
 

Taming Dirac strings and timelike loops in vacuum gravity

Suvikranth Gera1,* and Sandipan Sengupta2,†
1Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

2Department of Physics and Centre for Theoretical Studies, Indian Institute of Technology Kharagpur,
Kharagpur-721302, India

(Received 21 February 2019; published 25 June 2019)

The problem of singularities associated with Dirac strings and closed timelike curves in classical
solutions of pure gravity is analyzed here. A method to eliminate these is introduced and established first
for the Taub-NUT geometry, which is superceded by a smooth solution of first order field equations.
The resulting spacetime is defined to be a unique extension of the Taub universe to a degenerate metric
phase. As an additional feature, this framework naturally provides a geometric interpretation of the
magnetic charge in the absence of matter. Finally, exploiting the two phases of the metric determinant, we
find a (smooth and unique) continuation of the Misner geometry as well, ridding it of closed timelike
worldlines which exist in its otherwise Einsteinian manifestation.
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I. INTRODUCTION

Among the selected few exact vacuum solutions to
Einsteinian gravity that defy a completely realistic physical
interpretation, the Taub-NUT spacetime stands out in its
richness and peculiarity [1–7]. Even though this geometry
does not exhibit any divergence in the curvature poly-
nomials, it carries within a Dirac string singularity, analo-
gous to the magnetic monopole configuration in gauge
theories. In addition, it is associated with closed timelike
curves at the NUT region(s). As noted by Misner [3], the
string may be removed by using a union of two overlapping
charts, but only at the cost of introducing a periodic time
coordinate. Not only does this introduce causality violating
worldlines throughout the NUT region, but also leads to a
nontrivial topology (S3 ⊗ R) of the spacetime. There have
been alternative viewpoints as well, based on attempts to
interpret the Taub-NUT geometry as a solution to Einstein’s
equation with a point mass and a massless source of angular
momentum [8]. This interpretation corresponds to a space-
time different than that of Misner’s, since the pathological
regions containing the semi-infinite string and timelike
loops are excluded from the manifold. Progress has also
been made in unravelling several other key aspects, for
instance, the possible (nonunique) maximal extensions of
the Taub-NUT space [4,9] and the behavior of its geodesics
[3,5,10,11]. Nevertheless, it has not ceased to stoke up
serious interest and intrigue until now, simply because it
continues to be a challenge to find a satisfactory inter-
pretation of this spacetime without having to live with a

Dirac string or a direct violation of causality over a large
region of spacetime [5].
With the purpose of providing a fresh perspective onto

these issues, here we would like to explore whether it is
possible to view the Taub-NUT geometry as a special phase
within a more general spacetime. The only formulation of
vacuum gravity where this could be possible is the first
order theory, which, in addition to the Einsteinian (invert-
ible metric) phase, admits a zero-determinant metric phase
(with or without matter) [12]. In view of this, we shall look
to construct spacetime solutions to the field equations
where the Taub phase could coexist with a noninvertible
phase without ever evolving into a NUT geometry. We shall
also analyze if such a special solution could be unique in
any precise sense, such that it does not exhibit either a
Dirac (Misner) string or any closed timelike curve. It is also
essential that the basic gauge-invariant field components
be at least continuous over the whole spacetime, so that the
full geometry satisfies the equations of motion everywhere.
Moreover, we demand that the curvature two-form com-
ponents be regular everywhere.
General solutions of Hilbert-Palatini field equations

where a Taub or NUT phase coexists with degenerate
metrics have not been explored in the earlier literature.
However, such dual phase geometries based on stationary
black holes or generic spherically symmetric solutions of
Einstein’s theory have been analyzed in the context of
(complex) Sen-Ashtekar Hamiltonian formulation [13,14].
Typically, these are associated with one or more zero
eigenvalues of the canonical momenta (densitized triad
Ea
i ). For instance, Bengtsson has constructed a solution

of the canonical constraints of this theory, containing a
Schwarzschild exterior and an “empty” interior [13].
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Within the same theory, Varadarajan has discovered spheri-
cally symmetric vacuum solutionswith negative energy [14].
Recently, within the first order (Hilbert-Palatini)

Lagrangian formulation in vacuum, generic solutions con-
sisting of a Schwarzschild and a noninvertible tetrad phase
(det eIμ ¼ 0) have been presented [15]. These are associated
with curvature two-form fields that are finite everywhere, in
contrast to the original Schwarzschild spacetime. A class of
two-sheeted geometries, which contain the Einstein-Rosen
bridge [16] as a special case, have also been found as a set
of new solutions of this theory [17]. These works make
crucial use of a general framework for constructing space-
time solutions whose metrics are degenerate everywhere
[18,19]. It has also been noted that geometries consisting
of both phases of the metric determinant could display
intriguing causal features even in the absence of exotic
matter or additional structures such as extra dimensions [20].
In general, these solutions to the first-order field equations
are not equivalent to the solutions obtained earlier within the
Sen-AshtekarHamiltonian framework [14],where the spatial
triad fields are noninvertible everywhere.
In the following section, we elucidate on the solution

based on the Taub phase which do not exhibit a Dirac string
or closed timelike lines upon a smooth evolution in time.
Section III contains a discussion of an emergent interpre-
tation of charge through zero-signature geometries in
vacuum gravity. Next, the program of eliminating timelike
circles is extended to the Misner spacetime, which was
originally introduced as a simpler analogue of the Taub-
NUT geometry. We conclude with a summary of the main
results and a few worthwhile remarks.

II. EXTENSION OF THE TAUB UNIVERSE

In first-order gravity in four dimensions, the basic fields
are the SOð3; 1Þ tetrad and spin connection. These define
the Hilbert-Palatini action for gravity theory in four
dimensions:

S½e;ω� ¼
Z

d4x ϵIJKLϵμναβeμIeνJRαβKLðωÞ:

Note that the Lagrangian density is well defined for both
invertible and noninvertible tetrads. Upon variation with
respect to the independent fields eIμ and ωIJ

μ , one obtains the
following set of equations of motion:

e½I½μDαe
J�
β� ¼ 0; e½I½μR

JK�
αβ� ¼ 0: ð1Þ

The standard Einsteinian theory may be recognized as a
special phase of the above, corresponding to solutions with
a nonvanishing metric determinant (det gμν ≠ 0). In general,
the above set of equations also exhibits vacuum solutions
which could be degenerate everywhere [12,18,19] or
almost everywhere or over a certain region [15–17,20].

Moreover, such solutions may contain nonvanishing tor-
sion associated with the degenerate phase even in the
absence of any matter coupling. Obviously, this whole set
of solutions to the equations of motion are not contained
within the standard Einsteinian theory. A priori, there
seems to be no reason for excluding the latter set of
solutions from a general analysis of classical and quantum
gravity [12,18,19,21], irrespective of whether or not they
admit a reasonable spacetime interpretation in general.
With this viewpoint, we nowmove on to discuss the Taub-

NUT spacetime in the context of first order formulation.

A. The Einsteinian solution

The Taub-NUT solution of the vacuum Einstein’s equa-
tions is represented by the following metric:

ds2 ¼ −f2ðrÞ
�
dtþ 4lsin2

θ

2
dϕ

�
2

þ dr2

f2ðrÞ
þ ðr2 þ l2Þðdθ2 þ sin2θdϕ2Þ; ð2Þ

where

f2ðrÞ ¼ ðr − rþÞðr − r−Þ
r2 þ l2

with r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2

p
. The two parametersm, lmay be

interpreted as the “mass” and “magnetic charge” (or, the
“dual mass”), respectively. The ranges r > rþ and r < r−
define the “NUT,” whereas r− < r < rþ is the “Taub”
region. This metric exhibits a Dirac string singularity along
the half-line θ ¼ π. In addition, the NUT region contains

closed timelike curves, since we have gϕϕ < 0 for cos θ <

− r2þl2−4l2f2
r2þl2þ4l2f2 there. The zeros of f2ðrÞ are coordinate

singularities, and there exists no curvature singularity.
The spacetime, however, is known to be geodesically
incomplete [5,10,11].
As originally proposed by Misner [3], one may introduce

two different time coordinates t and t0 at 0 ≤ θ < π and
0 < θ ≤ π respectively, related as

t0 ¼ tþ 4lϕ: ð3Þ

In other words, while the region 0 ≤ θ < π is described
by the metric (2), the region 0 < θ ≤ π is described by a
different one obtained through the above transformation:

ds2 ¼ −f2ðrÞ
�
dt0 − 4lcos2

θ

2
dϕ

�
2

þ dr2

f2ðrÞ
þ ðr2 þ l2Þðdθ2 þ sin2θdϕ2Þ: ð4Þ

The atlas made up of these two charts is regular at both
θ ¼ 0 and θ ¼ π, thus eliminating the Dirac string singu-
larity. However, the relation between t and t0 at the overlap
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region 0 < θ < π now implies that the time coordinate
must have a periodicity of 8πl. As a consequence, any
arbitrary curve with r ¼ const, θ ¼ const, ϕ ¼ const at
the NUT region represents a causality violating worldline.
This feature, among others, has led to the general wisdom
that the Taub-NUT spacetime cannot really be regarded as a
physical solution to Einstein’s equations in vacuum [5].
In Einstein’s theory, a Taub phase has no choice but

to evolve into a NUT phase, and hence must inherit its
much too well-known pathologies. In first-order gravity,
however, a Taub phase may also evolve into a degenerate
phase, provided that is permissible by the boundary
conditions (at the interface between the two phases).
In the following, we construct a unique degenerate phase
which the Taub universe could evolve into, without
acquiring any closed timelike curve or Dirac string any-
where. It is obvious that extending the NUT geometry
instead of Taub to a degenerate phase cannot lead to a
spacetime that is free of such pathologies everywhere,
unless some of the continuity requirements are compro-
mised upon. That is why we do not consider such an
exercise.

Before delving into the essential details of the new
solution, let us first discuss the field configuration of the
Taub geometry in terms of first order variables.
According to (2), the Taub spacetime is defined by the

region r− < r < rþ with the following metric:

ds2 ¼ f̄2ðrÞ
�
dtþ 4lsin2

θ

2
dϕ

�
2

−
dr2

f̄2ðrÞ
þ ðr2 þ l2Þðdθ2 þ sin2θdϕ2Þ; ð5Þ

where f̄2 ¼ ðrþ−rÞðr−r−Þ
r2þl2 ¼ −f2 > 0. The coordinates t and r

are spacelike and timelike, respectively, in contrast to the
NUT region where they interchange their roles. The tetrad
fields are given by

e0 ¼ f̄

�
dtþ 4lsin2

θ

2
dϕ

�
; e1 ¼ dr

f̄
;

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ l2Þ

q
dθ; e3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ l2Þ

q
sin θdϕ:

The (torsionless) connection fields are evaluated to be

ω01 ¼ −ð∂rf̄Þe0; ω02 ¼ lf̄
r2 þ l2

e3; ω03 ¼ −
lf̄

r2 þ l2
e2; ω12 ¼ rf̄

r2 þ l2
e2;

ω23 ¼ −
lf̄

r2 þ l2
e0 −

cot θffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

p e3; ω31 ¼ −
rf̄

r2 þ l2
e3:

These lead to the following expressions for the SOð3; 1Þ field strength:

R01 ¼ ½f̄∂2
r f̄ þ ð∂rf̄Þ2�e0 ∧ e1 −

2lf̄
r2 þ l2

�
∂rf̄ −

rf̄
r2 þ l2

�
e2 ∧ e3

R02 ¼ f̄
r2 þ l2

�
r∂rf̄ þ l2f̄

r2 þ l2

�
e0 ∧ e2 −

lf̄
r2 þ l2

�
∂rf̄ −

rf̄
r2 þ l2

�
e3 ∧ e1

R03 ¼ f̄
r2 þ l2

�
r∂rf̄ þ l2f̄

r2 þ l2

�
e0 ∧ e3 −

lf̄
r2 þ l2

�
∂rf̄ −

rf̄
r2 þ l2

�
e1 ∧ e2

R12 ¼ f̄
r2 þ l2

�
r∂rf̄ þ l2f̄

r2 þ l2

�
e1 ∧ e2 −

lf̄
r2 þ l2

�
∂rf̄ −

rf̄
r2 þ l2

�
e3 ∧ e0

R23 ¼ 1

r2 þ l2

�
1 −

3f̄2l2 − r2f̄2

r2 þ l2

�
e2 ∧ e3 þ 2lf̄

r2 þ l2

�
∂rf̄ −

rf̄
r2 þ l2

�
e0 ∧ e1

R31 ¼ f̄
r2 þ l2

�
r∂rf̄ þ l2f̄

r2 þ l2

�
e3 ∧ e1 −

lf̄
r2 þ l2

�
∂rf̄ −

rf̄
r2 þ l2

�
e2 ∧ e0: ð6Þ

These fields represent a solution corresponding to the
Einstein phase of first order gravity, since the determinant
of the tetrad is nonvanishing everywhere (except at the
apparent singularities of the spherical polar coordinates).

B. Solution with the zero signature phase

In order to define a continuation of the Taub spacetime to
a degenerate phase, let us introduce a new coordinate w
through a reparametrization of r:
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rðwÞ − r− ¼ RðwÞ; ð7Þ

where RðwÞ is any smooth (C∞) function such that1

rðw → 0Þ ¼ r−;
�
r0ðwÞ
f̄½rðwÞ�

�
ðw → 0Þ ¼ 0;

rðw → ∞Þ → rþ: ð8Þ
The prime introduced above implies a differentiation with
respect to w. Clearly, at 0 < w < ∞ the new coordinate w
covers the full Taub spacetime. Next, let us consider the
spacetime defined by the full range of the coordinates
t ∈ ð−∞;∞Þ, w ∈ ð−∞;∞Þ, θ ∈ ½0; π�, ϕ ∈ ½0; 2π�.
The domains w > 0 and w ≤ 0 are assumed to exhibit a
Taub geometry (det eIμ ≠ 0Þ and a zero metric-determinant
phase, respectively:

w > 0∶ds2 ¼ f̄2½rðwÞ�
�
dtþ 4lsin2

θ

2
dϕ

�
2

−
r02ðwÞdw2

f̄2½rðwÞ�
þ ½r2ðwÞ þ l2�ðdθ2 þ sin2θdϕ2Þ;

w ≤ 0∶ds2 ¼ 0 − F2ðwÞdw2 þH2ðwÞðdθ2 þ sin2θdϕ2Þ;
ð9Þ

where FðwÞ and HðwÞ are smooth functions satisfying

Fðw ¼ 0Þ ¼ 0; Hðw ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2− þ l2

q
: ð10Þ

The properties given by Eqs. (8) and (10) imply that the
tetrad components are smooth across the phase boundary
w ¼ 0. Note that the internal metric is given by ηIJ ¼
diag½1;−1; 1; 1� everywhere. Also, we shall use two over-
lapping charts as discussed earlier to cover the full
spacetime. This makes the spacetime regular for all θ
values and does not introduce any causality violation either
at the Taub or at the degenerate phase.
Note that the field-strength tensor components at the

Taub phase are finite. At the phase boundary, their (limit-
ing) behavior could be found using the fact that both e0 and
e1 vanish as w → 0þ:

R01→−
lðrþ− r−Þ
r2−þ l2

sinθdθ∧ dϕ; R02→ 0; R03→ 0;

R12→ 0; R23→ sinθdθ∧ dϕ; R31→ 0: ð11Þ

At the zero signature phase, the tetrad fields are given by

ê0 ¼ 0; ê1 ¼ FðwÞdw; ê2 ¼ HðwÞdθ;
ê3 ¼ HðwÞ sin θdϕ: ð12Þ
For the connection fields, we choose the following general
ansatz [18] which satisfies the set of connection equations
of motion in (1) [i≡ ð1; 2; 3Þ; a≡ ðw; θ;ϕÞ]:

ω̂0i
a ¼ λêia; ω̂ij

a ¼ ω̄ij
a ðêÞ þ ϵijkêlaNkl ¼ ω̄ij

a ðêÞ þ Kij
a ;

ð13Þ
where λ is a constant, ω̄ij

a ðêÞ are the torsionless connection
components defined completely by the set of triads êia (and
their inverses) and Nkl ¼ Nlk is a matrix encoding the six
independent contortion fields in Kij

a . Explicitly, the non-
vanishing components of ω̄ij

a ðêÞ and the contortion read

ω̄12 ¼ H0ðwÞ
FðwÞHðwÞ ê

2; ω̄23 ¼ −
cot θ
HðwÞ ê

3;

ω̄31 ¼ −
H0ðwÞ

FðwÞHðwÞ ê
3; Nkl ¼

2
64
αðwÞ μðwÞ δðwÞ
μðwÞ βðwÞ ρðwÞ
δðwÞ ρðwÞ γðwÞ

3
75:

ð14Þ
Here we have assumed that the contortion depends on
w only.
Using these, the 0i components of the curvature two-

forms become

R̂01 ¼ λ½δê1 ∧ ê2 þ μê3 ∧ ê1 − ðβ þ γÞê2 ∧ ê3�;
R̂02 ¼ −λ½ρê1 ∧ ê2 þ ðγ − αÞê3 ∧ ê1 − μê2 ∧ ê3�;
R̂03 ¼ λ½ðβ − αÞê1 ∧ ê2 − ρê3 ∧ ê1 þ δê2 ∧ ê3�: ð15Þ
Comparing these with the expressions in Eq. (11), we note
that these components are continuous across the phase
boundary w ¼ 0ðr ¼ r−Þ provided

μ≐ 0; ρ≐ 0; δ≐ 0; α≐ β≐ γ ≐
lðrþ− r−Þ
2λðr2−þ l2Þ2 ; ð16Þ

where the symbol ≐ denotes an equality only at the phase
boundary. For simplicity, we assume hereon that the three
fields μðwÞ, ρðwÞ, δðwÞ vanish and that αðwÞ ¼ βðwÞ ¼
γðwÞ everywhere, both sets of equalities being consistent
with the boundary conditions above.With this, the torsional
contribution is encoded by just a single scalar αðwÞ.
The remaining components of the field strength read

R̂12 ¼
�
1

F

�
H0

FH

�0
þ
�
H0

FH

�
2

− ðα2 þ λ2Þ
�
ê1 ∧ ê2

−
�
α0

F
þ 2αH0

FH

�
ê3 ∧ ê1

R̂23 ¼
��

H0

FH

�
2

þ 1

H2
þ α2 − λ2

�
ê2 ∧ ê3

R̂31 ¼
�
1

F

�
H0

FH

�0
þ
�
H0

FH

�
2

− ðα2 þ λ2Þ
�
ê3 ∧ ê1

þ
�
α0

F
þ 2αH0

FH

�
ê1 ∧ ê2: ð17Þ

Continuity of these components at the interface w ¼ 0
implies a further set of boundary conditions, given by

1An example of such a smooth function is RðwÞ ¼
ðrþ − r−Þe−1

w at w ≥ 0.
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�
H0

FH

�0
þ
��

H0

FH

�
2

− ðα2 þ λ2Þ
�
F ≐ 0;�

H0

FH

�
2

þ α2 − λ2 ≐ 0; α0H þ 2αH0 ≐ 0: ð18Þ

The last two boundary conditions above determine
αðw ¼ 0Þ and λ in terms of the two charges l, m.
However, there is yet another equation involving these
in (16), which implies that the mass (m) and dual mass (l)
are not independent of each other in this configuration.
The SOð3; 1Þ-invariant fields ĝμν ¼ êIμêνI and R̂μναβ ¼

R̂μν
IJêαI êβJ above are manifestly continuous. The only

remaining set of gauge-invariant fields are the contortion
Kμνα ¼ Kμ

IJêνIêαJ, whose nonvanishing components are
given by

Kϕwθ ¼ −αFH2 sin θ ¼ Kθϕw ¼ −Kwθϕ: ð19Þ

Evidently, Kμνα vanish at the phase boundary, as is required
by continuity with the torsionless Taub phase across w ¼ 0.
The crucial role of torsion at the degenerate phase is
evident, since it is not possible to achieve the continuity of
field-strength components without its presence.
As mentioned earlier, this configuration based on the

general ansatz (14) for the connection fields satisfies the
first set of the equations of motion in (1) by construction.
The remaining set is also satisfied provided the contortion
field αðwÞ is constrained as

�
α2 − 3

�
H0

FH

�
2

−
1

H2
þ 3λ2

�
F − 2

�
H0

FH

�0
¼ 0: ð20Þ

Since this is the only equation among the three unknowns
FðwÞ, HðwÞ and αðwÞ, it can always be solved for any
of them by choosing the other two appropriately.
A “maximal” extension of the zero-signature phase is
obtained by imposing an additional condition on FðwÞ:����

Z
−∞

0

dwFðwÞ
���� ¼ ∞; ð21Þ

which implies that the boundary w → −∞ is approached at
an infinite value of the affine parameter.
With this, the full spacetime geometry is completely

characterized by the fields ðeIμ;ωIJ
μ Þ defining a Taub phase

at w > 0 and ðêIμ; ω̂IJ
μ Þ associated with a noninvertible

metric phase at w ≤ 0. This solution is smooth every-
where. It could be interpreted as a union of two “uni-
verses,” which are causally disconnected in the sense of
geodesics since the phase boundary w ¼ 0 separating
them is time nonorientable. In terms of the coordinate
time w going from −∞ to ∞ (∞ to −∞), the spacetime
evolves from a Lorentzian phase of three metrical dimen-
sions to a Taub universe which is nucleated at w ¼ 0.

The boundary w → ∞ signifies the end (beginning) of
time, where the spacetime approaches a spatial two-sphere.
To emphasize, the Taub phase does not evolve into a

NUT region in this continuation. This is so because the pair
of boundaries of the Taub phase here (w ¼ 0 and w → ∞)
are inequivalent to the boundaries of the original Taub
universe, the two pairs being related through a vanishing
Jacobian.
Importantly, the full spacetime solution does not contain

any timelike circle. Neither does it carry a Dirac string,
which has already been eliminated at the Taub phase by
using two overlapping coordinate charts [3] and does not
reappear at the zero-signature phase. Note that the asso-
ciated field strength components are all finite (everywhere).

C. Uniqueness of the degenerate extension

One wonders if there could be possible degenerate
extensions of the Taub universe other than the one
developed here in first order gravity, where the degenerate
phases could be defined through either gww ¼ 0 or gθθ ¼ 0

or gϕϕ ¼ 0. In the first case, there exists no time coordinate
which can go over the full range, and neither does it allow
continuity of the field strength across the phase boundary in
general. A degenerate phase defined through a null angular
coordinate θ or ϕ, on the other hand, does not lead to
an extension of the original Taub universe to a larger space
without closed timelike curves. Thus, in a meaningful
sense, the extension of the Taub geometry developed here
could be thought to be unique, the defining properties being
the following:

(i) The resulting spacetime exhibits neither a Dirac
string singularity nor any closed timelike curve
anywhere.

(ii) There exists a local timelike coordinate almost every-
where (with the possible exception at the asymptotic
and degenerate phase boundaries), which could be
extended to infinite values in both directions.

(iii) The affine parameter (for any arbitrary finite range)
within the degenerate region is a monotonic function
of the coordinate time.

(iv) The SOð3; 1Þ invariant fields (gμν, Kμνα and Rμναβ)
are smooth.

(v) The curvature two-form fields are finite everywhere
in spacetime.

III. CHARGE FROM (CLASSICAL VACUUM)
GEOMETRY

The NUT solution was originally found as an empty
space generalization of the Schwarzschild geometry, con-
taining an extra parameter in the form of a dual mass [2].
However, unlike the full Schwarzschild spacetime, the full
Taub-NUT geometry possesses no curvature singularity at
r ¼ 0. The spacetime may be extended freely through this
point. Hence, within Misner’s interpretation of this solution
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without a Dirac string but with a periodic time, it is not
clear what is the location of the source, whose gravitational
and magnetic charges are m and l, respectively.
However, no such interpretational difficulty appears

here. Whereas the Taub phase w > 0 has a vanishing
contortion and the Bianchi identity is satisfied there, the
noninvertible phase at w < 0 sources (geometric) torsion
and violates the Bianchi identity:

R̂½wθϕ�0 ¼ −2λαFH2 sin θ:

This violation is precisely the characteristic of a monopole,
leading to a natural interpretation of the zero-signature
geometry itself as the source of the charge lðmÞ (in the
absence of any Dirac string singularity). This is quite
similar in spirit, but somewhat different in essence to the
remarkable idea that couplings associated with electromag-
netic interactions may originate purely due to nontrivial
geometry or topology (through wormholes or geons or
nonorientability of space), as pioneered by Wheeler,
Misner and explored by others [22–24].
It is also worthwhile to observe another feature, namely,

a potential topological interpretation of the magnetic charge
in terms of a torsional three-integral related to the Nieh-Yan
invariant [25] in gravity theory. To this end, let us note that
the extended vacuum solution is associated with a non-
trivial value for the Nieh-Yan three-form at the degenerate
phase, whose integral reads

CNY ¼
Z

êI ∧ T̂I ¼ 2

Z
αðwÞê1 ∧ ê2 ∧ ê3

¼ 8π

Z
0

−∞
dw αðwÞFðwÞH2ðwÞ: ð22Þ

Here we have used the explicit expression for the torsion T̂I

at the degenerate phase, given by

T̂0 ¼ 0 ¼ T̂2 ¼ T̂3; T̂1 ¼ −2αðwÞê2 ∧ ê3: ð23Þ

Note that the Nieh-Yan integral (22) is manifestly a
function of lðmÞ only. However, this torsional interpretation
of the magnetic charge acquires a precise topological
meaning only under a suitable compactification of the
manifold through Euclidean methods or otherwise.
The above fact also implies that classically, the monop-

ole charge is not quantized in this extended spacetime in
general, provided the (gauge-invariant) field components
are assumed to be continuous as here. This absence of
charge quantization is indeed consistent with expectations,
since the time coordinate is not periodic in our construction
unlike in Misner’s acausal interpretation of the Taub-NUT
solution [6].

IV. MISNER GEOMETRY WITHOUT
TIMELIKE LOOPS

There does exist a simple two-dimensional analogue of
the Taub-NUT vacuum solution, which exhibits similar
causal pathologies:

ds2 ¼ −
dt2

t
þ tdϕ2; ð24Þ

where −∞ < t < ∞ and ϕ ∈ ½0; 2π� is periodic. Through a
coordinate transformation ϕ ¼ ψ þ ln jtj, this may be
brought to the form originally discussed by Misner [5]:

ds2 ¼ 2dtdψ þ tdψ2:

This space is a flat solution of Einstein’s theory. As is
evident, the coordinate t is timelike for t > 0 and spacelike
for t < 0. Any arbitrary t ¼ const < 0 slice traces out a
closed timelike curve. The closed null curve at t ¼ 0 acts as
the chronology horizon separating the causal and acausal
parts of the spacetime. There also exists a closed null
geodesic (although of zero proper length). In terms of an
affine parameter λ, this reads

t ¼ 0; ψ ¼ − ln λ2 þ const:

We shall now discuss the essential details of the solution
of first order gravity containing a Misner phase, which do
not contain any closed timelike or null worldline. Since we
would prefer to keep our discussion in a four-dimensional
setting, we shall consider the four-dimensional generali-
zation of Misner’s metric hereon:

ds2 ¼ −
dt2

t
þ tdϕ2 þ dy2 þ dz2: ð25Þ

A. A unique degenerate extension of Misner phase

We consider a smooth spacetime defined through the
following metric, exhibiting both the phases of first order
gravity at different domains:

ds2 ¼ −
f02ðtÞ
fðtÞ dt2 þ fðtÞdϕ2 þ dy2 þ dz2 at t > 0;

¼ −F2ðtÞdt2 þ 0þ dy2 þ dz2 at t ≤ 0; ð26Þ
where −∞ < t < ∞, 0 ≤ ϕ ≤ 2π, −∞ < y < ∞, −∞ <
z < ∞. The internal metric is defined as ηIJ ¼
diag½−1; 1; 1; 1� everywhere. The smooth functions fðtÞ
and FðtÞ satisfy the following properties, ensuring con-
tinuity of the basic fields:

fðtÞ → 0;
f02ðtÞ
fðtÞ → 0 as t → 0; Fðt ¼ 0Þ ¼ 0:

ð27Þ
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These functions also define the affine parameter λðtÞ as
(for any stationary observer)

λðtÞ ¼
Z

t

0

dt
f0ðtÞffiffiffiffiffiffiffiffi
fðtÞp ðt > 0Þ;

¼
Z

t

0

dtFðtÞ ðt ≤ 0Þ: ð28Þ

Hence, fðtÞ at t > 0 and FðtÞ at t < 0must be such that the
affine parameter is a monotonic function of the time
coordinate over its full range (ruling out the possibility of
a time travel in proper time, a phenomenon discussed in
Ref. [20]). Moreover, we make the degenerate extension
maximal by demanding that the asymptotic boundaries
t → �∞ be located at an infinite distance in the affine
parameter.2

Note that at t > 0 (but not at t ≤ 0), the metric is
equivalent to the Misner spacetime (25) up to a coordinate
redefinition fðtÞ → t. Our task is to construct a vacuum
solution of the first order field equations (1) based on this
metric. This requires a complete specification of the spin-
connection fields, which would be assumed to have
vanishing torsion everywhere.
The nonvanishing components of the associated fields in

the invertible metric phase at t > 0 are given by

e0 ¼ f0ðtÞffiffiffiffiffiffiffiffi
fðtÞp dt; e1 ¼

ffiffiffiffiffiffiffiffi
fðtÞ

p
dϕ; e2 ¼ dy;

e3 ¼ dz; ω01 ¼ 1

2
dϕ: ð29Þ

The zero-determinant phase at t ≤ 0 is defined by the
following configuration:

ê0 ¼ FðtÞ cosh
�
ϕ

2

�
dt; ê1 ¼ −FðtÞ sinh

�
ϕ

2

�
dt;

ê2 ¼ dy; ê3 ¼ dz; ω̂01 ¼ 1

2
dϕ: ð30Þ

These fields are manifestly continuous across the phase
boundary. Since the torsion as well as the curvature two-
form fields vanish everywhere, both sets of first order field
equations (1) are trivially satisfied by this configuration.
This smooth geometry is a unique (maximal) extension of
the Misner spacetime in the same sense as elaborated in the
previous section.
Let us now illustrate that there are no closed timelike

solutions to the geodesic equations in this geometry.
At t > 0, these equations lead to the following constants
of motion:

f02ðtÞ
fðtÞ _t2 − fðtÞ _ϕ2 − _y2 − _z2 ¼ ϵ; f _ϕ ¼ pϕ;

_y ¼ py; _z ¼ pz; ð31Þ

where ϵ ¼ 0;þ1;−1 characterize the null, timelike and
spacelike geodesics, respectively. The solution for the
affine parameter is

λ ¼ �
Z

dt
f0ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðϵþ p2
y þ p2

zÞfðtÞ þ p2
ϕ

q

¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ p2

y þ p2
z

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðtÞ þ p2

ϕ

ϵþ p2
y þ p2

z

s
: ð32Þ

At the noninvertible phase t ≤ 0, the geodesic equations
corresponding to the t, y and z coordinates read

F2ðtÞ_t2 − _y2 − _z2 ¼ ϵ; _y ¼ py; _z ¼ pz; ð33Þ

while the equation for the null direction ϕ becomes
redundant. This is expected since the ϕ coordinate in this
region has no physical evolution. The above set of
equations is solved as

λ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ p2

y þ p2
z

q Z
dtFðtÞ: ð34Þ

These solutions completely specify the geodesics over the
full spacetime, which contain no closed timelike trajecto-
ries. There is no closed null geodesic also, since there is
no compact direction to source such trajectories at the
phase boundary (t ¼ 0) which now replaces the chronology
horizon.
Note that unlike the Taub-NUT case, the presence of

torsion is not essential in the degenerate continuation of
Misner geometry for satisfying the continuity of field
strength components. This can be attributed to the fact
that the original Misner space does not have an analogue of
magnetic charge (Dirac string).

V. CONCLUSIONS

The Taub-NUT vacuum solution of Einstein’s equations,
as it is, does not admit a completely reasonable physical
interpretation. Even though it contains the Taub universe
which could have a realization as a time-dependent
cosmology with nonisotropic spatial sections, this phase
has a finite lifetime. Beyond this span, it naturally evolves
to the NUT geometry, which exhibits robust singularities
in the form of a Dirac string along a half-axis as well as
closed timelike lines over a region. In this work, we have
demonstrated that both of these pathologies can be
eliminated within the first order formulation of gravity,

2An explicit example of the set of smooth functions ½fðtÞ; FðtÞ�
satisfying all the properties being discussed here is given by
fðtÞ ¼ t2

4
e−

2
t , FðtÞ ¼ ð1 − 1

tÞe
1
t .
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provided the Taub geometry coexists with a zero-signature
phase. The analysis is developed around a smooth
spacetime that is constructed to satisfy the vacuum field
equations everywhere. The special way in which this
coexistence has to happen makes this extension of the
Taub universe unique in a precise sense. To pursue this
idea to a completion in the context of vacuum solutions
with similar causal singularities, we have also presented a
continuation of the Misner phase, which in its Einsteinian
description is known to exhibit closed timelike curves.
Although the differences between the original Taub-

NUT or Misner spacetime and their generic counterparts in
first-order formulation are really the reasons why the latter
are being discussed here, there does exist important
similarities. In particular, both are geodesically incomplete,
but nevertheless are free of any divergence in the curvature
two-form fields. One wonders whether there could be a
sense in which the spacetimes constructed here could be
seen as the more probable configurations compared to the
Einsteinian ones in the quantum theory.
Finally, in our analysis based on the Taub phase, zero

signature geometries emerge as a possible origin of
couplings (charges) apparently associated with gravita-
tional or electromagnetic interactions. This emergent pic-
ture follows from classical field equations of gravity in

vacuum, unlike the Wheeler-Misner program based on
geons and wormholes, for instance. It is also worth
emphasizing that the violation of Bianchi identity, as is
the characteristic signature of a magnetic charge (with or
without matter), does not imply a loss of smoothness of the
spacetime here. This may be contrasted with some of the
approaches where a violation of such symmetries is
exhibited through nonsmooth metrics [26]. In addition,
the magnetic charge here is explicitly given in terms of a
torsional three-integral related to the Nieh-Yan (topologi-
cal) invariant. This connection, which has not really been
explored here, may have topological underpinnings [27]
and deserves further thoughts.
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