
 

Gravitational birefringence of light in Schwarzschild spacetime
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We compute the gravitational birefringence of light as it undergoes gravitational lensing. To this end we
rederive the Souriau-Saturnini equations in the Schwarzschild metric and solve them numerically and
perturbatively. Our main result is an offset between the trajectories of the photons of opposite polarizations,
which grows with time. We also find an intriguing instability of the spin component transverse to the
momentum.
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I. INTRODUCTION

Birefringence of light is a well-known phenomenon in
anisotropic matter like quartz or calcite. On theoretical
grounds Federov [1] in 1955 and Imbert [2] in 1972
predicted birefringence in the absence of matter but in
an electric field with a gradient. This prediction was
confirmed experimentally in 2008 by Bliokh [3] et al.
and Hosten and Kwiat [4]. They measured an offset
between the trajectories of the photons of opposite polar-
izations, which is of the order of the wavelength of the
photons.
Birefringence of light without matter arises in loop

quantum gravity [5] and more generally in extensions of
Maxwell’s theory or of the SUð3Þ × SUð2Þ ×Uð1Þ model,
which violate Lorentz invariance, like the addition of a
Chern-Simons term, [6,7]. Birefringence in these theories is
strongly constrained by the spectropolarimetry of radio
galaxies, quasars, gamma ray bursts and the cosmic micro-
wave background [8–12].
The starting point of the present work is less ambitious:

the Mathisson-Papapetrou-Dixon equations [13–15] and
their geometric derivation in 1974 by Souriau [16]. He and
Saturnini [17], using this geometric framework, generalized
the null geodesic equation in order to include the spin of
photons, thus proposing birefringence of light in a gravi-
tational field with a gradient. In 1976 Saturnini computed
this generalized equation in the Schwarzschild metric and
obtained first numerical solutions with birefringence.
The usual geodesic equation can be derived exactly from

general principles, when neglecting the dipole and higher
moments of the test particle. See the derivation using
conserved quantities by Dixon [15] or, more geometrically
by Souriau [16]. This computation can be generalized to
include the dipole moment of the test particle. This is how

the Mathisson-Papapetrou-Dixon (MPD) equations are
derived. They can also be obtained using Souriau’s geo-
metrical approach. With X ¼ ðXμðτÞÞ denoting the trajec-
tory of the test particle, P its 4-momentum, and S a
skewsymmetric tensor describing its spin state, we have
the MPD equations,

_Pμ ¼ −
1

2
Rμ

ραβSαβ _X
ρ; ð1:1Þ

_Sμν ¼ Pμ _Xν − Pν _Xμ; ð1:2Þ

where the dot over the trajectory X denotes the ordinary
derivative with respect to its affine parameter, _X ¼ dX=dτ,
while the dot over P and S denotes the covariant derivative
with respect to that same parameter.
These equations are very general and can be applied to

any kind of test particle, be it a planet with its intrinsique
angular momentum or an elementary particle with its spin.
However, these equations are not deterministic: there
are more unknowns than equations. We need to impose
constraints, or “equations of state”, that depend on the test
particle we want to describe. In flat spacetime, at least for
photons, SμνPν ¼ Sμν _X

ν ¼ 0 holds. Souriau shows [18]
that the MPD equations together with the previous con-
straint in flat spacetime for massless particles of spin 1 lead
to the Maxwell equations after geometric quantization.
Now, in curved spacetime the MPD equations entail that
the 4-momentum P may not be parallel to the 4-velocity _X;
thus, there are different possible equations of state. For
extended particles, it is generally accepted to impose the
Tulczyjew constraint, SμνPν ¼ 0 [19], to describe uniquely
the worldline of the center of mass of a particle [15].
However, for elementary particles, the center of mass gives
no criterion. An alternative possibility for the equation of
state would then be the Frenkel-Pirani constraint Sμν _X

ν ¼ 0
[20,21]. For examples with the Frenkel-Pirani constraint,
see [22–25].
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In this paper, we consider the Tulczyjew constraint since
this framework can be successfully applied for elementary
particles in different situations: in the electromagnetic
field, this constraint yields the well known and well used
Bargmann-Michel-Telegdi equations [26], with an anoma-
lous velocity, and with correct anomalous magnetic
moment [27]; it has also been used [28–31] to correctly
describe the above mentioned birefringence in the Fedorov-
Imbert effect.
There are also examples in gravitational fields, with

massive particles; see [25,32]. Let us insist that solving the
massless equations in this framework is more involved than
for massive equations.
Reference [33] presents the Souriau-Saturnini equations

in a generic Robertson-Walker metric and some numerical
and some perturbative solutions, showing a striking effect
on the photon’s trajectory. Indeed, it travels on a helix,
centered around the null geodesic and with a radius of the
order of the wavelength.
Here we take up Saturnini’s work in the (outer)

Schwarzschild metric. Thanks to present day computing
power, we obtain numerical solutions precise enough to
lead us to perturbative solutions. These solutions, contrary
to the ones in a Robertson-Walker metric, feature an
intriguing instability of the spin component transverse to
the momentum and an offset between the trajectories of
photons with opposite polarizations, which grows linearly
with time.
In 2006 Gosselin, et al. [34] have published an analysis

similar to ours, but starting from the Bargmann-Wigner
equations. We compare results at the end of Sec. V.
Let us note an experimental upper bound on birefrin-

gence obtained in 1974 by very long baseline interferom-
etry of radio sources lensed in the Sun’s gravitational
field [35].
The paper is organized as follows. We will start with the

Souriau-Saturnini equations in Sec. II, which are the
application of the Mathisson-Papapetrou-Dixon equations
with the Tulczyjew constraint to a massless particle of spin
1, in the case of a Schwarzschild spacetime. Section III
has two aims: to show the similarity between the usual
geodesic equations and the equations obtained by taking
the photon’s spin into consideration; and to present a
different approach to the well-known gravitational lensing
in Schwarzschild spacetime based on the conserved
quantities derived here and on first order differential
equations. The following Sec. IV will be devoted to the
numerical study of the complicated equations of motion
with a spin obtained from Sec. II. In light of the numerical
integrations and the similarity of the spinning equations
and the geodesic equations, the last Sec. V presents a
perturbative solution to the Souriau-Saturnini equations in
Schwarzschild spacetime, which will allow us to interpret
the differences introduced by the spin of the photon in
gravitational lensing.

II. SPINNING MASSLESS PARTICLES

A. The Souriau-Saturnini equations

We use the shorthand notations,

RðSÞμν≔Rμ
ναβSαβ and RðSÞðSÞ≔RμναβSμνSαβ: ð2:1Þ

We also suppress indices by using linear maps, i.e.,
S ¼ ðSμνÞ, and we write P ¼ ðPμÞ. Assuming the consis-
tency condition RðSÞðSÞ ≠ 0, the equations of motion of
photons in space-time [17] read

_X ¼ Pþ 2

RðSÞðSÞ SRðSÞP; ð2:2Þ

_P ¼ −s
PfðRðSÞÞ
RðSÞðSÞ P; ð2:3Þ

_S ¼ P _̄X − _X P̄ : ð2:4Þ

Here P̄ denotes the covector associated to the vector P via
the metric: P̄μ ≔ gμρPρ. We denote the Pfaffian of a
skewsymmetric linear map F as PfðFÞ. It is the square
root of the determinant of the linear map, noting that the
determinant of a skewsymmetric matrix can always be
written as a perfect square. An alternative definition of the
Pfaffian is PfðFÞ ¼ − 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgαβÞ

p
εμνρσFμνFρσ with εμνρσ

the Levi-Civita symbol such that ε1234 ¼ 1.
For a derivation of these Eqs. (2.2)–(2.4) in English,

see [33].

B. Metric

The Schwarzschild metric can be expressed in an
isotropic coordinate patch ðXμÞ ¼ ðx; tÞ by

g ¼ −B2kdxk2 þ A2dt2 ð2:5Þ

with

A ≔
r − a
rþ a

; B ≔
�
rþ a
r

�
2

;

r ≔
ffiffiffiffiffiffiffiffiffi
x · x

p
; 0 < a < r; ð2:6Þ

where x ¼ ðx1; x2; x3Þ and k · k is the Euclidean norm. If
ðρ; θ;φ; tÞ are the Schwarzschild coordinates, the isotropic
polar ones ðr; θ;φ; tÞ are related by

ρ¼ r

�
1þGM

2r

�
2

or r¼ 1

2

�
ρ−GMþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðρ− 2GMÞ

p �
:

ð2:7Þ

Recall that a ¼ 1
2
GM is the Schwarzschild radius.
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The vector product, which abounds in computations
involving spin, take a simple form in isotropic coordinates.
Therefore we adopt these coordinates. However they have
the drawback, that including the cosmological constant,
which is straight forward in the Schwarzschild coordinates,
becomes difficult. This inclusion will be dealt with in a
future publication.
We have the following Christoffel symbols:

Γj
ii ¼−Γi

ji¼−Γj
jj ¼

2axj

r2ðrþaÞ ; Γj
44 ¼

2ar3ðr−aÞxj
ðrþaÞ7 ;

Γ4
4j¼

2axj

rðrþaÞðr−aÞ ; ð2:8Þ

for all i ≠ j ¼ 1, 2, 3, no summation over repeated indices.
For the Riemann tensor Rμ

ναβ ¼ ∂αΓμ
βν − ∂βΓμ

αν þ � � �
with i, j and k all different, we have

Ri
jij ¼

2a½2ðxkÞ2− ðxiÞ2− ðxjÞ2�
r3ðrþaÞ2 ; Rj

iki ¼−
6axjxk

r3ðrþaÞ2 ;

ð2:9Þ

R4
i4i¼

2a½2ðxiÞ2− ðxjÞ2− ðxkÞ2�
r3ðrþaÞ2 ; R4

i4j¼
6axixj

r3ðrþaÞ2 :

ð2:10Þ

The Ricci tensor vanishes.

C. Momentum and spin

In the above coordinate system, the (future pointing)
4-momentum of the photon is written as

P ¼
� p

B

kpk
A

�
ð2:11Þ

with p ∈ R3nf0g, the spatial linear momentum, and kpk ≔ffiffiffiffiffiffiffiffiffi
p · p

p
(Euclidean scalar product). We suppose positive

energy, kpk > 0. The 4-momentum is lightlike, P2 ¼ 0.
The map S is skewsymmetric with respect to the

metric: gðSV;WÞ ¼ −gðV; SWÞ for all vectors V and W.
Accordingly, the spin tensor is defined by the Tulczyjew
constraint SP ¼ 0.
For given P, the general solution of the Tulczyjew

constraint is parametrized by the three components of
the spin vector s ∈ R3 that we suppose nonvanishing,

S ¼ ðSμνÞ ¼
 

jðsÞ − ðs×pÞ
kpk

A
B

− ðs×pÞT
kpk

B
A 0

!
: ð2:12Þ

The vector-product is with respect to the Euclidean metric,
and we define the linear map jðsÞ∶p ↦ s × p. We have

−
1

2
TrðS2Þ ¼ s2; ð2:13Þ

with the longitudinal spin, or “scalar” spin,

s ≔
s · p
kpk ; ð2:14Þ

which turns out to be a constant of the system [16].
The scalar spin s is not to be confused with the norm
ksk of the spin vector. The helicity or handedness of the
photon is signðsÞ.
In the Schwarzschild metric we obtain with the

notations (2.1),

PfðRðSÞÞ ¼ 48a2r4

ðrþ aÞ12kpk ½x × p · s�ðs · xÞ; ð2:15Þ

RðSÞðSÞ ¼ 8ar
ðrþ aÞ6 ½3½x× p · s�2=kpk2 − 3ðs · xÞ2 þ s2r2�;

ð2:16Þ

SRðSÞP≕
�
c

d

�
with ð2:17Þ

c ¼ 12ar3

ðrþ aÞ8
�
ðs · xÞ2p − kpksðs · xÞx − ½x × p · s�s × x

þ ½x × p · s�
�
x ·

p
kpk

�
s ×

p
kpk

�
; ð2:18Þ

d ¼ 12ar
ðr − aÞðrþ aÞ5 ½sðs · xÞðx · pÞ − ksk2=kpkðx · pÞ2

þ kpkðksk2 − s2Þr2 − 2½x × p · s�2=kpk�: ð2:19Þ
The following vector identity will be useful:

½u×v ·w�2¼kuk2kvk2kwk2þ2ðu ·vÞðu ·wÞðv ·wÞ
−kuk2ðv ·wÞ2−kvk2ðu ·wÞ2−kwk2ðu ·vÞ2:

ð2:20Þ

D. Conservation laws

The group of isometries of Schwarzschild spacetime is
Oð3Þ ×R, its generators are the Killing vector fields of the
metric (2.5), Z ¼ εijkω

jxk∂=∂xi þ ϵ∂=∂t, where ω ∈ R3

and ϵ ∈ R stand for infinitesimal rotations and time trans-
lations, respectively; the εijk are the structure constants of
soð3Þ. Using the general expression [18]

ΨðZÞ ¼ PμZμ þ 1

2
Sμν∇μZν ð2:21Þ

of the “moment map”, Ψ, associated with a Killing vector
field, Z, together with the expressions (2.11) and (2.12) for
P and S, we find in a straightforward fashion ΨðZÞ ¼
−L · ωþ Eϵ where
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E ¼ r − a
rþ a

kpk þ 2ar
ðrþ aÞ4kpk ½x × p · s�; ð2:22Þ

is the conserved energy and

L ¼
�
rþ a
r

�
2

x × pþ r − a
rþ a

sþ 2a
r2ðrþ aÞ ðs · xÞx;

ð2:23Þ
the conserved angular momentum featuring both an extra
spin contribution. The latter equation defines an affine map
between spin andangularmomentum.Wewill use its inverse,

s ¼ rþ a
r − a

�
L −

�
rþ a
r

�
2

x × p −
2a

r2ðrþ aÞ ðL · xÞx
�
:

ð2:24Þ

E. Specifying the Souriau-Saturnini equations

Now that we have defined the metric together with the
objects appearing in the equations of motion and
the conserved quantities, we are ready to spell out the
Souriau-Saturnini equations (2.2)–(2.4) for the case of
Schwarzschild spacetime.
Let us introduce the shorthand,

D ≔ r2ðs · pÞ − 3ðp · xÞðs · xÞ: ð2:25Þ

To obtain the equations of motion in 3-space, we trade
the affine parameter τ for the coordinate time t using (2.2),

dt
dτ

¼ rþ a
r− a

kpk
�

sDkpk
s2r2kpk2 − 3ðs · xÞ2kpk2 þ 3½x× p · s�2

�
;

ð2:26Þ

which we assume nonvanishing. By abuse of notation we
write τðtÞ for the inverse function of tðτÞ and we do not
distinguish x ¼ xðtÞ ¼ xðτðtÞÞ and likewise for p and s.
Then we have, from the Souriau-Saturnini equations (2.2)–
(2.4) and (2.26),

dx
dt

¼ r2ðr − aÞ
kpkðrþ aÞ3D fr2ðs · pÞp − 3kpk2ðs · xÞx

þ 3½x × p · s�x × pg; ð2:27Þ

dp
dt

¼ 2a
kpkðrþ aÞ4D

	
r2ðr − aÞ

�
ðs · pÞðp · xÞ

−
3r

ðrþ aÞ3 ðs · xÞ½x × p · s�
�
p

− rkpk2½Dþ rðr − aÞðs · pÞ�x

þ 3ðr − aÞ½x × p · s�ðp · xÞx × p



; ð2:28Þ

ds
dt

¼ 1

kpkðrþaÞ4Df3ðr−aÞðrþaÞ3½ð−r2kpk2

þðx ·pÞ2Þs×pþð2kpk2ðx ·sÞ− ðx ·pÞðs ·pÞÞx×p�
þ2arDððx ·sÞp− ðx ·pÞsÞþ2aðr−aÞð−r2ðs ·pÞ2x
−3½x×p · s�2xþ r2ðx · sÞðs ·pÞp
þ3½x×p · s�ðx ·sÞx×pÞg: ð2:29Þ

With the equations above, we can verify that the
conserved quantities, namely the scalar spin (2.14), the
energy (2.22) and the total angular momentum (2.23) are
conserved. We have indeed dE=dt ¼ dL=dt ¼ ds=dt ¼ 0.
We can simplify the system by only considering the

equations of position and momentum (2.27), (2.28) and by
eliminating ½x × p · s� and ðs · xÞ in favor of the conserved
angular momentum L using Eq. (2.24) and by eliminating
ðs · pÞ in favor of the conserved scalar spin s using
equation (2.14). We use the following relations:

x×p ·s¼ rþa
r−a

�
x×p ·L−

�
rþa
r

�
2

ðr2kpk2−ðx ·pÞ2Þ
�
;

ð2:30Þ

s · x ¼ L · x; ð2:31Þ

s · p ¼ skpk: ð2:32Þ

We are thus left with six equations for six unknown
functions of t, which will be spelled out later, (5.5), (5.6).
We also have a formula for the norm of p from the

conserved quantities (2.22) and (2.23),

kpk ¼ r − a
rþ a

ðrþ aÞ2E − 2ar
ðr2−a2Þkpk ðx × p ·LÞ

ðr − aÞ2 − 2a
rkpk2 kx × pk2 ð2:33Þ

and

d
dt

�
p

kpk
�

¼ 2a
ðrþ aÞ4D

	
ð3rðs · xÞðx · pÞ

− ð2r − aÞðs · pÞr2Þ
�
x −

ðx · pÞp
kpk2

�
þ 3ðr − aÞ ðx · pÞ

kpk2 ½x × p · s�x × p



: ð2:34Þ

Noticing that this last equation and the three equations for
position only depend on p=kpk our system effectively
reduces to five equations.
The results above can already by found in Saturnini’s

thesis [17] of 1976.
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F. Radial case

The first observation is that in the radial case, i.e., with an
initial momentum parallel to the initial position, the
equations of motion (2.27)–(2.29) reduce to those of the
radial geodesics,

dx
dt

¼ r2ðr − aÞ
ðrþ aÞ3

p
kpk ; ð2:35Þ

dp
dt

¼ −
2ar2

ðrþ aÞ4 p; ð2:36Þ

ds⊥
dt

¼ −
2ar2

ðrþ aÞ4 s
⊥: ð2:37Þ

While the differential equation (2.36) displays the well-
known redshift effect of light, it is striking that we have the
same expression (2.37) for the evolution of the transverse
spin. This can be expected when looking at the Souriau–
Saturnini equations (2.2)–(2.4) and noticing that the red-
shift terms in (2.36) and (2.37) come from the covariant
derivative. Indeed, when the photon is following the
geodesic trajectory, the Souriau-Saturnini equations reduce
to the geodesic equations i.e., _X ¼ P and _P ¼ _S ¼ 0,
meaning that both P and S are parallel transported.
We also take the opportunity to note that Eq. (2.22) tells

us that the conserved energy E is modified by the transverse
spin in general, but not in the radial case.

III. NULL GEODESICS AND SPINLESS
GRAVITATIONAL LENSING

In this section, we first show that we recover the known
spinless, massless case, albeit in a slightly different form
than the usual geodesic equations, by putting s ¼ 0 in our
equations, and we rederive the well-known deviation
angle Δφ.

A. Some preliminaries

If we put s ¼ 0 in (2.22) and (2.23), the Noether
quantities are of the form,

E ¼ r − a
rþ a

kpk and L ¼
�
rþ a
r

�
2

x × p: ð3:1Þ

From dX=dτ ¼ P, and Eq. (2.11), we find

p ¼
�
rþ a
r

�
2 dx
dτ

: ð3:2Þ

For null geodesics, P2 ¼ 0, we have���� dxdτ
���� ¼ Er2

r2 − a2
: ð3:3Þ

Taking advantage of the conservation of total angular
momentum, L, we compute x ×L and end up with

dx
dτ

¼ −
r2

ðrþ aÞ4 x ×Lþ λx; ð3:4Þ

where the function λ satisfies [using (3.2), (3.4) and (3.3)]

λ ¼ x · p
ðrþ aÞ2 and λ2 ¼ E2r2

ðr2 − a2Þ2 −
L2r4

ðrþ aÞ8 ð3:5Þ

with L ¼ kLk. We note that λ2 ≥ 0 implies a condition on
E, L and r. By taking the scalar product on both sides of
Eq. (3.4) with x, we obtain the simple expression,

dr
dτ

¼ λr: ð3:6Þ

We record for further use that

dλ
dτ

¼ −r2
�
E2ðr2 þ a2Þ
ðr2 − a2Þ3 −

2L2r2ðr − aÞ
ðrþ aÞ9

�
: ð3:7Þ

Let us stress that the latter equations lead precisely to the
equations of null geodesics given in terms of the Christoffel
symbols (2.8). Here we used, instead, the conservation
laws, including a number of computational tricks, to obtain
the velocity (3.4). Note that the time-component of the
geodesic equation yields (up to a global sign)

dt
dτ

¼ E
�
rþ a
r − a

�
2

; ð3:8Þ

which is clearly nonvanishing. Comparison with the gen-
eral equation (2.26), which is ill-defined in the limit s → 0,
shows a striking similarity with Eq. (3.8), namely the latter
is identical to the former provided we ignore the spin-
dependent factor on the rhs.
To make the link with Eqs. (2.27) and (2.28), let us write

down the equations of motion of the null geodesic in the
form,

dx
dt

¼ r2ðr − aÞ
ðrþ aÞ3kpkp; ð3:9Þ

dp
dt

¼ 2a
ðrþ aÞ4kpk fðr − aÞðp · xÞp − ð2r − aÞkpk2xg:

ð3:10Þ

B. Lensing in weak fields

We restrict our analysis to geodesics remaining in
regions of space where the gravitational field is weak,
i.e., where all distances rðtÞ remain much larger than the
Schwarzschild radius a,
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αðtÞ ≔ a
rðtÞ ≪ 1; ð3:11Þ

and linearize with respect to α. We take our initial
conditions at τ ¼ t ¼ 0,

x0 ¼

0B@−x0
b

0

1CA and p0 ¼

0B@p0

0

0

1CA: ð3:12Þ

To alleviate notations we will write from now on x ¼
ðx1; x2; x3Þ with lower indices. Following tradition we
consider the photon in the x1 − x2 plane with energy
p0 > 0 coming in from the left, x0 > 0, with positive
impact parameter b. We suppose a ≪ b. Then we have to
first order in α,

E ∼ ð1 − 2α0Þp0;
L

E
∼ −ð1þ 4α0Þb

0B@ 0

0

1

1CA
and λ ∼� E

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
L
E

�
2 1 − 8α

r2

s
: ð3:13Þ

The equations of motion (3.4) become

_x1 ∼ −Lð1 − 4αÞ x2
r2

þ λx1; ð3:14Þ

_x2 ∼þLð1 − 4αÞ x1
r2

þ λx2; ð3:15Þ

_x3 ¼ 0; ð3:16Þ

implying

_φ ¼ x1 _x2 − x2 _x1
r2

∼ −
1 − 4α

r2
L: ð3:17Þ

Equation (3.6), _r ¼ λr, tells us that the distance of closest
approach rp (“perihelion”) is reached when λ vanishes.
Therefore,

L=E ∼ b ∼ ð1þ 4αpÞrp; ð3:18Þ

and rp ∼ b − 4aþ 4ab=r0.
Our aim is to compute the scattering angle Δφ for

x0 → ∞. As we have set the cosmological constant to
zero, spacetime is flat far away from the mass, and there
coordinate and physical angles coincide. Denoting by φp

the angle of closest approach, we have Δφ ¼ π − 2φp.
We can compute φp by integrating

dφ
dr

¼ _φ

_r
¼ _φ

λr
∼ ∓ 1 − 4α

r2
L
E

�
1 −

�
L
E

�
2 1 − 8α

r2

�
−1=2

∼ ∓ 1þ 4αp
rp

1 − 4α

r=rp
½ðr=rpÞ2 − 1�−1=2

×

�
1 − 4

α − αp
ðr=rpÞ2 − 1

�
ð3:19Þ

between r0 ¼ ∞ and rp. In this interval both r and φ
decrease, and we must choose the positive signs in
Eq. (3.19). Our initial angle is φ0 ¼ π, and we obtain with
u ≔ r=rp,

π − φp ∼ ð1þ 4αpÞ
Z

∞

1

1 − 4αp=u

u
½u2 − 1�−1=2

×

�
1 − 4αp

1=u − 1

u2 − 1

�
du ¼ π

2
þ 4

a
rp

: ð3:20Þ

Note the integrable singularity at the perihelion, u ¼ 1.
Finally, in linear approximation, the scattering angle takes
its famous value: Δφ ∼ 4GM=rp.
We thus recover the known geodesic equations in the

Schwarzschild metric, and the well-known deflecting angle
Δφ, from the Souriau-Saturnini formalism and putting
s ¼ 0. The resulting equations of motions (3.9)–(3.10)
are first order equations, but are strictly equivalent to the
second order geodesic equations. Now, the next step is to
consider the spinning case, s ≠ 0, hence considering the
full equations of motions (2.27)–(2.29). This is done in the
following sections.

IV. NUMERICAL SOLUTIONS

Since solving the system of equations (2.27), (2.28) is
not straightforward, we will use the help of numerical
integration to propagate specific initial conditions. These
numerical solutions will guide us towards perturbative
ones.
The numerical integration meets the usual problem of

accuracy errors when computing the difference of two
almost identical numbers. It becomes relevant here because
the present system of equations involves such computa-
tions, especially when conserved quantities are involved,
e.g., (2.30). This is why it is better to numerically solve all
of the nine differential equations (2.27)–(2.29), including
those of the spin.
Even with such measures, integrating these equations

over a long time can be tricky with MATHEMATICA. The
step algorithm seems overly cautious and is eager to stop
the integration process due to stiffness problems, even
though all quantities involved are well defined, finite, and
smoothly evolving. We need to select the right precision
parameters to keep the step algorithm from stopping the
integration. Yet, this does not create instabilities in the
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trajectory of the simulation, and we obtain very precise
results.
It is convenient to take the initial conditions not at

infinity but at perihelion r0 ¼ rp of the trajectory of the
photon around the star located at the origin,

x0 ¼

0B@ r0
0

0

1CA; p0 ¼

0B@ 0

p0

0

1CA; s0 ¼

0B@ 0

s

s⊥0

1CA:

ð4:1Þ
Note that the first component of the initial transverse spin
s⊥0 vanishes, because at perihelion dx=dtj0 · x0 ¼ 0.
We use SI units here. The photon starts with a wave-

length of λ0 ¼ 600 nm and a helicity of χ ¼ þ1, the star
has a Schwarzschild radius of a ¼ 3 × 103 m, and the
initial distance from the center of the star to the perihelion is
r0 ¼ 3 × 105 m. The numerical integration runs from 0 to
0.1 s. While we have s ¼ ℏ in the initial conditions (4.1),
we will put s⊥0 ¼ 0 for the time being, because otherwise
the trajectory leaves the neighborhood of the geodesic
when s⊥0 is close to ℏ. We will come back to the transverse
spin in the perturbative analysis in the next section.
Figure 1 shows the trajectory of the spinning photon in

the geodesic plane. This trajectory is almost identical to the
null geodesic one. Indeed, the difference between the
coordinates x1 and x2 of spinning and spinless photons
is of the order of the nanometer at the end of the numerical
integration. The main differences are the transverse com-
ponents x3 of the trajectory, and p3 of the momentum,
pictured in Figs. 2 and 3 respectively. While the geodesic
trajectory is contained within the plane ðx1; x2Þ, the
equations of motion (2.27)–(2.29) imply nonvanishing
transverse components x3 and p3.
The angle β of the trajectory going out of the plane is

small, but constant. As shown in Fig. 2, it is about
β ¼ −6.3 × 10−800. The sign of the angle β depends directly

on the helicity χ. Indeed when changing the helicity from
þ1 to −1, the amplitude of the angle stays the same, but the
sign switches. We see from numerical integrations that the
trajectories of two different helicity photons are symmetric
with respect to the null geodesic. The transverse momen-
tum p3 also shows the same behavior under helicity
changes and its sign is again opposite to that of x3.
In the next section, we will confirm and explain these

results with a perturbative approach.

V. PERTURBATIVE SOLUTIONS

We wish to compare the behavior of our system (2.27),
(2.28) describing the trajectories of photons with their due
spin to the behavior of null geodesics.

5 10 15 20 25 30
x2 [106m]

–0.8

–0.6

–0.4

–0.2

0.2

x1 [106m]

FIG. 1. Trajectory of the spinning photon in the geodesic plane.
Visually, this trajectory is the same as that of the spinless photon.

0.02 0.04 0.06 0.08 0.10
t [s]

–8.×10–6

–6.×10–6

–4.×10–6

–2.×10–6

x3 [m]

FIG. 2. Component x3 of the trajectory of the photon as a
function of time. The spinning photon leaves the geodesic plane,
albeit with a very small angle.

0.02 0.04 0.06 0.08 0.10
t [s]

1.×10–15

2.×10–15

3.×10–15

4.×10–15

5.×10–15

6.×10–15

p3/ p

FIG. 3. Component p3 of the momentum of the photon,
normalized to the norm of the momentum, as a function of time.
Just like with x3, while the geodesic momentum is contained in
the plane ðp1; p2Þ, the momentum of the spinning photon has a
component perpendicular to that plane. Notice that the sign of p3

is opposite to that of x3.
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Now, define two constant small parameters,

α ¼ a
r0

and ϵ ¼ ℏ
r0p0

; ð5:1Þ

where, for the sun, α is typically of the order of 10−6 and ϵ
of the order of 10−16 for photons in the visible spectrum.
A small ϵ corresponds to photons having a wavelength
much smaller than its distance to the star, which is a
sensible hypothesis. Due to the particularities of this system
of equations, namely D (2.25) being of order ϵ, we must
consider second order terms in ϵ to obtain the first order
equations. In α, linear terms will be sufficient.
Let us redefine the spin by setting

s≕ χℏ and s⊥0 ≕wℏ; ð5:2Þ
where χ ¼ �1 is the helicity of the photon and w is finite
and dimensionless. We easily obtain the conserved quan-
tities (2.22) and (2.23) from the initial conditions (4.1),

E ∼ ð1 − 2αÞp0 and

L ∼ r0p0

0B@ 0

ð1 − 2αÞχϵ
ð1þ 2αÞ þ ð1 − 2αÞwϵ

1CA: ð5:3Þ

We define the normalized quantities,

fxL ¼ x ·L
rχs

and fxps ¼ x × p · s
rpχs

: ð5:4Þ

We can then write the Eqs. (2.27)–(2.28) as

dx
dt

¼ r2ðr − aÞ
ðrþ aÞ3ðrkpk − 3ðx · pÞfxLÞ
× ½rp − 3kpkfxLxþ 3fxpsx × p�; ð5:5Þ

dp
dt

¼ 2a

ðrþ aÞ4ðrkpk − 3ðx · pÞfxLÞ
×

�
rðr − aÞ

�
ðx · pÞ − 3

r3

ðrþ aÞ3 sχ
fxLfxps�p

− rkpkðð2r − aÞkpk − 3ðx · pÞfxLÞx
þ 3ðr − aÞfxpsðx · pÞx × p

�
: ð5:6Þ

Let us momentarily forget the physical aspect of this system
and set ϵ ¼ 0 in (5.3). Then with the initial conditions (4.1)
the differential equations (5.5) and (5.6) reduce to those of
the null geodesics (3.9) and (3.10). Indeed, from (2.30), we

have initially fxpsj0 ¼ 0 and fxLj0 ¼ 0, reducing the initial
system to the geodesic one. If we are on a geodesic
trajectory, which is in the plane spanned by x0 and p0,

then fxL ¼ 0 and fxps ¼ 0 continue to vanish due to the
geodesic conservation of angular momentum, and the
photon continues on the geodesic trajectory.
This heuristic argument and our numerical results in the

last section motivate the ansatz,

x ∼

0B@ x1 þ ϵy1 þ ϵ2z1
x2 þ ϵy2 þ ϵ2z2

ϵy3 þ ϵ2z3

1CA and

p ∼

0B@p1 þ ϵq1 þ ϵ2u1
p2 þ ϵq2 þ ϵ2u2

ϵq3 þ ϵ2u3

1CA; ð5:7Þ

where x1, x2, p1, p2 solve the geodesic equations. Define
rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
and similarly for pg. To leading order, we

have

fxL ¼ ð1 − 2αÞ x2
rg

þ ð1þ 2αÞχ y3
rg

þOðϵÞ; ð5:8Þ

fxps ¼ χ
r0p0

rgpg

�
wþ 2

a
rg

x1y1 þ x2y2
r2g

−
�
1þ 2αþ 2

a
rg

�
×
y1p2 − y2p1 þ x1q2 − x2q1

r0p0

�
þOðϵÞ: ð5:9Þ

In order to recover the geodesics in the limit ϵ → 0, we
thus need these two leading terms to be zero implying the
initial transverse spin to vanish and some conditions on first
order terms in ϵ that are valid at least to first order in α,

w ∼ 0; ð5:10Þ

y3 ∼ −χð1 − 4αÞx2; ð5:11Þ

x1y1 þ x2y2 ∼ 0; ð5:12Þ

y1p2 − y2p1 þ x1q2 − x2q1 ∼ 0: ð5:13Þ

Plugging the ansatz (5.7) into the six scalar
equations (5.5) and (5.6) we obtain twelve equations:
six in ϵ0 and six in ϵ1. The six equations in ϵ0 are
equivalent to the four equations (5.10)–(5.13). The six
equations in ϵ1 yield

y1∼y2∼q1∼q2∼q3∼OðαÞ and z3∼OðαÞ: ð5:14Þ

At this point, we may even obtain the terms of order αϵ
giving us constraints on z1 and on the initial transverse spin,
and we end up with y1 ∼ y2 ∼ q1 ∼ q2 ∼Oðα2Þ and

ϵy3 ¼ −ϵχ
�
ð1 − 4αÞt − 4αr0 ln

tþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ t2

p
r0

�
; ð5:15Þ
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ϵq3 ¼ 2ϵαχp0

�
1 −

r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ t2

p �
; ð5:16Þ

and our perturbative solution reads

x ¼

0BBBBBB@
r0 þ 4αr0

�
1 −

ffiffiffiffiffiffiffiffiffi
r2
0
þt2

p
r0

�
t − 4αr0 ln

tþ
ffiffiffiffiffiffiffiffiffi
r2
0
þt2

p
r0

−ϵχ
�
ð1 − 4αÞt − 4αr0 ln

tþ
ffiffiffiffiffiffiffiffiffi
r2
0
þt2

p
r0

�

1CCCCCCAþOðϵ2; α2Þ;

ð5:17Þ

p ¼

0BBBBBB@

−4αp0
tffiffiffiffiffiffiffiffiffi
r2
0
þt2

p

p0 − 2αp0

�
1 − r0ffiffiffiffiffiffiffiffiffi

r2
0
þt2

p
�

2ϵαχp0

�
1 − r0ffiffiffiffiffiffiffiffiffi

r2
0
þt2

p
�

1CCCCCCAþOðϵ2; α2Þ: ð5:18Þ

Finally, using (2.24) and s ¼ p
kpk sþ s⊥, we obtain the

perturbative solution for the transverse spin,

s⊥ ¼ χℏ

0BB@
− t

r0
ð1 − 4αÞ þ 4α ln

tþ
ffiffiffiffiffiffiffiffiffi
r2
0
þt2

p
r0

− 4αt2

r0
ffiffiffiffiffiffiffiffiffi
r2
0
þt2

p
0

1CCAþOðϵ2; α2Þ:

ð5:19Þ

The most striking effect of the spin on the trajectory of
the photon is that it leaves the geodesic plane, but its
projection on this plane coincides up to order ϵα with the
geodesic. The angle β between the trajectory and the
geodesic plane is obtained from β ∼ dðϵy3Þ=dx2 at infinity,
which is immediate with the help of (5.11),

β ∼ −ð1 − 4αÞ χλ0
2πr0

ð5:20Þ

with the definition (5.1) for ϵ and where λ0 is the wave-
length of the photon at perihelion. Notice that this angle
depends both on the helicity of the photon χ ¼ �1 and on
its wavelength. Photons of the two different helicities
follow symmetric trajectories with respect to the geodesic
and the dependence on λ0 produces a rainbow effect. In the
case of the Sun, with r0 its radius, this means that two
photons starting at the perihelion with opposite helicity
will have an offset given by 2β ¼ 5.7 × 10−1100. If these two
photons then travel to the Earth, the offset between them
would be of the order of 41 μm in perfect conditions. The
angle β has the curious property of being independent of
the mass of the star, at lowest order in α. This seems to

imply that this angle does not vanish as the mass of the star
becomes arbitrarily small. Let us note though, that the limit
α → 0 is ill defined in the equations of motion and therefore
in the perturbative solution. Indeed, the first of the Souriau-
Saturnini equations (2.2) is independent of a because both
RðSÞðSÞ and SRðSÞP are proportional to a. The introduction
of a cosmological constant will regularize this singularity,
even at small scales, as will be shown in a forthcomingwork.
Also, there is no correction of order ϵα to the usual

deviation angle Δφ in the plane, computed in Sec. III B.
Note that the transverse component of the momentum

quickly reaches its maximum at a distance of a few r0,
which is ϵq3max ¼ 2ϵαχp0. Since the angle β comes from a
spin-orbit-like effect of the star on the trajectory, we would
expect it to only act close to the star. To avoid this problem,
we define γ to be the angle between the geodesic plane and
the momentum carried by the spinning photon. We have

γ ∼ χ
aλ0
πr20

: ð5:21Þ

This angle does depend on the mass of the star and is even
smaller than β. For the Sun we have 2γ ¼ 4.9 × 10−1600.
Our perturbative results for y3 and q3 above match our

numerical results with a relative error of about 10−9 and
10−4.5, respectively. The match is better for y3 because it
contains terms of order 1 and of order α, while q3 is of
order α.
The analysis by Gosselin, et al. [34] starting from the

Bargmann-Wigner equations shows birefringence with an
angle equal to our γ but in the geodesic plane.

VI. CONCLUSIONS

For photons, quantum mechanics teaches us that the
longitudinal component s of the spin is �ℏ. This is in
harmony with the conservation of s, which follows in
general from the Souriau-Saturnini equations. Quantum
mechanics also teaches us that the norm of the transverse
spin ks⊥k is ℏ. Two remarks arise from the present work.
First, we saw in the radial case that the photon follows the
null geodesic trajectory, and that the transverse spin under-
goes the same evolution as the momentum: it is parallel
transported. However, in our nonradial perturbative solu-
tion, Eq. (5.19), this norm vanishes at perihelion and then
grows linearly with time t (to leading order). The linear
growth implies that our perturbation theory breaks down
for large times. This instability is absent from a generic
Robertson-Walker metric where the norm of the transverse
spin is proportional to the inverse Hubble parameter [33].
With its continuously varying transverse spin, the

instability reminds us of the instability of the classical
hydrogen atom and its continuously varying energy.
Indeed, the equations we use here are purely classical.
The longitudinal spin is a constant of the system. Its
definition comes from the coadjoint representation of the
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Poincaré group [18,36]. The transverse spin is not
conserved. Its two degrees of freedom come from the
introduction of the dipole moment. However, it is not
clear from the geometrical derivation of the equations of
motion, if these 2 degrees of freedom are the transverse
spin in quantum mechanics. A way to determine their
exact meaning would be to derive the Souriau-Saturnini
equations (2.2)–(2.4) from quantum mechanics, à la eiko-
nale. This is currently under investigation.
Notice also that the out-of-plane momentum is in the

opposite direction with respect to the offset. This means
that the star is intrinsicly acting on the photon’s position
and momentum, i.e., a spin-orbit effect. Yet, at large time t
in the perturbative solution, we see that the trajectory’s
offset keeps increasing linearly, while the momentum stays
constant and in the opposite direction. We would expect,
once we are sufficiently far away from the star, that the star
loses grip on the photon. Since spacetime is flat far away,
we expect the photon’s momentum to carry the trajectory,
which is not what we find. This is in line with the fact
that we do not recover the equations of motion in flat
spacetime in the limit a → 0. We will see in a future work
that including the cosmological constant helps us mitigat-
ing this problem, namely recovering null geodesics “far
away” from the star, even at scales much smaller than those
the cosmological constant would suggest. The cosmologi-
cal constant also puts an upper bound to the transverse
spin, whose value still remains in conflict with quantum
mechanics.
For us, the most interesting features of birefringence

in the Schwarzschild metric are the out-of-plane
contributions to trajectory and momentum. First, we
have the linearly growing offset—given by an angle 2β,

Eq. (5.20)—between the trajectories of opposite polar-
izations. Then, the Souriau-Saturnini equations in the
Schwarzschild metric become singular far away from the
star, a singularity absent in the Kottler metric. Therefore we
expect the offset induced by the angle γ (5.21) to play a
more important role in observations. (The computations
with nonvanishing cosmological constant are complicated
and will be presented in a later work.) In any case, both
angles, β and γ are wavelength dependent and the offset
must feature a rainbow effect.
Despite the mentioned classical instability, we wonder

whether this type of gravitational birefringence is acces-
sible to experimental verification. The upper bound of the
1976 very long baseline interferometry experiment [35]
achieves an upper limit for the birefringence angle β (or γ?)
of the order of 10−300 for λ ∼ 10 cm. With our formulas, we
get for this wavelength β ∼ 10−600 and γ ∼ 10−1100. After
40 years, the needed accuracy for testing our formulas
should not be out of reach.
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