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In the first three years of gravitational wave (GW) astronomy, more than ten compact binary
coalescences (CBCs) have been detected. As the sensitivities and bandwidths of the detectors improve
and new detectors join the network, many more sources are expected to be detected. The goal will not only
be to find as many sources as possible in the data but to understand the dynamics of the sources much more
precisely. Standard searches are currently restricted to a smaller parameter space which assumes aligned
spins. Construction of a larger and denser parameter space, and optimizing the resultant increase in false
alarms, pose a serious computational challenge. We present here a two-stage hierarchical strategy to search
for CBCs in data from a network of detectors and demonstrate the computational advantage in real life
scenario by introducing it in the standard PYCBC pipeline with the usual restricted parameter space. With
this implementation, we gain an enormous computational speed up, by a factor of ∼20, over the flat search
on LIGO’s first observation run (O1) data. The saving in the computational cost will, in turn, may allow us
to search for precessing binaries, will provide more options to search for sources of different kinds and help
us to support the never ending urge for extracting more science out of the data with limited resources.
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I. INTRODUCTION

During the first (O1) and the second (O2) observation
runs, the twin LIGO (Laser Interferometric Gravitational-
wave Observatory) detectors observed gravitational wave
(GW) signals from 11 events with confidence—10 mergers
of binary black holes (BBHs) and one double neutron star
coalescence [1]. The neutron star coalescence had electro-
magnetic counterparts in almost every band and is even
now being followed by many electromagnetic (radio)
telescopes. For the last two of the observations of compact
binary coalescences (CBCs), the data from the VIRGO
detector also was used supplementing the LIGO [1–9] data.
We soon expect to have a larger network of such inter-
ferometric detectors with KAGRA coming online soon, and
LIGO-India following in few years [10–12]. CBCs are
perhaps going to be the most abundant sources for the
current and next generation terrestrial interferometric GW
detectors [13].
However, GW signals are usually buried deep into noisy

interferometric strain data. To extract the signals from
CBCs, where phase can be precisely modeled, the method
of matched filtering is generally used [14–16] which is
optimal in several ways. The signal waveform for a

particular set of signal parameters is obtained from the
general theory of relativity by using various techniques
involving analytical approximations, perturbation theory,
numerical relativity, etc. [17–22]. The modeled signal is
then cross-correlated with the inverse noise power weighted
data from each of the detectors. This correlation is in fact
the maximum likelihood estimator. If the signal with a loud
enough correlation is simultaneously present in a pair of
detectors with matching parameters, we consider it as a
possible astrophysical signal, where the significance of
detection needs to be estimated from the statistical proper-
ties of the data. This is a simplistic picture however of how
coincident detection works. The difficulty lies in the fact
that we do not know the signal parameters a priori and
therefore a search must be carried out in the deemed
parameter space.
For these searches, we assume quasicircular orbits for the

CBCs. For circular orbits, the GWwaveforms depend upon
15 parameters which can be split into two distinct classes: 8
intrinsic and 7 extrinsic. The intrinsic parameters are the
component masses (m1, m2), individual spin angular
momenta (s1, s2), and the extrinsic parameters are sky
location (θ, ϕ), luminosity distance (dL), orbital inclination
(ι), time and phase of coalescence (tc, ϕc), and polarization
angle (ψ). The dynamics of the source depends only upon
the intrinsic parameters. We can model the generic GW
signal in the source frame using essentially the intrinsic
parameters and then transform it subsequently to the wave
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frame. For data analysis also, the intrinsic and extrinsic
parameters are dealt with differently. One makes use of the
symmetries in the signal model to efficiently search over
the parameters tc and ϕc (this will be described later in the
text). Similarly, the other extrinsic parameters can be dealt
with in a quick way [23,24]. However, for the intrinsic
parameters, we need to discretize the deemed parameter
space. This set of GW signal waveforms at discrete points
systematically sampled over the intrinsic parameters is
known as a template bank [25–29]. We then search for the
signal by correlating all the templates in the bank with the
detector data. To search for CBCs in current data from
LIGO-Virgo detectors, typically few hundred thousand
templates are needed to sample the parameter space with
sufficient density, which requires a formidable amount of
computation.
The computational cost for a matched filtering search in

the full parameter space is too large given the available
resources and hence is not feasible. The current searches
make a simplifying assumption to reduce the dimension-
ality of the parameter space—the spins of the binary
components are assumed to be aligned with the orbital
angular momentum. These nonprecessing templates can
detect a good part of the full parameter space when
precessional effects are not dominant [30]. With this set
up, matched filter based LIGO pipelines use the template
bank with minimal match (MM), the minimum value of
scalar product between any two normalized templates, of
0.97. For a search up to a total mass of the 100 M⊙,
∼250 000 templates are required [26,31]. Further, as the
low frequency limit of the sensitive band of the detectors is
reduced, the number of cycles of the CBC signals in the
detector bandwidth increases rapidly, which demands an
increase in the template density in the parameter space.
Further, better sensitivity at lower frequencies means that
we can also observe the heavier binaries, resulting in
extension of the detectable parameter space. Both these
effects together tend to increase the nonprecessing template
bank by at least a few times.
Computational cost is orders of magnitude larger when

searching for GW signals from precessing CBC systems. It
has been shown that, even for the restricted parameter space
of mass ratio less than 5, the precessing template bank with
MM ¼ 0.9 is more than 10 times larger than the corre-
sponding nonprecessing template bank with MM ¼ 0.97
[32]. Fortunately, precession of the binary becomes impor-
tant only when masses are unequal and orbital inclination is
not nearly face-on [30]. Since less power in GW is emitted
if the line of sight lies in the orbital plane, the chances of
detection of such binaries have been low, which is why one
could justify restricting the current matched filtering
searches for CBC to dominant mode(s) of nonprecessing
signal models only [33,34]. However, with progressively
increasing sensitivities of the detectors and the addition of
more detectors to the network, one can no longer afford to

miss precessing binaries and the interesting science that
they have to offer. While there are claims that, through
secular evolution, the component spins of the compact
binaries are more likely to align or antialign to the orbital
angular momentum when they enter LIGO’s sensitive band,
sensitive searches for precessing binaries are needed to test
such claims through null detections. Such searches are
clearly not feasible using the standard matched filtering
scheme with available computing resources. This makes a
strong case to develop cost reducing algorithms.
In general, due to the constant demand to extract more

science out of a given amount of data, computational costs
could get very high and perhaps out of reach of the current
available computational resources. The present matched
filtering searches employ the coincident detection strategy,
instead of the more detection efficient coherent strategy
because the coherent strategy is significantly computation-
ally more expensive than the coincident one [35]. It is
therefore very important to develop cost effective algo-
rithms for matched-filter based searches, which will allow
us to provide more computing resources to search for GWs
from other astrophysical sources, e.g., from millisecond
pulsars, and will enable us to perform more sophisticated
searches, e.g., the precessing coherent search online which
is the holy grail of the CBC searches.
In this paper, we propose a hierarchical strategy to search

for CBCs in data from a network of GW detectors, the goal
being to reduce the computational cost of the analysis. We
demonstrate the benefit of this method using spin-aligned
template banks. These banks have the advantage that there
are fewer parameters over which the search needs to be
carried out—there are only four intrinsic parameters to be
reckoned with, the two masses and two component spins
parallel to the orbital angular momentum. Also since the
systems do not precess, the orbital inclination parameter ι
becomes redundant.
Current searches like gstLAL, use singular value decom-

position (SVD) like algorithms to numerically reduce the
size of the nonprecessing template banks. This makes the
matched filtering part of the search computationally sig-
nificantly cheaper, however the reconstruction from the
SVD basis to the actual binary template filtered output
requires extra computation [36]. Therefore, there is no
overall significant saving in terms of computation as
compared to standard search. There are, still, some extra
benefits to be gained from PYCBC like standard searches
and speeding them up so that we can try to accommodate
higher modes and precessing effects in the templates. The
standard search is also called the “flat” search in the
literature [37–39], we use this terminology in this paper.
Here we introduce the hierarchical detection strategy to

speed up the matched filtering search using the PYCBC
pipeline [40–43]. We only consider a 2-stage hierarchical
search and compare it with the matched filtering search
similar to the one used for the analysis of advanced LIGO’s
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first observation run (O1) data. We also present a scheme to
estimate the false-detection background, that is necessary
to assign confidence levels to detected events.
The layout of the paper is as follows. In Sec. II, we

briefly describe the standard flat search or the single stage
search for CBCs with matched filtering. In Sec. III, we
review the previous use of hierarchical algorithm and we
discuss our current implementation of the 2-stage hierar-
chical search. Then in Sec. IV, we compare the results of
our implementation of the hierarchical search with the flat
search using aLIGO like simulated data. In Sec. V, we show
that the method performs nearly as well without any special
optimization. Finally in Sec. VI, we summarize and discuss
future directions and the procedure we would like to adopt
in these strategies. The method presented in this paper not
only shows a proof of concept, but its potential is also
demonstrated by applying it to real data.

II. PRELIMINARIES

A. The matched filter

The matched filter (MF) is noise weighted correlation of
the modeled GW signal (the template) with the data. It is an
optimal detection statistic (in the Neyman-Pearson sense),
surrogate of the maximum likelihood statistic when the
noise is stationary and Gaussian [14,16,44]. The math-
ematical form of the MF statistic, which is same as the SNR
(usually denoted by ρ) for normalized templates, is maxi-
mized over phase of coalescence analytically and also all
other parameters of the signal for nonprecessing wave-
forms, and is given by,

ρ≡max
λ

ðx; hðλÞÞ

¼ max
λ

�
4Abs

Z
∞

0

x̃�ðfÞðh̃þ ih̃Þðf; λÞ
SnðfÞ

df

�
; ð2:1Þ

where x is the time series strain data, hðλÞ is the normalized
expected GW signal for the source parameters of the binary,
given by λ and SnðfÞ is the noise power spectral density
(PSD). The round brackets denote a scalar product on the
space of data trains, which has been defined in Eq. (2.1) in
the Fourier domain. Tilde ( ∼) above a quantity denotes the
Fourier space representation of the time series representa-
tion of the function. Because of the maximization over
phase in the MF, in stationary Gaussian noise, the detection
statistic follows a Rayleigh probability distribution in
absence of the signal and a Rician distribution when a
signal is present in the data [45]. In general, we have no
knowledge of the signal parameters λ and therefore we
must search over the full parameter space to carry out the
maximization. The search over the time of coalescence tc is
performed in a quick way by using fast Fourier transform
(FFT) and for ϕc a basis of waveforms with ϕc ¼ 0, π=2 is
used to search over ϕc efficiently. For the rest of the
parameters, namely, the intrinsic parameters, as discussed

in the introduction, we require a template bank. The
template bank is constructed with MM of 0.97. In the
next subsection we describe how we construct the template
bank.

B. The template bank

The discrete sampling of the intrinsic parameters has to
be done with due care. Otherwise we may miss out signals
due to the loss of SNR because of the mismatch in the
template and signal parameters. There can be many reasons
for loss in SNR, mainly it is the phase mismatch which
matters the most, which may be due to inaccurate modeling
of the signal, etc. But one of the reasons is the mismatch
due to the discrete nature of the template bank. As the
templates are normalized, ðhðλÞ; hðλÞÞ ¼ 1, a match
between any of the two waveforms with slightly different
parameters can be written as follows:

Hðλ; λþ△λÞ≡ ðhðλÞ; hðλþ△λÞÞ
¼ 1 − ds2 ¼ 1 − gabðλÞ△λa△λb; ð2:2Þ

where we have kept lowest order terms in △λ and defined
the metric gab as:

gabðλÞ ¼ −
1

2

�
hðλÞ; ∂2h

∂λa∂λb ðλÞ
�
: ð2:3Þ

The distance ds and template space metric gab can be used
to systematically place templates in the bank with a given
value of MM, provided 1 −MM is small. Usually the
mismatch 1 −MM is chosen at the level of 3% [26], which
meansMM ¼ 0.97. This corresponds to a maximum loss of
about 10% of the astrophysical events within the detectable
range. The metric can be analytically calculated for inspiral
waveforms given by the post-Newtonian expansion. But
here, we use the full IMR waveforms with nonprecessing
component spins in the search. For such waveforms, there
is no sufficiently accurate analytic or semianalytic form
of the metric which can be used to construct a geometric
template bank. Therefore, the current searches use a
different approach which employs stochastic methods in
order to obtain a template bank [27,29], for which the
match is directly computed to obtain a stochastic placement
of the templates. If the match is close to unity, then the
metric is being used implicitly. If the match is not close to
unity as in the case of the coarse bank as explained in
Sec. III B 2, then the metric approximation fails.
A template bank depends on the PSD of the noise present

in the detector. When we have more than one detector, in
general, we have to deal with more than one PSD.
However, it is convenient to have a common template
bank, which facilitates the coincident detection approach
[26,33]. For the two LIGO detectors, we combine the two
PSDs into a single effective PSD by taking the harmonic
mean of the two PSDs. This effective PSD is used to
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construct a common template bank for the search. As the
strain noise from the LIGO detectors is neither stationary
nor Gaussian—there are glitches in the data—the coinci-
dent detection approach is preferred which naturally rules
out glitches and facilitates signal consistency checks for
astrophysical trigger selection and GW detection.

C. Coincidence and vetoes

Below we describe the criteria for coincident detection.
A coincident trigger must satisfy the following: (i) there are
corresponding triggers in each detector—the SNRs must
cross the preset thresholds for the same data segment,
(ii) the intrinsic parameters recovered independently for
each detector are such that they match (the same template
clicks) and (iii) the difference in the estimated times of
coalescence is not be more than light travel time between
the two detectors. This difference is allowed a small margin
of error because the noise can throw the triggers a little
away from their true coalescence times. This is the
procedure followed for the current searches in the two
aLIGO detectors.
To further reduce the false alarms, χ2 dependent vetoes

are applied in the form of newSNR [23,33] to triggers from
each of the detectors. These collected individual detector
triggers along with the coincident newSNR statistics are
used to estimate the noise background and to assign the
statistical significance to the detected GW triggers. We
escalate a candidate trigger to a detection if the trigger
passes a sufficiently high threshold for which the false
alarm probability is very small. These ideas will be made
precise later.

III. HIERARCHICAL SEARCH

The idea of a two stage hierarchical search is fairly
straightforward. First we search over the parameter space
by using a coarse grid with a lower threshold on SNR or the
detection statistic. The candidate triggers from the first
stage are then followed up by finely sampled the parameter
space around the neighborhood (nhbd) of each trigger. The
goal is to effectively reduce the number of matched filter
computations needed to find a GW signal if it is present in
the data. This may also help in reducing the background
arising due to false alarms caused by noise artefacts. The
speed-up one gets depends on the coarseness of the first
stage bank and the false alarm rate which is related to the
choice of first stage signal-to-noise-ratio (SNR) threshold.
This procedure is optimized by adjusting the first stage
threshold to yield minimum computational cost for a fixed
search sensitivity usually defined in terms of sensitivity
distance or volume for CBC searches [41].
In principle, one could also increase the number of stages

of hierarchy, though so far we have restricted ourselves
only to two stages.

A. Review of the nonspinning hierarchical search

It has been shown previously that a two stage hierar-
chical search algorithm can be used to speed-up the non-
spinning CBC searches by more than an order of magnitude
in simulated initial LIGO (iLIGO) like data [38] and by
factor of 7–8 in real data from the second science run (S2)
of iLIGO. The first such study was carried out by Mohanty
and Dhurandhar [46]. They used Newtonian waveforms
and the detector noise was assumed to be stationary and
Gaussian. The hierarchy was performed over just one
parameter, namely, the chirp mass. This work was extended
to hierarchy over both the masses for 1.5 post-Newtonian
(PN) inspiral waveforms by Mohanty and Dhurandhar [46],
Mohanty [47]. This was then followed up by Sengupta
et al. [37,38] which further extended the hierarchy to three
parameters, namely, the masses and time of coalescence. To
incorporate the hierarchy in time of coalescence the data
was down sampled in the coarser first stage. 2PN inspiral-
only waveforms were used in their analysis. This most
recent work used a geometric template bank placement
[37,48]. The full details of the previous hierarchical
searches with nonspinning GW signal waveforms over
simulated and initial LIGO second science run (S2) data are
given in [49].
In the latest two stage hierarchical search proposed in

[37], chirp times τ0 and τ3 were used instead of individual
component masses to create fine and coarse template banks.
The template space Fischer-Rao metric depends very
weakly on the chirp times in the parameter space considered.
The geometric fine bank with mismatch less than 3% was
created using 2PN inspiral-only metric using hexagonal
closed packing template placement scheme with iLIGO
noise PSD for masses in the range of ð1; 30ÞM⊙. In the first
stage of the search the data were sampled at a lower rate of
512 Hz and the coarse template bank was created with
mismatch less than 20%, that is, MM of 0.8. For such large
values of mismatch, the metric approximation breaks down.
Therefore, the coarse bank is created numerically by a
rectangular placement of the templates along the τ0 axis. In
the first stage, the lower MM reduces the number of
templates in the bank significantly. Moreover, downsam-
pling reduces the cost of each FFT in each MF operation.
However, this reduction in computational cost comes at the
cost of reduced SNR of the recoverable signal. Hence, in
order to ensure that we do not lose an otherwise detectable
GW signal, the applied SNR threshold must be lower than
the one used in the single stage flat search which is the usual
search with the bank of MM > 0.97. With the individual
detector SNR thresholds of 6 and 8 for the first and second
stage respectively, the search showed computational cost
reduction by few orders of magnitude for simulated data
with Gaussian noise [37,38] and almost by an order of
magnitude during search with iLIGO S2 data.
All the earlier works mentioned above considered only a

single detector and did not use any signal consistency tests
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such as the χ2 discriminator. Apart from introducing those
essential components in the search to make the implemen-
tation applicable for real data, there are two primary routes
to further extend the hierarchical search strategies, either by
increasing the number of stages in the hierarchy or by
including more parameters in the two-stage hierarchy or
both. Since the current CBC waveforms include spins, we
have opted for the latter. We may explore the feasibility of
the former option in future.

B. Hierarchical search with aligned-spin waveforms

In this work we explore the possibility of a hierarchical
algorithm for CBC searches with non-precessing template
waveforms in the modern set up. We use the PYCBC
pipeline [41] with LIGO’s O1 type of search setup [33]. We
use the full inspiral-merger-ringdown (IMR) aligned spin
waveforms with dominant (2,2) mode. Both coarse and fine
template banks are generated using stochastic template
placement algorithm [27].

1. Guidelines for tuning the search

Before moving on to the full-fledged pipeline, we
present our initial study with “zero-noise” BBH injection
case. Studying this simpler case helps in choosing of
thresholds in the first and second stages of the hierarchy,
the size of the fine bank nhbds for each of the coarse bank
trigger template etc. This study of injections without noise
is equivalent to the averaging over a very large number of
ensemble of detectors with additive Gaussian noise. In
simple terms, here we look at the peak of the distribution of
the matched filter statistic by assuming zero-noise in the
detector but with sensitivity determined by the PSD. We
use the AdvLIGO PSD for computing the match using the
inner product described in Eq. (2.1).
We consider 2000 binary black hole (BBH) injections in

H1-L1 detectors with single detector optimal matched filter
SNR in the range of 5 to 15 for each of the detectors. Both
the BHs have masses uniformly sampled in the range of
(5, 10) M⊙ and spin components along the orbital angular
momentum uniformly sampled in the range ð−0.98; 0.98Þ.
Further, the injections are uniformly spread over the full
sky. For this study, we use the actual matched filter SNRs
and coincident SNRs without χ2 (the χ2 weighted SNRs are
not applicable here).
We construct coarse and fine templates bank with MM of

0.9 and 0.97 respectively for the parameter space in
component masses and spins as used for the BBH injec-
tions. Both the banks are created using template space
metric as described in Sec. II B. This is possible because we
have used the TaylorF2RedSpin approximant in this
study for which the analytic metric is available. The coarse
bank has 1200þ templates while the fine bank contains
10000þ templates, that is, the fine bank is about eight times
denser than the coarse bank. The banks and the proof that

there are no holes (i.e., the prescribed MM condition is
satisfied in both the cases) are shown in Fig. 1. We choose a
sampling rate of 512 Hz for the construction of the coarse
bank (stage I search) and a sampling rate of 1024 Hz for the
fine bank (stage II search). We choose these specific
sampling rates, because the ISCO frequencies for BHs
having masses in the range 10−20 M⊙ are in range 220–
440 Hz. With the sampling rates of 512 Hz and 1024 Hz,
the Nyquist frequencies are 256 Hz and 512 Hz respec-
tively. The reduction in sampling frequency leads to a loss
of SNR for some of the injections in the coarse stage when
compared with the generic flat search. The template
duration for all the signals under consideration is less than
8 sec. Therefore, data segments have been chosen to be
16 sec in duration for computing matched filters.
We then match filter the data, using stage I and stage II

banks for each of the injections in both H1 and L1 detectors
and compute coincident SNRs. We compare the SNR in
stage I with the SNR in stage II in Fig. 2. The loss of SNR is
due to the coarse sampling of the parameter space and

FIG. 1. The figure at the top shows the non-spinning template
banks in τ0 − τ3 plane and the one at the bottom shows that the
bank does not have any holes since the fitting factor (FF) values
are greater than the MM values used to construct each of the
banks.
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reduced sampling frequency as mentioned above. Then, in
Fig. 3, we plot the maximum possible loss in SNR on the
horizontal axis and on the vertical axis we plot the match
between the templates that correspond to maximum SNR
(trigger templates) in stage I and II. The match between
stage I and stage II trigger templates corresponding to the
same injection tells us how large the nhbd of the particular
template of coarse bank should be. The figure tells us that
even for zero-noise case, we have to consider nhbd large
enough with a match as low as 85% in order to recover the
full SNR in stage II of the hierarchy. With noisy data, it is
prudent to choose a lower value of the match—we choose
this value to be 75%.
Now we come to the choice of thresholds. The maximum

SNR loss is 85% in stage I. This guides our choice of stage I
SNR thresholds (with reference to the flat search): (i) for

individual detectors (ρsingle; I and (ii) for coincidence
ρcoinc; I). We keep these thresholds at about 90% of the
respective thresholds for the flat search as discussed below.
For example, we may choose ρsingle;flat ¼ 5 and ρcoinc;flat ¼
8 for the flat search and ρsingle; I ¼ 4.5 for stage I and
ρcoinc; I ¼ 7.2 for stage II of the hierarchical search.
Figure 4 shows the recovered stage I SNRs for injections

in each of the detectors H1 and L1. Variation in SNR is
observed because the two detectors have different orienta-
tions (thus different antenna patterns) and therefore differ-
ent responses to the same signal coming from a given
location in the sky. The SNR variation in a single detector
also shows that there could be signals that the hierarchical
search may miss but which the flat search may detect. If the
signal is barely above the single detector SNR threshold
(ρsingle;flat) in one of the detectors, then, even with a reduced
SNR threshold (ρsingle; I) we may miss it as the noise may
not trigger the correct template in stage I in one of the
detectors. Also, we may not detect few borderline injec-
tions because of SNR loss of more than 90% as is seen in
Fig. 3. Vetoes can further aggravate the problem by pushing
down the newSNR because the trigger templates in the
coarse bank can have a larger mismatch. Because of this,
we would not have a coincident trigger to go to stage II
even if the signal was otherwise loud enough. But to be fair
this could also happen in a coincident flat search depending
upon the choices of the threshold. For the current choices,
the flat search may miss fewer signals compared the
hierarchical search. So this means that there is a chance
that the hierarchical search may miss out some signals
which have a low SNR in one of the detectors as compared
to the flat search. This is demonstrated in Fig. 5. If we
however consider more than two detectors and a coinci-
dence analysis, we believe this is unlikely to happen.

FIG. 2. The coincident SNR for the fine search is plotted
against and coarse search coincident SNR with red circles. The
figure shows how much SNR is lost in stage I in which a lower
sampling rate and a coarse bank are used.

FIG. 3. The match between the stage I (coarse) trigger template
and stage II (fine) trigger template is plotted versus the maximum
loss of the SNR (normalized) in stage I. Each injection is
represented by a red star.

FIG. 4. The figure shows the recovered SNR for each injection
as observed in detectors H1 and L1. The large variation in
recovered SNRs is due to the different orientations of the
detectors which have different antenna pattern functions. The
dashed line is the line of equal SNR.

GADRE, MITRA, and DHURANDHAR PHYS. REV. D 99, 124035 (2019)

124035-6



This simplified case guides our choice of thresholds and
nbhds for the full fledged hierarchical search strategy.

2. Formalism

Here we describe the 2-stage hierarchical search pipeline
for coincident detection with two detectors. The full search
is illustrated by the flowchart in Fig. 6. We start by creating
stochastic coarse and fine banks for the intrinsic parameters
(these are masses and aligned spins) which have MM of
0.9 and 0.97 respectively. For template banks we use the
harmonic PSD which is the harmonic mean of PSDs of H1
and L1 detectors during O1. We use the same PSD to
generate simulated Gaussian noise for both the H1 and L1
detectors. These data are then divided into smaller chunks
of 4096 sec each for estimating the local PSD which is
required for the matched filtering computations. The
matched filtering is done with data segments of duration
256 sec and with 128 sec overlap with the previous
segment. This overlap is needed because we must discard
data from both the ends of a data segment due to the
circularity property of the FFT algorithm and also get rid
of other numerical artefacts [41,50]. We therefore actually
search only 128 sec of data in one matched filter
computation.
The hierarchical search begins with the first stage, where

data are sampled at a lower rate and with a coarse bank for
each detector. Single detector events are recorded if the
statistic crosses a predetermined threshold for each detec-
tor. The statistic employed here is the power χ2 re-weighted
new-SNR [33,41]. In the first stage the threshold is lower
than the second stage threshold. We then compare param-
eters of the triggers from each detector and select only those

triggers whose parameters match—these are the coincident
triggers for the first stage. We then follow up these
candidate triggers with a fine search using a fine subbank
constructed around each coincident trigger.
To create the fine subbank from the zero-lag coincident

Ist stage triggers, we take the union of the fine bank nhbds
(which have been precomputed) around Ist stage templates
which have been triggered. Then we repeat the search with
a higher sampling rate and with time segment specific
fine subbank and stage II threshold. We then collect the
individual detector triggers from each of the detectors H1
and L1. From these we select the coincident triggers for
stage II. Coincident triggers crossing the stage II threshold
give us the foreground triggers.
The noise background is obtained as follows: We use

combined (coarseþ fine subbank) individual detector trig-
gers in the time-slides to get the hierarchical search noise
background. This background is usually lower than that for
the flat search [41] background as it comes from signifi-
cantly reduced number of templates. The fine subbank
contributes negligibly to the noise background because it
has much fewer templates. This procedure for estimation of
the noise background for the hierarchical search differs
from that of the flat search.
In principle, the noise background for the hierarchical

search can be used to assign significance to the foreground
triggers using the scaling as will be described later. But
since we use only zero-lag subbank in the second stage, it
may show some bias. We have therefore used the usual flat
search background to assign significance and estimate the
sensitivity distance in this work. With the hierarchical
background, the sensitive distance for the hierarchical
search will slightly improve than what has been shown
in Sec. IV. Further analysis is required to improve the
estimate of the noise background and investigate whether
there is a generic way to obtain in a robust way an
equivalent background. But our preliminary study with
real data in Sec. V shows that it is possible.
We can of course reproduce a background for the

hierarchical search analogous to the flat search. We must
then consider Ist stage triggers arising from also nonzero
time lags and then construct fine subbanks around these
triggers. But then the union of these subbanks will be
almost as large as the fine bank, and thus we stand to lose
any computational advantage that we may have otherwise
obtained.

3. Parameters used in the hierarchical search

In this subsection we provide the detailed description of
the parameters used in our hierarchical search. We consider
the same ranges of masses and spin parameters as were
employed in the search during the first aLIGO science run
(O1). We also use the same waveforms as those employed
in O1. For aligned-spin GW signals, our set of intrinsic
parameters are component masses and spins along orbital

FIG. 5. Injections found and missed in the flat and hierarchical
searches for the zero-noise case. The red dots show injections
missed by both searches while the green ones show those that are
found by the both. The blue inverted triangles correspond to the
injections which are likely to be missed by hierarchical search but
recovered by the flat search with the current configuration.
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angular momentum. For the individual masses, the heavier
mass is in the range ð1; 100ÞM⊙ and secondary mass is in
the range ð1; 50ÞM⊙. In case of neutron stars we have taken
the masses to be in the range ð1; 3ÞM⊙ and spin compo-
nents (dimensionless) along the orbital angular momentum
from −0.4 to 0.4. Black holes have spin components
ranging from −0.9895 to 0.9895. The fine and coarse
banks are generated using stochastic template placement
algorithms (überbanks) with mismatch of 3% and 10%
respectively. The choice of 10% mismatch for the coarse
bank is somewhat arbitrary. With these numbers and with
O1 harmonic power spectral density (PSD), we obtained
∼60000 templates for the coarse bank and ∼250 000
templates for the fine bank. One observes that the
fine bank is little over 4 times larger than the coarse
bank. For search templates, we have used TaylorF2
approximant for total mass less than 4 M⊙ and
SEOBNRv2_ROM_DoubleSpin for the rest of the
parameter space.
Even though the choice of the MM ¼ 0.9 may look

somewhat arbitrary, we have tried other values of MM, for
example, 0.8 (as employed in the previous hierarchical
searches) and 0.85. We found that the overall loss in the
SNR is unacceptable because of loss in sensitivity.
Therefore, we fix MM at 0.9 which gives a coarse bank
with about quarter the number templates as compared to the
usual fine bank with MM ¼ 0.97.
We use the harmonic PSD of O1 to generate template

banks and for simulating data with the lower cut-off
frequency set at 30 Hz. For the first stage in the search,
we sample the data at a reduced rate of 512 Hz while for the
second stage, we sample the data at 4096 Hz. Because of
the reduced sampling rate of 512 Hz in the first stage, we
must cut off the signal at 256 Hz. However, even after
applying this upper cutoff, we recover more than 90% of
the signal SNR, for all the 10855 nonprecessing injections.
We also ensure that the banks do not have “holes.”
As mentioned earlier, 5 days of simulated coincident data

for the two LIGO detectors H1 and L1 are used assuming
both of them have the harmonic PSD of O1 run. We inject
more than 10855 nonprecessing CBC signals in the data
with the parameter ranges as mentioned earlier. The injec-
tions were uniform in volume, orbital inclination, and
coalescence phases. The injections were distributed as
follows: ∼2171 double neutron star (DNS), 4342 neutron
star- black hole (NSBH), and 4342 binary black hole (BBH).
Neutron star masseswere in the range ð1; 3ÞM⊙. Further, the
injections were uniformly distributed in the total mass. All
the injections werewith aligned-spin. The optimal SNRs for
the injections were in the range (8,30). For DNS injections,
we have used SpinTaylorT4 approximant for injection
and IMRPhenomD and SEOBNRv2 for NSBH and BBH
injections, respectively.
Apart from the above, we injected 8684 precessing

signals with total mass in the range of 5 to 150 M⊙ with

the dominant mass ranging from 4 to 100 M⊙. For the
precessing injections, we have used the IMRPhenomPv2
approximant.
We now go on to stage I search and describe the

corresponding triggers with their associated fine subbanks
which will be used in stage II.

4. Stage I triggers

The goal of the first stage is to obtain candidate triggers
which will then be followed up in the second stage of the
search. To obtain these, we need to decide a threshold on
the detection statistics, which is the chi-square weighted
newSNR [33] for the single detector statistic and coincident
newSNR, i.e., newSNR of single detectors added in
quadrature for the pair of LIGO detectors. This statistic
is used for coincident triggers for both the stages and also
for the flat search. We decide on the individual detector
thresholds ρsingle;flat ¼ 5.0 ¼ ρsingle;II where ρsingle;flat is the
threshold for the flat search and ρsingle;II is the threshold for
the second stage search. We decide to keep single detector
newSNR (ρsingle; I) to be 4.5 which is 90% of ρsingle;flat. We
have chosen these values because we expect SNR loss to be
less than 10%. The amplitude of the GW signal in
frequency domain scales as f−7=6 and the SNR in the first
stage is reduced both because we are employing a coarse
template bank and an upper frequency cutoff (lowered
sampling rate), which we denote by ρreduced. The results are
as follows:

ρreduced ¼ MMI
ρðfl; fu;IÞ
ρðfl; fu;IIÞ

ð3:1Þ

where we have defined ρ as:

ρðfl; fuÞ ¼
Z

fu

fl

f−7=3

SnðfÞ
df: ð3:2Þ

The recovered SNR relative to the full injected SNR due
to upper frequency cutoff (stage I of the hierarchical search)
is shown in Fig. 7 as a function of the mass parameters. It
can be seen that the least recovered SNR is ∼94% which
corresponds to a loss of 6% in the worst case scenario. For
the values we have chosen, we get ρreduced > 88% for MMI
of 0.9 for the Ist stage bank (coarse bank). But if we use the
factor MMI=MMII instead of MMI in equation (3.1), we
get ρreduced > 91%.
The procedure as described in Sec. III B 2 has been

followed.

5. Stage II search

After obtaining the coincident triggers obtained in
stage I, we proceed to stage II. Here we construct a fine
bank in a small neighborhood around each stage I trigger.
The neighborhood for the subbank is so chosen that the
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templates in the fine bank have a match more than 0.75 with
the trigger template from the coarse bank. A smaller value
than 0.85 is chosen for the match in order to compensate for
the noise effects and other factors. These fine subbanks are
precalculated for each coarse template. Figure 8 shows a
typical stage I trigger template (red star) with its associated
fine subbank of templates (blue dots) with MM> 0.75. The
template masses are given in terms of two equivalent mass
parametrizations. Also, plots in the Fig. 9 show the number
of templates in the fine bank in the nhbd of each of the
coarse bank templates. The left plot shows the templates
with masses parametrised in terms of chirp times and
the histogram on the right shows that the nhbd with
MM >0.75 few tens to 100 templates per nhbd considered
independently.
We first obtain coincident Ist stage triggers for each data

segment and then create a fine subbank corresponding to

FIG. 7. The figure shows the reduced SNR because of the
lowered sampling rate, over the parameter space under consid-
eration. The maximum SNR loss is ∼6%.

FIG. 8. A typical fine-bank neighborhood around a
coarse template in terms of various mass parametrizations. The
red star shows one such coarse bank template, while the blue
dots depict the templates in the fine bank neighborhood
with MM > 0.75. There are 65 templates in this fine-bank
neighborhood.

FIG. 9. The figure shows the number of templates in different fine-bank neighborhoods as one scans the parameter space with the
coarse bank. The left plot denotes number of templates in the fine neighborhood in terms of chirp times. On the right, we plot a
histogram showing the number of coarse templates having different sizes of fine subbanks. The figure gives an idea of the differing sizes
of the fine subbanks.
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that segment. Then we take the union over all the data
segments of all the fine subbanks. This unified subbank
depends upon the single detector statistic used, threshold
for that statistics and both the coarse and fine banks used.
Then for each data segment and the corresponding fine
subbank, we perform a search with full sampling rate of
4096 Hz as used in single stage flat search. Then we follow
the same procedure as in the first stage of again collecting
single detector triggers from the fine subbank and obtaining
the second stage coincident triggers by matching para-
meters. We then cluster these coarse and fine subbank
triggers together and obtain the final triggers. Now these
final triggers need to be compared with the noise back-
ground for estimating their statistical significance. For this
second stage, we use the ρsingle;II which is the same as that
for the flat search. To estimate the noise background, we
have used the single detector trigger time slides but with
some caveats which we will discuss in the next section. We
now present our results.

IV. COMPARISON WITH THE FLAT SEARCH

In this section, we compare the results of the hierarchical
search with the flat search. For this analysis we assume
stationary Gaussian noise. We begin by comparing the
noise background and noise foreground without injections.
For each individual detector, on an average, we found ∼53
triggers per second from the flat search with ρsingle;flat ¼ 5.5
and ∼7–8 triggers per second from the coarse search with
ρsingle; I ¼ 5.5. But for ρsingle; I ¼ 5.0, we obtained ∼111
triggers per second. For both the flat and stage I (of the
hierarchical) searches we use their respective full banks and
obtain the corresponding triggers. We observe less number
of triggers for stage I of hierarchical search although we
maintain the same threshold. This is because of the reduced
number of the templates in the coarse bank and also
because of the reduced sampling rate. We expect that with
only a quarter of the templates and 1=8th of the sample
points, we can at best get a factor of ∼32 reduction in the
computational cost as compared to that of the flat search.
This is because the main cost of the search comes from
matched filter computations which in turn is due to FFT
used in the data analysis. The cost of a FFT scales as
N logN where N is the number of data points in the data
segment. First, we have about quarter the number of
matched filter computations because of the reduced number
of the templates in the coarse bank and second, the cost of
each FFT goes down by the factor of about 8 because N is
reduced by this factor due to lower sampling rate. However,
the computational gain or speed-up is much less than this
number∼32, because the candidate triggers from the stage I
need to be followed up with the stage II fine search. The
computational cost incurred in the second stage depends on
the number of stage I candidate triggers which in turn
depends on stage I threshold ρsingle; I, and also on the size of

the stage II fine subbank. The size of the fine subbank
depends upon the choice of the relevant neighborhood for
each Ist stage template that is triggered. For example,
choosing a very low ρsingle; I ∼ 3.5 will fetch a huge number
of coincident triggers in the first stage from the entire
coarse bank, which will lead to searching over almost all of
the fine bank in the stage II taking away most of the
computational benefits of the hierarchical search. While
increasing the ρsingle; I will reduce the candidate triggers in
the I stage, but will lead to the increase in the size of the
coarse bank and hence the matched filtering cost at stage I.
Therefore a compromise must be sought if the hierarchical
strategy has to succeed.
With the help of time slides, we compute the noise

background for more than 260 years of coincident data.
This is done for the flat search in the usual way and also for
both the stages of the hierarchical search which uses the
coarse bank and the zero-lag fine subbanks. Foreground is
computed for 5 days of the coincident data for the flat and the
2-stage hierarchical search. Note that the thresholds and other
parameters (clustering etc.) used for the background, fore-
ground, and injection recovery in stage II of the hierarchical
search are the same as that of the flat search. Figure 10 shows
backgrounds and foregrounds for the flat (red), stage I (green),
and stage II (blue) in terms of cumulative number of
coincident events per year with newSNR plotted on the
horizontal axis. From the figure, we make the following
observations about the noise background:

(i) Stage I (green) backgrounds and foregrounds are
lower by more than an order of magnitude than that
of the flat (red) search.

(ii) Stage I background generated from the fine subbanks
is negligible as compared to the Stage I background
generated by the coarse bank—something like two
orders of difference in magnitude.

FIG. 10. Full search background and foreground event rates
(per year). The foreground data is of ∼5 days and background
amounts to more than 140 years after time slides.

HIERARCHICAL SEARCH STRATEGY FOR THE EFFICIENT … PHYS. REV. D 99, 124035 (2019)

124035-11



(iii) Since the hierarchical search background is the
union of stage I and stage II background, the
hierarchical search back ground is essentially de-
termined by the stage I background generated by the
coarse bank.

(iv) When the background for stage II (blue) is calcu-
lated using time slides, the single detector triggers
from two different data segments are likely to have
very few or no common templates in the stage II fine
subbank. Hence stage II background does not match
the foreground. This may lead to some bias in the
total hierarchical background but it should be
negligible compared to stage I

In practice, we may use the stage I background to assign
statistical significance to the triggers and it may be simply
scaled up to obtain the flat search background for the
simulated data. This scaling argument follows later.
In principle for the hierarchical search we can estimate

the background using time slides as in the flat search but
then we lose out on the computational benefits—we find
that even with 2000 time slides, the full fine bank is
covered.
However, stage II foreground contributes comparatively

much more to the overall foreground. This is because we
use fine subbanks in stage II constructed using only “0”-lag
(foreground) coincident triggers from stage I. All templates
in the subbank can contribute to the foreground evaluation
which give better chances for noise coincidences.
This utilization of the full fine bank in stage II implies

that when we do time slides with the nonzero lag triggers
from stage I, we recover the same background as the flat
search. Hence, at least with the simulated colored detector
noise, we came up with the idea of scaling the background
obtained from the coarse bank to recover the flat search
background. Interestingly, if we scale the stage I back-
ground by the speed-up factor, we recover the flat search
background over the coincident new-SNR threshold of 8.
This can be seen in Fig. 11. Moreover, the same scaling
factor does match the noise-only foreground of stage I of
the hierarchy with that of the flat search. A little excess in
the low new-SNR region between 7.5 to 8 is because of the
reduced single detector and coincident thresholds for the
stage I. The scaling of the stage I to the flat background is
the same as the speed-up factor because it is exactly the
ratio of the number of independent random variables that
the matched filtering operation produces in each case. This
speed-up factor is explained in detail later.
Thus, for simulated data, we are able to use the scaling

argument to obtain the equivalent flat search background
from the stage I background. From this equivalent back-
ground we are then able to assign the correct statistical
significance to the foreground triggers.
We now demonstrate the above argument by using

100 time slides with nonzero time lags corresponding to
2.6 years of background. This is shown in Fig. 12 by the

magenta line. If we scale this hierarchical background we
get a background equivalent to ∼260 years. We observe
that the scaled hierarchical search background matches well
with the flat search and the scaled stage I background
(except for the low SNR region). However, even for just
100 nonzero lag time slides, we need to perform the
matched filtering operation for more than 30 000 fine bank
templates in stage II for each data segment. With real data,
this exercise needs to be carried out with even more care
and caution as will be described later in Sec. V.
We now investigate the recovery of injected CBC

signals by both types of searches, flat and hierarchical.

FIG. 12. Figure shows the flat search background (red), stage I
background scaled by the speed-up factor (green) and hierarchi-
cal search (flat search equivalent) background calculated using
100 time slides (blue) and scaled with the constant factor to get a
background equivalent to a duration ∼141 years. It can be seen
that both the scaled backgrounds match well with the flat search
background. With 100 time slides one needs to match filter
>30000 fine bank templates per data segment.

FIG. 11. Full search background and foreground event rates
(per year). The first coarse stage rates are scaled by the factor of
∼20 to match all the events. The scale factor to get back the same
event rates is same as the speed-up factor for simulated data.
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As discussed in Sec. III B, we inject 10000 aligned spin
CBC (DNS, NSBH, and BBH) signals. In addition, we
inject more than 8000 precessing CBC (NSBH and BBH)
ones. Figure 13 shows the newSNR as found in stage I of
the hierarchical search and as found in the flat search. The
flat search newSNRs are the best values that stage II of the
hierarchical search can recover to perform as well as the flat
search. Figure 14 shows all the above mentioned injections
which are missed or found by both searches. For each of the
subplots, we have plotted injection with flat coincident
SNR against the coincident newSNR for the stage I of the
hierarchy. The red dots show the injections missed by
the both flat and hierarchical search while green dots show
the injections found by both the searches. The blue triangles
denote the injections missed only by the hierarchical search
but found by the flat search. For all the 3 aligned spin cases,
the injections missed by the hierarchical search are ∼2% of
those found by the flat search. For the precessing case, the
hierarchical search loses ∼6% of the injections compared to
those recovered by the flat search. This somewhat larger loss
in the hierarchical case may be because of the higher
dimensionality of the parameter space required to describe
precessing systems—the injections have more “room” to
distribute themselves. More specifically, this penalizes the
coarser search more because the ratio of volumes of the fine
to the coarse neighborhoods is smaller for the precessing
case because of the higher number of dimensions. Figures 15
and 16 show the sensitivity distance for both searches,
hierarchical and flat, with a varying coincident newSNR threshold. The newSNR threshold corresponds to a false

alarm rate as can be seen from Fig. 10. We see that both
hierarchical and flat searches have almost similar sensitivity
distances as a function newSNR as shown in Fig. 17. This
implies that both the searches perform almost equally well.
For the calculation of the sensitivity distance, we have used
all the CBC injections. It can be seen that only the BNS
search has slightly lower sensitivity for the hierarchical
search than for the flat search. This is expected as we are
using truncated waveforms with much lower MM and BNS
signals are of long duration and contribute significantly to
the SNR at higher frequencies which means that the frac-
tional loss in SNR is more. The lower recovery of signals is
due to reduced stage II SNRcompared to flat search for a few
BNS sources. This is because the SNRof these sources in the
one of the detectors is slightly lower so that some false
trigger templates are contributed from the stage I. Thus we
see that, the hierarchical search recovers almost all the
injections as those recovered by the flat search. There is a
slight advantage to the hierarchical search over the flat
search, because we can choose a slightly lower detection
threshold with hierarchical search for the same false alarm
rate. We have not addressed this question here. Thus for the
hierarchical procedure we have proposed, we conclude that
both the searches have almost similar distance sensitivity for
the injected set of signals. Next we consider the computa-
tional cost of each kind of search.

FIG. 13. The figure shows coincident recovered newSNRs for
all the injections. It shows how much SNR is lost in stage I with
the lower sampling rate and the coarse bank. Stage II may recover
the SNR with the fine subbank and a full sampling rate.

FIG. 14. The plot shows the recovered coincident newSNR of
signals missed (red dots) and found (green dots) by the hierar-
chical search. The blue triangles show the injections missed by
the hierarchical search but found by the flat search. These are
∼2% of the total injections.
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We now look more closely at the computational costs
and the computational gain from the hierarchical search.
We also explain how the same is related to the background
estimation. For a data segment of length 256 sec, we have
few hundreds of coincident first stage triggers (no addi-
tional coincident threshold is applied). On an average, we
have 40-90 templates of the fine bank in the neighborhood
of the each coarse trigger template as can be seen from
Fig. 8. We then obtain a second stage fine subbank which is
the union of these neighborhoods. This subbank has 1000–
4000 templates on an average per data segment. We now
compute the average number of floating point operations
(FLO) per data segment. We do 60 000 MF calculations at
512 Hz sampling rate in the first stage and at most 4000 MF
calculations at 4096 Hz sampling rate in the second stage.
EachMF computation involves a complex FFT correspond-
ing to the two phases of the waveform. On the other hand,
in the flat search, we do 250 000 MF calculations at the
sampling rate of 4096 Hz. Each MF calculation uses
discrete Fourier transform (DFT). Each DFT with N data
points requires αN logN FLO, where α ∼ 3 for a real DFT

FIG. 15. Comparison of flat and hierarchical searches for
distance sensitivities. Top: Aligned-spin BNS injections; bottom:
aligned-spin NSBH injections.

FIG. 16. Comparison of flat and hierarchical searches for
distance sensitivities: Top: aligned-spin BBH injections; bottom:
precessing injections.

FIG. 17. The plot shows the relative sensitivities of volume and
distance (in %) of the hierarchical search compared with the flat
search. Solid lines show relative volume sensitivity and the dash-
dotted lines show relative distance sensitivity.
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and double this number for a complex FFT and depends on
the algorithm used. Thus, roughly, discarding the α factor
which is common to both the searches, the flat search
requires 250 × 4.096 mega-FLO while the hierarchical
search strategy adopted here, requires 60 × 0.512þ 4 ×
4.096mega-FLO. Thus one obtains a computational gain of
∼20 in the matched filter computations. Other data con-
ditioning require the same computation.
We look back at the estimation of the noise background

for the hierarchical search. We argue that the hierarchical
background is just scaled down from the flat search
background roughly by the speed up factor, which in this
case is ∼20. The noise background arises from the number
of triggers which essentially stem from the number of
independent Gaussian random variables in the matched
filter output. The Gaussian variables in the matched filter
output are however correlated. For the flat search we get
roughly 256 × 250000 × 4096 data points (Gaussian var-
iables not necessarily independent) per segment. But for the
hierarchical search we must consider both stage I and
stage II data points. For the hierarchical search we have
256 × 60000 × 512þ 256 × 4000 × 4096 data points per
segment. We may expect the effect of correlation between
Gaussian variables to be about the same in both the flat case
and the hierarchical case. Ignoring the effect correlations
and except for the slowly varying factor of logN, the ratio
of independent Gaussian variables in the two situations is
roughly the same as the ratio of matched filtering oper-
ations required for each of the searches. This is in fact the
speed up factor. This is evident from Figs. 10 and 11.
However real data contains non-Gaussian artefacts and we
basically sample the tail of the noise distribution (rare
events) to estimate the background. Therefore, this scaling
exercise needs to be carried out carefully in order to obtain
the correct scaling. The scaling may depend upon template
duration as very short duration templates are more suscep-
tible to the glitches and artefacts in the real data.
We now make a few remarks. First of all, the non-

precessing injections we used are in the H1-L1 coincident
SNR range 8 to 30 and our precessing injections are
linearly distributed in distance. Second, we get our noise
background for the hierarchical search by scaling up
essentially the background from the first stage of the
hierarchy. As explained before, obtaining the full back-
ground equivalent to the flat background will compromise
computational advantage that is expected to be gained from
the hierarchical search.
Our analysis of simulation data shows that we may be

able to employ the same procedure on real data. We may
use the stage I background to infer the significance of
detection, after further investigations with real data. This
may not be exactly equivalent to the flat search back-
ground, but it can be considered as a separate hierarchical
background. A few hundred time-slides can be performed
to get the noise background on a shorter duration of data

and then it could be scaled up to obtain an estimate of the
full flat search background. The background so obtained
could be used to decide on the statistical significance of
triggers. We propose to address this issue of the back-
ground and second, also tune the pipeline for injection
recovery per mass bin with the real data in a future work.

V. SEARCHES WITH REAL DATA

In this section we demonstrate how our two stage
hierarchical search works on real data. For this purpose
we have used four segments of data, each of 4096 sec
duration, from the first observing run O1 of the twin LIGO
detectors [51]. The four segments are chosen such that each
one contains one detected event, including the trigger
“GW151012” [1] whose status was escalated to a true
GW event.
We employ identical template banks to those for simu-

lated data described in Sec. IV. Also, we have used
sampling rate of 512 Hz and 4096 Hz for stage I and
stage II respectively. We decided to keep roughly the same
number of stage I triggers as for the simulated data case in
order to have ready comparison in speed up factors.
Further, we take the clustering window to be of 1 sec over
a template as is used in the real data search [41]. Also we
increase the single detector threshold slightly; ρsingle; I ¼
5.0 and ρsingle;flat ¼ 5.5. We use the newSNR statistic (SNR
weighted with power and sine-Gaussian based χ2 vetoes)
[23,52,53] which makes the data behave as close to
Gaussian as possible. We decided not to use the phase-
time statistic [42] here, as it requires specific tuning which
is outside the scope of this paper. We further test our
method by injecting 2000 CBC signals. For the above
mentioned thresholds, we obtain 100–105 triggers per
second for stage I hierarchical search and 80–90 triggers

FIG. 18. The plot shows the noise only backgrounds: the solid
red curve is corresponds to the flat search, while the green dashed
curve corresponds to the stage I of the hierarchical search. The
solid green curve is the scaled background by the speed-up factor
of ≈20.
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per second for the flat search. With these choices, we use
4000 to 6000 templates in the stage II of the hierarchical
search per segment for the follow-up of the candidate
triggers. These numbers are about 150% of those corre-
sponding to simulated data. This is due to the higher trigger
rate in the real data. However, this does not significantly
reduce the speed up factor. We believe further tuning can be
performed for real data, with optimized statistics and
thresholds, to obtain even better results.

We present the results of this test application on real
data. Figure 18 shows background from flat search and
stage I of hierarchical search. For simulated data it was
observed that we get the background pertaining to the flat
search, if we scale up the stage I background by the speed
up factor of ≈20. The same scaling seems to work in the
case of real data. Thus, we can, in principle, use the scaled
stage I background (solid red line) to assign the correct
significance to the foreground triggers which would be
equivalent to the flat search. This can be achieved by fixing
this scale factor by doing a flat search run with a small
fraction of real data, like some pipelines do, to fix the
background scale [1]. In Table I we mention the SNRs
obtained for the four events in stage I and stage II of the
hierarchical search and the flat search.
We now turn to the sensitivity of the searches with the

2000 injections which are uniformly distributed with
distances in the range 30–750 Mpc and other parameters

TABLE I. The table shows the recovered values of the detection
statistic in our searches using the data chunk containing each of
the GW event. IFAR for all the events in more than 10 yrs which
is maximum for the data we used.

Event Stage I SNR Flat/Stage II SNR

LVT151012 8.1 8.9
GW150914 16.23 19.47
GW151226 7.9 9.1
GW170104 8.1 9.2

FIG. 19. Distance sensitivities for hierarchical and flat searches.
The top figure shows that the distance sensitivity is just above
40 MPc for BNS while the bottom figure shows that it is more
than 80 Mpc for NSBH for a coincident SNR of 8.

FIG. 20. Distance sensitivities shown for hierarchical and flat
searches. The upper plot is for BBH and the bottom plot shows
when all BNS, NSBH, and BBH are taken together. The search
sensitivities are just above 400 MPc for coincident SNR of 8 for
both cases. The hierarchical search performs systematically a
little worse than the flat search—we lose about 3% more
injections than in the flat search.
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uniformly distributed (identical to what was used for
simulated data). The plots in Figs. 19 and 20 show the
sensitivities with error bars for the flat and the 2-stage
hierarchical search with small chunks of the real data. We
can see that the hierarchical search sensitivity (blue line) is
always slightly less as compared to that of the flat search
(red line) which is optimized for all the 3 types of the CBC
sources: BNS, NSBH, and BBH. The top plot in Fig. 19
shows the sensitivity distance for BNS which is just over
40 Mpc while the bottom plot in the figure shows the same
for NSBH which is over 80 Mpc. These numbers are for a
coincident SNR of 8 in both plots. In Fig. 20 the distance
sensitivity is shown in the top plot for BBH, while the
bottom plot shows the same when all the injections BNS,
NSBH, and BBH are taken into account. The distance
sensitivities are just over 400 Mpc for both cases. This
analysis shows that hierarchical search performs almost as
well as on real data as the flat search—we just about lose
less than 3% of the total injections in this trial search. This
is expected due to more triggers, inefficient clustering, and
choices of the thresholds and statistics made for each stage
in an ad hoc manner. We emphasize that this is only a
demonstration and the hierarchical search needs to be tuned
further to obtain almost full sensitivity with a sizable speed-
up. One of the caveats here is that a small full run may be
needed to determine the exact scaling factor to get the
correct background with optimal choices of the parameters
as clustering at various levels may be slightly different as
compared to the optimized flat search.

VI. DISCUSSIONS AND FUTURE PROSPECTS

In this work, we have demonstrated that the two stage
hierarchical search is ∼20 times faster than the flat search
which has been used in LIGO O1 analysis. This factor of
reduction in computational cost has been obtained without
any optimization. With a judicial choice of parameters we
have shown that it can be almost as good as the single stage
flat search in sensitivity—that is, given a set of injections, this
search detects as many signals as the flat search. In the future,
we propose to run and optimize our 2-stage hierarchical
search on O1 and O2 data so as to improve the performance.
We have already demonstrated the same in a limited way on
real data, albeit with a slightly lower sensitivity.
As pointed out before, the computational effort saved by

doing a hierarchical search can be used elsewhere. It can be
used to do more detailed analysis of the detected CBCs such
as test of general theory of relativity by comparing wave-
forms predicted by other theories of gravity etc. The saved
CPU time could be used to search for other astrophysical
sources. This issue will become all the more important when
detectors become more sensitive in the future. The demand
for computation will increase because the event rate will go

up with the corresponding requirement of a much denser
template bank covering the parameter space.
The two stage hierarchical method can be readily

employed for online searches where we do not care about
assigning the exact significance to the triggers (the exact
significance would only be obtained from the estimation of
the full background). We may roughly scale the stage I
background to arrive at a crude estimate of the significance
of online triggers. Using a rough estimate of the back-
ground is a prevalent practice for obtaining promising
triggers quickly [54]. In the first stage, we can adjust the
false alarm rate to a desired level by varying the threshold
and get online triggers much faster. This is the consequence
of the speed up we get from the hierarchical algorithm.
Another important direction to follow is the implementa-

tion of a hierarchical search with precessing waveforms.We
believe that the order of magnitude reduction in the
computational cost will allow us to make at least partial
inroads into searches for precessing binaries. But creating a
template bankwith precessing templates is also very difficult
as it has to be done stochastically [32].Weplan to explore the
possibility of performing multistage hierarchical searches
using hybrid (nonprecessingþ partial precessing) template
banks.

ACKNOWLEDGMENTS

We would like to thank Albert Lazzarini (Caltech) for
suggesting us the original idea. We like to acknowledge
Alex Nitz (AEI-Hannover), Remya Nair (Kyoto
University) for reading the manuscript and suggestions.
We would also like to thank Anand Senpupta (IITG),
Sukanta Bose (IUCAA), Badri Krishnan (AEI-Hannover),
Ian Harry (AEI-Potsdam), Sumit Kumar (ICTS), and
Patrick Brady (UWM) for the useful discussions. We
acknowledge the use of IUCAA LDG cluster Sarathi for
the computational/numerical work. B. G. acknowledges the
support of University Grants Commission (UGC), India.
This research benefited from a grant awarded to IUCAA by
the Navajbai Ratan Tata Trust (NRTT). S. M. acknowledges
support from the Department of Science & Technology
(DST), India provided under the Swarna Jayanti
Fellowships scheme. S. V. D. acknowledges the support
of the Senior Scientist NASI Platinum Jubilee Fellowship.
This research has made use of data, software and/or web
tools obtained from the Gravitational Wave Open Science
Center (https://www.gw-openscience.org), a service of
LIGO Laboratory, the LIGO Scientific Collaboration and
theVirgoCollaboration.LIGO is funded by theU.S.National
Science Foundation. Virgo is funded by the French Centre
National de Recherche Scientifique (CNRS), the Italian
Istituto Nazionale della Fisica Nucleare (INFN) and the
Dutch Nikhef, with contributions by Polish and Hungarian
institutes.

HIERARCHICAL SEARCH STRATEGY FOR THE EFFICIENT … PHYS. REV. D 99, 124035 (2019)

124035-17



[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), arXiv:1811.12907.

[2] A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White,
D. A. Brown, and B. Krishnan, Astrophys. J. 872, 195 (2019).

[3] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[4] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 241103 (2016).

[5] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 118, 221101 (2017).

[6] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. 851, L35 (2017).

[7] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 96, 022001 (2017).

[8] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 141101 (2017).

[9] B. P. Abbott et al. (GROND, SALT Group, OzGrav, DFN,
INTEGRAL, Virgo, Insight-Hxmt, MAXI Team, Fermi-
LAT, J-GEM, RATIR, IceCube, CAASTRO, LWA, ePES-
STO, GRAWITA, RIMAS, SKA South Africa/MeerKAT,
H.E.S.S., 1M2H Team, IKI-GW Follow-up, Fermi GBM, Pi
of Sky, DWF (Deeper Wider Faster Program), Dark Energy
Survey, MASTER, AstroSat Cadmium Zinc Telluride
Imager Team, Swift, Pierre Auger, ASKAP, VINROUGE,
JAGWAR, Chandra Team at McGill University, TTU-
NRAO, GROWTH, AGILE Team, MWA, ATCA, AST3,
TOROS, Pan-STARRS, NuSTAR, ATLAS Telescopes,
BOOTES, CaltechNRAO, LIGO Scientific, High Time
Resolution Universe Survey, Nordic Optical Telescope,
Las Cumbres Observatory Group, TZAC Consortium,
LOFAR, IPN, DLT40, Texas Tech University, HAWC,
ANTARES, KU, Dark Energy Camera GW-EM, CALET,
Euro VLBI Team, and ALMA Collaborations), Astrophys.
J. 848, L12 (2017).

[10] B. Iyer, T. Souradeep, C. S. Unnikrishnan, S. Dhurandhar, S.
Raja, A. Kumar, and A. Sengupta, LIGO-India, Technical
Report No. LIGO-M1100296, 2011.

[11] B. S. Sathyaprakash and S. Fairhurst, Technical Report,
2012, https://dcc.ligo.org/public/0091/T1200219/001/
LIGO-T1200219-v1.pdf.

[12] T. Akutsu et al. (KAGRA Collaboration), in 15th
International Conference on Topics in Astroparticle and
Underground Physics (TAUP 2017) Sudbury, Ontario,
Canada, 2017 (2017) [arXiv:1710.04823].

[13] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. 833, L1 (2016).

[14] B. S. Sathyaprakash and S. V. Dhurandhar, Phys. Rev. D 44,
3819 (1991).

[15] S. V. Dhurandhar and B. S. Sathyaprakash, Phys. Rev. D 49,
1707 (1994).

[16] S. V. Dhurandhar and B. F. Schutz, Phys. Rev. D 50, 2390
(1994).

[17] G. Faye, S. Marsat, L. Blanchet, and B. R. Iyer, Classical
Quantum Gravity 29, 175004 (2012).

[18] P. Ajith, M. Hannam, S. Husa, Y. Chen, B. Brügmann,
N. Dorband, D. Müller, F. Ohme, D. Pollney, C. Reisswig
et al., Phys. Rev. Lett. 106, 241101 (2011).

[19] A. Taracchini, Y. Pan, A. Buonanno, E. Barausse, M. Boyle,
T. Chu, G. Lovelace, H. P. Pfeiffer, and M. A. Scheel, Phys.
Rev. D 86, 024011 (2012).

[20] A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M. Boyle,
D. A. Hemberger, L. E. Kidder, G. Lovelace, A. H. Mroué,
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