
 

Modification of photon trapping orbits as a diagnostic
of non-Kerr spacetimes

Kostas Glampedakis1,2,* and George Pappas3,†
1Departamento de Física, Universidad de Murcia, Murcia E-30100, Spain

2Theoretical Astrophysics, University of Tübingen, Auf der Morgenstelle 10, Tübingen, D-72076, Germany
3Dipartimento di Fisica, “Sapienza” Universitá di Roma & Sezione INFN Roma1,

Piazzale Aldo Moro 5, 00185, Roma, Italy

(Received 9 April 2019; published 25 June 2019)

Photon circular orbits, an extreme case of light deflection, are among the hallmarks of black holes and
are known to play a central role in a variety of phenomena related to these extreme objects. The very
existence of such orbits when motion is not confined in the equatorial plane, i.e., spherical orbits, is indeed
a special property of the separable Kerr metric and may not occur, for instance, in the spacetime of other
more speculative ultracompact objects. In this paper we consider a general stationary-axisymmetric
spacetime and examine under what circumstances spherical or more general, variable-radius, “spheroidal”
nonequatorial photon orbits may exist with the ultimate goal of using the modifications—or even loss—of
photon trapping orbits as a telltale sign of non-Kerr physics. In addressing this issue, we first derive a
general necessary condition for the existence of spherical/spheroidal orbits and then go on to study photon
trapping orbits in a variety of known non-Kerr metrics (Johannsen, Johannsen-Psaltis, and Hartle-Thorne).
The first of these is an example of a separable spacetime which supports Kerr-like spherical photon
orbits. A more detailed analysis reveals a deeper connection between the presence of spherical orbits
and the separability of a metric (that is, the existence of a third integral of motion). Specifically, a spacetime
that does not admit spherical orbits in any coordinates is necessarily nonseparable. The other two
spacetimes considered here exhibit a clear non-Kerr behavior by having spherical photon orbits replaced by
spheroidal ones. More importantly, subject to the degree of deviation from Kerr, equatorial photon rings
give place to nonequatorial ones with an accompanying loss of low-inclination spheroidal orbits. The
implications of these results for the electromagnetic and gravitational wave signature of non-Kerr objects
are briefly discussed.
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I. INTRODUCTION

The first direct observations of gravitational waves
(GWs) by the advanced LIGO/Virgo detector network
[1–5] saw general relativity (GR) becoming even more
established as the correct theory of gravity. However, these
observations, spectacular as they may be, have not yet ruled
out an alternative to GR theories of gravity nor have they
established “beyond reasonable doubt” the Kerr nature of
the compact objects involved in the mergers. Indeed, testing
the Kerr hypothesis even within GR against the possibility
of having some other type of exotic horizonless ultra-
compact object that could be mistaken for a black hole is by
itself a far from easy endeavor; see e.g., [6–9]. This
fascinating prospect provides ample motivation for a more
detailed study of how non-Kerr compact objects could

manifest themselves under the inquisitive eyes of electro-
magnetic and gravitational wave observatories.
An infrequently emphasized characteristic of Kerr black

holes is the presence of nonequatorial “circular” photon (or
particle) orbits. These are in fact spherical (though not
closed) trajectories of constant radius r0 and represent the
generalization of the more familiar concept of the equatorial
circular orbit, the so-called “photon ring.” Spherical/circular
photon geodesics leave their mark (directly or indirectly) on
a variety of phenomena involving black holes.
A black hole illuminated by an external source of light

(e.g., a hot accretion flow) casts a shadow that is fringed by
a sharp bright ring [10,11]. The mechanism responsible for
the formation of this optical structure is the photon circular
orbit which acts as a temporary depository of electromag-
netic flux. It is not surprising then that photon circular
orbits play a key role in the ongoing effort to capture
horizon-scale images of the Sgr A * supermassive black
hole (and of other black holes in our Galactic neighbor-
hood) and use them as an observational test of the Kerr
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metric; see e.g., [11,12]. This program has very recently
begun to bear fruit with the ongoing observations of the
Event Horizon Telescope’s worldwide constellation of
radio telescopes1 [13].
Much of our intuition about wave dynamics in black hole

spacetimes is also based on photon spherical orbits.
Quasinormal mode (QNM) ringdown is intuitively under-
stood in terms of wave packets temporarily trapped in the
vicinity of the photon ring, gradually peeling off towards
infinity and the event horizon as they circle the black hole.
Indeed, in the eikonal limit of geometric optics the
frequency and damping rate of the fundamental QNM
are determined, respectively, by the photon orbit’s angular
frequency and divergence rate (Lyapunov exponent); see
[14–18] for more details. Similarly, the scattering of plane
waves by black holes reveals the presence of a photon ring
in the glory pattern of the scattering cross section (see [19]
and references therein).
Although photon rings are expected to be a ubiquitous

orbital feature, present in the spacetime of non-Kerr ultra-
compact objects such as gravastars and bosons stars, the
same may not be true for the off-the-equator spherical
orbits. Excluding the idealized case of spherically sym-
metric systems, the existence of the latter orbits is not
guaranteed unless some special conditions are met. Photons
moving in non-Kerr spacetimes may be trapped in different
kinds of orbits or they might not be trapped at all, at least
for some part of the orbital parameter space.

This is precisely the issue addressed in this paper.
Specifically, we ask under what circumstances spherical
(of constant radius r0) or more general “spheroidal” [of a
variable, equatorially symmetric radius r0ðθÞ, where θ is a
meridional coordinate] photon orbits are allowed when one
moves away from Kerr to an arbitrary axisymmetric-sta-
tionary and equatorial-symmetric spacetime. In this general
case we can formulate a necessary “spheroidicity condi-
tion” for the existence of the aforementioned orbits. It is
then possible to arrive at the remarkable result that a
spacetime that has a photon ring but does not admit
spherical orbits is necessarily nonseparable (and therefore
non-Kerr). However, the separability-sphericity connection
is not a solid one, in the sense that nonseparability does not
necessarily imply the absence of spherical orbits.
Most non-Kerr spacetime metrics of interest are of

course nonseparable2 and therefore spherical photon orbits
could be replaced by spheroidal ones. Our results suggest
that this may be the generic situation for a large part of the
parameter space. For example, considering two of the most
widely used nonseparable metrics in relativistic astrophys-
ics, the deformed Kerr Johannsen-Psaltis metric [20] and
the slow rotation Hartle-Thorne metric [21,22], we find that
although neither spacetime possesses spherical orbits,
orbits of the spheroidal type are admitted in both cases
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FIG. 1. Kerr vs non-Kerr photon orbits. This figure exemplifies the impact of nonseparability on the character of photon trapping
orbits. The shaded area in the r-θ plane represents the region where geodesic motion is not allowed. The green (bottom row) and red (top
row) curves mark the location of the event horizon. Top row: A sequence of quasispherical orbits in an a ¼ 0.7M Kerr metric with
increasing impact parameter b; in these examples photons are temporarily trapped in the vicinity of a spherical orbits. Bottom row: A
similar b-sequence of orbits in the nonseparable Johannsen-Psaltis spacetime with deformation parameter ε3 ¼ 5 and spin a ¼ 0.7M.
The first two low-b examples, although lacking exactly spherical orbits, display a Kerr-like character in the sense that photons are
trapped in spheroidal or nearly spheroidal orbits that cross the equatorial plane. However, these orbits are lost (together with the
equatorial photon ring) as we move towards higher b. The formation of nonequatorial photon rings (see panel with b ¼ 1.794096M)
facilitates the capture of photons in their vicinity in the form of circular-planar or spheroidal orbits. In the high-b end of the spectrum,
only scattering orbits are present and no photon trapping is possible.

1https://eventhorizontelescope.org.

2Note that throughout this paper the term “separable” is
used as a proxy for the more accurate term “geodesically
separable,” i.e., the separability associated with the Hamilton-
Jacobi equation.
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(another example is provided by the orbits outside black
holes with scalar hair discussed in [23]). However, these
orbits too are lost (assuming they cross the equatorial plane)
in conjunction with the disappearance of the equatorial
photon ring when the spin is high and/or the deviation from
Kerr is large. The emergence of nonequatorial photon rings
with their associated new families of photon trapping orbits
adds a new layer of non-Kerr phenomenology.
Our results are best summarized if we plot side by side

(see Fig. 1) Kerr photon trapping orbits against their
counterparts in a strongly deformed Johannsen-Psaltis
spacetime assuming the same spin and orbital impact
parameter b (the comparison between Kerr and Hartle-
Thorne orbits is similar). One can observe how the two
cases are similar in the low b range but gradually deviate as
we move towards higher b.
The deeper astrophysical motivation behind this work lies

in the aforementioned role played by circular photon orbits
in creating a black hole shadow and in the GW ringdown
produced in the final stage of black hole mergers. The key
element in both phenomena is the ability of trapping
photons/wave packets in orbit around the black hole for a
time interval much longer than the system’s dynamical
timescale. As our results suggest, this ability could be
compromised or modified if the Kerr metric were to be
replaced by a nonseparable metric endowed with strongly
non-Kerr spheroidal photon orbits or if spherical/spheroidal
orbits are not supported at all. The far-reaching consequence
of this conclusion is that non-Kerr ultracompact objects may
look very different compared to Kerr black holes with
respect to their shadow image and QNM ringdown signal.
The remainder of the paper is organized as follows.

Section II contains the necessary formalism for describing
photon geodesics in an axisymmetric-stationary metric. In
Sec. III we focus on circular motion and discuss the
distinction between spherical and spheroidal nonequatorial
orbits. In Sec. IV we derive the spheroidicity condition
describing these orbits. In parallel with our discussion of
spherical/spheroidal orbits, in Sec. V we study the pos-
sibility of having nonequatorial photon rings. The con-
nection between spherical orbits and the spacetime’s
separability is the subject of Sec. VI. In Sec. VII we search
for spherical/spheroidal orbits in three different non-Kerr
spacetimes (Johannsen-Psaltis, Johannsen and Hartle-
Thorne) by means of analytic and numerical solutions of
the spheroidicity condition. A complementary time-domain
study of these orbits is the subject of Sec. VIII. Finally, in
Sec. IX we summarize our results and discuss their
implications for the observational signature of non-Kerr
objects.

II. FORMALISM FOR GENERAL NULL
GEODESICS

For the general purpose of this paper we consider an
arbitrary axisymmetric, stationary and equatorial-symmetric

spacetime described by a metric gμνðr; θÞ in a spherical-like
coordinate system. The spacetime is assumed to satisfy the
circularity conditions associated with its two Killing vectors
[24] and by exercising our coordinate choice freedom, the
spatial coordinates are all orthogonal. The resulting line
element takes the form

ds2¼ gttdt2þgrrdr2þ2gtφdtdφþgθθdθ2þgφφdφ2: ð1Þ

Geodesics in this spacetime conserve the energy E and the
angular momentum component L along the symmetry axis
(here given per unit mass), E ¼ −ut, L ¼ uφ, where uμ ¼
dxμ=dλ is the four-velocity along the geodesic. Defining the
impact parameter b ¼ L=E and rescaling the affine param-
eter λ → Eλ we can effectively set E → 1 and L → b
everywhere. These expressions can be inverted to give

ut ¼ 1

D
ðgtφbþ gφφÞ; uφ ¼ −

1

D
ðgtφ þ gttbÞ;

D ¼ g2tφ − gttgφφ: ð2Þ

The location of the horizon (if present) is marked byD ¼ 0;
outside the horizon this parameter is positive.
Assuming null geodesics hereafter, the norm uμuμ ¼ 0

leads to

grru2r þ gθθu2θ ¼
1

D
ðgttb2 þ 2gtφbþ gφφÞ≡ Veffðr; θ; bÞ;

ð3Þ

where the effective potential Veff shares the same symmetry
properties as the metric.
In the case of the Kerr metric, the existence of a Carter

constant allows the decoupling of the radial and meridional
motion, with (3) becoming a purely radial equation (see the
Appendix A for details). The “miraculous” property of a
third constant is absent in a general axisymmetric-sta-
tionary spacetime. Instead one is obliged to work with the
second-order geodesic equation, which can be written as

ακ ≡ duκ
dλ

¼ 1

2
gμν;κuμuν: ð4Þ

The θ-component of this equation is the only one needed
here:

αθ¼
1

2
½gtt;θðutÞ2þgrr;θðurÞ2þgθθ;θðuθÞ2

þgφφ;θðuφÞ2þ2gtφ;θuφut�

¼1

2

�
grr;θ
g2rr

u2rþ
gθθ;θ
g2θθ

u2θ

�
þ 1

2D2
½g4tφVeff;θ−g2tφgφφðgttVeffÞ;θ

þgttgφφfðg2tφÞ;θ−gttgφφ;θgVeff

þ2bgφφðgtφgtt;θ−gttgtφ;θÞþg2φφgtt;θ−gttgφφgφφ;θ�: ð5Þ
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For the following discussion of circular orbits we also need
to involve the λ-derivative of (3). This is,

ur
grr

�
2αr −

grr;r
g2rr

u2r −
grr;θ
grrgθθ

uruθ

�

þ uθ
gθθ

�
2αθ −

gθθ;θ
g2θθ

u2θ −
gθθ;r
grrgθθ

uruθ

�

¼ ur
grr

Veff;r þ
uθ
gθθ

Veff;θ: ð6Þ

It can be verified that the insertion of αθ, αr [as computed
from (4)] into (6) returns a trivial 0 ¼ 0 result.
Returning to Eq. (3), one can observe that its quadratic

form implies that Veff should act as a zero-velocity
separatrix between allowed and forbidden regions for
geodesic motion. This follows from

grrðurÞ2þgθθðuθÞ2¼ 0⇔ ur ¼ uθ ¼ 0⇔Veff ¼ 0: ð7Þ

Then Veff < 0 (Veff > 0) marks the allowed (forbidden)
region. Some examples of this are given below in
Sec. VII B.

III. CIRCULAR, SPHERICAL AND
SPHEROIDAL ORBITS

It is perhaps instinctive to think of circular motion as that
associated with a constant radius r ¼ r0. For nonequatorial
motion, a more accurate designation for these orbits
would be “spherical” since the trajectory is confined on
the surface of a sphere of radius r0. This is, for example,
what Kerr spherical orbits look like in the familiar Boyer-
Lindquist coordinates. However, there is a more general
way of defining nonequatorial circular orbits, namely, as
motion confined on a spheroidal-shaped shell r0 ¼ r0ðθÞ.
We shall call this more general type of orbit “spheroidal.”
From a mathematical point of view we require the function
r0ðθÞ to be smooth and expandable in even-order Legendre
polynomials,

r0ðθÞ ¼
X
l

βlP2lðcos θÞ; ð8Þ

where l ¼ 0; 1; 2;… and βl are constant coefficients. Note
that according to this definition r0ðθÞ is not required to be
single valued, so that the spheroidal shell may actually be
torus shaped (as some of the orbits discussed in [23]). In
this case the orbit could intersect the equatorial plane in two
distinct radii instead of one.
Strictly speaking, the distinction between spherical and

spheroidal orbits could be seen as a nonphysical gauge
degree of freedom, in the sense that any spheroidal orbit
r0ðθÞ could be reduced to a spherical one with the help of a
suitable coordinate transformation [indeed, the new radial
coordinate would be given by uðr; θÞ ¼ r − r0ðθÞ]. Putting
aside possible complications related to a multivalued and/or

nonglobally defined r0ðθÞ, this procedure of “gauging out”
spheroidal orbits should be always feasible provided we
allow for a metric more general than our assumed form (1),
more specifically, a metric with an extra mixed grθ
component [as discussed below, the coordinate transfor-
mation may not always exist if the metric is assumed to
retain the form (1)]. There is one mathematical and a
second more practical reason why we do not opt for this
approach: (i) if present, the property of separability requires
a metric like (1) in order to work, and (ii) all non-Kerr
axisymmetric-stationary spacetimes in the literature are of
the form (1); transforming one of them according to the
previous recipe would require a prior knowledge of r0ðθÞ,
thus defeating the purpose of the entire exercise.
Sticking with our definition of spheroidal orbits we find

that ur, uθ are “locked” to each other,

ur ¼ r00u
θ ⇒ ur ¼

grr
gθθ

r00uθ; ð9Þ

where a prime stands for a derivative with respect to the
argument. In this and the following expressions all func-
tions of r are to be evaluated at r ¼ r0ðθÞ.
Taking the λ-derivative of (9),

αr ¼
grr
gθθ

r00αθ þ
u2θ
g3θθ

½gθθgrrr000 þ r00ðgθθgrr;θ − grrgθθ;θÞ

þ ðr00Þ2ðgθθgrr;r − grrgθθ;rÞ�: ð10Þ

Using (9) in (5),

αθ ¼
u2θ
2g2θθ

½grr;θðr00Þ2þgθθ;θ�

þ 1

2D2
½g4tφVeff;θ−g2tφgφφðgttVeffÞ;θ

þgttgφφfðg2tφÞ;θ−gttgφφ;θgVeff

þ2bgφφðgtφgtt;θ−gttgtφ;θÞþg2φφgtt;θ−gttgφφgφφ;θ�:
ð11Þ

Meanwhile, from Eqs. (3) and (6) we obtain respectively

½grrðr00Þ2 þ gθθ�u2θ ¼ g2θθVeff ; ð12Þ

r00

�
2αr−

r00u
2
θ

g2θθ
ðgrr;θþgrr;rr00Þ

�
þ2αθ−

u2θ
g2θθ

ðgθθ;θþgθθ;rr00Þ

¼ r00Veff;rþVeff;θ: ð13Þ

IV. THE SPHEROIDICITY CONDITION

The previous equations pertaining to general nonequa-
torial spheroidal motion in an arbitrary axisymmetric-
stationary metric can be combined to produce a necessary
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spheroidicity condition of the functional form
fðb; r0; r00; r000; θÞ ¼ 0.
This constraint originates from Eq. (13) (i.e., essentially

the λ-derivative of Veff ) after using (10)–(12) to eliminate
αr, αθ and u2θ, respectively. Once these steps are taken and
several terms are combined to form Veff and its derivatives,
we arrive at

grrðr00Þ3ðgrrVeffÞ;θ
þðr00Þ2½ðgθθgrr;r−2grrgθθ;rÞVeff −grrgθθVeff;r�
þ r00½ð2gθθgrr;θ−grrgθθ;θÞVeff þgrrgθθVeff;θ�
þgθθ½2grrVeffr000 − ðgθθVeffÞ;r� ¼ 0; ð14Þ

where all functions are to be evaluated at r ¼ r0ðθÞ.
This equation will become our basic tool for searching
for spherical/spheroidal orbits in non-Kerr spacetimes
(Sec. VII). It should be noted that (14) is oblivious to
the stability of the spheroidal orbit. This extra information
is contained in the second derivatives of Veff .
As a sanity check of (14) we consider the Kerr metric in

Boyer-Lindquist coordinates with the assumption r00 ¼ 0.
The spheroidicity condition reduces to

EKðr0Þ≡ r20ðr0−3MÞþa2ðMþ r0Þþabðr0−MÞ¼ 0;

ð15Þ

which can be identified as one of the two equations that
determine nonequatorial Kerr photon orbits (for a ¼ 0 this
leads to the Schwarzschild photon ring r0 ¼ 3M).
This example is indicative of what happens when a

spacetime admits r0 ¼ const: spherical orbits: the spheroi-
dicity condition effectively becomes a θ-independent equa-
tion for r0. As we shall see below in Sec. VII D, a similar
situation arises in the context of the separable deformed
Kerr metric devised by Johannsen [25].

V. NONEQUATORIAL PHOTON RINGS

Apart from the aforementioned 3D spherical/spheroidal
orbits a spacetime may admit 2D photon rings where
motion takes place along a trajectory of constant r and θ on
a plane. The equatorial photon ring is the most familiar
example of this family of orbits and is of course a well-
known feature of the Kerr spacetime. Interestingly, non-
Kerr spacetimes may show a richer phenomenology,
admitting a symmetric pair of nonequatorial photon rings
instead of a single equatorial one. This is the subject
explored in this section.
We can begin our analysis from Eqs. (12) and (13) which

are still valid for photon rings. Specializing to motion with
constant r ¼ r0 and θ ¼ θ0 (i.e., we need to set r00 ¼ uθ ¼
αθ ¼ 0 in the two equations) we arrive at the following
three conditions for Veffðr; θ; bÞ:

Veff ¼ Veff;r ¼ Veff;θ ¼ 0; at ðr; θÞ ¼ ðr0; θ0Þ: ð16Þ

These three equations can be solved with respect to
fr0; θ0; b ¼ b0g; such a solution implies the existence of
a nonequatorial photon ring.
Equatorial photon rings are somewhat simpler to deal

with, since Veff;θðπ=2Þ ¼ 0 due to the spacetime’s sym-
metry. In this case the problem reduces to the familiar
conditions for circular equatorial orbits, i.e., Veffðr0; b0Þ ¼
Veff;rðr0; b0Þ ¼ 0. As discussed, e.g., in [18] these two
conditions lead, respectively, to equations for the photon
ring radius and its associated impact parameter (here the
upper/lower sign corresponds to prograde/retrograde
motion)

gφφðgtt;rÞ2 þ 2gttðgtφ;rÞ2 − gtt;rðgttgφφ;r þ 2gtφgtφ;rÞ
∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtφ;rÞ2 − gtt;rgφφ;r

q
ðgtφgtt;r − gttgtφ;rÞ ¼ 0; ð17Þ

b0 ¼
1

gtt;r

�
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtφ;rÞ2 − gtt;rgφφ;r

q
− gtφ;r

�
: ð18Þ

The impact parameter of nonequatorial photon rings is
given by the same result (18). However, instead of a single
photon ring equation we now have a coupled algebraic
system for fr0; cos θ0g coming from Veff ¼ Veff;θ ¼ 0jb¼b0 .
The former condition has the same form as Eq. (17), albeit
with a θ-dependent metric. The latter condition leads to

gφφ;θðgtt;rÞ2 þ 2gtt;θðgtφ;rÞ2 − gtt;rðgtt;θgφφ;r þ 2gtφ;θgtφ;rÞ
∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtφ;rÞ2 − gtt;rgφφ;r

q
ðgtφ;θgtt;r − gtt;θgtφ;rÞ ¼ 0:

ð19Þ

These equations are solved below in Sec. VII; there we will
see that particular examples of non-Kerr spacetimes lead to
nontrivial results. The trivial application of these equations
is the Kerr spacetime itself where we can demonstrate the
impossibility of nonequatorial photon rings. Indeed, after
combining (17) and (19) to eliminate the square root termwe
obtain acosθ0ða2cos2θ0þa2−6r20Þða2cos2θ0þa2−2r20Þ2¼
0 which, given that r0 ≥ a, has θ0 ¼ π=2 as the only
acceptable root.

VI. ON THE CONNECTION BETWEEN
SPHERICAL ORBITS AND SEPARABILITY

In the Introduction spherical photon orbits were
described as a special characteristic of the Kerr spacetime
and in particular of its separable nature. Before embarking
on our study of photon trapping orbits in concrete examples
of non-Kerr spacetimes it is worthwhile to take a detour and
examine in more detail the connection between spherical
photon orbits and the separability of a given spacetime.
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The spheroidicity condition (14) provides the means to
establish a remarkable result that can be stated as follows: if
a stationary-axisymmetric spacetime endowed with a pho-
ton ring is separable (in the sense that it admits a third
integral of motion) then it necessarily admits spherical
photon orbits (i.e., orbits with r0 ¼ const:). The converse is
true in a subset of the solution space of (14) with r0 ¼
const: where one needs to further assume that the ratio of
the metric components grr; gθθ takes a special factorized
form gθθ=grr ¼ fðrÞhðθÞ, where hðθÞ is a specifically
selected function.
A corollary of this proposition is that a spacetime is

necessarily nonseparable if it possesses a photon ring but
does not admit spherical orbits in any coordinate system.
The rest of this section is devoted to the derivation of these
results; it should be noted that the sphericity-separability
connection is not exclusively about photons but it can be
extended to the orbits of massive particles (this is discussed
in more detail in Appendix C). Nor it is exclusively
“relativistic” as it can be shown to hold in the context of
Newtonian gravity (see Appendix B).
For a spacetime gμν of the general form (1) with fr; θg

the only nonignorable coordinates, the Hamilton-Jacobi
equation for null geodesics becomes [26]

ðS;rÞ2
grr

þ ðS;θÞ2
gθθ

− Veff ¼ 0; ð20Þ

where Sðr; θÞ is Hamilton’s characteristic function.
Following the standard separability ansatz [27] we write
S ¼ SrðrÞ þ SθðθÞ. Provided the following conditions hold
(here f1; f2; h; g are arbitrary functions of their argument),

gθθVeff ¼ f1ðrÞhðθÞ þ gðθÞ; ð21Þ
gθθ
grr

¼ f2ðrÞhðθÞ; ð22Þ

we can rearrange (20) as

f2ðrÞðS0rÞ2 − f1ðrÞ ¼
1

hðθÞ ½gðθÞ − ðS0θÞ2� ¼ C: ð23Þ

This demonstrates the separability of the system, with C
playing the role of the third constant (or “Carter constant”).
On the same issue of separability, Carter [28] showed that
the Hamilton-Jacobi equation as well as the Schrödinger
and scalar wave equations are all separable if the metric of a
given spacetime can be put in the “canonical” form (see
[29] for a recent review on the subject),

ds2 ¼ Z
Δr

dr2 þ Z
Δθ

dθ2 þ Δθ

Z
ðPrdφ −QrdtÞ2

þ Δr

Z
ðQθdt − PθdφÞ2; ð24Þ

where Z ¼ PrQθ −QrPθ and Δμ ¼ ΔμðμÞ for μ ¼ fr; θg
(and similarly for the other arbitrary functions). One can
easily verify that the canonical metric (24) satisfies the
separability conditions (21), (22). As examples of this
privileged class of spacetimes we can mention the Kerr and
Johannsen metrics (although only the former is a solution
of the GR field equations).
We now can make contact with the existence of spherical

photon orbits. According to the spheroidicity condition
(14) an r0 ¼ const: orbit must satisfy

ðgθθVeffÞ;rjr0 ¼ 0: ð25Þ

The most general solution of this equation takes the form
gθθVeff ¼ fðr; θÞðr − r0Þ2hðθÞ þ gðθÞ,3 with fðr; θÞ a non-
singular function at r0. A special case of this latter form is

gθθVeff ¼ f1ðrÞhðθÞ þ gðθÞ; ð26Þ

with the additional constraint f01ðr0Þ ¼ 0. Now, the
expression (26) can be identified as the first separability
condition (21), but separability alone cannot enforce
the existence of spherical orbits. This is the point where
we need to invoke the existence of a photon ring in the
spacetime under consideration: for some C ¼ C0 this
requires Vr;r ¼ 0 ⇒ f01 ¼ 0, with the last equation now
becoming a relation r0 ¼ r0ðbÞ, common for both equa-
torial and nonequatorial motion as it depends neither on C
nor on θ [in Kerr, this relation is given by Eq. (15)].
We have thus established the first half of the proposition,

namely, that Hamilton-Jacobi separability entails the exist-
ence of spherical photon orbits as long as f01ðrÞ ¼ 0 has
roots for some values of r. As mentioned, the veracity of the
converse rests on working within the subclass of solutions
of Eq. (25) that satisfy Eq. (26) and the assumption that
gθθ=grr is of the form (22).
Going beyond our basic result, one can show that

spheroidal orbits cannot exist in a separable spacetime
(and obviously in those coordinates that allow separabilty
in the first place). Using ður; uθÞ ¼ ðS0r; S0θÞ in (23), we
obtain a pair of decoupled equations,

f2ðgrrurÞ2 ¼ f1 þ C≡ Vrðr; b; CÞ;

ðf2grruθÞ2 ¼
g − hC
h2

≡ Vθðθ; b; CÞ: ð27Þ

Assuming first a spheroidal orbit, ur ¼ r00u
θ, these two

equations combine to give

ðr00Þ2Vθ ¼ f2ðr0ÞVrðr0Þ≡ Ṽrðr0Þ: ð28Þ
We can then see that both potentials obey Vθ ≥ 0,
Ṽrðr0Þ ≥ 0. At the meridional turning points θt we have

3This form cannot separate the Hamilton-Jacobi equation.
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VθðθtÞ ¼ 0 which means that Ṽr½r0ðθtÞ� ¼ 0. A similar
argument can be used in the equatorial plane where
r00ðπ=2Þ ¼ 0 due to the assumed symmetry of the orbit,
hence leading to Ṽr½r0ðπ=2Þ� ¼ 0. Given that Ṽrðr0Þ
cannot be negative, it can be either zero or increase and
subsequently decrease as θ moves from θt to the equator.
The situation is exactly the same in the lower hemisphere
and therefore we should have Ṽ 0

r½r0ðπ=2Þ� ¼ 0. Taking the
derivative of (28),

2r000Vθ þ ðr00ÞV 0
θ ¼ Ṽ 0

rðr0Þ; ð29Þ

we can deduce that r000ðπ=2Þ ¼ 0. Using iteration, it is easy
to show that the same is true for all higher derivatives

rðnÞ0 ðπ=2Þ. Combined with r00ðπ=2Þ ¼ 0, this entails that
any orbit r0ðθÞ crossing the equatorial plane can only be an
r0 ¼ r0ðπ=2Þ ¼ r0ðθtÞ ¼ const: orbit. Therefore, the only
possibility is that of spherical orbits in the separability
coordinates.
A subtle point of our discussion on spherical orbits is

their inherent coordinate dependence, in the sense that they
occur if one uses the appropriate coordinate system.
Spherical orbits should not occur if a different nonseparable
coordinate system is employed, but instead one would
expect to encounter spheroidal orbits r0ðθÞ, in full agree-
ment with our previous result, since the existence of
spherical orbits in any other coordinates apart from those
that separate the Hamilton-Jacobi equation would imply the
existence of spheroidal orbits in the first coordinates that
allow separability. An example of this situation is provided
by the Newtonian Euler potential; see Appendix B.
The sphericity-separability interplay is nicely demon-

strated by the three non-Kerr spacetimes we study in the
following section. One of them (the Johannsen metric) is
separable and, as we are about to see, it admits Kerr-like
spherical photon orbits. In contrast, the remaining two
nonseparable spacetimes do not admit such orbits but
nevertheless they appear to support the more general
spheroidal ones.

VII. SEARCHING FOR SPHEROIDAL ORBITS IN
NON-KERR SPACETIMES

A. Strategy

After having explored the link between the separability
of a given spacetime and the existence of spherical orbits
we go on to consider specific examples of both separable
and nonseparable metrics. This case-by-case analysis
comprises the deformed Kerr metrics devised by
Johannsen-Psaltis [20] and Johannsen [25], and the cel-
ebrated Hartle-Thorne metric [21,22] which is the “official”
GR solution describing the interior and exterior spacetime
of relativistic stars within a slow-rotation expansion

scheme. For brevity, hereafter these three metrics will be
denoted as JP, J and HT respectively. Amongst these
metrics only the J is separable (by construction) and admits
a Carter-like constant while the other two acquire this
property only in their respective Kerr limits.
Our overall strategy is based on a two-pronged approach.

The first approach is based on the necessary spheroidicity
condition for the existence of spherical/spheroidal orbits. In
this section we solve this condition analytically in the
weakly deformed (ε3 ≪ 1) JP metric and in the HT metric
after being perturbatively expanded with respect to the spin.
We show that none of the two spacetimes admits spherical
orbits in the coordinates that they are given. However, the
HT spacetime admits an exact spheroidal solution while in
the JP spacetime a spheroidal solution can be found in the
approximate form of a truncated convergent series. In sharp
contrast, we find that spherical orbits are allowed in the J
metric.
Solving the spheroidicity condition for the full, unex-

panded JP/HT metrics requires a numerical integration; this
calculation is performed in this section. The results
obtained suggest the presence of spheroidal orbits in some
parts of the parameter space.
This first approach leaves some loose ends in relation

with the degree of “decircularization” of the orbits from
sphericity. This issue is the subject of the second approach
and is addressed in Sec. VIII with the help of direct
numerical integration of the geodesic equations.
Apart from our study of spheroidal orbits, we make

contact with Sec. V and apply the results obtained there to
the three aforementioned spacetimes, with the purpose of
finding nonequatorial photon rings. To what extent their
presence could affect the photon trapping ability of a non-
Kerr spacetime is a topic explored in Sec. VIII.
Before embarking on the orbital analysis of the three

spacetimes it is worth pausing a moment to revisit circular/
spherical motion in Kerr. This topic is of course well
documented and studied in the literature (see e.g., [30,31])
but for the purpose of completeness a brief discussion can
be found in Appendix A.

B. The Johannsen-Psaltis metric

The JP metric belongs to the broader class of the so-
called deformed Kerr metrics, the “deformation” in this
instance encoded in the function

hðr; θÞ ¼ ε3
M3r
Σ2

; ð30Þ

where ε3 is a constant parameter. In terms of the Kerr metric
gKμν (listed in Appendix A), the JP metric reads
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gJPtt ¼ ð1þ hÞgKtt ; gJPtφ ¼ ð1þ hÞgKtφ;

gJPrr ¼ gKrrð1þ hÞ
�
1þ h

a2sin2θ
Δ

�−1
;

gJPθθ ¼ gKθθ; gJPφφ ¼ gKφφ þ ha2
�
1þ 2Mr

Σ

�
sin4θ; ð31Þ

and it is clear that ε3 → 0 corresponds to the Kerr limit.

The search for spherical/spheroidal orbits is greatly
facilitated if we restrict ourselves to a small deformation
ε3 and work perturbatively with respect to that parameter.
We thus consider the Oðε3Þ “post-Kerr” form of the JP
metric.
Assuming spherical orbits, the spheroidicity condition

(14) becomes

− 16ðr60 þ a6cos6θÞða2 − abþ r20ÞEKðr0Þ − 8ε3M3r30½3a4ð4M þ 3r0Þ
− 24a3bM þ 3a2b2ð4M − 3r0Þ þ 2a2r20ð7r0 − 4MÞ þ 8abMr20 þ r40ð5r0 − 12MÞ�
þ cos4θ½8a4ε3M3fa4 − a2ðb2 − 6r20Þ þ r3ð5r0 − 8MÞg − 48a4r20ða2 − abþ r20ÞEKðr0Þ�
þ cos2θ½−48a2r40ða2 − abþ r20ÞEKðr0Þ − 32a2ε3M3r0fa4ðM þ 2r0Þ − 2a3bM

þ a2b2ðM − 2r0Þ þ 2a2r20ðr0 − 3MÞ þ 6abMr20 − 3Mr40g� ¼ 0þOðε23Þ; ð32Þ

where the function EKðr0Þ was introduced back in Eq. (15). The trigonometric functions can be expressed in Legendre
polynomials,

2112a4ε3M3½a4 − a2ðb2 − 6r20Þ þ r30ð5r0 − 8MÞ�P4ðθÞ
− ða2 − abþ r20ÞEKðr0Þ½1280a6P6ðθÞ þ 1152a4ð5a2 þ 11r20ÞP4ðθÞ
þ 1760a2ð5a4 þ 18a2r20 þ 21r40ÞP2ðθÞ þ 528ð5a6 þ 21a4r20 þ 35a2r40 þ 35r60Þ�
þ 1760ε3a2M3½3a6 − 3a4b2 − 2a4r0ð7M þ 5r0Þ þ 28a3bMr0 þ a2r30ð60M − 13r0Þ
− 14a2b2r0ðM − 2r0Þ − 84abMr30 þ 42Mr50�P2ðθÞ − 616ε3M3½−3a8 þ a6ð3b2 þ 20Mr0 þ 22r20Þ
− 40a5bMr0 þ 4a4r0f5b2ðM − 2r0Þ þ r20ð21M þ 40r0Þg − 240a3bMr30

þ 15a2r30f3b2ð4M − 3r0Þ þ 2r20ð7r0 − 6MÞg þ 120abMr50 þ 15r70ð5r0 − 12MÞ� ¼ 0þOðε23Þ: ð33Þ

An r0 solution exists provided the coefficient of each Pl
term vanishes independently. It is straightforward to verify
numerically that this is not the case for any r0 > M. We can
thus conclude that spherical photon orbits do not exist in
the JP spacetime.4

Having failed to find spherical orbits our next objective
is to look for the more general spheroidal r0ðθÞ orbits. In
the spirit of our previous post-Kerr approximation we
employ an expansion [note that this is equivalent to an
expansion in the PlðθÞ basis]

r0ðθÞ ¼ rK þ ε3M
XN
n¼0

βncos2nθ þOðε23Þ; ð34Þ

where βnða; bÞ are constants and rKða; bÞ is the Kerr
spherical orbit radius i.e., EKðrKÞ ¼ 0. Upon inserting

(34) in the spheroidicity condition, the leading order Kerr
terms vanish identically leaving an expression linear in ε3.
After expressing the trigonometric functions in terms of Pl
we again arrive to an algebraic equation of the form (33),
with the maximum l-order depending on the chosen N.
To provide a concrete example, we truncate the expan-

sion (34) at N ¼ 3. The resulting spheroidicity condition
contains all even-order Pl in the range 0 ≤ l ≤ 18 and
therefore leads to an algebraic system of ten equations for
the four expansion coefficients β0 − β3. Symbolically, the
N ¼ 3 system takes the following form:

P18∶ f18β3 ¼ 0; ð35Þ

P16∶ fð1Þ16 β2 þ fð2Þ16 β3 ¼ 0; ð36Þ

P14∶ fð1Þ14 β1 þ fð2Þ14 β2 þ fð3Þ14 β3 ¼ 0; ð37Þ

P12∶ fð1Þ12 β1 þ fð2Þ12 β2 þ fð3Þ12 β3 ¼ 0; ð38Þ

P10∶ fð1Þ10 β0 þ fð2Þ10 β1 þ fð3Þ10 β2 þ fð4Þ10 β3 ¼ 0; ð39Þ

4The same conclusion can be reached by means of a simpler
calculation where (33) is further expanded with respect to the spin
up to Oða2Þ precision. All Legendre polynomials in the resulting
expression share the same nonvanishing coefficient.
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P8∶ fð1Þ8 β0 þ fð2Þ8 β1 þ fð3Þ8 β2 þ fð4Þ8 β3 þ fð5Þ8 ¼ 0; ð40Þ

P6∶ fð1Þ6 β0 þ fð2Þ6 β1 þ fð3Þ6 β2 þ fð4Þ6 β3 þ fð5Þ6 ¼ 0; ð41Þ

P4∶ fð1Þ4 β0 þ fð2Þ4 β1 þ fð3Þ4 β2 þ fð4Þ4 β3 þ fð5Þ4 ¼ 0; ð42Þ

P2∶ fð1Þ2 β0 þ fð2Þ2 β1 þ fð3Þ2 β2 þ fð4Þ2 β3 þ fð5Þ2 ¼ 0; ð43Þ

P0∶ fð1Þ0 β0 þ fð2Þ0 β1 þ fð3Þ0 β2 þ fð4Þ0 β3 þ fð5Þ0 ¼ 0; ð44Þ

where fðjÞi ¼ fðjÞi ðrK; b; aÞ are polynomials. An exact
spheroidal solution with N ≤ 3 (assuming it exists) ought
to satisfy all equations in the above system. As we discuss
below this is indeed the case in the HT spacetime. In
contrast, the JP spacetime does not admit such an exact
truncated solution: the P18 equation has f18 ≠ 0 and
therefore β3 ¼ 0. Moving down one level, we obtain β2 ¼
0 from the P16 equation and then β1 ¼ β0 ¼ 0 as we move
further down. We have verified that the situation remains
the same even when the N ¼ 4 expansion is used.
Without excluding the possibility that an exact solution

might exist for some N > 4 we adopt an alternative
approach where (34) is assumed to be an infinite series.
In practice the series has to be truncated at some order N
provided the successive coefficients βn become increas-
ingly smaller. Then for a given N, and starting from the
lowest order P0, one needs to include the necessary number
of Pl equations so that the system admits a consistent
solution. For example for the N ¼ 1 expansion only the
fP0; P1g equations need to be included in the calculation of
fβ0; β1g. The N ¼ 3 expansion with its four unknown
coefficients requires the simultaneous solution of the
fP0; P2; P4; P6g system. The successful application of this
algorithm would imply that a spheroidal solution does exist
at least in the form of an approximate truncated infinite
series.
As a case study, we have considered a weakly deformed

JP spacetimewith ε3 ¼ 0.1, a ¼ 0.7M and an orbital impact
parameter b ¼ 3.5M. The corresponding Kerr spherical
radius solves EðrKÞ ¼ 0 and we find rK ¼ 2.02649M.
The obtained spheroidal solutions for 1 ≤ N ≤ 4 are pre-
sented in Table I. These results are strongly suggestive
of the convergence of the expansion (34) since βn ∼ 0.1βn−1
between successive coefficients. This also means that the

truncation scheme is itself self-consistent.Moreover, we can
observe a rapid convergence in the value of a given βn as we
move to higher N systems, while the residuals of the
differential Eq. (14) when we substitute the approximate
solution converge to zero. The resulting N ¼ 4 solution for
r0ðθÞ is

r0 ¼ 1.99884þ 10−3ð3.11476cos2θ − 0.265725cos4θ

þ 0.0248629cos6θ − 0.0019353cos8θÞ: ð45Þ

In the following section we show that this is in excellent
agreement with the spheroidal radius extracted from the
time-domain analysis of JP geodesics.
The main conclusion of the preceding analysis of the

spheroidicity condition is that the nonseparable JP metric
admits spheroidal orbits albeit in the approximate form of a
truncated series.
This conclusion is corroborated by the outcome of the

direct numerical integration of the spheroidicity condition
(14) for the full JP metric (that is, ε3 is no longer assumed to
be small). The integration is initiated at the equatorial
plane for an initial radius r0ðπ=2Þ which can be arbitrary as
long as it lies inside the allowed region for geodesic motion
(i.e., Veff > 0). The second necessary initial condition is
r00ðπ=2Þ ¼ 0 as dictated by the equatorial symmetry of the
problem. The integration proceeds towards θ ¼ π (or
θ ¼ 0) and is set to terminate when the Veff ¼ 0 separatrix
is reached. As examples we consider the a ¼ 0.7M JP
spacetime with ε3 ¼ f0.1; 1g and respective impact param-
eter b ¼ f3.5M; 3Mg (this latter example is also discussed
in Sec. VIII A). Figure 2 displays a typical crop of results.
The r00 value at the end of the integration is either a very
large positive or negative number (possibly signaling
a divergence), with the integration in many cases terminat-
ing well away from the separatrix. However, for some
particular initial r0ðπ=2Þ the final r00 is zero at the separatrix
within some numerical accuracy. For the two examples
considered here we find that this happens for
r0ðπ=2Þ ≈ f1.9982M; 1.8671Mg. Note that the ε3 ¼ 0.1
result is in excellent agreement with the analytic solu-
tion (45).
As the spin and/or the deformation increases the situation

becomes drastically different: the numerical solution for
r00ðθÞ does not become zero at the separatrix, and therefore
no spheroidal orbits should be expected.

TABLE I. Spheroidal orbit solutions of the spheroidicity condition for a JP metric with ε3 ¼ 0.1, a ¼ 0.7M and b ¼ 3.5M. We show
the numerical values of the coefficients βn appearing in the expansion (34) when truncated at order N ¼ f1; 2; 3; 4g.
N β0 β1 β2 β3 β4

1 −0.275586 0.026 899 5 … … …
2 −0.276424 0.030 824 6 −2.18738 × 10−3 … …
3 −0.276449 0.031 130 0 −2.43839 × 10−3 1.33614 × 10−4 …
4 −0.276450 0.031 147 6 −2.65725 × 10−3 2.48629 × 10−4 −1.9353 × 10−5
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Having completed our investigation of spheroidal orbits
we move on to consider the presence of photon rings at
given constant angle θ ¼ θ0 and “radius” r ¼ r0 (this is of
course the radial distance from the coordinate origin, not
the ring’s actual coordinate radius r0 sin θ0); the previous
series expansion does not apply for these circular orbits.
Instead, we can search for photon rings by direct applica-
tion of Eqs. (17) and (19) of Sec. V. The numerical solution
of the system is shown in Fig. 3 in the form of curves
fr0ðaÞ; cos θ0ðaÞ; b0ðaÞg for three values of the deforma-
tion, ε3 ¼ f1;�5g. For most of the spin range the only
acceptable solution is that of the familiar equatorial photon
ring (see e.g., [18] for a discussion of the equatorial JP
photon ring). Remarkably, and unlike what is known to
happen in Kerr, above a spin threshold a� > 0 the prograde
photon ring in the ε3 > 0 spacetimes bifurcates into a pair
of symmetrically placed nonequatorial photon rings above
and below the equator. The inclination (radius) of these
photon rings increases (decreases) monotonically with the
spin until they shrink to a pointlike structure at the north
and south poles for a ¼ r0 ¼ M (in this case the solution
can be found analytically). As it is easily visible in the
figure, this “photon ring phase transition” is also reflected
in the slope of the fr0ðaÞ; b0ðaÞg curves. The bifurcation
critical spin is clearly a function a� ¼ a�ðε3Þ and lies in a
range 0.4≲ a=M ≲ 0.95 for 0.1≲ ε3 ≲ 10. In stark con-
trast to what we have just described, ε3 < 0 JP spacetimes

only appear to admit equatorial photon rings; see the right
panel of Fig. 3.
A complementary view on nonequatorial photon rings is

provided byFig. 4which shows the separatrixVeffðr; θÞ ¼ 0
of allowed/forbidden regions of photon geodesic motion.
The photon ring structure is shaped in the sameway as in the
equatorial case (see Appendix A for the corresponding Kerr
separatrix figure) but is located off the equatorial plane.
Our results hint at a parameter space correlation between

the disappearance of the equatorial photon ring (which
occurs at high a=M and/or ε3 ≫ 1) and the absence of the
spheroidal orbits calculated in this section. This correlation
is further bolstered by the results of the time-domain
analysis; see the next section.

C. The Hartle-Thorne metric

We now consider the HT metric [21,22],

ds2 ¼ −eνð1þ 2hÞdt2 þ eλ
�
1þ 2μ

r − 2m

�
dr2

þ r2ð1þ 2kÞfdθ2 þ sin2θ½dφ − ðΩ − ωÞdt�2g
þOðΩ3Þ; ð46Þ

where Ω denotes the stellar angular velocity. The three
metric potentials, νðrÞ, λðrÞ, mðrÞ, are spherically symmet-
ric functions, the latter representing the usual mass function.
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FIG. 3. Nonequatorial photon rings in the JP spacetime. We show the numerical solution fr0; cos θ0; b0g of the photon ring
equations (17)–(19) for the JP spacetime as a function of the spin a, for three values ε3 ¼ f1;�5g of the deformation parameter. The
most striking feature in these plots is the photon ring bifurcation at some a ¼ a�ðε3 > 0Þ, marking the emergence of nonequatorial
photon rings. Note that a < 0 (a > 0) represents retrograde (prograde) orbits.

FIG. 2. Integration of the JP spheroidicity condition. We show the numerical solution for r00ðθÞ in two JP metrics with spin a ¼ 0.7M.
Left panel: ε3 ¼ 0.1 and b ¼ 3.5M. Right panel: ε3 ¼ 1 and b ¼ 3M. The initial equatorial value of r0 is indicated in the margin. For
some value of r0 the integration terminates at the separatrix with r00 ¼ 0, indicating the presence of a spheroidal orbit.
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The rest of the potentials can be expanded in terms of
Legendre polynomials,

hðr; θÞ ¼ h0ðrÞ þ h2ðrÞP2;

μðr; θÞ ¼ μ0ðrÞ þ μ2ðrÞP2;

kðr; θÞ ¼ k2ðrÞP2; ωðr; θÞ ¼ ω1ðrÞP0
1: ð47Þ

In the vacuum exterior of a general relativistic star, the HT
metric ismost conveniently parametrized in terms of the spin
parameter χ ¼ J=M2 [where J is theOðΩÞ angular momen-
tum and M the mass at Ω ¼ 0], the quadrupole moment
Q ¼ χ2M3ð1 − δqÞ (here expressed in terms of the deviation
δq from the Kerr quadrupole of the same mass and spin
parameter), the OðΩ2Þ shift δm in the mass and, finally, the
rescaled radial coordinate x ¼ r=M:

m ¼ M; eν ¼ e−λ ¼ 1 −
2

x
; ω1 ¼ Ω −

2χ

Mx3
;

μ0
M

¼ χ2
�
δm −

1

x3

�
; h0 ¼

χ2

x − 2

�
1

x3
− δm

�
; ð48Þ

h2¼
5

16
χ2δq

�
1−

2

x

��
3x2 log

�
1−

2

x

�

þ2

x
ð1−1=xÞ
ð1−2=xÞ2 ð3x

2−6x−2Þ
�
þχ2

x3

�
1þ1

x

�
; ð49Þ

k2 ¼ −
χ2

x3

�
1þ 2

x

�
−
5

8
χ2δq

�
3ð1þ xÞ − 2

x

− 3

�
1 −

x2

2

�
log

�
1 −

2

x

��
; ð50Þ

μ2
M

¼ −
5

16
χ2δqx

�
1 −

2

x

�
2
�
3x2 log

�
1 −

2

x

�

þ 2

x
ð1 − 1=xÞ
ð1 − 2=xÞ2 ð3x

2 − 6x − 2Þ
�
−
χ2

x2

�
1 −

7

x
þ 10

x2

�
:

ð51Þ

Hereafter we set δm ¼ 0 and redefine M as the spin-
modified stellar mass.
There are two distinct ways to proceed when working

with an approximate metric like the HT. The first one is to
use the metric (46) “as is” (truncated at a given Ω-order)
without making any further approximation in the geodesic
equations. The second approach is to expand all equations
to the same perturbative order as the metric.
When the first approach is combined with the spheroi-

dicity condition (14) we find that spherical orbits are not
admitted. The search for spheroidal solutions can only be
done via a numerical integration of the spheroidicity con-
dition. The outcome of that calculation is qualitatively
similar to the previous JP analysis and consists of approxi-
mate spheroidal orbit solutions in the low spin portion of the
parameter space. The second approach, however, does lead
to exact spheroidal orbit solutions. The series expansion for
r0ðθÞ is now also an expansion with respect to the spin,

r0ðθÞ¼ 3M−
2Mffiffiffi
3

p cos ιχþχ2
XN
n¼0

βncos2nθþOðχ3Þ; ð52Þ

where the first two terms can be identified with the Kerr
(spherical) photon ring radius at leading orderwith respect to
the spin (the constant inclination parameter ι is defined in
Appendix A). Assuming N ¼ 3 as before, the resulting
spheroidicity condition contains the even-order Legendre
polynomials P0–P10, leading to six independent equations.
However, unlike the previous JP system, the present over-
determined system of equations does have an acceptable
exact solution with β3 ¼ β2 ¼ 0 and

β1 ¼ −
M
144

½16þ 27δqð45 log 3 − 52Þ�; ð53Þ

β0¼
M
27

ð3cos2ι−4ÞþM
16

δqð3cos2ιþ2Þð45 log3−52Þ:
ð54Þ

This solution represents a spheroidal orbit with a ∼cos2θ
profile. It should be mentioned that the same result could

FIG. 4. JP separatrix with nonequatorial photon ring structure. We show the Veffðr; θÞ ¼ 0 separatrix of allowed and forbidden
(shaded) regions of photon geodesic motion. As a visualization aid we use both spherical and cylindrical coordinates ρ ¼ r sin θ,
z ¼ r cos θ. For these particular examples we have chosen ε3 ¼ 1, a ¼ 0.75M, b0 ¼ 2.8707M (left panel) and ε3 ¼ 1, a ¼ 0.9M,
b0 ¼ 1.9889M (right panel). The arrows indicate the location of the two photon rings while the orange curves mark the location of the
event horizon.
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have been found via a more direct approach, namely, by
postulating a solution r0ðθÞ ¼ 3M þ r1ðθÞχ þ r2ðθÞχ2. As
expected, the χ ¼ 0 spheroidicity condition is solved by the
Schwarzschild radius 3M, while r1 and r2 solve the first and
second χ-order equations

ðb2 − 27M2sin2θÞr001 − b2 cot θr01
þ 3M2sin2θð9r1 þ 2bÞ ¼ 0; ð55Þ

ðb2−27M2sin2θÞr002−b2cotθr02þ27M2sin2θr2

þM
32

sin2θ
�
128

9
b2þ15M2f27δqð45log3−52Þþ16gcos2θ

þM2f135δqð45log3−52Þþ272g
�
¼0: ð56Þ

When combined with b ¼ 3
ffiffiffi
3

p
M cos ι − 2Mcos2ιχ (this

coincides with the Kerr impact parameter of the same spin
order) these equations lead to the equatorial-symmetric
solutions r1 ¼ −2M cos ι=

ffiffiffi
3

p
and r2 ¼ β0 þ β1 cos2 θ.

Moreover, the equatorial orbit limit of these results agrees
with the photon ring radius found in [9].
We next turn to the study of nonequatorial photon rings

in the HT spacetime. In this calculation it is more
appropriate to use the “as is” version of the HT metric;
we then numerically solve the photon ring equations (17)–
(19). The results fr0; cos θ0; b0g are shown in Fig. 5 as
functions of the spin parameter χ. To begin with, the δq < 0
branch of the HT spacetime is Kerr-like, not admitting
anything more than an equatorial photon ring. On the other
hand, the situation for δq > 0 is reminiscent of the previous
ε3 > 0 JP results, with the equatorial photon ring bifurcat-
ing to a symmetric pair of nonequatorial ones at some
critical spin χ�ðδqÞ. A closer inspection of this transition

(see the middle plots in Fig. 5) reveals an interesting
triplicity of equatorial and nonequatorial photon ring
solutions with slightly different values of r0 and b0 in
the immediate vicinity of χ�. The three solutions coexist for
the same b0 at some particular value of χ (marked by a
vertical green line in Fig. 5). Figure 6 describes the
corresponding structure of the Veffðr; θÞ ¼ 0 separatrix,
illustrating examples of a generic situation with a pair of
nonequatorial photon rings (left plot) and the special case
of three coexisting photon rings (right plot). Similarly to
what was found in the JP metric, the disappearance of the
equatorial photon ring for χ > χ� also marks the suppres-
sion of spheroidal orbits.

D. The Johannsen metric

Unlike the JP metric, the deformed Kerr metric devised
by Johannsen [25] is separable and takes the form

gJtt ¼ −
Σ̃
N
ðΔ − a2A2

2sin
2θÞ;

gJtφ ¼ −
aΣ̃
N

sin2θ½ðr2 þ a2ÞA1A2 − Δ�; ð57Þ

gJφφ ¼ Σ̃
N
sin2θ½ðr2 þ a2Þ2A2

1 − a2Δsin2θ�;

gJrr ¼
Σ̃

ΔA5

; gJθθ ¼ Σ̃; ð58Þ

where

N¼ ½ðr2þa2ÞA1−a2A2sin2θ�2; Σ̃¼ΣþfðrÞ: ð59Þ
The deformation away from Kerr is encapsulated in the
radial functions fA1ðrÞ; A2ðrÞ; A5ðrÞ; fðrÞg; in their sim-
plest form these are

b0 M

cos 0

r0 M

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0

2

4

6

4.2

4.3

4.4

2.2

2.4

0.32 0.325 0.33

0.1
0

0.1

b0 M

cos 0

r0 M

0.6 0.4 0.2 0 0.2 0.4 0.6

0

2

4

6

q 1 q 1

FIG. 5. Nonequatorial photon rings in the HT spacetime. We show the numerical solution fr0; cos θ0; b0g of the photon ring
equations (17)–(19) for the HT spacetime as a function of the spin χ, for two values δq ¼ �1 of the quadrupolar deviation parameter.
Retrograde (prograde) orbits correspond to χ < 0 (χ > 0). Only the δq > 0 branch admits nonequatorial photon rings, in which case
they appear as a bifurcation of the equatorial photon ring at some critical spin χ�ðδqÞ. The bottom middle panel shows a “pitchfork”
structure where an equatorial solution is still present for a short spin range past the bifurcation spin χ�. The corresponding radii and
impact parameters are shown in the other two middle panels. The vertical green line marks the spin χ ≈ 0.327 at which all three photon
ring solutions coexist for the same b0.
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A1 ¼ 1þ α13

�
M
r

�
3

; A2 ¼ 1þ α22

�
M
r

�
2

A5 ¼ 1þ α52

�
M
r

�
2

; f ¼ ε3
M3

r
; ð60Þ

with α13, α22, α52, ε3 constant parameters.
Repeating the procedure of the preceding sections, we first look for spherical orbits. The spheroidicity condition (14) for

the J metric returns the θ-independent expression,

− r70ða2 − abþ r20ÞEKðr0Þ þ α13α22abM5r0½r30ð8M − 5r0Þ − 5a4 þ 2a2r0ð6M − 5r0Þ�
þ α213M

6ða2 þ r20Þ½3a4 þ a2r0ð5r0 − 7MÞ þ r30ð2r0 − 3MÞ�
− 2α22abM2r40½a4 − a3bþ a2r0ð2r0 − 3MÞ þ abr0ð3M − 2r0Þ þ r30ðr0 −MÞ�
þ α13M3r30½3a6 − 3a5bþ a4r0ð7r0 − 8MÞ þ 2a3br0ð4M − 3r0Þ þ a2r30ð5r0 − 8MÞ
þ abr30ð4M − 3r0Þ þ r60� þ α222a

2b2M4r20½2a2 þ ð3r0 − 5MÞr0� ¼ 0: ð61Þ

This is a polynomial with respect to r0 and, when combined
with the J metric’s Carter constant expression (see [25]), it
leads to a pair of physically relevant roots (for prograde/
retrograde motion) over a wide range of the deformation
parameters. We thus conclude that the J metric admits Kerr-
like spherical photon orbits. Furthermore, from the dis-
cussion of Sec. VI we know that the existence of a separate
family of spheroidal orbits is ruled out (the same statement
is of course true for the Kerr metric itself). Finally, a search
for photon rings along the lines of the previous two cases
reveals the J spacetime to be Kerr-like, admitting a single
equatorial photon ring.

VIII. A TIME-DOMAIN STUDY OF
SPHEROIDICITY

The spheroidicity condition is an ideal tool for probing
the existence of spherical or spheroidal orbits in a given
stationary-axisymmetric spacetime. However, in the case
where this type of motion is not supported, it has little to

say about the possibility of having quasispherical/spheroi-
dal orbits, that is, trajectories where a photon moves about
some mean radius, effectively being trapped for a consid-
erable period of time. Furthermore, one would like to
somehow gauge the degree of “decircularization” as a
function of departure from separability. To access this kind
of information one would have to rely on direct numerical
integration of the geodesic equations and consider a
spacetime metric that represents a deformation of a known
separable metric. The JP and HT metrics are therefore an
ideal choice for this kind of experimentation. These are
discussed separately in the following two subsections.

A. JP orbits

We have performed a series of numerical integrations of
the geodesic equations in the JP spacetime; in all cases the
numerical experiment consists of a photon being launched
with ur ¼ 0 (i.e., from a radial turning point) and a suitable
uθ ≠ 0 for a given b and black hole parameters a; ε3.

FIG. 6. HT separatrices with nonequatorial photon ring structure. We show a series of Veffðr; θÞ ¼ 0 separatrices (shaded area
represents the forbidden region for photon geodesic motion) in a δq ¼ 1 HT spacetime. The left panel corresponds to a situation past the
bifurcation spin χ� where an equatorial photon ring is still present (for this particular example χ ¼ 0.324, b0 ¼ 4.32132M). The middle
panel shows the special coexistence of three photon rings at χ ¼ 0.32735, b0 ¼ 4.30434M (vertical green line in Fig. 5). For the high-
spin example shown in the right panel (χ ¼ 0.4, b0 ¼ 3.86143M), only nonequatorial photon ring solutions are possible.
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Typically (but not exclusively) the photon is initially
placed on the equatorial plane and the initial radius is
chosen as close as possible to the radius below which it
would plunge towards the event horizon at D ¼ 0. The
orbits are subsequently evolved both forward and backward
in time. Following this recipe it is straightforward to
identify any orbits that could trap photons for a consid-
erable time interval (provided such orbits exist in the first
place). If present, these orbits are expected to appear
for b=M ≲Oð1Þ. Photons moving in b=M ≫ 1 orbits
are deflected at a relatively large distance and as a result
they fail to probe the near-horizon region. These orbits are
qualitatively similar in both Kerr and non-Kerr spacetimes
and are of no interest to the present analysis.
The first sample of results correspond to a JP spacetime

with ε3 ¼ 1 and a ¼ 0.7M; see Fig. 7. As demonstrated in
the previous section, the JP metric admits spheroidal
orbits (at least in an approximate sense) for a broad
range of parameters. In the time domain these orbits
manifest themselves as trajectories in which the photon
spends a considerable amount of time (∼ few tens of M)
in the near-horizon strong-field regime, moving about
some mean radius. Examples of these orbits are shown in
Fig. 7 for two choices of the impact parameter. The
presence of spheroidal orbits can be probed via a

complementary time-domain method where a photon is
initially launched from the equatorial plane with ur ¼ 0
and, if the orbits are spheroidal, will recross the equatorial
plane in the opposite direction with ur ¼ 0. The time-
inversion and equatorial symmetry of the system guar-
antee that the same motion can be inverted and extended
in the opposite hemisphere, thus resulting in a spheroidal
orbit. Within a given numerical precision such orbits
are indeed found; in the examples displayed in Fig. 8 we
plot the “reentry” velocity ur as a function of the initial
radius r0 ¼ rð0Þ. The function clearly passes through
zero, and it does so at a radius which is in excellent
agreement with the results of the previous section [see
Eq. (45) and Fig. 2].
As we have seen, nonequatorial photon rings arise in the

JP spacetime above some spin threshold (and for a range of
b). This markedly non-Kerr orbital feature may lead to
photons being temporary captured in quasicircular orbits.
An example of this is shown in Fig. 9 for a JP spacetime
with parameters ε3 ¼ 1, a ¼ 0.9M. In this instance, the
orbit is asymmetric with respect to the equatorial plane and
the numerical integration was initiated by placing the
photon in the vicinity of the upper hemisphere photon
ring’s radius and latitude (a similar orbit can be obtained for
the lower hemisphere). A photon in this orbit is temporarily

FIG. 7. Spheroidal JP orbits. This figure demonstrates the temporary capture of photons in the immediate vicinity of spheroidal orbits
in a ε3 ¼ 1, a ¼ 0.7M, JP spacetime. Top row: Orbits for b ¼ M and b ¼ 3M superimposed with their respective separatrices (the
shaded area marks the forbidden region Veff < 0) and event horizons D ¼ 0 (green thick curves). Bottom row: The profiles frðtÞ; θðtÞg
of the b ¼ 3M orbit and its three-dimensional shape in Cartesian coordinates ðx; y; zÞ ¼ rðsin θ cosφ; sin θ sinφ; cos θÞ. The
quasispherical colored surface represents the JP event horizon.
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captured in a quasicircular/quasiplanar orbit in the vicinity
of the upper event horizon. Although we have not examined
it in any detail, it is likely that this behavior signals the
presence of spheroidal orbits that do not cross the equa-
torial plane but instead remain localized in the vicinity of
the nonequatorial photon ring.
Moving on, we consider a highly deformed JP spacetime

with ε3 ¼ 5 and a ¼ 0.7M. We first focus on orbits
symmetric with respect to the equatorial plane and choose
the same impact parameter values as in Fig. 7. The b ¼ 3M
orbit does not allow the photon to approach too close to the
black hole and therefore is not shown here. For a lower
impact parameter such as b ¼ 1M the potential/separatrix
opens up and one finds that spheroidal orbits are supported.
An example of such an orbit is shown in Fig. 10. One can
clearly see that while being trapped, the photon moves up

and down orbiting around both event horizon lobes while
the radius remains nearly constant.
The ε3 ¼ 5 spacetime admits a pair of nonequatorial

photon rings for a wide range of a=M. As before, it is easy
to find equatorially asymmetric orbits that trap photons in
nearly circular trajectories, plausibly near the location of
spheroidal orbits that do not intersect the equatorial plane;
see Fig. 11.
The previous examples may suggest that the JP space-

time can always trap photons (in the range of b between the
counter-rotating equatorial photon ring and the corotating
nonequatorial photon rings); nevertheless, there exists a
portion of the JP parameter space where spheroidal orbits
that cross the equatorial plane are not allowed. Indeed in
that case, the calculation of the equatorial ur does not return
a curve that crosses zero as in Fig. 8. As already pointed out

FIG. 8. Locating spheroidal orbits in the time domain. We show the radial velocity urðr0Þ as the photon recrosses the equatorial plane
following its initial launch in the opposite direction with ur ¼ 0 and radius r0 in the equatorial plane. A crossing through zero indicates
the presence of a spheroidal orbit. Although not shown here, the radius at the moment of crossing is virtually identical to the initial r0.
Left panel: ε3 ¼ 0.1, b ¼ 3.5M. Right panel: ε3 ¼ 1, b ¼ 3M.

FIG. 9. Nonequatorial photon rings and quasicircular JP orbits. The ε3 ¼ 1, a ¼ 0.9M, JP spacetime considered in this figure can
support nonequatorial photon rings for a particular value of the impact parameter (see left panel in Fig. 3). For a b close to that value, the
potential Veff takes the form shown in the left panel (here we have used b ¼ 1.98M), featuring a pair of “straits” near the location where
the photon rings form. Thanks to this local behavior the potential can temporarily trap photons in quasicircular/quasiplanar orbits; see
the orange curve in the left panel. The corresponding three-dimensional orbit is shown in the right panel together with the double-lobed
event horizon (orange-colored surfaces).
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in Sec. VII B, this parameter space roughly coincides with
the one associated with the disappearance of the equatorial
photon ring. The situation is illustrated in Fig. 12, for two
examples of JP spacetime, ε3 ¼ 1, a ¼ 0.9M and
ε3 ¼ 5, a ¼ 0.7M.
As a last—and perhaps most exotic—example of the rich

JP phenomenology, we show in Fig. 13 an orbit that
temporarily traps photons in the vicinity of the two event
horizon lobes while at the same time forces them to pass
through the space between. This type of orbit appears in the
low-b range and, as a computation of urðπ=2Þ reveals, can
be linked to the presence of a spheroidal orbit of the same
parameters that crosses the equator at r ≈ 2.022M. The
orbit shown in Fig. 13 is completely equatorial-symmetric
but one can easily construct asymmetric orbits of this
type (Fig. 14).

The careful reader may have noticed that so far only
prograde (b > 0) orbits have been discussed. Considering
retrograde orbits (b < 0) one finds that Kerr-like spheroidal
orbits (like the ones shown in Fig. 7) are always possible,
even for a strongly deformed JP spacetime (at the same time
none of the other orbits discussed in this section is present).
This is not entirely surprising, given that a retrograde-
moving photon is kept relatively far away from the black
hole, thus being less exposed to the non-Kerr metric
deviations.
The global conclusion that can be drawn from our

numerical study of photon geodesics in the JP spacetime
is that although spherical orbits are formally absent,
spheroidal orbits do exist across a wide range of
parameters and between the two extremes of the counter-
and corotating photon rings, temporarily trapping

FIG. 11. Quasicircular orbits in a strongly deformed JP spacetime. We show an example of a quasicircular orbit in a ε3 ¼ 5,
a ¼ 0.7M, JP spacetime. We have chosen an impact parameter b ¼ 1.68M close to the value required for the formation of nonequatorial
photon rings. This orbit is qualitatively similar to the one of Fig. 9, albeit with a more pronounced θ-motion. This behavior suggests the
presence of a spheroidal orbit localized well away from the equatorial plane.

FIG. 10. Spheroidal orbit in a strongly deformed JP spacetime. In this example the JP spacetime has parameters ε3 ¼ 5, a ¼ 0.7M,
and the photon moves in a nearly spheroidal orbit with b ¼ 1M. Left: The orbit superimposed with the corresponding separatrices.
Middle: The orbit’s frðtÞ; θðtÞg profiles. Right: The orbit’s three-dimensional shape in Cartesian coordinates. The colored surfaces
represent the double-lobed event horizon.
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photons that may happen to move in their vicinity.
For a spacetime of small deformation and moderate
spin these orbits are essentially quasispherical and Kerr-

like. The exception to the rule is provided by the
parameter space where the JP spacetime’s corotating
equatorial photon ring is replaced by a pair of

FIG. 12. Loss of spheroidal orbits in the JP spacetime. This plot demonstrates the absence of equatorially symmetric spheroidal orbits
that cross the equator in part of the JP parameter space. Left: ε3 ¼ 1, a ¼ 0.9M, b ¼ 1M. Right: ε3 ¼ 5, a ¼ 0.7M, b ¼ 1.75M. In both
panels we show a sequence of orbits with varying initial (minimum) radius.

FIG. 13. Quasispheroidal JP orbit. A low-b orbit (b ¼ 0.8M) in a ε3 ¼ 5, a ¼ 0.7M JP spacetime. This orbit is “exotic” in the sense
that it allows the photon to travel through the space between the two event horizon lobes. At the same time, this is a quasispheroidal orbit
since the photon is temporarily trapped for several revolutions in the vicinity of the black hole near the location of a spheroidal orbit with
equatorial radius r ≈ 2.022M. Top: The r-θ projection of the orbit and the Veff ¼ 0 separatrix (left panel); the three-dimensional motion
is plotted together with the event horizon (right panel). Bottom: The frðtÞ; θðtÞg profiles of the orbit—these can be compared against the
profiles of the orbits of Fig. 10.
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nonequatorial ones. In that case spheroidal orbits that
cross the equatorial plane are not admitted for a range of
b-values. At the same time, the combined emergence of
nonequatorial photon rings and a two-lobed event hori-
zon structure for high spin and/or large deformation
opens the possibility of having circular and spheroidal
orbits with a markedly non-Kerr character. The presence
of spheroidal orbits around the off-equatorial photon
rings is consistent with [32].
Our results are best summarized with the help of Fig. 15

where we provide an incomplete but indicative catalog of
orbits present in an ε3 ¼ 5, a ¼ 0.7M JP spacetime as a
function of b. We use cylindrical coordinates to present the
various orbits in order to facilitate a more intuitive
representation for the reader.

B. HT orbits

Having completed our time domain analysis of the JP
photon orbits we move on to a similar study of the HT
metric. As we have already seen in Sec. VII C, within the
slow rotation approximation, the HT metric admits sphe-
roidal orbits in the exact sense. These orbits may exist
beyond the perturbative regime, as suggested by the results
of the direct integration of the spheroidicity condition for
the “full” HT metric.
The time-domain analysis of this section is also based on

the first approach discussed in Sec. VII C where the HT
metric is used as is and the spin parameter χ and quadrupole
δq are treated as free parameters. The orbital equations are
subsequently integrated following the recipe described in
the previous section.
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A calculation of the equatorial ur along the lines of Fig. 8
indeed verifies the presence of spheroidal orbits for small/
moderate χ. For χ ≳ 0.7, however, any notion of spheroidal
motion through the equatorial plane is washed away and the
situation qualitatively resembles that of the high-b, large-ε3
JP orbits. This transition is clearly visible in the sample of
results shown in Fig. 16. The first two panels show
examples of quasispheroidal orbits. In the last panel we
consider a relatively high spin case where spheroidal orbits
are not admitted (this is demonstrated by plotting a
representative orbit that fails to trap the photon for any
considerable amount of time).

As we saw earlier in Sec. VII C, the HT spacetime admits
a pair of nonequatorial photon rings above a spin threshold
χ�ðδqÞ (and provided the motion is prograde). For example
this is the case for the δq ¼ 1 HT spacetime considered in
Fig. 17. The chosen spin and impact parameters lie close to
the ones required for the appearance of photon rings. The
equatorially asymmetric χ ¼ 0.4, b ¼ 3.8M orbit shown in
the left panel is quasispheroidal and suggests that a truly
spheroidal orbit may exist in its vicinity (this resembles the
situation discussed in the previous JP section; see Fig. 10).
In the right panel the HT spacetime is close to the special
pitchfork case of three simultaneous photon rings (see the

FIG. 16. Spheroidal orbits in the HT spacetime. We show a sample of photon orbits in a HT spacetime of quadrupolar deviation
δq ¼ 1 and varying spin, together with the corresponding separatrix (as always, the shaded area represents the forbidden region Veff < 0
and the thick green curves represent the event horizon). The dashed curve represents the corresponding analytic spheroidal solution
r0ðθÞ [see Eqs. (52)–(56)] for an inclination parameter ι ¼ π=3. From left to right, ðχ; b=MÞ ¼ ð0.1; 2.54622Þ, (0.5, 2.29435), (0.7,
2.13356). The first two panels represent cases which admit spheroidal orbits (in both cases these lie very close to the perturbative result).
Eventually, in the high-spin case of the third panel these spheroidal orbits are lost, thus removing the ability of temporarily trapping
photons in orbits that cross the equatorial plane (the orbit shown in the right panel is a typical example).

FIG. 17. Near-photon ring orbits in the HT spacetime. We show two examples of orbits (superimposed with the corresponding
separatrices) with parameters fδq; χ; bg close to the ones required for the appearance of nonequatorial photon rings. The quadrupolar
deformation is fixed at δq ¼ 1. Left: This is a quasicircular/planar orbit with parameters χ ¼ 0.4, b ¼ 3.8M. The photon is temporarily
trapped near the location where a nonequatorial photon ring would appear. Right: For χ ¼ 0.32735, b ¼ 4.2M the HT spacetime is close
to admitting three photon rings (e.g., see the middle panel in Fig. 6). The equatorially symmetric orbit shown here displays three
quasicircular phases, one for each photon ring. In both panels the thick green curves represent the event horizon location.
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middle panel in Fig. 6). It is then possible to find orbits
where photons bounce back and forth/up and down in the
vicinity of all three photon rings.
Our final case study is concerned with an example of a

strongly prolate, δq ¼ 5, HT spacetime. The numerical
exploration of the low-b regime revealed the existence of a
new type of spheroidal orbit; see Fig. 18. The orbit, which
to some extent resembles the JP orbit of Fig. 13, is nearly
polar and highly oscillatory with respect to r in its strong-
field portion where a photon would be temporarily trapped.
With increasing b these orbits disappear altogether and the
situation is qualitatively similar to the one shown in the
right panel of Fig. 16.
The above results suggest a qualitative similarity

between JP and HT photon orbital motion. The latter
spacetime can trap photons near spheroidal/circular orbits
for a large part of the fδq; χ; bg parameter space. In many
cases however, this is achieved in a strongly non-Kerr
fashion as exemplified by the orbits shown in Figs. 17
and 18.

IX. CONCLUDING DISCUSSION

In this paper we have explored to what extent photon
trapping orbits are modified when one moves away from
the Kerr spacetime and its spherical orbits. Our main results
can be summarized as follows. Motivated by the Kerr
spherical photon orbits we have explored the connection
between such orbits and the spacetime’s separability (or, in
other words, the existence of a third integral of motion like
the Carter constant). Considering only those spacetimes
that already possess an equatorial photon ring, we have
shown that separability is compatible with spherical but not
spheroidal orbits. Furthermore, a spacetime that does not
admit spherical photon orbits in any coordinate system is

necessarily nonseparable. It should be noted, however, that
the inverse statement is not necessarily true; that is, non-
separability does not always imply the loss of spherical
orbits. Next, we turned our attention to three well-known
specific examples of non-Kerr spacetimes (Johannsen,
Johannsen-Psaltis and Hartle-Thorne) used as proxies of
the spacetimes of ultracompact objects, an alternative to
black holes. In accordance with the aforementioned sphe-
ricity-separability connection, we have found that the J
spacetime, the only separable example among the three,
admits spherical photon orbits. On the other hand, by
means of a general spheroidicity condition we have shown
that in the JP and HT spacetimes spherical orbits are
replaced by spheroidal orbits that cross the equatorial
plane. This latter type of orbit may be lost when the
deviation away from Kerr is large and/or the spin is
relatively high. This presence/absence of spheroidal orbits
that cross the equatorial plane is strongly correlated with
the presence/absence of the equatorial photon ring and is a
function of the impact parameter. Our numerical time-
domain analysis of orbits in these two spacetimes has
revealed that photons can be temporarily trapped in quasi-
spheroidal orbits for a large portion of the parameter space.
The emergence of symmetrically placed nonequatorial
photon rings above some spin threshold allows photons
to be trapped in quasicircular/planar orbits in the vicinity of
the rings. Although not studied rigorously here, localized
spheroidal orbits that do not pass through the equator may
also appear in the same region. In the low-b range one finds
quasispheroidal orbits with high inclinations and large
variations in r in the vicinity of the black hole. This
highlights one of the key conclusions drawn from the time-
domain calculations: even if a photon is temporarily
captured in a quasispheroidal orbit, the resulting motion
may be significantly non-Kerr. This difference is easily

FIG. 18. A quasispheroidal orbit in a strongly prolate HT spacetime. In this δq ¼ 5, χ ¼ 0.5 HT spacetime, low-b/nearly polar orbits
are found to display a quasispheroidal character with a large radial variation. Right: A b ¼ 1M orbit superimposed with its
corresponding separatrix and HT event horizon (thick green curve). Left: The three-dimensional shape of the orbit in Cartesian
coordinates, superimposed with the event horizon (orange-colored surface).
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seen in Fig. 1’s comparison of Kerr against JP photon
trapping orbits for the same spin and impact parameter,
with the most interesting feature emerging from this being
that the spacetime loses the trapping orbits that cross the
equatorial plane and do not extend very far from it.
There are at least two ways these results could have a

significant impact on the observed electromagnetic and
gravitational wave signature of black holes (or more
precisely, of the putative ultracompact objects that could
pass for black holes).
From the perspective of photon astronomy, the absence

of near-equatorial spherical/spheroidal photon trapping
orbits in the spacetime of a non-Kerr object could cause
modifications to the shadow image of a system like a
supermassive “black hole” illuminated by a radiating
accretion flow. At the most basic level, this might translate
to a change in the shadow’s shape and a suppression/
dimming of its bright boundary. Of course, the real
situation is likely to be much more complicated than that,
with new lensing features arising due to the presence, for
example, of stable photon orbits and/or nonequatorial
photon rings. Significant progress towards understanding
the rich phenomenology of non-Kerr shadow imaging has
been made recently [23,33,34].
From the GW side, it is well known that the main black

hole QNM ringdown can be understood in terms of
gravitational wave packets temporarily trapped in the
vicinity of the unstable photon circular orbit before leaking
towards infinity and the event horizon. This mental picture
remains valid for both equatorial l ¼ jmj and nonequato-
rial l > jmj angular modes [35]. As the names suggest, the
former (latter) modes are associated with equatorial (non-
equatorial) circular (spherical) photon orbits, where the
ratio jmj=l ∼ sin ι0 can be associated to the maximum
orbital inclination angle ι0 relative to the equatorial plane,
or in other words to the impact parameter b. Theoretical
modeling (and of course the recent GW detections them-
selves) suggest that among the two families it is the
equatorial one (and especially the quadrupolar mode
l ¼ m ¼ 2) that typically dominates the ringdown signal.
However, the idea of testing the Kerr hypothesis with QNM
spectroscopy is based on the simultaneous observation of
several QNM “lines” [36–38] in which case nonequatorial
modes such as the ðl; mÞ ¼ ð2; 1Þ come to play an
important role. Given that the required ringdown SNR is
at least an order of magnitude higher than that of the
strongest signal observed so far by LIGO, this kind of test
would require a next generation detector. The order of
magnitude boost in the SNR more or less reflects the
relative strength between the quadrupole and other modes.
This gap could be shortened for binary systems with rapidly
spinning members and for certain orientations of the
spins [39,40].
Assume now that instead of Kerr black holes we actually

observe some other type of ultracompact object or a

non-GR black hole with a nonseparable exterior spacetime.
The loss of some classes of spheroidal trapping orbits
would imply a direct impact on the signal associated with
the prograde nonequatorial l ≥ m > 0 modes. Depending
on the actual degree of deformation/nonseparability of the
spacetime in question, the rich phenomenology of non-Kerr
orbits (e.g., absence of spheroidal orbits, presence of more
exotic quasispheroidal orbits, nonequatorial photon rings)
is likely to lead to a markedly different QNM spectrum: one
would expect the dimming of some QNM lines and the
appearance of new ones. For example, the loss of the
equatorial photon ring for some parameters may result in
the loss of the l ¼ m QNMs. This could be the smoking
gun signaling the existence of non-Kerr objects; additional
evidence might come from the presence of late-time
“echoes” [6,8] and/or a modified early ringdown signal [9].
Apart from the case of exotic ultracompact objects in

GR, one could equally well consider black holes in
alternative theories of gravity; see [41] for a comprehensive
review. It is known that the Kerr black hole metric is not
exclusive to GR (although it may lose its uniqueness status
in other theories). For such a case our results have no
impact. On the other hand there is a handful of known non-
Kerr black hole solutions that are typically “quasi-Kerr” in
the sense that they deviate slightly from Kerr as a result of
being approximate solutions with respect to rotation and/or
some coupling constant; see e.g., [42]. Such nonseparable
systems are expected to display the same phenomenology
as the JP/HT orbits discussed here.
Although this work has been focused on photon geo-

desics, we have seen that the spherical-orbits-separability
connection persists for the case of massive particles. If the
behavior that we have seen for photons carries over to
particle spherical/spheroidal orbits in non-Kerr spacetimes,
then it is likely to have a strong impact on the GW
waveform of an extreme mass ratio inspiral (EMRI)
system, where a stellar-mass black hole slowly inspirals
in the gravitational field of a supermassive black hole.
EMRIs are among the prime targets for the future LISA
space-based GW detector and are envisaged as the sources
that will provide a detailed “map” of the Kerr metric.
A detailed study of the implications of our results lies

beyond the scope of this paper but becomes the natural
objective of our future work. As a first installment, a
forthcoming publication will explore the dynamics of scalar
waves in nonseparable spacetimes with the purpose of
testing the dependence of the strength of the nonequatorial
QNM signal as a function of the degree of nonseparability.
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APPENDIX A: SPHERICAL KERR ORBITS

This Appendix provides a compact discussion of spheri-
cal photon orbits in the Kerr spacetime. The Kerr metric in
Boyer-Lindquist coordinates is given by the following
familiar expressions [30]:

gKtt ¼−
�
1−

2Mr
Σ

�
; gKtφ ¼−

2Mar
Σ

sin2θ; gKrr ¼
Σ
Δ
;

gKθθ ¼Σ; gKφφ¼
�
r2þa2þ2Ma2r

Σ
sin2θ

�
sin2θ; ðA1Þ

where Δ ¼ r2 − 2Mrþ a2 and Σ ¼ r2 þ a2 cos2 θ.
Making contact with the general formalism of Sec. II,
we have D → Δ; grr → Σ=Δ plus the Carter constant
relation [30]

Q ¼ u2θ þ cot2θðu2φ − sin2θa2u2t Þ: ðA2Þ

Using this to eliminate u2θ in the general expression (3)
yields a decoupled radial motion equation. At the same
time (A2) itself becomes a decoupled equation for the
latitudinal motion. These two equations take the form (see
[30] for details)

ðΣurÞ2 ¼ Vrðr; b; QÞ; ðΣuθÞ2 ¼ Vθðθ; b; QÞ: ðA3Þ

Spherical Kerr orbits are defined as ur ¼ dur=dλ ¼ 0
at r ¼ rK. It is easy to show that these two requirements
translate into a pair of conditions for the radial
potential,

VrðrK; b; cos2ιÞ ¼ V 0
rðrK; b; cos2ιÞ ¼ 0: ðA4Þ

Here the constant ι is a proxy for the orbital inclination,
defined as Q ¼ L2tan2ι. One of these equations furnishes
an analytic relation b ¼ bðrK; cos2ιÞ. while the other
becomes the photon ring equation EphðrK; cos2ιÞ ¼ 0.
This has to be solved numerically unless ι ¼ 0 (equatorial
motion). Alternatively, one could solve one of the con-
ditions (A4) to find rK ¼ rKðb; cos2ιÞ and subsequently use
this result to obtain a relation fðb; cos2 ιÞ ¼ 0 or equiv-
alently a relation Q ¼ QðbÞ between the constants of
motion. In both cases the remaining uθ equation can be
used for calculating the orbital period.
Figure 19 illustrates the allowed r-θ region (i.e., the

separatrix Veff ¼ 0) for circular photon geodesics in Kerr.
More specifically, we show (i) the unique Schwarzschild
equatorial circular orbit (rK ¼ 3M) as a typical example
of equatorial motion, and (ii) a nonequatorial orbit
(rK ≈ 2.34M, ι ¼ π=3) in a Kerr black hole with spin
a ¼ 0.7M. The qualitative difference between the two cases
is evident, with the circular radius acting as a bottleneck in
the equatorial case and demonstrating the unstable character
of the orbit.
One last remark concerns the nonexistence of spheroidal

Kerr orbits. This follows as a special case of the general
result discussed in Sec. VI.
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FIG. 19. The allowed r-θ region for Kerr spherical photon geodesics. We show a series of snapshots of the Veff ¼ 0 separatrix
between allowed and forbidden (shaded) regions for photon geodesic motion on the r-θ (top row) and z-ρ (bottom row) planes. The
curves represent marginally capture orbits at the location of the spherical photon orbit, starting from the prograde equatorial photon ring
(leftmost panels) and ending at the retrograde equatorial photon ring (rightmost panels).
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APPENDIX B: SEPARABILITY AND SPHERICAL
ORBITS IN NEWTONIAN GRAVITY

The link between separability and the existence of
spherical orbits can be firmly established in Newtonian
gravity. Considering point particle motion in an axisym-
metric potential Vðr; θÞ (here we use standard spherical
coordinates but the following analysis can be extended to
include any system of curvilinear coordinates), the total
energy is

E ¼ 1

2
ð_r2 þ r2 _θ2 þ r2sin2θ _φ2Þ þ Vðr; θÞ; ðB1Þ

where a dot denotes a time derivative and the particle mass
is taken to be unity. Apart from the energy, the system
conserves its z-component of angular momentum

L ¼ r2sin2θ _φ: ðB2Þ

Combining these two relations,

2ðE − VÞ ¼ _r2 þ r2 _θ2 þ L2

r2sin2θ
: ðB3Þ

The time derivative of this is

_rr̈þr2 _θ θ̈þr_r_θ2þV;r _rþV;θ
_θ−

L2

r3sin2θ
ð_rþ rcotθ _θÞ¼ 0:

ðB4Þ
This equation becomes the Newtonian spheroidicity con-
dition once we eliminate _θ2 with the help of (B3), θ̈ using
Newton’s second law,

θ̈ ¼ 1

r4

�
L2 cot θ
sin2θ

− r2V;θ − 2r3 _r _θ

�
; ðB5Þ

and finally impose r ¼ r0ðθÞ. The end result is

r50½2ðV−EÞþ r0V;r�þ
�
L2 cotθ
sin2θ

− r20V;θ

�
r20r

0
0

þ
�

L2

sin2θ
þ4ðV−EÞr20þ r30V;r

�
r0ðr00Þ2

�
L2 cotθ
sin2θ

− r20V;θ

�
ðr00Þ3þ

�
2ðE−VÞr20−

L2

sin2θ

�
r20r

00
0 ¼ 0;

ðB6Þ

where all derivatives are to be evaluated at r0.
For a spherical orbit r0 ¼ const: the spheroidicity con-

dition reduces to

2ðV − EÞ þ r0V;r ¼ 0: ðB7Þ

This expression is satisfied by any central potential, for
example an attractive potential V ¼ −K=rn (with K > 0)

leads to E ¼ Kðn − 2Þ=2rn0 which predicts bound circular
orbits for any n < 2. The second family of solutions is of
the noncentral form

Vðr; θÞ ¼ ΘðθÞ
r2

; ðB8Þ

with the dipolar field V ∼ cos θ=r2 being one of the
simplest members of this class. As discussed in the
Landau-Lifshitz textbook [27] these potentials are precisely
the only separable ones in spherical coordinates. This short
calculation thus demonstrates how the spheroidicity con-
dition singles out the separable potentials in a given
coordinate system.
In the case where an otherwise separable potential is

written in a different coordinate system spherical orbits
become spheroidal. An example is provided by the famous
“two-center” Euler potential which, with the exception of
the Keplerian one, is the only separable axisymmetric and
equatorial-symmetric Newtonian potential (for more details
see e.g., [43]).
This potential is sourced by two point masses M=2

placed symmetrically along the z-axis at a distance a from
the origin. In fact the Euler potential comes in two flavors,
an oblate and a prolate one, in the former case the distance
between the centers being imaginary, a → ia. For the
relativist it is the oblate Euler potential that is more
interesting since it shares many of the special properties
of the Kerr metric [43,44]. Despite the imaginary distance
between the two point masses the potential itself is real
valued and takes the form

VE ¼ −
Mffiffiffi
2

p
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r2 − a2

p
;

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − a2Þ2 þ 4a2r2cos2θ

q
: ðB9Þ

The Euler potential is known to be separable and admit
spherical orbits (that can be stable or unstable) in an
adapted elliptical coordinate system [27]. Here, however,
we will keep working with standard spherical coordinates
and study the spheroidicity condition for the potential (B9).
The actual calculation is facilitated by a small-a

approximation, effectively treating the Euler potential as
a perturbation away from a Keplerian potential. This would
also mean that this calculation only applies to stable orbits.
Working to Oða2Þ precision (which is the leading order
deviation from spherical symmetry) we use the ansatz

r0ðθÞ ¼ rK þ a2r1ðθÞ; ðB10Þ

where rK is the Keplerian circular radius. Upon inserting
(B9) and (B10) into (B6) and expanding we obtain one
equation for rK at leading order and another one for r1ðθÞ at
Oða2Þ order. The former equation is simply the Keplerian
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relation for the energy, E ¼ −M=2rK. The second equation
is somewhat more complicated (here we define b ¼ L=E),

�
4r3K −

b2M
sin2θ

�
r001 þMb2

cot θ
sin2θ

r01 þ 4r3Kr1

¼ ð1þ 3 cos 2θÞr2K; ðB11Þ

but can nevertheless be solved exactly. Only the particular
solution of this is well behaved in the equatorial plane,

r1ðθÞ ¼ −
1

4r4K
½Mb2 − r3Kð1 − cos 2θÞ�: ðB12Þ

In this expression it is legal to replace b with its value for a
Keplerian circular orbit, b2K ¼ 4r3K=M. Doing so, we find

r0ðθÞ ¼ rK −
a2

2rK
ð1þ cos2θÞ: ðB13Þ

We have thus obtained a spheroidal orbit for the Oða2Þ
Euler potential as a result of working in the “wrong”
spherical coordinates where VE is not separable.
As already mentioned, the “correct” coordinate system

for the Euler problem is the elliptic one, with spherical
orbits given by ξ ¼ ξ0 ¼ const. The radial elliptic coor-
dinate is defined as ξ ¼ ðr1 þ r2Þ=2, where r1, r2 are the
distances from the two centers. We can express ξ0 in
spherical coordinates and obtain r0ðθÞ. The result of this
exercise is

r0ðθÞ¼
ξ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þξ20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ20þa2cos2θ

p ¼ ξ0þ
sin2θ
2ξ0

a2þOða4Þ: ðB14Þ

The second a-expanded equation should be identical to our
previous result. To verify this we need to express ξ0 in
terms of the Keplerian circular radius rK. We find

ξ0 ¼ rK −
b2KM
4r4K

a2 þOða4Þ ¼ rK −
a2

rK
þOða4Þ; ðB15Þ

which when combined with (B14) indeed leads to (B13).
One could furthermore ask what happens if the Euler

potential is somehow perturbed. A simple way of doing this
is by adding a small mass qM at the coordinate origin. The
resulting potential,

ṼE ¼ VE −
qM
r

; ðB16Þ

is no longer separable in the elliptic coordinates used in the
Euler problem. This prompts us to revisit the issue of the
existence of spherical orbits in this new potential. After
performing an analysis similar to the one of the Euler
problem one arrives at an equation for the Oða2Þ pertur-
bation of the Keplerian circular orbit,

�
4ð1þ qÞrK −

4ð1þ qÞrK
sin2θ

�
r001 þ 4ð1þ qÞrK

cot θ
sin2θ

r01

þ 4ð1þ qÞrKr1 ¼ 1þ 3 cos 2θ: ðB17Þ

Given that this equation is almost identical to (B11) we
expect to find a solution of the same functional form as in
(B13). The resultingOða2Þ radius of the spheroidal orbit of
the ṼE potential is

r0ðθÞ ¼ rK −
a2

2ð1þ qÞrK
ð1þ cos2θÞ: ðB18Þ

The comparison of this result against the same order
expansion of the ξ0 ¼ const: expression in spherical
coordinates reveals a mismatch due to the (1þ q) factor.
In other words, the spheroidal orbit (B18) cannot be
mapped onto a spherical orbit in elliptical coordinates.

APPENDIX C: THE SPHEROIDICITY
CONDITION AND SEPARABILITY

THEOREM FOR PARTICLES

Most of what we discussed in the main text about photon
circular orbits and their connection to the separability of a
given axisymmetric-stationary metric also applies to the
case of massive particles. The only adjustment one needs to
make is to use the appropriate four-velocity normalization
uμuμ ¼ −1 and posit the presence of equatorial circular
orbits; this results in a modified Eq. (3) with a new effective
potential,

Ṽeff ¼ E2Veffðr; θ; bÞ − 1: ðC1Þ

The redefined potential is propagated through all sub-
sequent calculations, leading to the same spheroidicity
condition as the one derived for photons [Eq. (14)]. For
spherical orbits we thus have

ðgθθṼeffÞ;rjr0 ¼ 0: ðC2Þ

If we assume the same functional form for gθθṼeff as the
one in (26) and combine it with the condition (22) on the
metric, then the two conditions imply the separability of the
Hamilton-Jacobi equation.
However, photons and particles are found to be on an

unequal footing. In order for both photon and particle
spherical orbits to exist, the metric needs to obey the
condition,

gθθ ¼ f3ðrÞhðθÞ þ g̃ðθÞ: ðC3Þ

If this requirement is not met, the spacetime can still admit
spherical photon orbits but there are no spherical particle
orbits. One such example is provided by Carter’s canonical
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metric (24). In its most general form the canonical metric
has (recall that here a subscript indicates functional
dependence)

gθθ ¼
PrQθ −QrPθ

Δθ
; ðC4Þ

which evidently is not of the required form (C3). But there
are exceptions to the rule: for example, Kerr is a member of
the canonical metric family while also being of the special
form (C3) with Δθ ¼ 1 and PrQθ −QrPθ ¼ r2 þ a2cos2θ.
This is one more result to be added to the long string of
special properties of the Kerr metric.
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