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Classical (quasinormal) and quantum (Hawking) radiations are investigated for test fields in the
background of a four dimensional, spherically symmetric and asymptotically flat black hole in the Einstein-
dilaton-Gauss-Bonnet (EdGB) theory. The geometry of the EdGB black hole deviates from the
Schwarzschild geometry only slightly. Therefore, here we observe that the quasinormal spectrum also
deviates from its Schwarzschild limit at most moderately, allowing for a 9% decrease in the damping rate
and up to a 6% decrease in the real oscillation frequency. However, the intensity of Hawking radiation of an
electromagnetic and Dirac fields turned out to be much more sensitive characteristic than its quasinormal
spectrum, allowing for a 57% and 48% increase of the energy emission rate respectively. The analytical
formula for the eikonal regime of quasinormal modes is derived for test fields and it is shown that the
correspondence between the eikonal quasinormal modes and null geodesics is indeed fulfilled for test
fields, but is not expected for the gravitational one.
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I. INTRODUCTION

The Einstein theory of gravity, being consistent with
recent observations of gravitational waves [1], nevertheless,
leaves a number of fundamental questions open. These are
construction of a noncontradicting quantum gravity, the
nature of singularities, dark energy/dark matter problems
and others. In addition, even the observations of gravita-
tional waves leave the window for alternative theories of
gravity open [2–4]. Therefore, recently there has been a
revival of interest to alternative theories of gravity, which
have the same post-Newtonian behavior as the Einsteinian
one, but different features in the strong field regime. Many
of these theories include corrections in the form of higher
orders in curvature and/or various scalar fields. Apparently,
one of the most motivated of such approaches is the
Einstein-dilaton-Gauss-Bonnet theory, which can be con-
sidered as an effective theory inspired by the low-energy
limit of string theory [5], allowing one to test quantum
corrections to general relativity [6]. The theory consists of
the Einstein action and the Gauss-Bonnet term, which is
quadratic in curvature and coupled to the scalar (dilaton)
field. In four-dimensional spacetimes, the Gauss-Bonnet
term alone represents the full divergence and, therefore,

does not contribute to the resulting equations of motion.
This is not so, when the Gauss-Bonnet term is coupled to
the dilaton.
The exact solution, describing a static, spherically

symmetric and asymptotically flat black hole in the
EdGB theory was found numerically in [7]. Analytical
approximation for this numerical solution has been
obtained in [8]. The numerical spherical solution [7] was
further extended, also numerically, to the case of rotating
black hole [9]. There is also a perturbative solution for the
EdGB black hole in terms of the rotation and coupling
constant parameters [10,11]. Various properties and poten-
tially observable physical quantities have been recently
considered for these black hole solutions. The reflection
spectrum of accreting black holes has been studied in
[12,13], while its quasi-period oscillations were studied in
[14]. The shadows cast by the black hole were considered
first in [15], and then in [16]. The gravitational quasinormal
modes, though only partially (for some type of perturba-
tions), were calculated in [17–19].
At the same time, no analysis of behavior of test fields in

the vicinity of EdGB black holes were fulfilled, except for
the analysis of separation of variables for the Klein-Gordon
equation in the rotating black hole spacetime [20].
Calculations of energy emission rates of Hawking radiation
in the vicinity of the Einstein-dilaton-Gauss-Bonnet black
hole could possibly shed light on the influence of quantum
corrections upon black-hole evaporation, at least at the
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stage when the mass of the black hole is several orders
larger than the Planck mass and the full quantum gravity
description can still be avoided. To the best of our knowl-
edge, no such estimations for the evaporation of EdGB
black hole have been done so far.
Usually, calculation of quasinormal modes of test fields

is a less interesting and motivated problem than that for the
gravitational perturbations, because the latter one repre-
sents the fingerprints of gravitational waves. However, in
our opinion the case of the Gauss-Bonnet term is interest-
ing, because of two reasons. The first one is related to the
observation that the Gauss-Bonnet term alone in the higher
dimensional theories makes the intensity of Hawking
radiation much weaker even when the Gauss-Bonnet
coupling constant is relatively small [21–23] that is, when
the deviation from the D-dimensional Schwarzschild
(Tangherlini) geometry is relatively small. Then, it would
be natural to learn whether the same effect of strong
suppression of Hawking radiation takes place in the
four-dimensional case. The other reason for our study is
related to the so-called correspondence between high
frequency (eikonal) quasinormal modes of a static, spheri-
cally symmetric black hole, and the null geodesics in its
background [24]. Recently, it has been shown that the
above correspondence is indeed guaranteed, but only for
test fields, and not necessarily for the gravitational pertur-
bations of the black-hole spacetime [25], and a counter-
example was given in the form of D > 4-dimensional
asymptotically flat Einstein-Gauss-Bonnet black hole.
Therefore, it would be reasonable to compare the quasi-
normal modes of test fields with those for gravitational
perturbations of the Einstein-dilaton-Gauss-Bonnet black
hole and see whether the claimed correspondence is
violated in a four-dimensional spacetime as well. The
other issue which we would like to understand here is
whether there are infinitely long lived modes of a massive
test field, called quasiresonances [26–29], when the Gauss-
Bonnet coupling is turned on.
Having all of the above motivations in mind we will

compute here quasinormal modes of a test scalar and
Maxwell fields and estimate the intensity of Hawking
radiation for the Einstein-dilaton-Gauss-Bonnet black hole.
We shall show the quantum (Hawking) radiation is much
more sensitive to the relatively small dilaton-Gauss-Bonnet
corrections of the Schwarzschild geometry than the
classical radiation dominated by the quasinormal modes.
Our paper is organized as follows. Section II outlines the

main features of the theory and parametrized black-hole
metric under consideration. Section III is devoted to
calculations of quasinormal modes with the help of the
6th order Wentzel-Kramers-Brillouin (WKB) method and
time-domain integration. Section IV deduces the analytical
formula for quasinormal modes in the eikonal regime and
discusses the correspondence between the modes and null
geodesics. In Sec. V we analyze the scattering properties

and Hawking radiation of the electromagnetic and Dirac
fields. Finally, we summarize the obtained results and
mention open questions.

II. THE PARAMETRIZED EINSTEIN-DILATON-
GAUSS-BONNET BLACK HOLE METRIC

The Lagrangian of the dilaton gravity with a Gauss-
Bonnet term is

L ¼ 1

2
R −

1

4
∂μϕ∂μϕ

þ α0

8g2
eϕðRμνρσRμνρσ − 4RμνRμν þ R2Þ; ð1Þ

where α0 is the Regge slope and g is the gauge coupling
constant. In the general case the metric for a spherically
symmetric black hole can be written in the form:

ds2 ¼ −eμdt2 þ eνdr2 þ r2ðsin2 θdϕ2 þ dθ2Þ; ð2Þ

where the analytical approximations of the numerical
solution [7] for functions eμðrÞ and eνðrÞ were found in
[8] and are written down here up to the second order in
Appendix I.
For convenience we fix r0 ¼ 1 and measure the radial

coordinate in the units of the event horizon radius, so that
the family of the EdGB black hole solutions can be
parametrized via the following dimensionless parameter

p≡ 6e2ϕ0 ¼ 6α02

g4r40
e2ðϕ0−ϕ∞Þ; 0 ≤ p < 1: ð3Þ

The limit p ¼ 0 corresponds to the Schwarzschild black
hole; ϕ0 is the value of dilaton at the event horizon r0.
Owing to the above dilaton shifting, the shifted dilaton
function goes to minus infinity when p → 0. This choice
does not cause any problems for our purposes, because
eϕðrÞ remains always finite. It has been recently shown in
[30] that black hole with p≳ 0.97 are linearly unstable
against gravitational perturbations at lower multipole num-
bers l. Therefore, here we shall consider p ¼ 0.97 as the
limiting case. Let us notice that the Gauss-Bonnet term at
some critical value of p might also produce the so-called
eikonal instability (see, for example, [31–35] and refer-
ences therein), which occurs at high multipole numbers l
and which was not analyzed for the case of the EdGB black
hole in the literature so far. Recent studies of instabilities
of wormhole solutions in the EdGB theory show agree-
ment between the linear [36] and nonlinear [37] perturba-
tions and come to the same conclusion on the instability of
wormholes at whatever small value of the coupling
constant.
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III. QUASINORMAL MODES OF TEST FIELDS
FOR THE EdGB BLACK HOLE

Massive scalar field is described by the general relativ-
istic Klein-Gordon equation:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ −m2Φ ¼ 0; ð4Þ

while an electromagnetic field obeys the general covariant
Maxwell equations:

1ffiffiffiffiffiffi−gp ∂μðFρσgρνgσμ
ffiffiffiffiffiffi
−g

p Þ ¼ 0: ð5Þ

Here Aμ is a vector potential and Fρσ ¼ ∂ρAσ − ∂σAρ. In
order to provide the separation of variables, the function Φ
for the scalar field and a gauge invariant combination for
the electromagnetic one can be expressed in terms of the
spherical harmonics:

Φðt; r; y;ϕÞ or gauge inv comb ∼ e−iωtYlðθ;ϕÞ: ð6Þ

The general covariant Dirac equation reads as follows [38],

γα
� ∂
∂xα − Γα

�
Ψ ¼ 0; ð7Þ

where γα are gamma matrices, Γα are spin connections in
the tetrad formalism.
After separation of angular variables, the wave equation

can be represented in the following general form (see, for
instance [39,40] and references therein):

d2Ψ
dr2�

þ ðω2 − ViðrÞÞΨ ¼ 0; ð8Þ

where the relation

dr� ¼
ffiffiffiffiffiffiffiffiffi
eν−μ

p
dr

defines the “tortoise coordinate” r�.
The effective potentials of test scalar (i ¼ s), Dirac

(i ¼ �d) and electromagnetic (i ¼ e) fields in the general
background (2) can be written in the following forms:

Vs ¼
eνðeμÞ0 − eμðeνÞ0

2re2ν
þ eμ

�
lðlþ 1Þ

r2
þm2

�
; ð9aÞ

Ve ¼
lðlþ 1Þeμ

r2
: ð9bÞ

V�d ¼
k
r

�
eμk
r

∓ eμ
ffiffiffiffiffi
eν

p

r
�

ffiffiffiffiffiffiffiffiffi
eμ−ν

p
ð

ffiffiffiffiffi
eμ

p
Þ0
�
; ð10Þ

Here l ¼ 1; 2… for the electromagnetic field and
k ¼ lþ 1 (k ¼ l) for the “plus” (“minus”) potential of
the Dirac field. In the both cases k ¼ 1; 2…. The effective
potentials of scalar and electromagentic fields have the
form of positive definite potential barriers decaying on
the event horizon and at infinity [see Figs. 1(a), 1(b)].
The “minus” potential of the Dirac field has a negative gap,
but it is stable, because it is related to the Darboux
transformations, what leads to the isospectrality [41,42].
It can be seen that the potential barrier becomes lower when
the dilaton-GB term is on.
Quasinormal modes are eigenvalues of the above wave-

like equation (8), which can be written in the form

ω ¼ ReðωÞ þ iImðωÞ;

and satisfy the following boundary conditions:

Ψ ∼�e�iωr� ; r� �∞: ð11Þ

Here we imply that the negative ImðωÞ corresponds to
damping. The above boundary conditions mean that the
waves are purely outgoing at infinity and purely incoming
on the event horizon, i.e., no waves, coming from either the
horizon or infinity, are allowed. These boundary conditions
represent the response of a black hole to a momentary

(a)

(b)

FIG. 1. Dependence of the effective potentials VðrÞ with
r0 ¼ 1; blue line is p ¼ 0, red line is p ¼ 0.4 and green line
is p ¼ 0.97: (a) s ¼ 1, l ¼ 1; (b) s ¼ 0, l ¼ 0.
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perturbation, when the source of perturbation stopped
acting [43].
For computation of quasinormal modes we will use the

6th order WKB formula [44]. It is based on the WKB
expansion of the wave function at both infinities (the event
horizon and spacial infinity) which are matched with the
Taylor expansion near the peak of the effective potential.
The WKB approach in this form implies existence of two
turning points and monotonic decay of the effective
potentials along both infinities

iQ0ffiffiffiffiffiffiffiffiffi
2Q00

0

p −
Xi¼p

i¼2

Λi ¼ nþ 1

2
; n ¼ 0; 1; 2…; ð12Þ

where the correction terms Λi were obtained in [44] for
various orders up to the sixth. For a massive field it is
sufficiently accurate only when the mass term m2 is not
large [45], and the higher l, the larger m2 can be calculated
relatively accurately. Although the WKB series converges
only asymptotically, in the majority of cases the difference
between the results obtained at higher and lower WKB
orders gives an idea of how large is the expected error of the
WKB approximation. Testing of the tenth order WKB
formula [46] shows that for lower multipoles, in cases the
6th order is not optimal, the tenth order formula gives only
a very small correction to the 6th order results [47].
Therefore, we think that the usage of the 6th order
WKB formula is the most efficient for our purposes.
The quasinormal modes for l ¼ 1, 2 for the scalar field

(s ¼ 0) and l ¼ 1, 2, 3 for the electromagnetic field
(s ¼ 1) are presented on Figs. 2 and 3. Variations of the
imaginary and real parts of ω as functions of p for various l
can be very well approximated by linear laws for the
electromagnetic

Reðωs¼1;l¼1Þ ≈ 0.496þ 0.024p;

Imðωs¼1;l¼1Þ ≈ −0.188þ 0.020p; ð13aÞ

Reðωs¼1;l¼2Þ ≈ 0.915 − 0.057p;

Imðωs¼1;l¼2Þ ≈ −0.190þ 0.001p; ð13bÞ

Reðωs¼1;l¼3Þ ≈ 1.315 − 0.008p;

Imðωs¼1;l¼3Þ ≈ −0.192þ 0.020p; ð13cÞ

and scalar

Reðωs¼0;l¼1Þ ≈ 0.587 − 0.037p;

Imðωs¼0;l¼1Þ ≈ −0.196þ 0.022p; ð14aÞ

Reðωs¼0;l¼2Þ ≈ 0.968 − 0.063p;

Imðωs¼0;l¼2Þ ≈ −0.194þ 0.021p ð14bÞ

fields. These fits were obtained with the FindFormula
built-in function ofMathematicawhen p changes from 0 to
0.9. The exception is the case l ¼ n ¼ 0 of the scalar field,
for which the WKB method gives a big error even in the
Schwarzschild limit and, therefore, cannot be trusted,
especially for large values of p. From the above plots
and fits one can see that the quasinormal modes of EdGB
black hole have smaller damping rates and oscillation
frequencies than those of the Schwarzschild black hole.
At the same time, we can see that the effect of the Gauss-
Bonnet coupling on quasinormal modes is not large, being
about 6% for ReðωÞ and about 9% for the ImðωÞ. Here, we
had in mind that the continued fraction converges slowly
near the extremal value p ¼ 1, so that only the values of p
which are far enough from the extremal case can be trusted.
Another kind of error comes from usage of the WKB

(a)

(b)

(c)

FIG. 2. The fundamental quasinormal mode (n ¼ 0) for the
electromagnetic field (s ¼ 1), blue line is real part of frequencies,
red line is imaginary part: (a) l ¼ 1; (b) l ¼ 2; (c) l ¼ 3.
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method, once l is small. Therefore, in order to claim the
above mentioned effect on real and imaginary parts, we
considered values of p such that:
(1) the relative error coming from the analytical

approximation of the metric is still well within of
few tenth of a percent, that is the error is much
smaller than the effect.

(2) the multipole number l is high enough to neglect the
error of the WKB formula.

Let us notice that the above effect of up to 9% for the
damping rate of quasinormal mode is much larger than the
other studied effects in the electromagnetic spectrum. Thus,
the shadows of the EdGB black hole was shown to be
changed by around one percent [15,16] and a similar small
change is observed in the iron line [12] in the context of
x-ray reflection spectroscopy.
It is known that massive test fields allow for infinitely

long lived modes, called quasiresonances, at some thresh-
old values of mass m for the Schwarzschild and Kerr black
holes [26–29], as well as for some black hole solutions in
alternative theories of gravity [40]. From Figs. 4 and 5 for
quasinormal modes of a massive scalar field at some fixed
high l we can see that there is a clear indication that
quasiresonances exist for the EdGB black hole as well.
Even though the WKB formula [44] cannot be used for
evaluation of very long lived modes [45], the WKB method
is quite accurate in the regime of high l and the extrapo-
lation to higher values of mass m gives an evidence that

quasiresonances should exist for the EdGB black hole
as well.
For the l ¼ n ¼ 0mode the error of the WKBmethod is

usually larger than the effect, so that we have to use the
time-domain integration of the perturbation equations
instead. We will integrate the wavelike equation rewritten
in terms of the light-cone variables u ¼ t − r� and
v ¼ tþ r�. The appropriate discretization scheme was
suggested in [48]:

(a)

(b)

FIG. 3. The fundamental quasinormal mode (n ¼ 0) for the
scalar field (s ¼ 0), blue line is real part of frequencies, red line is
imaginary part: (a) l ¼ 1; (b) l ¼ 2.

FIG. 4. Imaginary part of the quasinormal modes for a massive
scalar field l ¼ 15, p ¼ 0.5.

FIG. 5. Real part of the quasinormal modes for a massive scalar
field l ¼ 15, p ¼ 0.5.

20 40 60 80 100 120
t

15

10

5

Log

FIG. 6. Time-domain profile for the scalar field’s perturbation:
l ¼ 0, p ¼ 0.97.
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ΨðNÞ ¼ ΨðWÞ þΨðEÞ −ΨðSÞ

− Δ2
VðWÞΨðWÞ þ VðEÞΨðEÞ

8
þOðΔ4Þ; ð15Þ

where we used the following definitions for the points:
N ¼ ðuþ Δ; vþ ΔÞ, W ¼ ðuþ Δ; vÞ, E ¼ ðu; vþ ΔÞ
and S ¼ ðu; vÞ. The initial data are specified on the null
surfaces u ¼ u0 and v ¼ v0 From Fig. 6 it can be seen that
the l ¼ 0mode is characterized by a relatively short period
of quasinormal ringing. Therefore, it is difficult to extract
values of frequencies with good accuracy, so that in the
Table I we write down only the three digits after point for ω.

IV. ANALYTICAL FORMULA FOR QNMs OF
TEST FIELDS IN THE EIKONAL REGIME

In the regime of high multipole numbers l (eikonal) the
behavior of test fields of different spin obey the same law in
the dominant order. Here we will consider an electromag-
netic field, governed by the effective potential (9). In the
eikonal regime it is sufficient to use the first order WKB
formula:

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 − i

�
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

qs
: ð16Þ

Here, n ¼ 0; 1; 2;… is a overtone number, V0 is a value of
VðrÞ in rmax and V 00

0 is a second derivative in rmax. Making
series expansion in terms of 1=l we find that the maximum
of the effective potential occurs at larger distance from the
black hole:

rmax ¼
3r0
2

þ 0.055r0pþOðp2Þ: ð17Þ

Substituting the above value of rmax (17) into (16) and
expanding in terms of 1=l, we find

ω¼ð1þ2lÞð1−0.065pÞ− ið2nþ1Þð1−0.094pÞ
3

ffiffiffi
3

p
r0

: ð18Þ

In the limit p → 0 this formula goes over into the well-
known eikonal formula for the Schwarzschild black hole.

Following Cardoso et al. [24], one can see that the
principal Lyapunov exponent for null geodesics around a
static, spherically symmetric metric (2) is

λ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

r2c
ðeμÞc

�
d2

dr2�

eμ

r2

�
r¼rc

s
: ð19Þ

The coordinate angular velocity for the null geodesics is

Ωc ¼
ðeμ

2Þc
rc

; ð20Þ

where rc is the radius of the circular null geodesics,
satisfying the equation

2ðeμÞc ¼ rcðeμÞ0c: ð21Þ

Comparing the eikonal formula (18) with the Lyapunov
exponent and angular velocity, one can easily see that the
correspondence is fulfilled here for the test fields. However,
quasinormal modes of gravitational perturbations of the
EdGB black hole should not obey the above correspon-
dence, in a similar fashion with higher dimensional
Einstein-Gauss-Bonnet solution [25]. Even though the
accurate analysis of gravitational perturbations is beyond
the scope of our work, it can easily be noticed from [25]
that the necessary condition for the validity of the null
geodesics/QNMs correspondence is the requirement that
the effective potential in the eikonal regime have a “good”
WKB form:

V ¼ eμ
lðlþ 1Þ

r2
þOð1=lÞ: ð22Þ

This is not so for gravitational perturbations of the higher
dimensional Einstein-Gauss-Bonnet black hole, which is,
thus, the counterexample to the correspondence in D > 4-
dimensional spacetimes. Analysis of gravitational pertur-
bations of EdGB solution shows that the gravitational
perturbations obey the following set of chained equations
(see Eqs. (16) in [30]):

dΨðiÞ
dr

¼ UðiÞΨðiÞ ¼ 0

where, here (i) stands for “axial” and “polar” types of
perturbations and Ψ is a two-dimensional vector for axial
and four-dimensional vector for polar perturbations. The
asymptotic behavior of these equations on both extremities,
explicitly written in Eqs. (17–30) of [30] implies that the
necessary form of the effective potential (22) is violated for
the EdGB case. Thus, the Einstein-dilaton-Gauss-Bonnet
case is the four-dimensional counterexample of the corre-
spondence, which, at the same time, confirms the claim that
the correspondence is always guaranteed for test fields [25].

TABLE I. The l ¼ n ¼ 0 mode of a scalar field perturbation
obtained by the time-domain integration and extracted by the
Prony method.

p ω

0 0.221 − 0.210i
0.1 0.2207 − 0.208i
0.5 0.219 − 0.200i
0.9 0.216 − 0.186i
0.97 0.215 − 0.182i
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V. GRAY-BODY FACTORS

The intensity of Hawking radiation is always partially
suppressed by the effective potential surrounding the black
holes, because the part of the total flow of particles emitted
by the black hole is reflected back to the event horizon. In
order to estimate the number of particles reflected by the
effective potential we need first to find the gray-body
factors, that is, to solve the classical scattering problem.
We shall consider the wave equation (8) with the

boundary conditions allowing for incoming waves from
infinity. Owing to the symmetry of the scattering properties
this is identical to the scattering of a wave coming from the
horizon. The scattering boundary conditions for (8) have
the following form

Ψ ¼ e−iωr� þ Reiωr� ; r� → þ∞;

Ψ ¼ Te−iωr� ; r� → −∞; ð23Þ

where R and T are the reflection and transmission
coefficients.
The effective potential has the form of the potential

barrier which monotonically decreases at both infinities, so
that the WKB approach [44] can be applied for finding
R and T. Since ω2 is real, the first order WKB values for
R and T will be real [44] and

jTj2 þ jRj2 ¼ 1: ð24Þ

Once the reflection coefficient is calculated, we can find the
transmission coefficient for each multipole number l

jAlj2 ¼ 1 − jRlj2 ¼ jTlj2: ð25Þ

Various methods for computation of the transmission and
reflection coefficients exist in the literature. For quick and
relatively accurate evaluation of the transmission and
reflection coefficients we used the 6th order WKB formula
[44]. The above formula does not work well when ω is very
small, but fortunately, this corresponds to almost complete
reflection of the waves and does not contribute noticeably
into the total energy emission rate. In order to study
contributions of particles at very small frequencies one
can apply the first order WKB formula which will give
more accurate results in this regime. This situation occurs
because the WKB series converges only asymptotically and
does not guarantee convergence in each WKB order.
According to [44] the reflection coefficient can be
expressed as follows:

R ¼ ð1þ e−2iπKÞ−1
2; ð26Þ

where K can be determined from the following equation:

K − i
ðω2 − V0Þffiffiffiffiffiffiffiffiffiffiffiffi

−2V 00
0

p −
Xi¼6

i¼2

ΛiðKÞ ¼ 0: ð27Þ

Here V0 is the maximum of the effective potential, V 00
0 is the

second derivative of the effective potential in its maximum
with respect to the tortoise coordinate, and Λi are higher
order WKB corrections which depend on up to 2ith order
derivatives of the effective potential at its maximum [44]
and K. On Figs. 7(a), 7(b), 7(c) we show dependence of the
gray-body factor on ω for different values of l for an

(a)

(b)

(c)

FIG. 7. The gray-body factor dependence in ω, for the
electromagnetic field (s ¼ 1), blue line corresponds to p ¼ 0,
it is Schwarzschild limit, orange line corresponds to p ¼ 0.3,
green line corresponds to p ¼ 0.6, red line is a maximum value of
p ¼ 0.9: (a) l ¼ 1; (b) l ¼ 2; (c) l ¼ 3.
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electromagnetic field. There one can see that the gray-body
factors of the EdGB black hole are larger than that of the
Schwarzschild limit. From the above Figs. 7(a),7(b),7(c)
one can see that for larger p, the transmission rate is higher.
This agrees with the fact that the pick of the effective
potential becomes lower at larger p, so that the tunneling
through the lower potential is easier.

VI. HAWKING RADIATION

We will assume that the black hole is in the thermal
equilibrium with its environment in the following sense: the
temperature of the black hole does not change between
emissions of two consequent particles. This implies that the
system can be described by the canonical ensemble (see
[49] for a review). Therefore, the energy emission rate for
Hawking radiation has the form [50]:

dE
dt

¼
X
l

NljAlj2
ω

exp ðω=THÞ − 1

dω
2π

; ð28Þ

were TH is the Hawking temperature, Al are the gray-body
factors, and Nl are the multiplicities, which only depend on
the space-time dimension and l.
In the regime of small deviations from the Schwarzschild

limit, p ≪ 1, the Hawking temperature is

TH ¼ 1

4π
þ p
7722π

þOðp2Þ: ð29Þ

Dependence of the temperature on p is shown on Fig. 8 and
the minimum (TH ≈ 0.0796) occurs at p ≈ 0.5411.
From Figs. 9 and 11 one can see that the emission of

electromagnetic and Dirac radiation is highly dominated by
the first multipole l ¼ 1, while contribution of the second
multipole is small, and higher l are almost negligible.
Thus, the full picture of radiation of Maxwell and Dirac
particles is very well represented by its l ¼ 1 and l ¼ 2
modes. From Figs. 10, 12 it can be seen that the turning on
of the dilaton-Gauss-Bonnet term enhances the intensity of
Hawking radiation seemingly. At the same time, as the
Hawking temperature increases by only about 4% from

p ¼ 0 to p ¼ 0.97, the pick of the energy emission rate
shifts to higher frequencies ω insignificantly.
The total energy emission rate of the electromagnetic

field (see Table II), i.e., after integrating over all the
frequencies ω and multipole numbers l, is 13.7 × 10−5

for p ¼ 0, 17.6 × 10−5 for p ¼ 0.9 and 21.5 × 10−5 for
p ¼ 0.97. Thus, the maximal increase in the energy
emission rate of Hawking radiation for an electromagnetic
field reaches 57%. This way, the Hawking radiation of an
electromagnetic field is much more sensitive characteristic
than classical radiation in the electromagnetic spectrum.
The Dirac field is radiated away at a rate increased by
approximately 48%. From [51] we know that in the vicinity
of Schwarzschild black hole gravitons are emitted at a rate,
which is much smaller than those of neutrinos, electrons,
positrons and photons, contributing only about one percent
into the total energy emission rate. As in our case the
geometry of the black hole is modified only slightly from
its Schwarzschild limit, we do not believe that this
proportion between emission of test and gravitational fields
will change drastically.

FIG. 8. The Hawking temperature THðpÞ.

FIG. 9. Energy emission rate of the electromagnetic field for
different values l, p ¼ 0.97: blue line corresponds to l ¼ 1,
green line corresponds to l ¼ 2, red line is l ¼ 3.

FIG. 10. Total energy emission rate (after summation over all
degrees of freedom and quantum numbers) of the electromagnetic
field for p ¼ 0 (green), 0.9 (red), and 0.97 (blue).
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Don Page [51] showed that there are two qualitatively
different regimes of emission of particles: the first, when
the black hole mass is large enough and radiation of
massive particles is negligible: the radiation occurs mainly
due to massless electron and muon neutrinos, photons, and
gravitons. The second regime occurs when the black-hole

mass is so small, that emission of electrons and positrons
will occur ultra-relativistically. In the latter case, their law
of radiation can be approximated by that for the massless
Dirac field and the emission rate of all the Dirac particles
should then be simply doubled. This way our results for
radiation of the Dirac field can be used not only for
neutrinos, but also for emission of electrons and protons.
Thus, taking into account the expected relative suppression
of emission of gravitons, the above data should provide a
reasonable estimation for the lifetime of a black hole.
In the Schwarzschild limit p ¼ 0 we reproduce the

results of the well-known Page’s work [51] after changing
to the units M ¼ 1=2 (r0 ¼ 1): as the power scales as
∼ℏc6G−2M−2, one should divide by 4 the results obtained
here in order to reproduce the Page’s data.

VII. CONCLUSIONS

In this work we filled the gap existing in investigation of
radiation phenomena in the vicinity of the Einstein-dilaton-
Gauss-Bonnet black hole. Here we have shown that:

(i) As the geometry of the EdGB black hole is only
slightly corrected by the Gauss-Bonnet-dilaton term,
the quasinormal modes of test scalar and electro-
magnetic fields only slightly deviate from their
Schwarzschild limits. Nevertheless, the damping
rate of the quasinormal mode, allowing for 9 percent
deviation from the Schwarzschild limit, turns out to
be more sensitive characteristic than some other
observables in the electromagnetic spectrum, such as
the size of the shadow or iron line [12,15,16]. The
latter usually give the effect of not more than one
percent. The fundamental modes can be approxi-
mated very well by a linear fit in terms of the new
parameter p of the theory.

(ii) In the regime of high frequencies (eikonal) the
analytical formula of quasinormal modes has been
deduced. It generalizes that for the Schwarzschild
black hole and confirm the QNM/null geodesics
correspondence for test fields. However, it is argued

FIG. 11. Energy emission rate of the Dirac field for different
values l, p ¼ 0.97: blue line corresponds to l ¼ 1, green line
corresponds to l ¼ 2, red line is l ¼ 3.

FIG. 12. Total energy emission rate (after summation over all
degrees of freedom and quantum numbers) of the Dirac field for
p ¼ 0 (green), 0.9 (red), and 0.97 (blue).

TABLE II. The partial (for various l) and total energy emission rates dE=dt of the electromagnetic and Dirac fields for different
values p.

dE=dt p ¼ 0 p ¼ 0.3 p ¼ 0.9 p ¼ 0.97

Neutrinos
k ¼ 1 0.00063954 0.000659962 0.000781361 0.00092774
k ¼ 2 0.0000240695 0.0000270824 0.0000393471 0.0000528455
k ¼ 3 4.73065 × 10−7 5.79529 × 10−7 1.06577 × 10−6 1.65596 × 10−6P

3
k¼1ðdE=dtÞl 0.000664083 0.000687624 0.000821774 0.000982242

Photons
l ¼ 1 13.4034 × 10−5 13.9278 × 10−5 17.0736 × 10−5 20.7412 × 10−5

l ¼ 2 2.6717 × 10−6 3.0984 × 10−6 4.8903 × 10−6 6.9153 × 10−6

l ¼ 3 4.0262 × 10−8 5.1084 × 10−8 1.0359 × 10−8 1.7117 × 10−8P
3
l¼1ðdE=dtÞl 13.6746 × 10−5 14.2428 × 10−5 17.5730 × 10−5 21.4499 × 10−5
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that the correspondence should not work for the
gravitational perturbations of EdGB black hole.

(iii) Massive fields in the vicinity of the EdGB black hole
allow for infinitely long lived modes, called quasir-
esonances.

(iv) The Hawking radiation is noticeably enhanced up to
about 57% for photons and 48% for neutrinos and
ultrarelativistic electrons and protons when the
dilaton-Gauss-Bonnet term is turned on.

An essential question which may arise when using the
WKB approximation is the estimation of the error. As the
convergence of the WKB method is guaranteed only
asymptotically and not in each order, the strict mathemati-
cal constrain on possible error is a complicated problem,
which has been recently discussed in detail in [52].
However, as the deviation from the Schwarzschild geom-
etry is small in our case, we have all reasons to expect that
at least the order of the error will be the same as for the
Schwarzschild metric. Fortunately, the relative error when
calculating l ≥ 1 quasinormal modes in the Schwarzschild
background with the 6th order WKB formula is only about
0.1% ([53]), which is two orders smaller than the effect we
observe. The same is true for the Hawking radiation: while
the relative error in the Schwarzschild case is about one
percent for theDirac field and a fraction of one percent for the
electromagnetic one, the effect reaches tens of percents, that
is, two order larger than the expected relative error. The
effectiveness of WKB formula for calculation of grey-body
factors is stipulated by the fact that the worst WKB accuracy
occurs when ω is very small and the turning points are well
separated, making the Taylor expansion in the intermediate
region a bad approximation. Fortunately, at smallω the grey-
body factor is almost zero and does not affect the total energy
emission rate. That is why we managed to reproduce the
Page’s results with very good accuracy. More detailed
discussion of the accuracy of WKB formula for grey-body
factors can be found in [52]. In all of the above, we see that
taking into account the dilaton-Gauss-Bonnet correction, we
should observe more intensive Hawking evaporation of a
black hole of the same radius.
Another issue which we would like to mention here is

possible observational implications of Hawking radiation
of the Einstein-dilaton-Gauss-Bonnet black holes. It is well

known that the intensity of the Hawking radiation is
relatively weak process for large astrophysical black holes
and one should not hope to measure the Hawking radiation
in the direct experiment soon. However, there are a number
of indirect opportunities for testing quantum properties of
the event horizon. First of all, Hawking radiation is a
dominating factor in the evolution of primordial black
holes. Therefore, estimations and the search for primordial
black holes are done with consideration of their evaporation
[54]. The gravitational echoes are expected to manifest the
quantum properties of the horizon, because even tiny
changes in the black-hole geometry near the horizon lead
to qualitatively different boundary conditions, and as a
result, to gravitational echoes at late times [55]. Braneworld
models also leave some room for observation of Hawking
radiation in particle collisions [49]. After all, the analogue
process in the Bose-Einstein condensate can model
Hawking evaporation [56].
One of the most appealing questions which was beyond

our paper is the analysis of gravitational perturbations in
order to see whether the eikonal instability occurs for that
case as well. The appropriate Hawking radiation of
gravitons could then be analyzed. However, in the region
of black hole stability, the main features of the classical and
quantum radiation considered here for test fields should
also hold for the gravitational field, as it usually takes place
for other stable black hole models.
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APPENDIX: THE PARAMETRIZED
EdGB METRIC

The analytical approximations [8] for the metric func-
tions eμ and eν have the forms:

eμ ¼ ½ðr − r0Þð11528ð−338485þ 167871pþ 937132p2 − 1091895p3 þ 325377p4Þr4 þ 8ð263522875
þ 497564855p − 2160940683p2 þ 1833700801p3 − 382791763p4 − 54635232p5 þ 3579147p6Þr3r0
− 124488ð−1þ pÞ2pð−1310þ 1551p − 514p2 þ 33p3Þr2r20 þ pð283646440 − 1112933120p

þ 1868830098p2 − 1478746401p3 þ 470844780p4 − 32741280p5Þrr30 þ 1441pð−234080þ 345600p

− 85004p2 − 36868p3 þ 11115p4Þr40Þ�=½11528ð−1þ pÞð−5þ 3pÞr4ðð−67697 − 74741p

þ 108459p2Þrþ ð36575þ 121424p − 124020p2Þr0Þ�; ðA1aÞ
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eν ¼ ½2882ð−1þ pÞð−5þ 3pÞr2ðð−67697 − 74741pþ 108459p2Þrþ ð36575þ 121424p

− 124020p2Þr0Þð18ð−297882þ 533046p − 262075p2 þ 24795p3Þr2 þ 18ð223782 − 348366pþ 110455p2

þ 16245p3Þrr0 − 95pð−3640þ 8312p − 6075p2 þ 1404p3Þr20Þ2�=½81ð13 − 9pÞ2ðr − r0Þðð22914
− 25140pþ 2755p2Þrþ ð−17214þ 14880pþ 1805p2Þr0Þ2ð11528ð−338485þ 167871pþ 937132p2

− 1091895p3 þ 325377p4Þr4 þ 8ð263522875þ 497564855p − 2160940683p2 þ 1833700801p3

− 382791763p4 − 54635232p5 þ 3579147p6Þr3r0 − 124488ð−1þ pÞ2pð−1310þ 1551p − 514p2

þ 33p3Þr2r20 þ pð283646440 − 1112933120pþ 1868830098p2 − 1478746401p3 þ 470844780p4

− 32741280p5Þrr30 þ 1441pð−234080þ 345600p − 85004p2 − 36868p3 þ 11115p4Þr40Þ�: ðA1bÞ

The above cumbersome expressions can be found in the form of a Mathematica notebook in https://arxiv.org/src/1705
.09875v3/anc/Approximation.nb.
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