transformation, the remaining nonzero components of the
metric are,

w3n> Sim — AAY" (124)
d 4M\ g,
EI" + iw,, (r5—7> Sim — ADY" (125)
126
fdr 2f? (126)

|

outer region via Eq. (127) and factoring out the time
dependence yields the A—K components of the metric
perturbation,

A 2r (M El’"
im __ T0TA
AZ 7<F—wm> 12M @(ro—r) (131)
_ biw,, M rRE\™
Dy = U2 0(ry — 132
Z 7 1M (ro=r), (132)
s 6M ryE\"
lm 0~A
7 zfg 1M O(rog—r), (133)

where EY is the fully evaluated coefficient of the delta
function source in Eq. (B3). By inspection, this solution is
almost entirely pure gauge; for both r < ry and r > r, the
form of Egs. (131)-(133) is identical to Eq. (127) with
particular choices for f ™ in each domain. Truly, it is the
step function itself that makes the solution physically
meaningful, as otherwise the entire metric perturbation
in this sector may be set to vanish by choosing the
appropriate constant in Eq. (127).

We now wish to refine the gauge transformation used to
recover Eqs. (124)-(126) from the Lorenz gauge to the
particular Zerilli gauge used in Eqgs. (131)—-(133), which
will exhaust all of the remaining gauge freedom generated
by a gauge vector obeying the helical symmetry. Our choice
is to eliminate the right-hand-sided limit of the Zerilli
metric perturbation generated from the Lorenz gauge
solution at the particle,

lim A{",(r) = imDj”7(r) = imR{",(r) = 0. (134)
rorg r—r, ror)
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This gauge refinement condition may be enforced at any value of r > r,, but we choose to evaluate (the right-hand-sided
limit) at r = r(, since we have constructed Slgt to vanish at the orbit, which greatly simplifies Eqgs. (124)-(126).

As Sg,;’;l( ) is a differentiable function, we find,

Glm
dSpan

2M

: d 1. m Qlm
im () = 15t tim [ (£0)B0) =SB0 Jar - 28l
r—r r—ry 5/ 0
N 1 .
= H{"(rg) — 2—f0Ele(”o) (135)
Then, after taking the limits in Eq. (134),
N M .
0= A" = 2iw,roBI™ + —EI™, (136)
7o
. —4M dBi™ i®,,7) A iy Ol M
0= Dlm _ B _ L _ m OElm . Hlm _ m lm’ 137
L rOfO rO( dr >+ fO L +lwmr0 L rOf(z) C ( )
. 3M ro (dEI™ 2 .
0= Kl 4 Elm _'o ( L > _ _Hlm + Clm 138
nfy - fo\dr ). fo bR (138)

The validity of this choice must now be verified.

We begin by analyzing Eq. (136). In the Zerilli gauge,
AJ™ is gauge invariant at the particle, which can be seen by
substituting Eqs. (113)—(116) into the combination of
metric components found in Eq. (136),

M
AA = 2iw,,rAB +— AE = —2r<——w
r

) St (139)
This combination vanishes at the particle irrespective of the
choice of $", since w2, = Q* for m = £1. Thus, if

Alz’”(ro) vanishes in one gauge, it must vanish in all gauges
|

|
related via the HKV symmetry. This result is unsurprising;
AY™(ry) is the sole contribution to the even-parity piece of
the Detweiler redshift invariant ' in the Zerilli gauge
(where h,; = hy, =0 for even parity). Since Al (ry)
vanishes in both the left- and right-hand-sided limits in
the Zerilli gauge, as shown in Eq. (131), the condition
Eq. (134) is satisfied for A]" .

To show that the remaining two limits are valid requires
more work, and we must solve for £ to satisfy the
vanishing conditions. Both Eqs. (137) and (138) provide a
solution for the remaining gauge freedom and the system
appears overdetermined. We solve both equations,

P fo ) d]-s’le . Alm 1 1

Cim — i(ro —4M)BI™ +irkfo —=) —irofoDi™ — @, r2Ei™ + @, r2foHi™ |, (140)
6w,,M 0 dr " 0 0

21m rOfO |: 2 dEA:]lj'l Y1lm 20 1m

K — 3ME r f()< +27"0f0HL —rof KL N (141)
6M OO\ dr ). 0

labeling the solution for £l 7k arising from each equation separately. The difference between these two constants is

proportional to a source term,

S1m Slm __
K T 6D

and this source term vanishes for the circular orbits of interest in this paper, E"

3 2
_ 0o pim
12iMw,,

Ey", (142)

= 0. The constant may then be determined

by use of either Eq. (137) or (138), and the gauge freedom is now entirely fixed. The vanishing right-hand side of Eq. (142)

is verified numerically in Sec. VIIL
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VI. SINGULAR FIELD CONSTRUCTION

In this section we construct the Detweiler-Whiting
singular field in the EZ and RW gauges. We begin with
a local expansion of the singular field in the Lorenz gauge.
After a decomposition into tensor-harmonic modes, the
gauge invariants (51)—(56) are formed and used to recon-
struct the singular field in both the EZ and RW gauges via
Egs. (70)—(75) and Eqgs. (76)—(81), respectively. We then
detail the specific gauge transformation of the singular field
for the low-order (£ < 2) modes.

A. Local Detweiler-Whiting singular field

The trace-reversed Detweiler-Whiting singular field is
found in the Lorenz gauge and expanded covariantly about
the worldline of the particle [36],

- o\ luzu;
hlél}s = 4ug," g, [; ab

5 + 0(8)], (143)
where u; and g are the particle’s four-velocity and the
background metric, respectively, evaluated on the world-
line, g,* is the bivector of parallel transport, 5 = (g5 +
uzup)o®o? is the spatial geodesic distance away from the
worldline, and o is the Synge world function. ¢ is an order-
counting parameter in the expansion. (See Ref. [35] for a
review of bitensors and covariant expansions of #5.)
Following conventions established in the self-force liter-
ature [12,31,53], a coordinate expansion of Eq. (143) is
performed in coordinates (Af, Ar, ®, ®) about some
reference Schwarzschild time 7, = 0, such that Ar =0,
Ar =r—ry, and the angles (®, ®) are related to the
background Schwarzschild angles (6, ¢) by the rotation,

sin@cos ¢ = cos O,
sin @ sin ¢p = sin © cos D,

cos @ = sin O sin . (144)

This rotation places the particle at the pole of the rotated
coordinates, (6 = z/2,¢p = 0) — (O = 0, ® arbitrary). In
these coordinates the field has the form [25],

(1) (2) BGIA,3
1 c, Ar ¢ Ar
__ __—ab £O|: ab 4 ah3 :| +0(€), (145)
P P
evaluated at At = 0, where, for the circular orbits of interest
in this paper, the coefficients cf;;,) are independent of Ar and
0, and we have introduced p as the leading-order term in

the coordinate expansion of 5 [31],

2 _ 27”%

pr = ro_3M(1/2+1—cos®),

(146)

with

M
y=1———sin’> @, (147)
rofo
and
—3M AP
=100 (148)
rofs 2r

The full coordinate expansion of i_z](;’bs used for this work is
quite lengthy, so we direct the reader to an online source for
the expansion through O(e*) [54]. We include orders up
through O(e?), in order to capture the necessary angular
derivatives required to regularize the EZ-gauge self-force.

B. Tensor-harmonic decomposition of h‘fb’s

To find the tensor-harmonic projections of the singular
field, we follow the work of Wardell and Warburton [25],
who calculated the tensor modes of the singular field in the
BLS basis. We outline the relationship between the BLS
basis and the A—K basis in Appendix C. Our construction
of the singular field modes is identical to Ref. [25].

Before we begin, it is worth recalling that in the rotated
coordinates the particle is located at the pole (® =0, ®
arbitrary). When decomposed into tensor-harmonic Zm’
modes in these rotated coordinates, the tensor-harmonic
basis vanishes at the particle for all but select values of m’
(the azimuthal index number associated with ®), and so
only these nonvanishing m’ modes of the singular field are
required. The required A-K terms for each m’ are listed in
Table I.

We demonstrate the process of finding the tensor-
harmonic decomposition of the singular field for the A
term through O(Ar), for simplicity. Starting with the
projection,

Al% = f? / v RSy, dQ

2¢ 1 2r T
Y s / / LS P, (cos ©) sin ©dOdD,
471' 0 0

(149)

we substitute in the coordinate expansion for h,Lt’s = l_z,L,’S—

1g,9°'h57, with the trace-reversed singular field given

through O(Ar) by,

TABLE I. We list the A-K components of the Lorenz gauge
singular field required for this work at each m’ value considered
in this construction.

!

m Nonvanishing A-K
0 A E . F H K

1 B,C,D

2

AE,F G HIJ K
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LS _l 4r%f(2) B 2Ar
p Lro(ro =3M)  rg(ro—3M)
r(z) —TMry + 10M? = 2rofo(ro — 4M)(1 — y)]
y b
(150)
=S =0, (151)
1 —v)]2
he = [1 —Logw 7)} Ris, (152)
rofo(l —7) rofo(1=7)] . ho7L.
RS = m 1= sin?@hks,  (153)
with
LS _ 1 4Mr(2) 2MryAr
me plro—3M ry—3M
X3r0—7M—2r0f0(1—)/)} (154)
rofor

and the @ dependence expressed through y.

The integral over ® is performed first. Recall from
Eq. (146) that p has ® dependence. As such, the integral
over ® becomes,

z P ©)sin®
/ »(cos ®) sin 40
0 P

" /-: (v

neglecting factors in p that do not depend on ®. The
denominator of Eq. (155) is expandable in terms of
Legendre polynomials [18], and for v ~ Ar <« 1 but finite,

P;(cos ®)
+1—cos®)!/?

d(cos®),  (155)

1
(12 +1—cos®)!/2

Equation (155) is written, using Eq. (156) and substituting
u = cos 0, as,

! Ps(u)
B V.|
/_1 (IJ2+ 1 —I/t)l/2 “

= SV2= G+ 1+ 00 [ et
=212

- (zfi V2= @6+ 1l + 062)L

-+ )+ 00 (5575 )

(157)

where the third line follows from the orthogonality of the
Legendre polynomials, and d,, is the Kronecker delta.
This result is the integral over ® expanded as a power
series in v.

After integrating over ®, we focus on the integral over ®.
All ® dependence is now found in fractional or whole
powers of y, and the integral of these terms becomes a
hypergeometric function [25],

2 1M
/ y"d® = 21, F, <n,—, 1,—).
0 2 rofo

When n = —1/2, the integral is proportional to the elliptic
integral of the first kind, IC( ) and when n = 1/2 it is
proportional to the elliptic 1ntegral of the second kind,
é(r f) All 1nteger values of n reduce Eq. (158) to a

(158)

polynomial in and any other value of n is related to

f b
these three cases by the recursion relation for
f[)(k) EQFl(p’%vl7k)s
p—1 1-2p+(p—3)k
Folk) =—->+F,_1(k F (k).
p+l( ) p(k— 1) )4 l( )+ p(k— 1) p( )
(159)

= Z -2+ 1)|v| + O*)]Py(cos®).  (156) When the dust has settled, AZ” is given to linear order
in Ar as,
: 4n 4(ro = M) K (ro = M)
ALY — - 27 A
" \/(2f+ 1)(ro —3M){ R A
2(r§ = 3Mro + 2M?|E  4[rf —3Mry + 4M?|K
+Ar< "5 L e _4lrg R ] )} +0(AR), (160)
wry “fo ry [

The final task is to express the singular field projections in terms of the original (¢, r,0,¢) coordinates. This is
accomplished, in part, by reversing the rotation performed in Eq. (144) through the use of the Wigner-D matrix Df;l o

defined in Appendix A B,

(161)

)Afm
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To recover the r dependence, we simply substitute the
definition of Ar = r — r(. Finally, the singular field pro-
jections are evaluated at Az =t =0 in the (®, ®) coor-
dinates. After rotation back to the original Schwarzschild
coordinates, the singular field must obey the helical
symmetry of the physical spacetime, as it is an approxi-
mation of the particular solution to Eq. (2). We then
attribute the same time dependence given to the retarded
metric perturbation, Eq. (36), written in full as,

¢
ALt r) = e~ion! Z D’ <ﬂ',g,g>A§m,(0, r).

m'=—¢

(162)

The construction of the singular field in this paper is

identical to Ref. [25] with two additional considerations:

(1) Constructing the gauge invariants (51)—(56) requires

taking additional radial derivatives of the singular

field projections, so terms proportional to Ar? are

necessary, which were suppressed in the analysis
above (for brevity) and in Ref. [25].

(2) The even-parity gauge invariants (53)—(56) involve
factors of # (contained in A1), which indicate the
presence of additional angular derivatives before the
mode decomposition. Therefore, a higher-order ex-
pansion in m' is required for certain modes, with the
specific value of m’ for each A-K listed in Table I.

The expressions for the higher-order singular field projec-
tions are unwieldy, and as such, they are made available
electronically [54], constructed in the BLS basis. One may
recover the higher-order projections of the A—K terms used
in this work via Appendix C.

C. Singular field for ¢ > 2

To find the RW/EZ gauge singular field, the gauge-
invariant quantities in Eqs. (51)—(56) are constructed from
the A—K projections of hlc;;bs. Taking into consideration the
time dependence in Eq. (162), the radial functions of the
gauge invariants are,

~ rdGLS
s =JLs — 35—, 163
% TS Ty (163)
~ A IO N
fs =—-CrLs + Grs, (164)
. 1 . A+2 4 rdF
Xs =His _ﬁEL,S - TFL’S _Ef’ (165)
. _lﬁ r—3ME LdEL.S
Vs = tLs T LS They,
A+ 2)(r=3M) . A+2)dF
_ @+ )(rz )FLS_’”( +2) LS (166)
4rf ’ af  dr

A IO R r—4m 4 dELS
S WP L N B g —r—k
Os Ls =7 ELs ;7 BLs L
iw,[r(A+2)—4(r—3M)] A i, r*dF g
- L.S + )
4f 2 dr
(167)
1. M.
€s = _EAL.S - ;EL,S +iw,,rBr g
1 M(A+2)\ A
+§ (w%nrz —7( 2y >>FL,S' (168)

The #m modes of the singular metric perturbation in the EZ
gauge are found via Egs. (70)—(75), and in the RW gauge
via Eqgs. (76)—-(81). As the above quantities are gauge
invariant and the metric reconstruction requires no inte-
gration, the (£ >2) modes of the EZ and RW gauge
singular fields are uniquely fixed.

D. Singular field for £ =0, 1

1. ¢=0

The Zerilli gauge monopole is gauge invariant under
gauge transformations which respect the HKV symmetry.
Performing the gauge transformation outlined in Sec. VA
on the singular field yields,

~ ~ M -

AP =AY + - (L)(,)S’ (169)
A A - 3M A dEOO

Ry = ket - Mg T8 (g9

rf? ST dr

Note that the additional gauge transformation between the
Lorenz and Zerilli gauges to ensure asymptotic flatness,
Eq. (106), is naturally included in the regular piece of the
gauge vector (26), for it is proportional to a homogeneous
solution of the EFEs.

2. ¢ =1 odd parity
As discussed in Sec. V B, no gauge transformation is
necessary for the odd-parity dipole and the singular field
structure remains identical. As such, the singular field for
the odd-parity Zerilli dipole is equal to the Lorenz gauge
odd-parity dipole,

C7s = Clls. (171)

3. ¢ =1 even parity

The even-parity dipole singular field is constructed
following the gauge transformation outlined in Sec. V.
The unknown constant £ in the even-parity dipole gauge
vector is pure gauge and induces a change to the retarded
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field proportional to a homogeneous solution; we therefore
attribute it to the regular piece of the gauge vector in
Eq. (26). Additionally, the choice of lower bound in the
integral for Spm, Eq. (123), fixes the £ = 1 Zerilli gauge
solution recovered after regularization; the choice has been
made so that the regularization itself requires no knowledge
of the retarded Lorenz gauge solution and no integrals of
the singular or retarded field are necessary when evaluated
at the particle.

With these choices in place, the singular field contribu-
tion to the gauge vector is given by,

A

pim = r(B™ la)mSpans)
m r lm
= _f E pa.nS
=§n . (172)

with,
pan S f / <

and the singular field for the Zerilli even-parity dipole is,

(173)

~ M A
Al = Al" —2iw,, rB]" + — E
M
—|—2r<——a)m>Spms, (174)
}"
m r—4am d\aim IO Al
Dy =D}’ <7+ VE)BILS 2f B’
, d AM\ 4,
+ 1w, <rdr - rf) S[l)art,S’ (175)
N N -3M rd
Klm _ Klm _ r
7.5 LS ( > +fdr)
2d  2M\ 4,
~(Far e Jsies e

VII. TENSOR-HARMONIC REGULARIZATION

The regularization procedure detailed in Sec. III requires,
as input, the retarded and singular # modes of the quantity
of interest, in this case either the self-force or the redshift
invariant. We now construct the tensor-harmonic Zm modes
of the redshift invariant and the force from the A-K
variables of the metric perturbation in both the EZ and
RW gauges. The sum over m is then done analytically for
the singular contributions to construct the tensor-harmonic
regularization parameters.

A. Mode decomposition of @’ and F"

1. The redshift invariant it'

The Detweiler redshift invariant is written for circular
orbits in Schwarzschild spacetime as [28],

1
i = (1- 3M/r0)‘1/2§u“uhh§b. (177)

To perform the regularization outlined in Eq. (28), we
require the retarded and singular modes of i’; we find these
by extending the definition of the redshift invariant off of
the particle’s worldline,

1
a'h) = (1 - 3M/r0)‘1/2§ﬁ“12bhab, (178)

for any smooth extension ii“, taken in this work to be the
rigid extension used by Barack and Ori [12], where the
components of the four-velocity are held fixed to their
values on the worldline while allowing the metric and
Christoffel symbols to vary. It is common to introduce a
second gauge-invariant quantity proportional to &’ [51],

AU(x) = i’ hyy,. (179)
and to perform the regularization on AU, recovering i’
afterwards via,

=(1- 3M/r0)_1/2% lim[AU™ — AUS](x). (180)

X=X

We now find the mode decomposition of AU in each gauge,
as constructed from the tensor-harmonic modes of 4, and
evaluated at the particle.

In the EZ gauge, the even- and odd-parity components
are constructed from Eq. (33) and Egs. (70)—(75) for £ > 2,

& .
= _2Al€'anYfm <z, 0)

AUEZE™ (x0)
v fo 2

written in terms of the gauge invariants introduced in
Sec. IV B and substituting in the definitions of the specific
energy and angular momentum from Eq. (5). The Zm
modes of AU in the RW gauge are similarly constructed via
Egs. (76)—(81),
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2
AURY™ (xy) = [‘;A +£ B ]Yfm(g,o>

27'0 v T
=- &Y (2,0
ro—3M° "’"(2’ )

(183)

2EL A Vs
‘m m
AUE;Z (XO) = rOf Cf aﬁyfm (2 0)

2r0Q ~p T
= =0 MY (2,0,
r0—3Mﬂ 0 f’"(z )

(184)
The gauge invariance of AU?™ at the particle for the # > 2
modes is now manifestly apparent by comparing the even-
and odd-parity contributions constructed in each gauge.
One may perform a similar exercise starting with the metric
components in the Lorenz gauge, and the expressions for
AUS™ reduce to Eqgs. (181) and (182) for even and odd
parity, respectively.

To construct the tensor-harmonic modes of AU?™ for
¢ <2, we turn to the explicit expressions for the A-K
variables in the Zerilli gauge outlined in Sec. V. For the
monopole Z = 0, the only nonvanishing contribution to

AU arises from A,

AU (x ):%A Y00<g,0). (185)

Here we see that AUZ%

inherits its gauge invariance from
A, which is gauge invariant under helically symmetric
gauge transformations as discussed immediately following
Egs. (90) and (91). One may indeed consider A%O to be
proportional to the # = 0 reduction of & as defined in
Eq. (56),

AP = —26%, (186)
given that the vector and tensor contributions to &” vanish
identically for # = 0, in which case Eq. (185) is equivalent
to Eq. (181).

The dipole £ = 1 contributions are found to be,

Z,1m 52 Alm T
AUgGen' (x9) = 5 AZ"Yim| 5.0 ), (187)
fo 2
2EL A
AU (xo) = —EC 7 09Y 10 <2 0>. (188)

Again, AV is invariant under helically symmetric gauge
transformations at the particle via Eq. (139), and may be
thought of as the # = 1 reduction of &

Ayr = —2¢tm, (189)
and thus Eqgs. (187) and (181) are equivalent. Note that this

correspondence between Aé’” and &' does not hold off the

worldline and for radial derivatives of these functions;
radial derivatives of é” remain gauge invariant, but radial
derivatives of AY" depend on the choice of gauge, even at
the particle, as seen in Eq. (127).

2. The force F"

We next turn to the mode decomposition of the self-
force. The full expression for the gravitational self-force is
given by Eq. (10). We are interested specifically in
regularizing the radial component of the force, which
reduces to a simple form for circular orbits in terms of
the retarded metric perturbation,

F'[h] = f”“ i°0,h,,, (190)
using the same four-velocity extension as in Eq. (178). The
even- and odd-parity contributions to the force in the EZ
gauge are found for £ > 2,

2
f]gérgven(x()) 2f08 Abﬂmem (2 O)
—__NoJo_pemy, (T 0 (191)
ro—3M m\2" )
rm _EL i
‘FEéodd(XO) [Cf + 100,CE7106Y 11 <2 0>
S

= wfm + roarﬂ ]aQY)f’m (%7())7
(192)

expressed in terms of the gauge invariants é” and ﬁf’”. In
the RW gauge,

¢ E L av
]:.lrW\;neven (x()) 2f0 8r‘ARr\glV
2
oL 0B + 2R )] Y <f,0)
2r0 2
R (R
ro(ro —3M)
% [120,6™ + 3Mfo7 ™Y 4 (g , o) ,
(193)
rém &L
]:R’\Ljv,odd(xo) =2 [C + 100,CEN100Y o <2 0)
0
_ rOfO [ﬁfm+r08ﬁ ]aeyf z o).
rO _ 3M ¥ m 2 bl

(194)
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The even-parity contributions to the force in the EZ and
RW gauges, Eqgs. (191) and (193) respectively, differ by a
term proportional to 7, while the odd-parity contributions
to the force both reduce to identical expressions involving
the gauge-invariant °™. Further, when constructed in the
Lorenz gauge, the odd-parity component of the force
exactly matches Eq. (194), indicating that the odd-parity
contributions to the force are gauge invariant for circular
orbits under the gauge transformations taking the Lorenz
gauge to the EZ or RW gauges. This invariance of the odd-
parity component of the force is investigated further below.

The low modes of the force are calculated in the Zerilli
gauge. For £ = 0 the force is,

78 LARY o0 <2 o),

UZ,OO

F5%(x) = (195)

which, similarly to A , is equivalent to Eq. (191), and
the £ = 1 contributions to the force are given by,

FoL A b4
Folm (x0) = —8,AJ"Y m(—,O), 196
Z.eve ( 0) 2f0 Z 11 ) ( )

. EL & . P
FFodal )z—r%[c%°+roarcé°]aﬂm<2,0>. (197)

B. Tensor-harmonic regularization parameters

We now construct the singular contributions to the
redshift invariant and the force, and perform the m sum
analytically to recover the tensor-harmonic regularization
parameters introduced in Eq. (16).

Beginning with the gauge-invariant AU, the singular
contributions to the £ modes are determined by,

¢
AUlfiw,s = Z AU}i'{’lvs(xo)

(198)
m=—¢
with
AURSy s (x0) = rlgyo{AUSVV!nfm( x) + AUgy ™" (x)}o-sp
(199)

and the terms AUges ™(x) and AURN“"(x) are con-
structed via Eqs. (181) and (182) for even and odd parity,
respectively, from the singular gauge invariants constructed
in Egs. (163)—(168). The gauge invariants necessary for the
construction of AU do not involve radial derivatives of the
singular field [see Egs. (164) and (168)]. Thus, the singular
modes of AU are continuous across the orbit in all gauges
and the limit in Eq. (199) does not have directional
dependence.

The m sum is performed in the original Schwarzschild
coordinates, unlike in Ref. [25] where the sum was

performed over m' in the rotated coordinates (©, ®).
Explicit factors of m have been introduced into the singular
field via the time derivatives in Eqs. (163)—(168), and so we
perform the sum over azimuthal modes in the unrotated
frame. Performing the sum over m analytically was
addressed in Ref. [24], and we describe its solution in
Appendix A. A method to perform the 7 sum in the rotated
frame has also been outlined by Miller et al. [55].

After taking the m sum in Eq. (198), we recover AUy s
as an expansion in #, which we write as two terms,

AUy = AUf + AUY, (200)

2

following the notation for the scalar-harmonic regulariza-

tion parameters introduced in Ref. [36], where a term AU '[";1]

scales as O(£~"). We find,
4u .
£
AU, = ! S
2 (20 = 1)(2¢ 4 3) 2 (rg — 3M) /2 (ry — 2M)'/2
x [(5r2 = 31Mry + 32M*)K
— (rg = 2M)(5rg — 11M)E]. (202)

Our result for AUE)] is identical to the leading-order
tensor-harmonic regularization parameter for AU derived
in Ref. [25], the term proportional to #~' vanishes

identically, and the result for AU'[Z] is new for tensor-

harmonic modes. For the purposes of this work, AU% ) acts
to accelerate the convergence of the regularization in a
similar way to the accelerated convergence techniques used
in scalar-harmonic self-force regularization [31,36], as
visualized in Fig. 1 and detailed further in Sec. VIIIL.

To construct the regularization parameters for the force,
we perform the m sum as outlined in Eq. (17),

FyiE = Z lim O (AR5 ore,

r—)r
m=-¢

(203)

where the £m modes of the force are calculated from
the singular gauge invariants, Eq. (163)—(168), using
Egs. (191) and (192) in the EZ gauge and Egs. (193)
and (194) in the RW gauge. The modes for £ < 2 are found
in the Zerilli gauge as outlined in Eqgs. (195)-(197). After
the m sum is performed, the £ modes of the singular force
separate into two terms, as in Eq. (16),

Fs™ = 20+ ODF + Fypws (204)
with the leading-order singular contribution given in both
the EZ and RW gauges as,
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FIG. 1. We plot the # modes of AU’ for 2 < # < 90 on a log-

log scale at the orbital radius ry = 10M. AU%, denotes the
unregularized, retarded modes of AU’ constructed in the RW

gauge, while AU’E)] and AU[”;] correspond to the regularized
modes of AU after subtracting first AU’[/B] and then AUé] from
the retarded modes, respectively, as in Eq. (218).

2 12 2 _
Fre _:Fﬂ_(lﬁ_M) jE{Z;/ZM@M rf)z]
0 ) (r0—3M)/ £<l1

{ e (205)

2’(5)/2(70 - 3M)3/2] £<2

This term is independent of the choice of EZ or RW gauge,
and is identical to the leading-order tensor-harmonic
regularization term used for the Lorenz gauge force [25].
We note that this behavior is also observed when regular-
izing the self-force in the radiation gauge, where the
leading-order scalar-harmonic regularization parameters
are found to be identical in both the radiation and
Lorenz gauges [19].

The regularization term F 0] RW does depend on the

choice of gauge. We opt to write the subleading regulari-
zation parameters following Nakano et al. [24], where the
following regularization parameters are defined for all #
and adjustments due to the £ < 2 modes are written as
separate corrections. The subleading tensor-harmonic regu-
larization parameters for the EZ and RW gauges are finally
given by,

i _ (r0—2M)1/2 2 2\ 8
—2(18M? = 9Mry + r2)K], (206)
ro —2M)V2(ry = 3M)V/2 . A
K2 F fyrw = (ro ) (3 0 ) [€-2K]. (207)

ry

Looking first to Eq. (207), we note that this term is
identical to the Lorenz gauge B" parameter for scalar-
harmonic regularization and the nonvanishing contribution
to F [rO],L in Ref. [25]. The only deviation away from the

Lorenz-gauge regularization lies in the adjustments made at
¢ < 2; as these adjustments arise from the difference
between the asymptotic, high-Z behavior of the singular
modes of the force and the local expansion of the singular
force, they are naturally attributed to the D" parameter in
Eq. (16) [56], which is found to vanish in the Lorenz gauge
but in the RW gauge now takes a nonzero value given
in Eq. (D4).

Thus, regularization may be performed in the RW gauge
by using the Lorenz gauge tensor-harmonic regularization
parameters with the addition of a nonvanishing Dgyy
parameter. The same may not be said of regularization
in the EZ gauge: the /-independent contribution to F [r()].EZ
is not equal to the Lorenz gauge term. Regularization in this
gauge requires an adjustment not only to D, given in
Eq. (D2), but also an adjustment to the Lorenz gauge B”
parameter at each #. We show in Fig. 2 the lack of
convergence in the £ modes for the EZ-gauge self-force
when the regularization is performed with the lower-order
singular field expansion given in Wardell and Warburton
[25], and the correct 1/#? fall-off recovered when regular-
izing with F 0].EZ given in Eq. (206). One sees this result

more directly when the singular gauge vector between the
Lorenz and EZ/RW gauges is constructed, which we now do.

The method outlined above for constructing the force
regularization parameters involves first finding the singular
gauge invariants in Egs. (163)—(168) and then reconstruct-
ing the singular contributions to the force directly in each
gauge. An equally valid approach to finding the regulari-
zation parameters is to explicitly calculate the gauge vector
between the Lorenz gauge and the EZ/RW gauges. The

10° 4

3 -,
< N
S 0] el T
= o .
~ ~.—
~L ~—
10-° v Sso ~.
— Fa N e mmmm -
- o /’— ~
b \ -~
O e Firw (e ~.
10 ) \ —
-,
—= Fr / -

10! 102

FIG. 2. The individual # modes of the EZ gauge self-force are
plotted for 2 <# <90 on a log-log scale at the orbital radius
ro = 10M. The retarded modes of the EZ gauge self-force, F7',
are calculated from inside the orbit and are shown to diverge with
¢. The force F \rzvl;v corresponds to the regularization produced
when using the low-order, analytic expansions for the singular
field published in Ref. [25]; this regularization is incomplete and
the self-force diverges in the # sum as 1/s. Finally we plot the
regularized EZ gauge self-force, ffe’g, produced in Eq. (216)
using the EZ gauge regularization parameters in Sec. VII.
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force then transforms as in Eq. (20); for a particle traveling
along a circular orbit, the radial component of the force
transforms under gauge transformations which obey the
HKV symmetry as [18],

3uMfy

Frew(X0) = Fra(x0) =55~
ew( O) ld( 0) r%(ro—?sM)

g, (208)

To construct the regularization parameters in the EZ/RW
gauges, we require the Lorenz gauge tensor-harmonic
regularization parameters (found in Ref. [25]) and the
mode decomposition of the singular gauge vector intro-
duced in Eq. (25). The gauge-transformed regularization
parameters are then given by,

3uMfo ¢
]_‘F,fi — ]_-r,fj: _ 5", + .
RW.S LS I”(Z)(VO _ 3M) RW.S

(209)
For the # > 2 modes, the radial component of the gauge
vector &§ is straightforward to find for both gauges [23]
from the tensor-harmonic modes of the Lorenz gauge
singular field,

A+2

A ]"0 A
1oy = 0 [E T

Gem z
) FiS:| Yo <§ ’ 0) ’ (210)

G m
A m ~em TodPLS 7
; = H{"§ — — Yel=.0). (211

Rw.s(%0) Vofo[ LS ™% 4, ] m <2 ) (211)
The £ < 2 modes of the gauge transformation require the
gauge vector from the Lorenz gauge to the Zerilli gauge, as
outlined in Sec. V, with the monopole contribution given by
Eq. (87),

: . (212)

N ro T

2050 x) == EP%Y oo (—,0>-
For £ = 1, only even parity requires a gauge transforma-
tion, and the radial component to the gauge vector is given
by Eq. (120),

& " (x) = %Eﬂ%nm <gO) (213)
Recall that a choice was made in Sec. VI to associate the
gauge constant Z'™ with the regular contribution to the dipole
gauge transformation and that §;1)Tn vanishes at the orbit.
We list the full expressions for the gauge vectors in
Appendix D, but the results of this calculation are not
surprising and produce the same regularization parameters
presented above. In the RW gauge, 5{1’@5 contains at leading
order terms which scale as O(#72) and vanish when
summed from # = 0 to infinity, plus contributions specifi-

cally at £ < 2 that generate Dy.y,. The EZ gauge vector fng,s

scales as a constant at leading order in #, along with terms
which vanish in the # sum and specific contributions at
¢ < 2. This constant scaling behavior in the £ sum corre-
sponds to alocal 1/s singularity in the gauge vector [19] that
matches the local analysis performed in Appendix E.

VIII. RESULTS

We now list the results of our numerical analysis,
beginning with the regularization of the redshift invariant.
We then calculate the regularized LL force from both the
RW and EZ gauge retarded metric perturbations. Finally,
we calculate the gauge vector, £&XW-C, from the regularized
Lorenz gauge metric perturbation and compare the Lorenz
gauge self-force to the forces computed in the EZ and RW
gauges.

To ensure that the comparison occurs at the same event in
all gauges, we work with an asymptotically flat monopole
as discussed in Sec. V, and evaluate all quantities at the
gauge-invariant radius introduced in Ref. [28],

(M5
Ro=|(qz)-

For quantities which are entirely first order in /M, e.g., i,
we find that @' (Rg) = ' (ro) + O(u?/M?) [51].

The regularized redshift invariant & is calculated by
performing the sum in Eq. (30), subtracting the tensor-
harmonic regularization parameters from retarded £ modes,

(214)

[
_ _ 1 max
l/lf{ = (1 - 3M/RQ) 1/25 [AUliw.ret - AU[{)] - AU[K;]]’
=0
(215)

with the £ < 2 modes of AU{{WM constructed in the Zerilli
monopole and dipole gauges, respectively, for both the RW
and EZ gauges. To calculate the regularized radial compo-
nent of the self-force in each gauge, we perform the
summation,

fmax
Frae = Y [ Fki e — Q€+ DF[T = Floyrwl — Diws
=0

(216)

where the retarded modes of the force are calculated in each
gauge following Sec. VII A.

To account for the truncation of the sums above at £,
we introduce a “tail” correction [17,20], for AU given by,

0

AUp = Z AUrf;s’

Cmax+1

(217)

with AU%, defined as,
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AUl = AUy 1o — AU — AU

0 o) (218)

AUY is found by numerically fitting the # falloff of the
O(€") and higher contributions to the residual, plotted in
Fig. 1, assuming it has the form given by the ansatz,

K
max AU
¢ [2k
AV~ 2 (o)
k=2 Zk( )

(219)

where each P, (#) is a polynomial of order #* chosen
such that each term in the sum (219) vanishes when
summed from £ = 0 to infinity (and thus does not formally
contribute to the self-force), and {AU [2,(]}],;“‘:“3 are constant
parameters. We use the polynomials given by,

Py (£) = f[ (20 -2k = 1)(2¢0 +2K +3),  (220)
k'=0

which we note are naturally found in the accelerated term
(202) for k = 0.

To accelerate the convergence of the regularized self-
force, we assume a similar form for the residual,

s = Fiire = (26 + 1)]:[r’_jlt] = lorw? (221)

and fit the data to the ansatz,

kmax Fr
Frlo~y S (222)
ST

beginning here at k =1 to match the £ falloff of the
residual data. The acceleration to the convergence is then
seen as [20],

Fr=Y [Fil -0+ 1)F,

r.t
S~ Fl

[0]

0 kmax fka]

* Py(?)

+ O(¢~Phmnt1)) - (223)
Crmax+1 k=1

The final results for @y are tabulated in Table II for a
variety of orbital radii, compared against the results of
Dolan et al. [57]. The results for the regularized self-force
computed in the EZ and RW gauges are given in Table III
for a variety of orbital radii, and the residuals obtained
when accelerating the convergence of the EZ-gauge self-
force are plotted in Fig. 3.

A. Comparison to Lorenz gauge force

As a check of our results, we now calculate the gauge
transformation between the regularized self-force in the

TABLEII. Comparison between the regularized &' from this work using ¢\, = 90 and numerical data presented
by Dolan et al. [57] in their Table V, evaluated at the gauge-invariant radius Rg. The uncertainty in this work’s data is
represented by the first excluded digit and is determined by the error in the numerical data.

Ro/M (M/u)u' [This Work] (M/u)a' [Dolan et al.]

5 —4.66652374199560 x 107! —4.666523741995578 x 107!

6 —2.960275092900145 x 107! —2.9602750929001455 x 10!
7 —2.208475274322470 x 107! —2.20847527432247320 x 107!
8 —1.777197435535924 x 107! —1.77719743553592433 x 10~!
9 —1.493606089179072 x 10! —1.49360608917907227 x 10~!
10 —1.291222743920494 x 107! —1.29122274392049459 x 10~
12 —1.019355723862671 x 10~! —1.01935572386267132 x 10~!
14 —8.438195340957111 x 1072 —8.43819534095711226 x 1072
16 —7.205505742934500 x 1072 —7.20550574293450112 x 102
18 —6.290189942823900 x 1072 —6.29018994282390090 x 102
20 —5.582771860249385 x 1072 —5.58277186024938513 x 1072
30 —3.577831357182052 x 102 —3.57783135718205099 x 1072
40 —2.633967741370485 x 1072 —2.63396774137048419 x 102
50 —2.084465653059542 x 1072 —2.08446565305954225 x 102
60 —1.724759329267916 x 1072 —1.72475932926791548 x 102
70 —1.470964636172172 x 1072 —1.47096463617217204 x 1072
80 —1.282296057577150 x 1072 —1.28229605757714959 x 1072
90 —1.136531560741143 x 1072 —1.13653156074114270 x 102
100 —1.020528273002761 x 1072 —1.02052827300276055 x 102
500 —2.008040444139764 x 1073 —2.00804044413976405 x 1073
1000 —1.002005027714143 x 1073 —1.00200502771414297 x 1073
5000 —2.000800400443024 x 10~* —2.00080040044302370 x 1074
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TABLE III.

The gravitational self-force calculated for a variety of radii r, in the EZ and RW gauges, with

max = 90. The uncertainty in this work’s data is represented by the first excluded digit and is determined by the

error in the numerical data.

ro/M (M/u)*Fiy (M/#)zf}rzw

5 1.3491385787783 x 10! 1.4478678123551 x 107!
6 8.3524207606497 x 102 8.6934324131015 x 1072
7 5.7062560017807 x 1072 5.8571804183181 x 1072
8 4.15552621898715 x 1072 4.23286430116071 x 1072
9 3.16509341842258 x 102 3.20885498792370 x 1072
10 2.49263586496073 x 1072 2.51925841277600 x 1072
12 1.66246017064658 x 1072 1.67396850792489 x 1072
14 1.18801077328929 x 1072 1.19376803778606 x 1072
16 8.91343515555617 x 1073 8.94533890457622 x 1073
18 6.93472364128979 x 1073 6.95379534903761 x 1073
20 5.54905996206358 x 1073 5.56114762804262 x 1073
30 2.37962509465255 x 1073 2.38177780442984 x 1073
40 1.31536713121881 x 1073 1.31601370250459 x 1073
50 8.33160391138597 x 10~* 8.33417027210234 x 1074
60 5.74629392014362 x 10~ 5.74750573327324 x 10~
70 4.20123225270203 x 10~ 4.20187653749219 x 10~
80 3.20486589318390 x 1074 3.20523928418601 x 10~*
90 2.52508907696752 x 10~* 2.52532012109719 x 10~*
100 2.04070927223777 x 107* 2.04085978386760 x 10~
500 8.03211169423443 x 107° 8.03213455900903 x 10~°
1000 2.00400696809141 x 10° 2.00400838779413 x 107°
5000 8.00320111329434 x 103 8.00320133925429 x 1073

Lorenz gauge and each of the EZ and RW gauges by
computing the regular gauge vector in Eq. (26). We choose
to begin in the Lorenz gauge and work to find the gauge
transformation to the EZ/RW gauges; this choice is
a matter of convenience, since the gauge transformation
from any gauge to the EZ/RW gauges is relatively simple to
construct using tensor-harmonic modes [23], while the gauge
transformation from the RW gauge to the Lorenz gauge is not

10-6
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o O T
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o] T m—e—m
e
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N Frooo T
e B N
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¢
FIG. 3. Absolute value of the residual after subtraction of each

successive regularization term from the EZ gauge self-force
versus £ on a log-log scale from &, = 35 to £, = 85 for
ro = 10M and k,,, = 5.

[58]. The task is further simplified by the need for only the
radial component of the gauge vector, as seen by the
transformation properties of the force for circular orbits
in Eq. (208).

To start, the regularized Lorenz gauge metric perturba-
tion, hll;,',R, is computed using the effective source regulari-
zation techniques outlined in Ref. [25]. The authors were
given this numerical data from Niels Warburton [59],
decomposed into BLS-basis tensor-harmonic modes.
From this numerical data, the regular gauge vector is
constructed mode by mode following Eq. (26).

For ¢ > 2, the radial component of the regular gauge
vector & is constructed identically to the singular gauge
vector &g, replacing the singular A—K components of the
Lorenz gauge metric perturbation with the regularized
components,

er.fm r ~Cm A + 24 m- n
Ere(o) =2 [Blk + = F{R | Yo (— : 0) . (229

srilm rem T di{m] T
R{v,c(xo) = rofo [HfR - 50#_ Yom <§ , 0), (225)

with monopole and dipole contributions given by,
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TABLE IV. We check the accuracy of the Lorenz gauge
numerical data produced in Ref. [25] against the analytic Zerilli
gauge dipole metric perturbation by performing the gauge
transformation and evaluating the relative difference at ry =
6M and ry = 10M. We also verify that the two gauge constants in
Eq. (142) coincide for circular orbits. All values are given as
relative differences, AK = |K; _,/K; — 1
which vanishes in the Zerilli gauge at the particle.

rg = oM ro = 10M

(M/u)A; 7 2x 10728 5x 1072
AD,A 8 x 10728 2 x 10726
AD 1 x 1072 1 x 107
AO,D 2% 1072 2x107%
AK 2% 107% 2x107%
AD,K 2x 1077 1 x 107>
A 7 x 10777 6 x 107
Er00 E Yool 2.0 226

&8 x0) = 5 Bl Yoo 5 (226)

. rO A
5o (x) = [EEI%

+ f614’>1m:| Ylm (g s O) ’ (227)

where £ is the gauge constant used to specify the specific
retarded Zerilli dipole gauge used for the EZ and RW gauge
forces, calculated from the retarded Lorenz gauge metric
perturbation using either Eq. (140) or Eq. (141). The veri-
fication of Eq. (142), along with the comparison between
the analytic Zerilli dipole metric perturbation and the
gauge-transformed Lorenz gauge dipole perturbation pro-
vides a check on the numerical accuracy of the Lorenz
gauge numerical data produced in Ref. [25], listed in
Table IV. The full gauge vector is recovered by summing
over modes,

fRW clxo) =

(228)

+ Z Z gra/mc + étall RW»

=2 m=—¢

where we have introduced a tail contribution to compensate
for the truncated # sum, defined as above for F7; and fit to

tai
the ¢ falloff of fRWC

Finally, the retarded Lorenz gauge metric begins with a
monopole which is not asymptotically flat (see Sec. V).
Adjusting to an asymptotically flat monopole requires the
gauge vector given in Eq. (106) which does not obey the HKV
symmetry; its contribution to the change in the force must be
calculated separately from Eq. (208) using ENAF [18],

24P M

Frr(x0) = FRar(xo) + r3/2(r0 _ 3M)3/2 ) (229)

Combining these two gauge contributions, the final result of
the gauge transformation is,

3uMf

= fﬁ,R(xo) - mfﬁw,c(xo)

2u*M
rg/z(ro - 3M)3/2 .

F IC—»RW.R (xo)
(230)

We compare the gauge-transformed Lorenz gauge force
against the self-forces computed in the EZ and RW gauges
in Table V.

IX. CONCLUSIONS

In this work, we produced results for the regularized
gravitational self-force computed in the RW and EZ gauges
for a circular orbit in the Schwarzschild spacetime, and

TABLE V. We provide a numerical comparison between the self-force computed in the Lorenz gauge from
numerical data produced in Ref. [25] and the self-force constructed in the RW and EZ gauges from numerical data
produced for this work, with #Z,,,, = 60 for the Lorenz-gauge data. The regularized Lorenz gauge self-force is
computed using the methods outlined in Ref. [25], and the gauge vectors &py ¢ and &gy  are calculated from the
regularized Lorenz gauge metric perturbation as outlined in Eqgs. (224)—(227). The computed relative difference is

taken to be |F{_pwr/Frwr = 1I-

ro = oM ro = 10M
M/u 2-7:£.R 2.4466497159525 x 1072 1.338946946191866 x 1072
—2.430453614878363 —2.64575603798078264

(M/n)
(M/ﬂ)é:lr{W,C
(M/ﬂ)z}-i—»RW,R
(M/n)

8.6934324131015 x 1072

2.51925841277599 x 1072

)2 Fhwr 8.6934324131015 x 1072 2.51925841277600 x 1072
rel. diff. 5.x 10715 7.%x 10717
(M/u)Ey —2.246307322554369 —2.56810694018625259
(M/u)*Fi{ _gzx 8.3524207606496 x 1072 2.49263586496072 x 1072
(M/p)*Fryn 8.3524207606497 x 1072 2.49263586496073 x 1072
rel. diff. 5.%x 1071 2.x 10716
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compared directly our values of these forces to the Lorenz
gauge self-force via an explicit gauge transformation.
Our numerical implementation allows for the fast and
efficient calculation of the first-order self-force from the
Regge-Wheeler and Zerilli master functions in the RW gauge
itself for circular orbits, which has heretofore not been done.

The results presented here fill a gap in the literature for
self-force regularization in the RW and EZ gauges at first
order. They also act as a step toward the development of a
framework for gravitational self-force regularization in the
RW/EZ gauges at second order in the perturbation. Thus far,
approaches to the second-order analysis have been rooted in
the Lorenz gauge (see e.g., Ref. [60]). A general approach to
perturbations in the RW gauge at second order in the mass
ratio was introduced by Brizuela er al. [61]. However,
ongoing work to regularize the first-order metric perturba-
tion at spatial infinity [62] and the horizon is necessary
before construction of the second-order sources is tractable.
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APPENDIX A: TENSOR-HARMONIC BASIS

1. Vector and tensor harmonics

We review the pure-spin tensor-harmonic basis intro-
duced in Ref. [65] which is used with the A-K notation in
Eq. (33). The scalar spherical harmonics are defined as
eigenfunctions of the spherical Laplacian and given by,

Yon(0.4) = \/ @O (E =)o g,

4 (£ +m)! (A1)

where P (cos 0) is the associated Legendre polynomial. In
constructing the vector and tensor harmonics, we require
the two vector fields v, and n,, introduced in Sec. IV, along
with the Schwarzschild metric on the two-sphere,

Oab = Yab +fvavb _f_lnanb' (Az)

The vector harmonics are now defined as,

Yffm = rvanm’ (A3)
yBom — rea,nV.Y 4, (A4)
Ygfm =N, Yfm’ (AS)

where ¢, is the spatial Levi-Civita tensor with v“¢,;,,.=0
and ¢,y = r’>sin@. The tensor harmonics are further
defined as,

To)"" = 6uY pum (A6)
Toy™ = nanyY e, (A7)
Toy™ = rn Vo Yo, (A8)
Ty ™ = rngencnVaY o, (A9)

1
Tangm =7 (O-acgbd - EaﬂbGCd) vademv (AIO)

B2.fm _ 2 d
T " =10 e nV.VYgy,.

(A11)
Finally we list the conventions used for finding the A-K
projections introduced in Ref. [23]. For an arbitrary smooth
tensor field X, the A-K terms are found via,

X\ =f? / Y3, X ,dQ, (A12)
Xg = S aybrx ., dQ Al3
B — ™ f(l/ﬂ + 1) v E ab ’ ( )
Xc = f aybiX ,dQ Al4
c= —m U g Agpdis, ( )
Xp = — / Y% X ,,dQ, (A15)
1
Xg = 3 / T45 X ,,d€Q, (A16)
2(¢6 -2)!
X, :ﬁ / TaX,,d0, (A17)
2(¢=2)! "
XG e m T32 Xabdg’ (A18)
_ <£ - 1)‘ —1 abx
XH - ({_F 1)‘f TE] thbdQ’ (A19)
<f - 1)' —1 abx
XJ = (f‘i‘ 1)'f TBl thbdQ’ (A20)
X =7 [ T X0 (A21)
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where * denotes

sin 0d0de.

complex conjugation and dQ =

2. Rotations and m sums

To perform the rotation between the two-sphere angles
(®,®) and the original Schwarzschild angles (6,¢) in
Sec. VI, we use the Wigner-D matrices Df;m,,

47 i
Disle o) = (S -V en(hea)e™,

written here for the Euler angles a, f, and y chosen in
Ref. [25] and in terms of spin-weighted spherical harmon-
ics (Y,,,(0,¢) using the conventions of MATHEMATICA
[48]. The spin-weighted spherical harmonics may be
constructed from the scalar spherical harmonics [66]; for
s = 0, the spin-weighted and scalar spherical harmonics are
related via the identification

oY (0, P) = Y2, (0, ).

To construct a spin-weighted harmonic Y,, with spin
weight s, raising and lowering operators are defined,
respectively,

(A22)

(A23)

Oy +icsc0, — scotd

VI=s)(I+s+1)

- Og—icsc0y + scotd
: VIi+s)(I=-s+1)

, (A24)

s =

, (A25)

such that any spin-weight s harmonic is achieved by
repeated application of a raising or lowering operator on

You, €.8.,

1Y, (0,0) =80, (0. 0), (A26)

LY, (0,0) =_10,Y (0, p). (A27)

It is clear that any spin-weighted spherical harmonic may
be written as a combination of scalar spherical harmonics
and their angular derivatives.

We noted in Sec. VII the difficulty involved in perform-
ing the m sum of the singular field analytically, as the sum
is performed in the original, unrotated Schwarzschild
coordinates. After reconstructing the singular field, each
component of hla{;V'Sfm contains terms with the following
two forms produced by the rotation in Eq. (161):

for even parity,

D <7r > g) (=1l <n, > g) . (A28)

for odd parity,

T T ’ T T
Drf;l.m’ (ﬂ', E . 5) — (—1)"1 Df;l.—m/ <7Z, 5 s E) . (A29)

These expressions result from combining £m’ values together
and simplifying using the complex conjugation of the A—K
variables, e.g., A“~"" = (=1)" A?"* We write these com-
binations of Wigner-D matrices in terms of spherical
harmonics,

¢ (2 EE w pe TEIN_ | Y oy (T
Dm,m’ <”’ 2 ’ 2> + ( 1) m,—m’ (7[’ 2 ’ 2) - 27 + 1afmm’ Yfm <2 ’ O) ’ (ASO)
T /2 4z /s
Dl |\ nZ.S) - (-D)"D! _ (n=.5) =—a5,,00Yin| .0, A31
m,m (7[ 2 2) ( ) m,—m <” 2) 20 + lafmm 05 tm 2 ( )
with coefficients,
p o for m' =0,
af = (( K:LZ,;' 2im for m' = 1, (A32)
2[£(¢ +1) —2m?] for m' =2,
p 0 0 for m' =0,
ot = % 2i  form' =1, (A33)
—4m  for m' =2,
reducing the necessary sums over m modes to be proportional to either,
¢
> mM|Yp,(2/2.0)2,
m=—¢
or, (A34)
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4

Z mN|a€Yfm(”/27 O)|2

m=—

(A35)

The sums in Egs. (A34) and (A35) were calculated analytically by Nakano et al. [24], who evaluated them by repeated

differentiation of two generating functions,

‘ av

2 M Yen(m/2.0)P =lim oy

‘ dav
D M 00Y en(x/2.O)F = lim

3
X2F1 5,

APPENDIX B: SOURCE TERMS IN A-K

We first list the source terms for the master functions in
Eq. (59),

Sw = f(r?0,Ec + rE¢ + r*0,Ey), (B1)

Szz%f[—

+ r28rEA + r23,ED

+(A+2) <rfEH +%EK—§EF>].

rlA(A =2)r* + 2Mr(74 — 18) + 96 M?] E
2rfx A

(B2)

The source terms are constructed from projections
of the stress-energy tensor onto the tensor-harmonic basis,
Eq. (35) and Egs. (A12)-(A21). When evaluated for a
circular orbit, the nonvanishing source terms are

>0,
£
Elm = —167:’”[—35@— ro)Y, (z,9t>, (B3)
s 2
- uQL . (7
Eé :—87[ r2 5(r—rO)Yfm (E,Qt>, <B4)
0
£>1,
16zim pfol /s
En=————— " 5(r—ry)YE (2, Q1 BS
B f(f—i-l) r(}) (l" rO) ‘m 2’ ’ ( )
167 ufoLl 7
Em - Y: (Z,Q B
C f(f—i-l) }’(3) 5(7’ ro)ag ‘m 2’ r, ( 6)

20+ 1 1 _
g e’ F, <§,—f,1,1—e Zzﬂ, (A36)
20+ 1 o(r-1)z ¢ +1/2)I(3/2)
4r ')
1
- +1, —f+2,e_21>} (A37)
Z>2,
om (¢ =2) uQL
EF = —1677:({_'_2)"”7(2)6(7”— ro)
x [£(¢+1) =2m?|Y%,, (g , Qt) : (B7)

APPENDIX C: A-K AND BARACK-LOUSTO-
SAGO DECOMPOSITIONS

For convenience, we list the A—K variables of the metric
perturbation in terms of the BLS basis of Barack and
Lousto [16] and Barack and Sago [17],

1 - _
A=—(hD 7(6)
2r( +f )’

11 e
2re(0+1)
L1 e,
2re(€+1)

1 -

D=—-—h?
2rf
1 -
E=—h0,
2r
(e=2)'hD
()
(¢ =2)! h(19)
C(f+2)0 r
H= 1 e
2rf (¢ +1)
1 1 -
J=———— =}
rfe(f+ 1)
1 _ _
K=——(hW = rp6)y.
2rfz( Jh'®)
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APPENDIX D: ADDITIONAL FORCE REGULARIZATION PARAMETERS

In this section, we present the results of the singular gauge transformation, which contributes to the subleading self-force
regularization parameters for the self-force in the EZ and RW gauges. We also display the D" regularization parameter for
both the EZ and RW gauges.

1. EZ gauge

The # modes of the singular gauge vector from the Lorenz to EZ gauge are found to be,

rl 2p

EZ8 " 2(ry — 3M)Y2(ry — 2M)
16p

1039577y (rg — 3M)3/(ry — 2M)

75 {2(ro = 2M)E — (rg — 3M)K}

+

73 {(2M = o) (4805M? — 14843Mr -+ 489613)E
+ (rg — 3M)(6820M> — 14255Mr, + 489613)K} 8,1 1)

The Dy, regularization parameter is given by,

16M (ry —2M)'/? A
i 573 {(ro — 2M)(4805M? — 14843 M, + 489615)E

r

B2 3465118 (ry — 3M)
— (ro — 3M)(6820M? — 14255Mry + 4896r2)K’}. (D2)

2. RW gauge
The ¢ modes of the singular gauge vector from the Lorenz to RW gauge are found to be,

re pu(ro —2M)'/ 3 2 P 3 8
<A [945m%<r0 33y (18247 = S6310MPr, + 32677M 1 — 426973)
+ (rp — 3M)(15488M> — 14416M r) + 2379%)/&}] 540

[ p(ro —2M)'7
103957r3(rg — 3M)

173 {(307520M° — 566142M2ry + 311041M 73 — 47145r3)&
+ (ry — 3M)(218240M — 174736M r + 67935r§)/€}] 81 (D3)

The Dgyy regularization parameter is given by,
u22M (ro — 2M)3/?
Drw = = 5 5/2 {
3465xry(rg — 3M)
+ (rg —3M)(23963M? — 8080Mr,, + 20883r5)f€}. (D4)

r —

(33728M° + 26634M?r, — 24203M 1% — 93r3)E

APPENDIX E: LOCAL GAUGE TRANSFORMATION FROM LORENZ TO EZ

The EZ gauge condition [23] is typically reported as an algebraic condition on various tensor-harmonic mode
components of the metric perturbation. This form of the gauge condition assumes a global decomposition of the metric
perturbation into tensor-harmonic modes, and the gauge condition is applied mode by mode; such a decomposition is not
locally defined and fails to describe the local behavior of a gauge transformation to the EZ gauge. We wish to study this
local behavior of the gauge transformation from the Lorenz gauge to the EZ gauge, and as such must look at the more
general form of the EZ gauge condition, namely
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HEZ = 0, (E1)
hys =0, (E2)
hEZ =0, (E3)
sin@(sin Ohyg’) 4 + hify = 0. (E4)

The gauge conditions (E1)—(E3) state that the components
of the metric perturbation on the two-sphere are set to zero
(in A-K, the E, F, and G terms), and the gauge condition
(E4) is used to eliminate one even-parity vector piece of the
metric perturbation (the B term). This form of the EZ gauge
condition is well suited for a local investigation of the
gauge vector, and is also satisfied automatically by the
[ =0, 1 Zerilli gauge monopole and dipole.

The gauge transformation from the Lorenz gauge to the
EZ gauge is generated by the vector £“. To first order in the
gauge vector, this transformation takes the form,

hEZ = pl — 2V (.&p)- (ES)

When substituted into the gauge conditions (E1)—-(E4), the
gauge vector must satisfy the following equations:

Wy =290 + 2(r —2M)E,, (E6)

My =28, + 2(r — 2M) sin? 6¢,
+ 2sin 6 cos 6y, (E7)

gy = oy + sin® O(sin™> 0,) 4, (E8)

sin0(sin Ohly) o + hly ; = sinO(sin 0, g) » + & 4
+sin0(sin0F) g + &5, (E9)

where an overdot represents a time derivative. To analyze
these equations, we follow the framework laid out by
Barack and Ori (BO) [15]. As the gauge equations do
not contain any radial derivatives, we choose to work
on a constant r = ry hypersurface. Furthermore, we may
recover Eq. (38) of BO (up to a sign convention) by
combining Egs. (E6) and (E7) as defined for hy,, =

(hgo — sin™2 Ohy,)/2, which eliminates &,:

sin O(sin~'0&p) 4 — sin"20&, 4 = hhe.  (E10)

The resulting equations naturally separate into condi-
tions on the angular components &, and &, Egs. (E8) and
(E10), and the time component &,, Eq. (E9).

1. Solving for & and &,

We reproduce the results of BO here for completeness.
To simplify the work involved, BO observed that Egs. (E8)

and (E10) do not involve time derivatives, so we may
further restrict our analysis to the surface (¢t = 0, r = r).

The local Lorenz gauge singular field may be written for
a perturbing mass y as in Eq. (21),

2p
hgb = (gab + 2”(1”1))7

: (E11)

where u, is the four-velocity of the particle and s is the
spatial geodesic displacement away from the worldline
along the surface. We may then rewrite Eqs. (E8) and
(E10), introducing the singular fields as a source term on
the rhs:

2ul?
sin (sin~'0&y) y — sin"208, , = — . ,
. , P

(E12)

Epp + sin?0(sin260¢,) , = 0. (E13)
Following BO, we now perform a change of coordinates on
the two-sphere to be Cartesian-like: y = rysin @ sin g,
z=rgcosf. To see how this coordinate transformation
affects s, we use the definition of the space-like interval
along the submanifold spanned by y and z,

§ = \/(gab + uup — nanb)xaxb

2
— \/<1 +f—2>y2 + 22+ 0(y) + o(z).
0

In their paper, BO defined the quantity

(1-0*)" = <1+£22>,

o

where 0 <v <1 1is the local boost velocity. After
expanding out Egs. (E12) and (E13), we find to leading
order,

2ul?
A= aee

éz,z - é:y,y == , (E14)

&y té,.=0. (E15)

Equation (E15) implies that both &, and £, can be found by
differentiating a scalar potential @,

£, =D, & =-0,, (E16)
which must satisfy Poisson’s equation,
2ul?

O D, = a (E17)

/(1= 2 + 22
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At this point, we transform coordinates again, changing the
local Cartesian coordinates to the polar coordinates
y =pcosa, z = psina, and reexpress Eq. (E17),

1 1 a (1=2v%)1/2
—(p(l).p)p +_2(I).aa = PRGN
P TP PV1—uvsin“a

with @ = —2uL?/r3. If we suppose an ansatz for the

solution which is decomposed into Fourier modes e%,
we find that the general form of the potential is,

(E18)

®(p,a) = ca + i e @, (p). (E19)

n=—00

The term ca in this general solution exists because the
potential ® need not be single valued, due to the presence
of the singularity at y = z = 0, but its p and « derivatives
must be single valued. After substitution into Eq. (E18), the
Fourier modes ®,, obey the equation,

2

1 n a
(pq)n,p) » _zq)n = ;fn’ (EZO)
with coefficients,
V11— 2 2 —ina
fn= L (E21)

da.
V1 = v%sin%a

These coefficients vanish for odd n, and are generally
nonvanishing for even n. In particular,

2 0

written in terms of the complete elliptic integral of the first
kind, K, is bounded from below away from zero. [This f is
not to be confused with f(ry) used in the body of this
paper.] BO next constructed the general solution to
Eq. (E20),

for n =0,

B { bop +yo + Polnp (E22)
" for n # 0,

bup + 1up" 4 up™"
with the arbitrary constants y, and f, arising from the

homogeneous solutions and the constants b, determined by
the particular solution,

b _{afn/(]_nz)
"o for odd n.

for even n,
(E23)

With the general solution determined, the task is now to
find the most regular behavior of the gauge vector as we
approach the worldline (in this case, as p — 0). BO found
the most regular solution to be one which sets 3, = 0 for all

values of n, along with ¢ = 0. They then wrote the final
solution in a compact form,

@(p,a) =yo + pH(a) + O(p*), (E24)

with

H(a) =ye +y_je @ + Z b,e™,

Finally, the components of the gauge vector are recovered
by differentiating the potential, a la Eq. (E16),

¢, =—Hcosa+ H ,sina+ O(p), (E25)

E, =Hsina+ H,cosa+ O(p). (E26)
For the components of the gauge vector to be continuous at
the particle, they must be independent of «; otherwise the
p — 0 limit takes an indefinite value. BO found, though,
that the first derivatives of the gauge vector components,
$yq and & 4, do not vanish at the particle, implying a
directional dependence for their values and the presence of
jump discontinuities. They stressed that, while £, and &, are
discontinuous at the particle, they remain bounded in the
limit, thereby still satisfying the sufficiently regular criteria.

2. Solving for &,

We now look to solve Eq. (E9) for &,. Following the lead
of Pound, Merlin, and Barack [21], we now find a solution
for £, which is well behaved as a function of time and
satisfies (SR3). As such, the time derivatives in Eq. (E9)
are subdominant to the spatial derivatives when looking at
the most singular behavior, and are ignored, reducing
Eq. (E9) to

sin@(sin 0, 9) g + &4y = sin O(sin Ohy) o + hiy 4. (E27)

For a particle traveling along a circular geodesic of
Schwarzschild spacetime, the rhs of Eq. (E27) becomes,

—4uEL

sin§(sin Ohyy) o + hiy, , = [ } , (E28)

N

We again introduce the locally Cartesian coordinates (y, z)
on the surface (r =20, r =ry), and expand Eq. (E28),
keeping only the leading terms,

duEL(1— )ty
rol(1=%)71y? + 272

gt,yy + é:t,zz = (E29)

The lhs is simply the flat-space Laplacian acting on ¢&,.
When transformed to the polar coordinates used in
Appendix E A, the equation becomes equivalent to
Eq. (E18) with a different source term,
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1)1/ cosa

32 °

1 1 c(1-
p* [1 = v’sin’al

; (pgr,p),p + ? gt,(m = (E30)

with ¢ = 4uEL/ry. When decomposed into Fourier modes,
&, is expressed as,

[Se]

ft: Z €i”a§?(ﬂ),
satisfying,
1 " n? " c
/—)(p ), —p—zft =[7dn- (E31)

The Fourier modes of the source now have different
characteristics,

d, =

1= 2 ron —ina
% v / : e " cosa da,  (E32)
0

2 3/2

1 — v%sinq)
which vanish for all even values of n and are generally
nonvanishing for odd values of n, yielding the opposite
behavior of the coefficients f,. We again construct the most
general solution to Eq. (E30),

for n =0,

£ = {7’0 +Bolnp
! for n # 0.

G + 72" + 7 (E33)

The constants y, and f, are again arbitrary, and g, is
defined as,

for even n,

(E34)
for odd n.

_ {0
qn = —Cdn/l’l2

It is clear that the most regular solution may be obtained by
setting 3, = O for all values of n, but we note that 3, # 0 is
still allowed by the regularity condition of (SR1). Finally
we define the function G(«) in a similar way to H(a),

Gla) =yie™ +y_je7, (E35)

such that the full gauge vector component &, is recovered,

E=v0+ D 4™ +pG(a)+ 0(p?).

n=—oo

(E36)

The sum in Eq. (E36) converges for any value of
a € [0,2x), and thus &, is well behaved in the p — 0 limit
yet still dependent on «, indicating a jump discontinuity.

3. Solving for &,

Finally, we solve for the radial component of the gauge
vector, &,, by combining Egs. (E6) and (E7) as in Eq. (E10)
but by adding the equations instead of subtracting.
Returning once again to the Cartesian coordinates for &,
and &,

5 — V% <:u(1 _,UZ)—I

2(”0 - 2M) s éy,y éz,z>- (E37)
This equation seems to indicate that &, (restricted to the
two-sphere intersecting the worldline of the particle)
diverges as 1/s as one approaches the particle. Such a
divergence is too singular to fall within the class of
sufficiently regular gauge transformations, for it does not
satisfy (SR2). On closer inspection, in the local polar
coordinates and using Egs. (E25) and (E26),

_ o =) o
fr_z(ro_zM)p (m COS(2 )(H+H,aa))
+ O(a) + O(p), (E38)

and the term involving H(a) reduces to,

o]

H+ H,(l(l = Z (1 - n2)bneina’
n=—co
)
= Z afnema7
n=-co

2ul?(1 —v?)1/?
r3V'1 — v?sin? ’
using Eq. (E23) in the second line and the definition of f,

in the third line. After substitution into Eq. (E38), we are
left with,

Hrg (1-0%)'

2(ro = 2M) p\/1 = v2sin’a

ro — 4Msin’a
_ E
X < YV ) + O(a)+ O(p). (E39)

&=

where we have used the value of the specific angular
momentum for a circular orbit, Eq. (5). The gauge vector &,
vanishes for select values of @ when the orbit is within
ro < 4M, but the 1/s singularity in &, is entirely unavoid-
able for any physical circular orbit ry > 4M, and &, does
not satisfy the sufficiently regular criterion for a gauge
transformation. This result motivates the locally Lorenz
gauge regularization used in Sec. III.
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