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The early inspiral of massive stellar-mass black-hole binaries merging in LIGO’s sensitivity band will be
detectable at low frequencies by the upcoming space mission LISA. LISA will predict, with years of
forewarning, the time and frequency with which binaries will be observed by LIGO. Wewill, therefore, find
ourselves in the position of knowing that a binary is about to merge, with the unprecedented opportunity to
optimize ground-based operations to increase their scientific payoff. We apply this idea to detections of
multiple ringdown modes, or black-hole spectroscopy. Narrow-band tunings can boost the detectors’
sensitivity at frequencies corresponding to the first subdominant ringdown mode and largely improve our
prospects to experimentally test the Kerr nature of astrophysical black holes. We define a new consistency
parameter between the different modes, called δGR, and show that, in terms of this measure, optimized
configurations have the potential to double the effectiveness of black-hole spectroscopy when compared to
standard broadband setups.
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I. INTRODUCTION

The first detection of merging black-hole (BH) binaries
by the LIGO ground-based detectors is one of the greatest
achievements in modern science. Some of the binary
component masses are as large as ∼30 M⊙ and unexpect-
edly exceed those of all previously known stellar-mass BHs
[1]. These systems might also be visible by the future
spaced-based detector LISA, which will soon observe the
gravitational-wave (GW) sky in the mHz regime [2]. LISA
will measure the early inspiral stages of BH binaries,
predicting, with years to weeks of forewarning, the time
at which the binary will enter the LIGO band [3]. This will
allow electromagnetic observers to concentrate on the
source’s sky location, thus increasing the likelihood of
observing counterparts. Multiband GW observations have
the potential to shed light on BH formation channels
[4–10], constrain dipole emission [11], enhance searches
and parameter estimation [12,13], and provide new mea-
surements of the cosmological parameters [14,15].
Here we explore the possibility of improving the science

return of ground-based GW observations by combining
LISA forewarnings to active interferometric techniques.
LISA observations of stellar-mass BH binaries at low
frequencies can be exploited to prepare detectors on the

ground in their most favorable configurations for a targeted
measurement. Optimizations can range from the most
obvious ones (for instance, just ensuring the detectors are
operational) to others that require more experimental work,
like changing the input optical power, modifying mirror
transmissivities and cavity tuning phases, and changing the
squeeze factor and angle of the injected squeeze vacuum
(see, e.g., Ref. [16]). Tuning the optical setup of the
interferometer can allow us to boost the signal-to-noise
ratio (SNR) of specific features of the signal “on demand”
(only at the needed time, only at the needed frequency).
In particular, we apply this line of reasoning to the so-

called black-hole spectroscopy: testing the nature of BHs
through their ringdown modes. Narrow-band tunings were
previously explored for studying the detectability of neutron-
star mergers [17–19] and stochastic backgrounds [20], and
are here proposed for BH science for the first time.
The perturbed BH resulting from a merger vibrates at very

specific frequencies. These quasinormal modes of oscillation
are damped by GW emission, resulting in the so-called BH
ringdown [21,22]. IfBHs are described by theKerr solution of
general relativity (GR) [23], all these resonant modes are
allowed to depend on two quantities only: the mass and spin
of the perturbed BH [24–26]. This is a consequence of the
famous no-hair theorems: as two BHs merge, all additional
complexities (hair) of the spacetime are dissipated away in
GWs, and a Kerr BH is left behind. The detection of the
frequency and decay time of one quasinormal mode can
therefore be used to infer themass and spin of the postmerger
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BH. Measurements of each additional mode provide con-
sistency tests of the theory. This is the main idea behind BH
spectroscopy: much like atoms’ spectral lines can be used to
identify nuclear elements and test quantum mechanics, qua-
sinormal modes can be used to probe the nature of BHs and
testGR [27–30].Despite its elegance, BHspectroscopy turns
out to be challenging in practice, as it requires loud GW
sources and improved data analysis techniques [31–36].
The main idea behind our study is illustrated in Fig. 1.

A GW source like GW150914 emits GWs at ∼0.1 Hz and
is visible by LISA with SNR ∼ 5. After ∼10 years, the
emission frequency reaches ∼10 Hz and the source appears
in the sensitivity band of LIGO or a future ground-based
detector. The excitation amplitude of the dominant quasi-
normal mode is ∼10 times higher than the first subdominant
mode. The latter is likely going to be too weak to perform
BH spectroscopy. Optimized narrow-band tunings can boost
the detectability of the weaker mode at the expense of the
rest of the signal, making BH spectroscopy possible.
This paper is organized as follows: In Secs. II and III, we

introduce BH spectroscopy and narrow-band tunings,
respectively. Our results are illustrated in Sec. IV. We draw
our conclusions in Sec. V. Hereafter, we use geometric
units c ¼ G ¼ 1.

II. BLACK-HOLE SPECTROSCOPY

A. Black-hole ringdown

Let us consider a perturbed BH with detector-frame mass
M and dimensionless spin j. GWemission during ringdown

can be described by a superposition of damped sinusoids,
labeled by l ≥ 2, 0 ≤ jmj ≤ l, and n ≥ 0 [41]. For simplic-
ity, we only consider the fundamental overtone n ¼ 0.
Each mode is described by its frequency ωlm and decay

time τlm. The GW strain can be written as [42,43]

hðtÞ ¼
X
l;m>0

Blme−t=τlm cos ðωlmtþ γlmÞ; ð1Þ

Blm ¼ αlmM
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFþYlmþ Þ2 þ ðF×Ylm

× Þ2
q

; ð2Þ

γlm ¼ ϕlm þmβ þ arctan

�
F×Ylm

×

FþYlmþ

�
; ð3Þ

Ylmþ;×ðιÞ ¼ −2Ylmðι; β ¼ 0Þ � ð−1Þl−2Yl−mðι; β ¼ 0Þ; ð4Þ

where αlm and ϕlm are the mode amplitudes and phases, D
is the luminosity distance to the source, −2Ylmðι; βÞ are the
spin-weighted spherical harmonics, and Fþ;×ðθ;ϕ;ψÞ are
the single-detector antenna patterns [44]. The angles ι and β
describe the orientation of the BH, with ι (β) being the polar
(azimuthal) angle of the wave propagation direction mea-
sured with respect to the BH spin axis. In the conventions of
Refs. [45,46], the frequency-domain strain reads

h̃ðfÞ ¼
X
l;m>0

Blm
−ωlm sin γlm þ ð1=τlm − iωÞ cos γlm

ω2
lm − ω2 þ 1=τ2lm − 2iω=τlm

; ð5Þ

where f ¼ ω=2π is the GW frequency.
The dominant mode corresponds to l ¼ 2, m ¼ 2 (here-

after “22”), while the first subdominant is usually l ¼ 3,
m ¼ 3 (hereafter “33”). Other modes might sometimes be
stronger than the 33 mode for specific sources. For
instance, the 33 mode is suppressed for q ≃ 1 or sin ι ≃
0 (e.g., Refs. [33,47,48]). Here we perform a simple two-
mode analysis considering the 22 and 33 modes only.
Strictly speaking, the ringdown modes have angular dis-
tributions described by spheriodal, instead of spherical
harmonics. However, for the final black-hole spins we
consider, the 22 and 33 spin-weighted spherical harmonics
have more than 99% overlap with the corresponding spin-
weighted spheroidal harmonics [49,50], which is accurate
enough for this study.1 For simplicity, we restrict ourselves
to nonspinning binary BHs with source-frame masses m1

andm2; we address the impact of this assumption in Sec. V.
Redshifted masses mið1þ zÞ are computed from the
luminosity distance D using the Planck cosmology [51].

FIG. 1. GW amplitude
ffiffiffiffiffi
Sh

p ¼ 2jh̃j ffiffiffi
f

p
of a black-hole binary

source similar to GW150914 compared to the noise curves
ffiffiffiffiffi
Sn

p
of LISA [37], LIGO [38], and a planned third-generation detector
[39] (both in their broadband configurations and with narrow-
band tunings). Optimized narrow banding enhances (decreases)
the detector sensitivity around the frequency f33 (f22) of the first
subdominant (dominant) mode of the BH ringdown. The BH
binary waveform is generated using the approximant of Ref. [40]
with m1 þm2 ¼ 65 M⊙, q ¼ 0.8, D ¼ 410 Mpc, ι ¼ 150°, as-
suming optimal orientation (θ ¼ ϕ ¼ ψ ¼ 0).

1We do note that, for the final black-hole spins we are
considering, −2S22 and −2Y32 have overlap between 0.05 and
0.1, which does cause the 22 ringdown mode to show up
significantly in the spherical-harmonic mode h32. This is never-
theless consistent with the 99% overlap between −2Y22 and −2S22,
because

P
l0 jh−2Yl0mj−2Slmij2 ¼ 1.
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Mass M and spin j of the postmerger BH are estimated
using fits to numerical relativity simulations [52,53] as
implemented in Ref. [54]. Quasinormal frequencies ωlm
and decay times τlm are estimated from Ref. [29]. We
estimate the excitation amplitudes αlm given the mass ratio
q ¼ m2=m1 ≤ 1 of the merging binary using the expres-
sions reported by Ref. [43]. BH ringdown parameter
estimation has been shown to depend very weakly on
the phase offsets ϕlm [29], which we thus set to 0 for
simplicity (cf. also Ref. [55]).

B. Waveform model and GR test

In BH spectroscopy, one assumes that quasinormal mode
frequencies ωlm and decay times τlm for different modes
depend separately on M and j, and then look for consist-
encies between the different estimates.2 Considering the 22
and 33 modes only, one can write the waveform as

h ¼ h22ðM22; j22Þ þ h33ðM33; j33Þ ð6Þ

and use data to estimate the parameters:

λ≡ fM22; j22;M33; j33g: ð7Þ

Deviations from GR may cause nonzero values of

ϵM ≡ M22 −M33

ðM22 þM33Þ=2
; ϵj ≡ j22 − j33

ðj22 þ j33Þ=2
: ð8Þ

We therefore seek to maximize our ability to estimate ϵM
and ϵj from the observed data.
Given true values λ̄i, each independent noise realization

will result in estimates λ̃i given by

λ̃i ¼ λ̄i þ δλi; ð9Þ

where δλi are random variables driven by noise fluctuations
in a way that depends on both the signal and the estimation
scheme. Measured values of deviation from GR can be
obtained by inserting measured values M̃22;33 and j̃22;33 into
Eq. (8), resulting in

ϵ̃M ¼ M̃22 − M̃33

ðM̃22 þ M̃33Þ=2
; ϵ̃j ¼

j̃22 − j̃33
ðj̃22 þ j̃33Þ=2

: ð10Þ

At linear order, one gets ϵ̃M ¼ ϵ̄M þ δϵM and ϵ̃j ¼ ϵ̄j þ δϵj,
with

δϵM ¼ M̄33δM22− M̄22δM33

ðM̄22þ M̄33Þ2=4
; δϵj¼

j̄33δj22− j̄22δj33
ðj̄22þ j̄33Þ2=4

:

ð11Þ

In the absence of any deviations from GR, one has
M̄22 ¼ M̄33 ¼ M̄ and j̄22 ¼ j̄33 ¼ j̄, but ϵM and ϵj will
have statistical fluctuations given by

δϵM ¼ δM22 − δM33

M̄
; δϵj ¼

δj22 − δj33
j̄

: ð12Þ

The levels of these fluctuations will quantify our ability to
test GR. In fact, Eq. (12) is a good approximation to
Eq. (11), as long as fractional deviation from GR is small,
i.e., when ϵ̄M ≪ 1 and ϵ̄j ≪ 1.

C. Estimation errors

The covariance matrix σij, namely, the expectation
values

σij ≡ hδλiδλji; ð13Þ

can be bounded by the Fisher information formalism [56]
(but see Ref. [57]). The conservative bound for the error is
given by the inverse of the Fisher Information matrix:

σij ¼ Γ−1
ij ;Γij ¼

�∂h̃
∂λi

���� ∂h̃∂λj
�
; ð14Þ

where parentheses indicate the standard noise-weighted
inner product.
In our case, the covariance matrix can be broken into

blocks,

Γ−1 ¼
� ðΓ−1Þ2222 ðΓ−1Þ2233
ðΓ−1Þ3322 ðΓ−1Þ3333

�
; ð15Þ

corresponding to the couples ðM22; j22Þ and ðM33; j33Þ.
The diagonal block ðΓ−1Þ2222 corresponds to errors
when estimating ðM22; j22Þ alone (marginalizing over other
uncertainties), and the diagonal block ðΓ−1Þ3333 corre-
sponds to errors when estimating ðM33; j33Þ alone (mar-
ginalizing over other uncertainties), while the nondiagonal
blocks contain error correlations.
From the covariance matrix for ðM22; j22;M33; j33Þ, one

obtains the following expectation values:

hδϵ2Mi ¼
σM22M22

− 2σM22M33
þ σM33M33

M̄2
; ð16Þ

hδϵ2ji ¼
σj22j22 − 2σj22j33 þ σj33j33

j̄2
; ð17Þ

hδϵMδϵji ¼
σM22j22 − σM33j22 − σj22M33

þ σM33j33

M̄ j̄
; ð18Þ

which are elements of the covariance matrix of ðδϵM; δϵjÞ.
For concreteness, we define a scalar figure of merit,

2For simplicity, we only vary ωlm and τlm, while keeping αlm
fixed to their GR values.
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δGR ¼
�����

hδϵ2Mi hδϵMδϵji
hδϵMδϵji hδϵ2ji

�����
1=4

; ð19Þ

to quantify our ability to test GR. More specifically, δGR
measures our statistical error in revealing deviations from
GR. One has the strongest possible test of GR when
δGR → 0, corresponding to Γ−1 → 0, in which case any
deviation from GR will be revealed with vanishing stat-
istical error. Large values of δGR would require larger
deviations from GR [i.e., larger true values of ðϵM; ϵjÞ] in
order to be detectable.
Given values of δGR from both a design and an

optimized detector configuration, it is useful to define
the narrow-band gain,

ζ ¼ δGRðDesignÞ − δGRðOptimizedÞ

δGRðDesignÞ ; ð20Þ

where ζ ¼ 1 (ζ ¼ 0) means that the narrow banding
procedure is maximally effective (irrelevant).

D. Error correlations between modes

We note that the 22–33 correlation components of the
Fisher information matrix, as well as its inverse, are
expected to be small, because the two modes are well
separated in the frequency domain. In particular, ∂hðωÞ=
∂M22 and ∂hðωÞ=∂j22 peak near ω22 with widths ∼1=τ22,
while ∂hðωÞ=∂M33 and ∂hðωÞ=∂j33 peak near ω33 with
widths ∼1=τ33. For this reason, the pairs ðδM22; δj22Þ and
ðδM33; δj33Þ are nearly statistically independent from each
other. Estimation error for ϵM and ϵj can be viewed as
(almost) independently contributed from the 22 and 33
modes and summed by quadrature. One has, approximately,

hδϵ2Mi ≈
σM22M22

þ σM33M33

M̄2
; ð21Þ

hδϵ2ji ≈
σj22j22 þ σj33j33

j̄2
; ð22Þ

hδϵMδϵji ≈
σM22j22 þ σM33j33

M̄ j̄
: ð23Þ

In other words, the covariance matrix of ðδϵM; δϵjÞ is
approximated by the sum of those of ðδM22=M̄; δj22=j̄Þ
and ðδM33=M̄; δj33=j̄Þ.
We quantify this claim by calculating values of δGR

where the off-diagonal submatrices ðΓ−1Þ3322 and ðΓ−1Þ2233
are artificially set to zero. For the population of sources
studied in Sec. IV B, and observed by LIGO, the median
difference between the two estimates is as small as 1.6%
(4.0%) for broadband (narrow-band) configurations.
For this reason, some insight can be gained by visual-

izing the error region in the ðM22; j22Þ and ðM33; j33Þ

planes separately (cf. Sec. IVA): errors in ðδϵM; δϵjÞ are
well approximated by the quadrature sum of errors indi-
cated by those regions. We stress, however, that correla-
tions are fully included in all values of δGR reported in the
rest of this paper.

III. NARROW-BAND TUNINGS

As an example of a possible narrow-band setup, we
consider the detuning of the signal-recycling cavity
(cf. Refs. [18,20], where a similar setup was also explored).
Second-generation GW detectors make use of signal-
recycling optical configurations (or resonant side-band
extraction) [58–60]. A signal-recycling mirror is placed
at the dark port of a Fabry-Perot Michelson interferometer,
which is the configuration used in first-generation detec-
tors. The transmittance TSRM of this mirror determines the
fraction of signal light which is sent back into the arms,
possibly with a detuning phase ϕSRM. Both these param-
eters affect the optical resonance properties of the inter-
ferometer [58,59], as well as its optomechanical dynamics
[61,62]. Together with the homodyne readout phase ϕhd,
TSRM and ϕSRM are responsible for the quantum noise
spectrum of the interferometer, allowing for noise suppres-
sion near optical and optomechanical resonances [63].
In this paper, we consider narrow banding of both LIGO

in its design configuration and future third-generation
detectors. The LIGO design noise curve is a finalized
experimental setup which allows us to perform a focused
assessment of the impact of narrow banding onto BH
spectroscopy over a large number of sources. However,
more sensitive ground-based interferometers are currently
being planned and are expected to be operational by the
2030s [39,64]. Multiband observations and LISA fore-
warnings might happen with a network of ground-based
detectors perhaps 10 times more sensitive than LIGO.
In order to select the best detuned configuration

to perform BH spectroscopy, one needs to choose values
of ðTSRM;ϕSRM;ϕhdÞ that boost sensitivity around the 33
frequency. For LIGO, we generate 603 noise curves
with equal spacing in ϕSRM ∈ ½−0.12π; 0.12π�, TSRM ∈
½0.001; 0.2�, and ϕhd ∈ ½0; π�. This parameter space is
capable of capturing the central frequencies of both the
22 and 33 mode for binaries with q ∈ ½0.2–0.9� and total
masses m1 þm2 ∈ ½20 M⊙–100 M⊙�. Noise curves are
generated using pyGWINC [65]. The LIGO design con-
figuration corresponds to TSRM ¼ 0.2, ϕSRM ¼ 0, and
ϕhd ¼ π=2. The broadband noise curves reported by
Refs. [38,66] are reproduced within Δ log Sn= logSn ≲
0.2% throughout the entire frequency band. For each given
source, we select the optimal noise curve that minimizes
δGR among those we precomputed. Figure 1 illustrates
this procedure for an optimally oriented source similar
to GW150914 [67]. This narrow-band setting corresponds
to a noise curve with ϕSRM ≃ 0.21, TSRM ≃ 0.02, and
ϕhd ≃ 2.24.
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While the design of third-generation detectors is still
being discussed, it is anticipated that squeezed-vacuum
injection will be used. Squeezer and cavity properties need
to be optimized together to determine the optimal configu-
ration. Fully tackling this interplay is outside the scope of
this paper. We have nonetheless attempted one such study,
where both the filter cavity for the squeezed vacuum
[68,69] and the signal-recycling cavity of the Cosmic
Explorer [39] design have been optimized to target the
ringdown emission of GW150914 (cf. Fig. 1).

IV. RESULTS

A. Boosting subdominant modes

Confidence ellipses [70] constructed from ðΓ−1Þ2222 and
ðΓ−1Þ3333 are shown in Fig. 2 for sources similar to
GW150914. In the left panel, we consider the narrow
banding of a LIGO detector for a source similar to
GW150914 at the optimistic distance of D ¼ 40 Mpc.
This value is consistent with the closest GW source detected
so far [71] and corresponds to ∼1=10 of the actual distance
of GW150914. In the right panel, we consider the detuning
of a third-generation detector (Cosmic Explorer) for the case
of the same source at D ¼ 400 Mpc.
The behavior of the ellipses of Fig. 2 illustrates the main

point of our analysis. In the standard broadband configu-
ration, the 22 mode is observed very well, thus resulting in

a small confidence region. At the same time, the 33 mode is
observed poorly, resulting in a large ellipse. As in the case
of current events [72], this is roughly equivalent to a single
measurement ofM and j based on the 22 mode only, rather
than a test of the theory. Narrow-band tunings boost the
detectability of the 33 mode, while marginally reducing
that of the dominant 22 excitation. Consequently, the two
confidence ellipses are more similar to each other, resulting
in a more powerful constraint of the Kerr metric.
For a source like GW150914 at 40 Mpc, narrowband

tunings in LIGO boost prospects to perform BH spectros-
copy from δGR ¼ 0.056 to δGR ¼ 0.032, thus offering the
opportunity to improve constraints on the BH no-hair
theorems by ζ ¼ 43%. The same source at D ¼ 400 Mpc
observed by a third-generation detector will present a higher
gain of ζ ¼ 59%. Rescaling D between the left and right
panels of Fig. 2 allows us to asses the potential of
optimization in future interferometers. In particular, ellipses
in the right panel are smaller than those in the left panel
because, while the distance was changed from 40 to
400 Mpc, the expected improvement in the sensitivity of
Cosmic Explorer is more than a factor of 10 compared to
LIGO. We obtain a larger gain ζ for third-generation
detectors, because quantum noise is expected to dominate
more over classical sources of noise compared to current
interferometers [39]. There is, therefore, more room to take
advantage of modifications in optical configurations.

FIG. 2. 1σ confidence ellipses for the 22 (dashed) and 33 (solid) modes observed by GW detectors in their designed (blue) and
optimized narrow-band configurations (orange). In both panels, the source is a perturbed Kerr BH of mass M ¼ 62.5 M⊙ and spin
j ¼ 0.68 (dotted lines), resulting from the merger of a GW150914-like system (m1 þm2 ¼ 65 M⊙, q ¼ 0.8, ι ¼ 150°, β ¼ 0) assuming
optimal orientation (θ ¼ ϕ ¼ ψ ¼ 0). The left panel assumes an optimistic luminosity distance D ¼ 40 Mpc and the LIGO detector in
its design sensitivity. The right panel is generated assuming a third-generation detector optimized for the same system and a realistic
luminosity distance D ¼ 400 Mpc.
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B. Population study

We now assess the impact of this procedure as a function
of the source properties. We generate a population of
sources drawing cos θ and cos ι uniformly in ½−1; 1�, and
drawing β;ϕ, and ψ uniformly in ½−π; π�, with fixed3

distance D ¼ 100 Mpc. Figure 3 shows the median values
of δGR as a function of the masses of the merging BHs. The
top panel assumes LIGO in its design configuration, and
the middle panel presents results optimizing the narrow-
band setup individually for each source, while the gain ζ is
shown in the bottom panel.
A few interesting trends are present. First, the best

systems to perform BH spectroscopy (i.e., low values of

δGR) have intermediate mass ratio 0.3≲ q ≲ 0.7. Both
ringdown amplitudes α22 and α33 are suppressed for q → 0,
while α22 ≫ α33 for q → 1. Second, tests of GR are weaker
(higher δGR) for lower-mass systems. These binaries have
f33 close to the edge of the sensitivity window of the
interferometer, thus making mode distinguishability harder.
The LISA SNR also increases with the total mass and the
mass ratio. In particular, binaries with m1 þm2 ≲ 40 M⊙
are not likely to be associated with confirmed forewarnings
(cf. Ref. [10]).
A key point of our findings is illustrated in the gain

values ζ reported in the bottom panel of Fig. 3. From
Eq. (20), ζ quantifies the potential improvement in BH
spectroscopy achievable with narrow-band tunings. Median
gains are larger than 25% over the entire parameter space,
and individual sources can reach values up to 50%. In
particular, higher gains are achieved for large-q systems.
This agrees with the expectation that both modes are
suppressed at q → 0, while only the 33 mode is suppressed
at q → 1. Narrow-band tunings shift the detector sensitivity
closer to f33 at the expense of the 22 mode, and are thus
more effective if its excitation is large such that the
resulting sensitivity loss can be more easily absorbed.

V. DISCUSSION

The possibility of optimizing ground-based operation
assumes that LISA observations of the early inspiral
accurately predict the ringdown frequencies (in particular
f33), thus providing information on how ground-based
interferometers should be optimized. We estimate LISA
errors on f33 as follows. For a given source with chirp mass
Mc and symmetric mass ratio η, we first estimate f33
assuming zero spins (this is our working assumption used
above). Inspired by the results reported in Fig. 3 of Ref. [3]
(computed as in Ref. [73]), we model LISA errors as log-
normal distributions centered at ΔMc=Mc ¼ 10−6, Δη=η ¼
6 × 10−3 with widths σ ¼ 0.5. We then calculate f33 for a
new binary with masses Mc þ ΔMc and ηþ Δη, and spins
with magnitudes uniform in [0, 1] and isotropic directions.
In practice, we are assuming that LISAwill not provide any
information on the spins. This is a conservative, but realistic,
assumption because spins enter at high post-Newtonian
order and are going to be very challenging to detect at low
frequencies [74]. This procedure is iterated over a popula-
tion of sources with masses uniformly distributed in
½10; 100� M⊙. The median of the errors Δf33 is 11 Hz,
while the 90th percentile is 46 Hz. For the case of cavity
detuning explored here, typical bandwidths are ≳200 Hz
(cf. Fig. 1), sensibly larger than the predicted errors.
Therefore, we estimate that the risk of missing the source
because the detector was detuned in thewrong configuration
is very limited. The precision with which LISAwill estimate
the time of coalescence is atmost ofOð100 sÞ [3] and should
not pose significant challenges in the planning strategy.
Moreover, only some of the ground-based instruments of the

FIG. 3. Top and middle panels show median values of δGR for
LIGO at design sensitivity and with narrow-band tuning, re-
spectively; bottom panel shows the median gain ζ. Data are
shown as a function of total massm1 þm2 and mass ratio q of the
merging binaries; medians are computed over θ; ι; β;ϕ, and ψ .
The distance is fixed toD ¼ 100 Mpc. Binaries to the right of the
dashed lines have sky-averaged LISA SNRs greater than 8 (these
are computed following Ref. [3] using the updated noise curve of
Ref. [37] and the nominal mission duration Tobs ¼ 4 yr; the
initial frequency is estimated such that the binary merges in Tobs).
Triangles indicate measured LIGO events (we show the medians
of the posterior distributions from Ref. [1]).

3Since δGR is directly proportional to D, results in Fig. 3 can
be rescaled to different distances. Cosmological effects might
push the ringdown frequencies of some high-mass events out of
band, thus somewhat decreasing the gain.
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network could be optimized, while the rest are maintained in
their broadband configuration.
Cavity detuning presents significant experimental chal-

lenges, regarding both detector characterization and lock
acquisition, and might ultimately turn out to be impractical
(see Ref. [75] for an exploration of these issues on the
LIGO 40 m prototype). We note that narrow banding can
also be achieved without detuning by using, e.g., twin-
recycling [76] or speed-meter [77] configurations; such a
possibility is currently being studied to optimize for
postmerger signals from neutron-star mergers for future
detectors [19]. Beyond targeted narrow banding around the
33 frequency, optimization can also be achieved by
reconfiguring future ground-based interferometers in differ-
ent ways. For the planned third-generation detector Cosmic
Explorer [39], the quantum noise is expected to dominate
all other noise sources by more than a factor of 2 for
frequencies ≳40 Hz with a chosen bandwidth of 800 Hz.
With forewarnings, a less broadband configuration (even
without detuning) could be chosen to significantly improve
BH spectroscopy. In the case of the Einstein Telescope
[64], a broad bandwidth is achieved by a xylophone that
contains two different interferometers optimized for differ-
ent frequency ranges. It is conceivable that a strong LISA
forewarning might prompt a reconfiguration of the two
interferometers to optimize for BH spectroscopy.
Space-based GW observatories like LISA will surely

provide exquisite tests of GR with supermassive BH
observations [29]. As shown here, they can further be
exploited to improve BH spectroscopy in the different
regime of lower-mass, higher-curvature BHs observed by
LIGO and future ground-based facilities. More generally,

forewarnings from space-based detectors will provide the
opportunity to configure ground-based instruments to their
most favorable configuration to perform targeted measure-
ments and improve their science return.
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Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016).

[41] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[42] E. Berti, J. Cardoso, V. Cardoso, and M. Cavaglià, Phys.
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