
 

Innermost stable circular orbits in the Majumdar-Papapetrou
dihole spacetime

Keisuke Nakashi* and Takahisa Igata†

Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan

(Received 25 March 2019; published 24 June 2019)

We investigate the positions of stable circular massive particle orbits in the Majumdar-Papapetrou dihole
spacetime with equal mass. In terms of qualitative differences of their sequences, we classify the dihole
separation into five ranges and find four critical values as the boundaries. When the separation is relatively
large, the sequence on the symmetric plane bifurcates, and furthermore, they extend to each innermost
stable circular orbit in the vicinity of each black hole. In a certain separation range, the sequence on the
symmetric plane separates into two parts. On the basis of this phenomenon, we discuss the formation of
double accretion disks with a common center. Finally, we clarify the dependence of the radii of marginally
stable circular orbits and innermost stable circular orbits on the separation parameter. We find a
discontinuous transition of the innermost stable circular orbit radius. We also find the separation range
at which the radius of the innermost stable circular orbit can be smaller than that of the stable circular
photon orbit.
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I. INTRODUCTION

In 2015, the LIGO Scientific and Virgo Collaborations
detected gravitational waves from a binary black hole [1,2].
This observation established that the binary black hole
systems exist in nature. So far, we have already found ten
binary black hole mergers and one binary neutron star
merger [3,4], and the number of detections will increase
further in the future. These discoveries strongly motivate
the study of phenomena around a binary black hole system.
Actual binary black hole systems are so dynamic that the

method of numerical relativity is quite useful to describe
phenomena in these systems. On the other hand, it is also
significant to use analytical methods for a qualitative
understanding of the phenomena. However, there is no
analytical expression of a binary black hole system due to
their dynamical character. Therefore, we often adopt a static
(or stationary) and axisymmetric dihole spacetime as a toy
model. There are some dihole solutions of the Einstein
equation (or the Einstein-Maxwell equation) with these
symmetries, such as the Weyl spacetime [5], the Majumdar-
Papapetrou (MP) spacetime [6–8], the double-Kerr space-
time [9], etc. We can learn a lot from phenomena on such a
spacetime and obtain strong suggestions to binary black
hole events. For example, while the formation of binary
black hole shadows requires fully nonlinear simulation of
numerical relativity, we can identify some specific features
by using a (quasi-)static dihole spacetime [10–14].

The research of test particle motion in strong gravita-
tional fields is significant in astrophysics as well as in
gravitational theories. Even in binary black hole systems, it
is still one of the most fundamental problems. Indeed, the
formation of the binary black hole shadow mentioned
above is the problem of the dynamics of massless particles.
On the other hand, the dynamics of massive particles in a
binary black hole system has been discussed in the contexts
of gravitational wave radiation induced by a third body
effect [15–18] and the formation of multiple accretion
disks [19,20]. In these phenomena, the sequence of stable
circular orbits is crucial, and in particular, the innermost
stable circular orbit (ISCO) plays a key role because it is
expected to be the inner edge of an accretion disk [21], and
also an inspiralling compact binary transits into the
merging phase there [22,23].
Under these circumstances, the purpose of this paper is

to clarify the characteristics of stable circular orbits in a
binary black hole system. In particular, it is meaningful to
study how marginally stable circular orbits (or innermost
stable circular orbits) of a binary black hole system changes
compared to those of a single black hole. To achieve this,
we consider stable circular orbits around the axis of
symmetry of the dihole in the equal mass MP spacetime,
which is an exact solution of the Einstein-Maxwell
equation and consists of two extremal Reissner-
Nordström black holes. Once we fix the mass scale of
the dihole, it depends only on one parameter, the dihole
separation. We expect that the stable circular orbits exhibit
nontrivial appearance when the separation between two
black holes changes. Indeed, in some previous works,
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several properties of stable circular orbits in the MP dihole
spacetime were reported: marginally stable circular orbits
of massive particles are not unique [24] and the stable
circular photon orbit appears inside the unstable circular
photon orbit [25]. In this paper, we analyze the dependence
of the sequence of stable circular orbits on the separation
parameter in the whole spacetime. As a result of our
analysis, the parameter range is divided into five, at each
boundary of which the behavior of stable circular orbits
drastically changes. Then we find the appearance of
marginally stable circular orbits, ISCOs, and the stable/
unstable circular photon orbit. Note that the marginally
stable circular orbit is unique in the Schwarzschild/
Reissner-Nordström/(charged) Kerr spacetime but not in
the MP dihole spacetime. Therefore, the ISCO is the
marginally stable circular orbit with the smallest radius.
Finally, we find that the position of the ISCO transits
discontinuously at a certain value of the separation and the
radius of the ISCO is smaller than the stable circular photon
orbit for a specific separation.
This paper is organized as follows. In Sec. II, we derive

the conditions of stability for circular orbits of a massive
particle in the MP dihole spacetime with equal mass. These
conditions are given in terms of a 2D effective potential and
its Hessian. In Sec. III, we explore the dependence of the
sequence of stable circular orbits on the separation between
the dihole. Dividing the range of the separation parameter
into five parts, we clarify the transitions of marginally
stable circular orbits and the innermost stable circular orbit.
Furthermore, by analyzing qualitative changes of the
sequence of stable circular orbits, we find some critical
values of the separation parameter analytically. Section IV
is devoted to a summary and discussions. We use units in
which G ¼ 1 and c ¼ 1.

II. STABILITY CONDITIONS OF CIRCULAR
ORBITS IN THE MAJUMDAR-PAPAPETROU
DIHOLE SPACETIME WITH EQUAL MASS

The metric and the gauge field of the MP dihole
spacetime in isotropic coordinates are given by

gμνdxμdxν ¼ −
dt2

U2
þ U2ðdρ2 þ ρ2dϕ2 þ dz2Þ; ð1Þ

Aμdxμ ¼ U−1dt; ð2Þ

Uðρ; zÞ ¼ 1þ Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − aÞ2

p þ M−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ aÞ2

p ; ð3Þ

whereM� are masses of two extremal Reissner-Nordström
black holes located at z ¼ �aða ≥ 0Þ. Note that we choose
cylindrical coordinates on the spatial geometry, x ¼ ρ cosϕ
and y ¼ ρ sinϕ, where x, y are the Cartesian coordinates.
The Lagrangian L of a freely falling test particle is

defined by

L ¼ 1

2
gμν _xμ _xν ¼

1

2

�
−

_t2

U2
þ U2ð_ρ2 þ ρ2 _ϕ2 þ _z2Þ

�
; ð4Þ

where the dot denotes derivative with respect to an affine
parameter. Since the spacetime is static and axisymmetric,
the Lagrangian does not depend on the coordinates t and ϕ
explicitly. Thus, there are two constants of motion

E ¼ _t
U2

; L ¼ ρ2U2 _ϕ; ð5Þ

where we may assume that E > 0. These quantities
correspond to energy and angular momentum, respectively.
Without loss of generality, we assume that the worldline is
parametrized so that gμν _xμ _xν ¼ −κ, where κ ¼ 1 for time-
like particles and κ ¼ 0 for null particles. From this
normalization and Eq. (5), we introduce the effective
potential Vðρ; zÞ for the motion in ρ-z plane

_ρ2 þ _z2 þ V ¼ E2; ð6Þ

Vðρ; z;L2Þ ¼ L2

ρ2U4
þ κ

U2
: ð7Þ

We consider circular orbits with constant ρ and z for
timelike particles. Particles in circular orbits must satisfy
the following conditions: (a) _ρ ¼ _z ¼ 0, (b) ρ̈ ¼ ̈z ¼ 0.
Condition (a) together with the normalization (6) leads to

V ¼ E2: ð8Þ

Conditions (8), (a), and (b) together with the equations of
motion for z and ρ imply

Vz ¼ 0; ð9Þ

Vρ ¼ 0; ð10Þ

where Vi ¼ ∂iVði ¼ z; ρÞ. Hence the circular orbits are
realized at stationary points of V where the values of V are
positive.
We can rewrite Eqs. (8)–(10) by using the explicit form

(7) as

Uz ¼ 0; ð11Þ

L2 ¼ L2
0ðρ; zÞ ≔ −

ρ3U2Uρ

U þ 2ρUρ
; ð12Þ

E2 ¼ E2
0ðρ; zÞ ≔ Vðρ; z;L2

0Þ; ð13Þ

where L2
0 must be non-negative value in the physical

branch. Note that, if L2
0 ≥ 0 holds, then V is necessarily

positive. Finally, we find that a particle moves in a circular

KEISUKE NAKASHI and TAKAHISA IGATA PHYS. REV. D 99, 124033 (2019)

124033-2



orbit with constant ρ and z if and only if the conditions
Uz ¼ 0, L2 ¼ L2

0 ≥ 0, and E2 ¼ E2
0 are satisfied.

We also consider the stability of circular orbits. From the
standard linear stability analysis of circular orbits, we find
that a circular orbit is stable if and only if the orbit exists at
a local minimum point of V. We call such a circular orbit a
stable circular orbit. On the other hand, a circular orbit is
unstable if and only if the orbit exists at a local maximum
point of V or a saddle point of V. We call such a circular
orbit an unstable circular orbit. Here we introduce the
Hessian of V and the trace of Vij ¼ ∂i∂jV

hðρ; z;L2Þ ¼ detVij; ð14Þ

kðρ; z;L2Þ ¼ TrVij: ð15Þ

In terms of these quantities, we can summarize the stability
of circular motions as follows:

(i) A circular orbit is stable ⇔ h > 0 and k > 0 at a
stationary point of V;

(ii) A circular orbit is unstable ⇔ (h > 0 and k < 0) or
h < 0 at a stationary point of V.

When a sequence of stable circular orbits switches to a
sequence of unstable circular orbits at a radius, we call the
circular orbit at the radius a marginally stable circular orbit,
where V has an inflection point (i.e., h ¼ 0). In particular,
we call the marginally stable circular orbit with the smallest
value of the radial coordinate ρ the innermost stable
circular orbit.
In the remainder of this paper, we investigate circular

orbits in the MP dihole spacetime with equal mass
Mþ ¼ M−. We use units in whichM� ¼ 1 in what follows.
In this case, Eq. (11) reduces to

z½ρ6 − 3ða2 − z2Þ2ρ2 − 2ða2 þ z2Þða2 − z2Þ2� ¼ 0: ð16Þ

This equation means that Uz always vanishes on the
symmetric plane z ¼ 0. Focusing on the case where the
inside of the square bracket vanishes, we find another real
root of Eq. (11)

ρ20 ¼ 2ða2 − z2Þ cos
�
1

3
arccos

a2 þ z2

a2 − z2

�
: ð17Þ

Hence we obtain two curves z ¼ 0 and ρ ¼ ρ0ðzÞ in ρ-z
plane, where Uz vanishes. Note that these curves intersect
each other at ðρ; zÞ ¼ ð ffiffiffi

2
p

a; 0Þ. To discuss the stability of
circular orbits, we introduce the Hessian h and the trace k
evaluated at L2 ¼ L2

0

h0ðρ; zÞ ¼ hðρ; z;L2
0ÞjUz¼0; ð18Þ

k0ðρ; zÞ ¼ kðρ; z;L2
0ÞjUz¼0; ð19Þ

where the restriction Uz ¼ 0 means that the terms directly
proportional to Uz have been removed from the right-hand
sides. Using h0 and k0, we specify the region where the
remaining conditions for stable circular orbits hold

D ¼ fðρ; zÞjh0 > 0; k0 > 0; L2
0 > 0g: ð20Þ

Hence, stable circular orbits in the MP dihole spacetime
with equal mass exist on the curves z ¼ 0 or ρ ¼ ρ0
included in the region D in ρ-z plane.
It is convenient to obtain the expressions L0, E0, and h0

evaluated at the symmetric plane z ¼ 0. To derive them in
simpler forms, we use a new coordinate R defined by

RðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

q
; ð21Þ

where R ≥ a, which follows from ρ ≥ 0. In terms of R, we
derive angular momentum and energy for a circular orbit on
z ¼ 0, respectively,

L0ðρ; 0Þ ¼
ffiffiffi
2

p ðRþ 2ÞðR2 − a2Þ
R

ffiffiffi
f

p ; ð22Þ

E0ðρ; 0Þ ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 þ 2a2

p

ðRþ 2Þ ffiffiffi
f

p ; ð23Þ

where, without loss of generality, we have chosen the
branch L0 ≥ 0, and

fðRÞ ¼ R3 − 2R2 þ 4a2: ð24Þ

Note that these quantities diverge if f vanishes.
Furthermore, in the range f < 0, there is no circular orbit
(see Sec. III F for details). In addition, the derivatives of
L0ðρ; 0Þ and E0ðρ; 0Þ with respect to R are given by,
respectively,

dL0ðρ; 0Þ
dR

¼ gffiffiffi
2

p
R2f3=2

; ð25Þ

dE0ðρ; 0Þ
dR

¼ g

ðRþ 2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 þ 2a2

p
f3=2

; ð26Þ

where

gðRÞ ¼ R6 − 6R5 þ 3a2R4 þ 22a2R3 þ 16a4: ð27Þ

These results mean that the monotonicity of angular
momentum and energy for a circular orbit switches at
the points where g ¼ 0. We find that, at least in the region
far enough from the center R ≫ a, the angular momentum
L0ðρ; 0Þ and the energy E0ðρ; 0Þ are real positive values
and monotonically increasing with R. We also derive h0
evaluated at z ¼ 0
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h0ðρ; 0Þ ¼
16ðR2 − 3a2Þg
R2ðRþ 2Þ6f2 : ð28Þ

If f vanishes, this quantity diverges, which is similar to the
behaviors seen in L0ðρ; 0Þ and E0ðρ; 0Þ. On the other hand,
the Hessian h0ðρ; 0Þ vanishes at R ¼ ffiffiffi

3
p

a (i.e., ρ ¼ ffiffiffi
2

p
a),

where z ¼ 0 and ρ ¼ ρ0 intersect each other. In addition,
h0ðρ; 0Þ also vanishes for g ¼ 0, which is similar to the
behavior seen in Eqs. (25) and (26). This fact implies that
the monotonicity of angular momentum and energy for a
circular orbit switches at zeros of h0ðρ; 0Þ. Taking into
account h0ðρ; 0Þ > 0 for R ≫ a, we find that angular
momentum and energy monotonically increase with R
on the sequence of stable circular orbits and monotonically
decrease with R on the sequence of unstable circular orbits.

III. DEPENDENCE OF THE SEQUENCE
OF STABLE CIRCULAR ORBITS

ON THE SEPARATION

We discuss the dependence of the positions of stable
circular orbits on the separation parameter a. Using the
functions defined in the previous section, we plot the
sequence of stable circular orbits as illustrated in Fig. 1. On
the basis of these plots, dividing the range of a into five
parts, we clarify the behavior of stable circular orbits for
each range of a in the following subsections. Furthermore,
we find the four critical values of a characterized by the
behaviors of the sequence of stable circular orbits and the
angular momentum of a circular orbit.

A. a > 1.401 � � �
We focus on stable circular orbits in the case where the

separation between the dihole is large enough (i.e., a ≫ 1).
Figure 1(a) shows a typical shape of the sequence of stable
circular orbits for a large value of a. As seen from the
figure, stable circular orbits exist on the line z ¼ 0 in the
range ρ ∈ ð ffiffiffi

2
p

a;∞Þ. The end point ðρ; zÞ ¼ ð ffiffiffi
2

p
a; 0Þ is a

marginally stable circular orbit because the sequence
switches to that of unstable circular orbits at this point,
where h0 ¼ 0. In addition, at this point the sequence of
stable circular orbits bifurcates into the curve ρ ¼ ρ0, where
ρ0 is defined by Eq. (17). Finally it terminates near each
black hole, which also correspond to marginally stable
circular orbits, especially the ISCOs.
Even in the sequence on ρ ¼ ρ0, the energy and the

angular momentum of stable circular orbits monotonically
decrease as the radius decreases up to the ISCOs. Note that,
when a is large enough, a particle moving near each black
holes feels gravity of a single black hole. Indeed, in the
limit as a → ∞, the ISCO radius measured by ρ approaches
3, which coincides with the ISCO radius of the single
extremal Reissner-Nordström black hole spacetime (see
Appendix B).

As the value of a decreases from a large value, the ISCOs
approach the intersection of z ¼ 0 line and ρ ¼ ρ0 line.
When the value of a reaches 1.401 � � �, the three marginally
stable circular orbits merge at a point on z ¼ 0 [see
Fig. 1(b)]. As a result, the sequence of stable circular
orbits only appears on the line z ¼ 0.

B. a= a0 = 1.401 � � �
We find the critical value a ¼ a0 at which the three

marginally stable circular orbits degenerate [see Fig. 1(b)].
We expand ρ0 in Eq. (17) around z ¼ 0 up to Oðz2Þ,

ρ0 ¼
ffiffiffi
2

p
a −

7

9
ffiffiffi
2

p
a
z2 þOðz4Þ: ð29Þ

Substituting this expression into h0, we expand it around
z ¼ 0 again,

h0ðρ0; zÞ ¼
768ð54a2 − 33

ffiffiffi
3

p
a− 26Þ

a2ð9a− 2
ffiffiffi
3

p Þ2ð3aþ 2
ffiffiffi
3

p Þ6 z
2 þOðz4Þ: ð30Þ

As already discussed above, these results imply that
there exists a marginally stable circular orbit at the point
ðρ; zÞ ¼ ð ffiffiffi

2
p

a; 0Þ. Furthermore, since the condition
of the multiple root is d2h0ðρ0; zÞ=dz2 ¼ Oðz2Þ, i.e.,
54a2 − 33

ffiffiffi
3

p
a − 26 ¼ 0, we obtain the critical value a0 as

a0 ¼
11þ ffiffiffiffiffiffiffiffi

329
p

12
ffiffiffi
3

p ¼ 1.401 � � � : ð31Þ

Thus, in the case a ¼ a0, we find stable circular orbits on
z ¼ 0 plane in the range ρ ∈ ð ffiffiffi

2
p

a0;∞Þ and the ISCO
at ðρ; zÞ ¼ ð ffiffiffi

2
p

a0; 0Þ.

C. a0 > a > 0.9713 � � �
If we make a smaller than a0, the sequence of

stable circular orbits still appears only on z ¼ 0 plane in
the range ρ ∈ ð ffiffiffi

2
p

a;∞Þ [see Fig. 1(c)], so that it is
sufficient to analyze circular orbits on it. The end point
ðρ; zÞ ¼ ð ffiffiffi

2
p

a; 0Þ corresponds to the unique marginally
stable circular orbit, especially the ISCO. When the
value of a reaches 0.9713 � � �, the region D becomes
marginally connected at the intersection point of the lines
z ¼ 0 and h0 ¼ 0 [see Fig. 1(d)]. This intersection point is
not a marginally stable circular orbit because the
sequence of stable circular orbits does not switch to that
of unstable circular orbits here. As a result, there exists
the unique marginally stable circular orbit in the range
a0 ≥ a ≥ 0.9713 � � �.

D. a= a� = 0.9713 � � �
We seek the exact critical value a ¼ a� at which the

region D is marginally connected at the intersection point

KEISUKE NAKASHI and TAKAHISA IGATA PHYS. REV. D 99, 124033 (2019)

124033-4



(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIG. 1. Positions of stable circular orbits of massive particles in ρ-z plane of the Majumdar-Papapetrou dihole spacetime with equal mass
Mþ ¼ M− ¼ 1 for the separation range 0 ≤ a ≤ 5. The solid black lines represent the curves satisfyingUz ¼ 0 (i.e., z ¼ 0 and ρ ¼ ρ0). The
shaded regions show the regionD, where h0 > 0, k0 > 0, and L2

0 > 0 are satisfied. The sequence of stable circular orbits is the solid black
curves included in the regionD. The solid blue lines are the boundary ofDwhere h0 ¼ 0,L2

0 > 0, and k0 > 0. The dashed blue lines are the
boundary ofDwhere h0 > 0, k0 > 0, andL2

0 diverges. The red dots are the positions of ISCOs. Thegreen dots are the positions ofmarginally
stable circular orbits (MSCOs) except for the ISCO.Theorange triangles anddots are thepositions ofunstable circular photonorbits and stable
ones, whereL2

0 diverges. (a) a ¼ 5. When a is large enough, stable circular orbits exist not only on z ¼ 0 line in the range ρ ∈ ð ffiffiffi
2

p
a;∞Þ but

onρ ¼ ρ0 line.AnMSCOexists at ðρ; zÞ ¼ ð ffiffiffi
2

p
a; 0Þ, and the ISCOs are located around each black hole. (b)a ¼ a0 ¼ 1.401 � � �. There exist

stable circular orbits on z ¼ 0 plane in the range ρ ∈ ð ffiffiffi
2

p
a0;∞Þ. The ISCO is located at ðρ; zÞ ¼ ð ffiffiffi

2
p

a0; 0Þ, where threeMSCOs fora > a0
are degenerate. (c) a ¼ 1. There exist stable circular orbits on z ¼ 0 plane in the range ρ ∈ ð ffiffiffi

2
p

;∞Þ. The point ðρ; zÞ ¼ ð ffiffiffi
2

p
; 0Þ is the ISCO.

(d) a ¼ a� ¼ 0.9713 � � �. The region D is marginally connected at ðρ; zÞ ¼ ðρ�; 0Þ. There exist stable circular orbits on z ¼ 0 plane in the
range ρ ∈ ð ffiffiffi

2
p

a�;∞Þ, of which the boundary ðρ; zÞ ¼ ð ffiffiffi
2

p
a�; 0Þ is the ISCO. (e) a ¼ 0.95. The sequence of stable circular orbits splits into

two parts. As a result, two additionalMSCOs appear at the boundary of the outer sequence and the outer boundary of the inner sequence. The
point ðρ; zÞ ¼ ð ffiffiffi

2
p

a; 0Þ is the ISCO. (f) a ¼ a∞ ¼ 0.5433 � � �. There are two sequences of stable circular orbits. The outer boundary of the
inner sequence is no longer physical because L2

0 diverges there. An MSCO appears at the boundary of the outer sequence, and the ISCO
appears at ðρ; zÞ ¼ ð ffiffiffi

2
p

a∞; 0Þ. (g)a ¼ 0.53. There are twosequences of stable circular orbits.At the outer boundaryof the inner sequence,L2
0

diverges.AnMSCOappears at the boundary of the outer sequence, and the ISCOappears at ðρ; zÞ ¼ ð ffiffiffi
2

p
a; 0Þ. (h)a ¼ ac ¼ 0.3849 � � �. The

divergence ofL2
0 occurs at ðρ; zÞ ¼ ð ffiffiffi

2
p

ac; 0Þ and the inner sequence of stable circular orbits disappears. There only exists the outer sequence
and its inner boundary becomes the ISCO. (i) a ¼ 0. There exist stable circular orbits in the range ρ ∈ ð6;∞Þ on z ¼ 0. The point
ðρ; zÞ ¼ ð6; 0Þ is the ISCO, which connects to the ISCO of the single extremal Reissner-Nordström black hole with mass 2.
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of the lines z ¼ 0 and h0 ¼ 0 [see Fig. 1(d)]. In other
words, the function h0 has a saddle point at this point. We
use this condition to derive a� in what follows. From the
explicit form of h0ðρ; 0Þ given in Eq. (28), we find that the
condition h0ðρ; 0Þ ¼ 0 holds at ðR; zÞ ¼ ð ffiffiffi

3
p

a; 0Þ, but
the Hessian h0 does not have a stationary point there.
Therefore we focus on the other branch

g ¼ 0; ð32Þ

where g is defined by Eq. (27). A point satisfying
this equation can be a stationary point of h0 if
dh0ðρ; 0Þ=dR ¼ 0, which reduces to

R3 − 5R2 þ 2a2Rþ 11a2 ¼ 0; ð33Þ

where we have used Eq. (32). Solving Eqs. (32) and (33)
for a and R simultaneously, then we obtain the solutions

a� ¼
50ð7þ ffiffiffiffiffiffiffiffi

129
p Þ

ð13þ ffiffiffiffiffiffiffiffi
129

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
710þ 70

ffiffiffiffiffiffiffiffi
129

pp ¼ 0.9713 � � � ; ð34Þ

R� ¼
−19þ 3

ffiffiffiffiffiffiffiffi
129

p

4
¼ 3.768 � � � : ð35Þ

The value of ρ corresponding to these solutions is given by

ρ� ¼
5

512
ð20291 − 1667

ffiffiffiffiffiffiffiffi
129

p
Þ ¼ 3.641 � � � : ð36Þ

The inverse of a� coincides with the critical values M�
mentioned in Ref. [24]. Note that the linear stability of a
circularly orbiting particle at ðρ; zÞ ¼ ðρ�; 0Þ is undeter-
mined, but the analysis of the allowed region of the particle
motion shows it nonlinearly stable.

E. a� > a > 0.5433 � � �
If we make a smaller than a�, the region D is separated

into two regions [see Fig. 1(e)], and then two sequences of
stable circular orbits appear on the line z ¼ 0. The outer
sequence appears from infinity to a marginally stable
circular orbit, while the inner sequence appears between
another marginally stable circular orbit and the ISCO.
Therefore, three marginally stable circular orbits appear in
total as the boundaries of these sequences. Their radii
except for the ISCO radius are given as real roots for
Eq. (32), and the ISCO radius is ρ ¼ ffiffiffi

2
p

a in particular.
As the value of a gradually decreases, the two sequences

tend to separate from each other. In addition, the energy at
the marginally stable circular orbit next to the ISCO
increases. Remarkably, it reaches the energy level of a
rest particle at infinity (i.e., E ¼ 1) at a ¼ 0.7567 � � �.
Hence, for a≤0.7567���, stable circular orbits with E0≥1
exist until the inner sequence disappears. Note that we do
not observe such a phenomenon in the Kerr spacetime.

Since circular orbits with E0 ≤ 1 occur more naturally, the
sequence with E0 > 1 does not contribute to phenomena
such as accretion disk formation around the dihole.
When the value of a reaches 0.5433 � � �, the marginally

stable circular orbit next to the ISCO is no longer a
circular orbit because infinitely large angular momentum
and energy are required to keep it a circular orbit [see
Fig. 1(f)]. In the following subsection, we find the critical
value of a from the behavior of L2

0.

F. a= a∞ = 0.5433 � � �
As mentioned in the previous subsection, one of the three

marginally stable circular orbits located next to the ISCO
disappears in the limit as a ↘ 0.5433 � � �. If a timelike
particle circularly orbited at this limiting radius for
a ¼ 0.5433 � � �, the angular momentum L2

0 would diverge.
Therefore, to find the exact critical value a∞ of a, we
analyze the behavior of L2

0ðρ; 0Þ, which is given by
Eq. (22). Notice that this expression and Eq. (28) diverge
if the following condition is satisfied:

f ¼ 0: ð37Þ

It is worth pointing out that this condition is equivalent to
that of the existence of circular photon orbits (see
Appendix B). Since fðRÞ has a local minimum at R ¼
4=3 and its extreme value takes the form fð4=3Þ ¼
4ða2 − 8=27Þ, we find that the divergence of L2

0 appears
only at ρ ¼ ρ∞ for a ¼ a∞, where

a∞ ¼ 2
ffiffiffi
6

p

9
¼ 0.5433 � � � ; ð38Þ

ρ∞ ¼ 2
ffiffiffiffiffi
30

p

9
¼ 1.217 � � � ; ð39Þ

where ρ∞ corresponds to R ¼ 4=3. At a ¼ a∞, hence the
inner sequence of stable circular orbits on z ¼ 0 plane exist
in the range ρ ∈ ð ffiffiffi

2
p

a∞; ρ∞Þ. The inverse of a∞ coincides
with M̄ mentioned in Ref. [24].
For a > a∞, the angular momentum L2

0ðρ; 0Þ is positive
and finite everywhere. This means that there exist stable/
unstable circular orbits with arbitrary radii on z ¼ 0 plane.
On the other hand, for a ≤ a∞, there exists no circular orbit
of a massive particle on z ¼ 0 plane in the range ρps ≤
ρ ≤ ρpu because L2

0 can be negative or infinitely large there,
where ρps and ρpu are defined in Eqs. (B4) and (B5).

G. a∞ > a > 0.3849 � � �
If we make a smaller than a∞, there still exist the two

sequences of stable circular orbits on z ¼ 0 plane [see
Fig. 1(g)]. The outer sequence exists from infinity to a
marginally stable circular orbit. The inner sequence exists
in the range ρ ∈ ð ffiffiffi

2
p

a; ρpsÞ, where ρ ¼ ffiffiffi
2

p
a is the ISCO
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radius and ρ ¼ ρps is the radius of the stable circular photon
orbit, defined by Eq. (B5) in Appendix B. The ISCO radius
is smaller than the radius of the stable circular photon orbit.
Note that L2

0 diverges in the limit as ρ → ρps on the inner
sequence, which is consistent with the appearance of the
stable circular photon orbit.
As the value of a approaches 0.3849 � � �, the value ρps

approaches
ffiffiffi
2

p
a. When a ¼ 0.3849 � � �, the inner sequence

disappears [see Fig. 1(h)].

H. a = ac = 0.3849 � � �
We seek the exact critical value of a ¼ 0.3849 � � � at

which the inner sequence of stable circular orbits just
disappears. The value of L2

0 at ðρ; zÞ ¼ ð ffiffiffi
2

p
a; 0Þ is given by

L2
0ð

ffiffiffi
2

p
a; 0Þ ¼ 8ðaþ 3acÞ2

3
ffiffiffi
3

p ða − acÞ
; ð40Þ

where

ac ¼
2

ffiffiffi
3

p

9
¼ 0.3849 � � � : ð41Þ

This result together with Eq. (28) means that, even if a
arbitrarily approaches to ac from above, the point ðρ; zÞ ¼
ð ffiffiffi

2
p

a; 0Þ is necessarily a marginally stable circular orbit. If
a ¼ ac, then L2

0 at ðρ; zÞ ¼ ð ffiffiffi
2

p
ac; 0Þ diverges, so that the

inner sequence of stable circular orbits disappears.
Consequently, we can identify ac with the numerical
critical value a ¼ 0.3849 � � �. Thus the location of the
ISCO changes discontinuously at a ¼ ac. Note that, how-
ever, the circular photon orbit exists there.

I. ac > a ≥ 0

If we make a smaller than ac, the single sequence of
stable circular orbits appears on z ¼ 0 plane from infinity to
the ISCO. As the value of a approaches 0, the ISCO radius
monotonically increases. For a ¼ 0, the MP dihole

becomes the single extremal Reissner-Nordström black
hole with mass equal to 2 in our units. Then the sequence of
stable circular orbits exists from infinity to the ISCO radius
equal to three times its mass (see Appendix A). Therefore,
we find the ISCO at ρ ¼ 6 as shown in Fig. 1(i). Note that
z ¼ 0 plane at a ¼ 0 is no longer special because spherical
symmetry is restored.

IV. SUMMARY AND DISCUSSIONS

We have investigated stable circular orbits in the
Majumdar-Papapetrou dihole spacetime with equal unit
mass for various values of the dihole separation. We have
divided the separation parameter a into five ranges
based on qualitative differences of the sequence of stable
circular orbits and simultaneously have determined the four
critical values as the boundaries of the ranges: a0, a�, a∞
and ac. For a > a0 ¼ 1.401 � � �, the sequence of stable
circular orbits exists on the symmetric plane and further
bifurcates and extends towards each black hole. This
phenomenon is a clear sign to recognize a dihole. On
the other hand, for 0 ≤ a ≤ a0, stable circular orbits lie only
on the symmetric plane. In both ranges a0 ≥ a > a� ¼
0.9713 � � � and 0 ≤ a ≤ ac ¼ 0.3849 � � �, stable circular
orbits form a continuous single sequence, while in the
range ac < a ≤ a�, stable circular orbits form two sepa-
rated sequences.
With the transition of the sequence of stable circular

orbits, the numbers of marginally stable circular orbits
changes. We have summarized them in Table I. The number
of the marginally stable circular orbits increases due to the
bifurcation or the separation of the sequence. The radii
of marginally stable circular orbits and the ISCOs are
plotted as a function of a in Fig. 2. The ISCO radius, shown
by red lines, can be smaller than the ISCO radius in the
single extremal Reissner-Nordström black hole spacetime.
The location of the ISCO changes discontinuously at
a ¼ ac.
For an equal mass MP dihole with arbitrary separation,

we have found stable circular orbits far from the dihole on

TABLE I. Positions in ρ-z plane and the numbers of the MSCOs and the ISCOs for each range of the separation parameter a. The item
nðMSCOsÞ indicates the number of the marginally stable circular orbits, and the item nðISCOsÞ indicates the number of the innermost
stable circular orbits.

Separation MSCOs nðMSCOsÞ ISCOs nðISCOsÞ
A. a > a0 ¼ 1.401 � � � ðρ0; zÞ where h0ðρ0;zÞ¼0, jzj ≤ a 3 ðρ0; zÞ where h0ðρ0;zÞ¼0, z ≠ 0 2
B. a ¼ a0 ð ffiffiffi

2
p

a0; 0Þ 1 ð ffiffiffi
2

p
a0; 0Þ 1

C. a0 > a > a� ¼ 0.9713 � � � ð ffiffiffi
2

p
a; 0Þ 1 ð ffiffiffi

2
p

a; 0Þ 1
D. a ¼ a� ð ffiffiffi

2
p

a�; 0Þ 1 ð ffiffiffi
2

p
a�; 0Þ 1

E. a� > a > a∞ ¼ 0.5433 � � � ðρ; 0Þ where h0ðρ; 0Þ ¼ 0 3 ð ffiffiffi
2

p
a; 0Þ 1

F. a ¼ a∞ ðρ; 0Þ where h0ðρ;0Þ¼0, 0 ≤ L2
0 < ∞ 2 ð ffiffiffi

2
p

a∞; 0Þ 1
G. a∞ > a > ac ¼ 0.3849 � � � ðρ; 0Þ where h0ðρ;0Þ¼0, 0 ≤ L2

0 < ∞ 2 ð ffiffiffi
2

p
a; 0Þ 1

H. a ¼ ac ðρ; 0Þ where h0ðρ; 0Þ ¼ 0 1 ðρ; 0Þ where h0ðρ; 0Þ ¼ 0 1
I. ac > a ≥ 0 ðρ; 0Þ where h0ðρ; 0Þ ¼ 0 1 ðρ; 0Þ where h0ðρ; 0Þ ¼ 0 1
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the symmetric plane. These orbits balance by Newtonian
gravitational force and centrifugal force. Near the dihole,
however, stable circular orbits may balance by other
mechanisms. As in the case of a familiar Schwarzschild
black hole, a particle in the vicinity of the horizon feels the
high-order relativistic effect. On the other hand, since there
is no horizon on the symmetric plane of this dihole
spacetime, the centrifugal barrier of a particle inevitably
diverges at the center. As a result, a radial stable
equilibrium point appears by balancing the relativistic
higher-order gravitational force and centrifugal force.
Furthermore, if this point is also in a region bounded in
the vertical direction, a stable circular orbit occurs. This
mechanics is similar to that of the appearance of stable
circular orbits near the 5D black ring [26,27]. This suggests
that the phenomenon occurs universally in the spacetime
where there is no horizon at the center of the system.
We briefly mention unstable circular orbits for massive

particles. For an arbitrary value of a > 0, there exists the
sequence of unstable circular orbits on the symmetric plane
in the range ρ <

ffiffiffi
2

p
a, which are radially stable but

vertically unstable. The sequence further appears between
the pair of marginally stable circular orbits on the sym-
metric plane for a∞ < a < a� [see Fig. 1(e)], while it
appears between the outermost marginally stable circular
orbit and the unstable circular photon orbit for 0 ≤ a ≤ a∞
[see Figs. 1(f)–1(i)]. In addition, we also find unstable
circular orbits on ρ ¼ ρ0 for a > ac. They appear between
the ISCO(s) and the unstable circular photon orbits. On
these sequences, the energy and the angular momentum are
monotonically increases as the radius decreases.

It is worthwhile to remark on characteristic accretion
disk formation on the symmetric plane The two sequences
of stable circular orbits for ac < a < a� suggest the
formation of double accretion disks with a common center.
In general, it is natural for a particle in an accretion disk to
fall from outside to inside while losing their energy and
angular momentum. If a particle reaches the inner edge of
the outer disk and loses further energy and angular
momentum, it transits into a stable circular orbit in the
inner disk, which has lower energy and angular momentum
levels than those of the outer disk. Taking into account this
mechanism, we can obtain a more restricted parameter
range a� > a > 0.5238 � � � from the condition that the
energy and the angular momentum levels at the inner edge
of the inner disk become smaller than those at the inner
edge of the outer disk. Therefore, we can conclude that the
formation of double accretion disks occurs in this param-
eter range.
Though we have considered the MP dihole spacetime

with equal mass in the present paper, the methods in the
discussions above are applicable to the MP dihole space-
time with different mass. Since the MP dihole spacetime is
a toy model of a realistic binary system, we need to take
into account the dynamical effect for further understanding
of the binary system in future work. There are some
previous works taking into account the dynamical effect
of the binary in the MP dihole spacetime [28,29]. These
works may help us to analyze the dynamical features of the
sequence of stable circular orbits in the binary system.
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APPENDIX A: CIRCULAR ORBITS
IN THE EXTREMAL REISSNER-NORDSTRÖM

BLACK HOLE

We review circular orbits in the extremal Reissner-
Nordström black hole spacetime. The metric in the iso-
tropic coordinates is given by

gμνdxμdxν ¼ −
�
1þM

ρ

�
−2
dt2

þ
�
1þM

ρ

�
2

½dρ2 þ ρ2ðdθ2 þ sin2θdϕ2Þ�;

ðA1Þ

FIG. 2. Dependence of the radii of marginally stable circular
orbits and circular photon orbits on the separation parameter a in
the Majumdar–Papapetrou dihole spacetime with equal unit
mass. The red and green solid lines mark the radii of the MSCOs
and ISCOs, respectively. The orange dashed lines and the orange
solid line are the unstable circular photon orbits and the stable
circular photon orbits, respectively. For ac < a ≤ a∞, the radius
of the ISCO is smaller than that of the stable circular photon orbit.
At a ¼ ac, a discontinuous transition of ISCO occurs.
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where M is the mass of the black hole. The horizon is
located at ρ ¼ 0. The standard form of the metric in the
Schwarzschild coordinates is recovered by the transforma-
tion r ¼ ρþM. We consider a freely falling particle in a
circular orbit on the equatorial plane (θ ¼ π=2). Using the
same procedure as in Sec. II, we obtain the radial equation

_ρ2 þ V ¼ E2; ðA2Þ

V ¼ L2

ρ2

�
1þM

ρ

�
−4

þ κ

�
1þM

ρ

�
−2
; ðA3Þ

where the dot denotes derivative with respect to an affine
parameter, E ¼ −ð1þM=ρÞ−2_t is conserved energy, L ¼
ðρþMÞ2 _ϕ is conserved angular momentum, κ ¼ 1 for
massive particles, and κ ¼ 0 for massless particles. Circular
orbits are given by the simultaneous solutions of V ¼ E2

and dV=dρ ¼ 0. The second equation for massless particles
(i.e., κ ¼ 0) has a root

ρ ¼ M: ðA4Þ

This is the radius of the circular photon orbit. In the
Schwarzschild radial coordinate, the radius corresponds to
r ¼ 2M. There is the other root ρ ¼ 0 but this is not a
circular orbit. On the other hand, the equation dV=dρ ¼ 0
for massive particles (i.e., κ ¼ 1) has the roots

ρ� ¼ L2 − 2M2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ðL2 − 8M2Þ

p
2M

: ðA5Þ

Note that the larger root ρþ is a local minimum point of V,
while the smaller root ρ− is a local maximum point of V.
Thus, stable circular orbits exist at ρ ¼ ρþ, and unstable
circular orbits exist at ρ ¼ ρ−. In the case L2 ¼ 8M2, the
pair of circular orbit radii coincides with each other, and
then the radius takes the value

ρ ¼ 3M: ðA6Þ

This is the minimum radius of stable circular orbits and is
known as the innermost stable circular orbit. In the
Schwarzschild radial coordinate, the radius of the inner-
most stable circular orbit corresponds to r ¼ 4M.

APPENDIX B: CIRCULAR PHOTON ORBITS IN
THE EQUAL MASS MAJUMDAR-PAPAPETROU

DIHOLE SPACETIME

We review circular photon orbits in the MP dihole
spacetime with equal unit mass M� ¼ 1. The effective
potential for null particles is given by Eq. (7) with κ ¼ 0.
As is the case with timelike particles, the condition Vz ¼ 0
is equivalent toUz ¼ 0 and has solutions ρ ¼ ρ0 and z ¼ 0.
We focus on circular photon orbits on ρ ¼ ρ0. To

investigate their positions, we solve Eq. (16) again for z and
find real roots z0ðρÞ. The line z ¼ z0 corresponds to
the line ρ ¼ ρ0. We consider the condition Vρ ¼ 0 on
z ¼ z0:

Vρðρ; z0ðρÞÞ ¼ 0: ðB1Þ

The real solutions of this equation express the radii of the
unstable circular photon orbits. They only exist for a ≥ ac
but not for a < ac. The dependence of the radii of circular
photon orbits on the separation parameter a is shown in
Fig. 2 by orange dashed lines. In the limit as a → ∞, the
circular photon orbit radius measured by ρ approaches 1,
which coincides with that of the single Reissner-Nordström
black hole spacetime.
Next we focus on circular photon orbits on z ¼ 0 plane.

The condition Vρ ¼ 0 leads to

ðρ2 þ a2Þ3=2 ¼ 2ðρ2 − a2Þ: ðB2Þ

This equation has real roots only for ρ > a. We can rewrite
Eq. (B2)

f ¼ 0; ðB3Þ

where f is defined by Eq. (24). In the range ρ > a, the roots
of this cubic equation for ρ2 are given by

ρ2pu¼
4−3a2

3
þ8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3a2

p
cos

�
1

3
arccos

27a4−36a2þ8

8ð1−3a2Þ3=2
�
;

ðB4Þ

ρ2ps ¼
4 − 3a2

3

þ 8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3a2

p
cos

�
4π

3
þ 1

3
arccos

27a4 − 36a2 þ 8

8ð1 − 3a2Þ3=2
�
:

ðB5Þ

Note that ρpu and ρps correspond to the unstable circular
photon orbit and the stable one, respectively (see Fig. 2).
These roots are real only for a ≤ a∞, which is found from
the discriminant of Eq. (B3). Hence, for a > a∞, there exist
unstable circular photon orbits only on ρ ¼ ρ0 line [see
Figs. 1(a)–1(e)]. When a ¼ a∞, an additional circular
photon orbit appears at ðρ; zÞ ¼ ðρ∞; 0Þ [see Fig. 1(f)],
where ρ∞ is given by Eq. (39). The condition for the
existence of the multiple root ρpu ¼ ρps also leads to the
values of a∞ and ρ∞. For ac < a < a∞, unstable circular
photon orbits exist on ρ ¼ ρ0 and at ðρ; zÞ ¼ ðρpu; 0Þ, and
stable circular photon orbits exists at ðρ; zÞ ¼ ðρps; 0Þ [see
Fig. 1(g)]. When a ¼ ac, three circular photon orbits
degenerate at ðρ; zÞ ¼ ð ffiffiffi

2
p

ac; 0Þ [see Fig. 1(h)]. For
a < ac, there is no stable circular photon orbit but there
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are two unstable circular photon orbits on z ¼ 0. The outer
one is radially unstable but vertically stable, while the inner
one is radially stable but vertically unstable (see also
Ref. [30]). For a ¼ 0, we obtain ρpu ¼ 2 and ρps ¼ 0,

which coincide with the radius of the unstable circular
photon orbit and the horizon radius of the single extremal
Reissner-Nordstöm black hole with mass 2, respectively
(see Appendix A).
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