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We study static symmetric solutions in the context of a gravitational theory based on a action-dependent
Lagrangian. Such theory has been designed as a setup to implement dissipative effects into the traditional
principle of least action. Dissipation appears therefore from the first principles and has a purely geometric
origin. An interesting feature of this theory is the existence of a coupling four-vector λμ, which in an
expanding background is related to cosmological bulk viscosity. General relativity is recovered with a
vanishing λμ. We analyze the existence of equilibrium solutions of static configurations aiming to describe
astrophysical objects. We find out that the existence of static spherically symmetric configurations occurs
only in the particular scenario with vanishing λt, λr and λϕ components i.e, λμ ¼ f0; 0; λθ; 0g. Thus, the
component λθ is the unique available parameter of the theory in the astrophysical context. This result
severely constrains the existence of this sort of gravitational theories. We proceed then verifying the impact
of λθ on the stability and the mass-radius configurations for a reasonable equation of state for the cold dense
matter inside compact stars. We further investigate the relativistic spherical collapse in order to track the
structure of geometrical singularities appearing in the theory.
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I. INTRODUCTION

The general relativity (GR) based description of astro-
physical and cosmological observables has led to the
concept of dark matter and dark energy. While the former
has been evoked to deal with the dynamics at galactic/
clusters scales, the latter is assumed to drive the accelerated
background expansion of Friedmann-Lemaitre-Robertson-
Walker (FLRW) universe.
In order to circumvent the dark matter and dark energy

phenomena the idea to extend the description of gravita-
tional interaction beyond GR has set a well-established
route of investigation in the literature. This strategy is based
mainly on the concept of giving up the typical GR
gravitational Lagrangian density Lg ¼ R, where R is the
Ricci scalar, to construct the more generic Lagrangian
density with the form Lg ≡ LðR; other termsÞ.
Recently [1], within the spirit of searching for new

viable geometric structures to describe gravity, Lazo et al.
have proposed a covariant generalization of the Herglotz
problem. The latter consists in generalizing the minimum
action principle via the introduction of action-dependent

Lagrangians S ¼ R
Lðx; _x; SÞdt. This occurs via the imple-

mentation of a cosmic four-vector λμ. The covariant
formulation designed in [1] has been so far studied in
the context of FLRWexpansion [2,3] and its applications to
braneworld gravity [4] and cosmic strings [5].
In this work we study the aspects of the action-dependent

Lagrangian gravitational theory related to the existence
and compatibility with astrophysical sources. The field
equations of this theory are presented in Sec. II. Later, in
the Sec. III, we investigate static configurations aiming to
describe the interior solution of spherically symmetric
astrophysical compact objects. This analysis imposes
strong conditions on the departure from the GR theory
represented by the free parameter of the theory contained
in a four-vector λμ. Indeed, anticipating the main results of
this work, static spherically symmetric objects only exist
for a very particular form of λμ. For a reasonable equation
of state (EoS) for the neutron star interior we plot the
equilibrium mass-radius diagrams in order to assess the
impact of the available components of λμ into the maximum
mass of the neutron star. In Sec. V the spherical collapse of
dust matter in the considered theory is analysed as well
as the singularity points which appear. We conclude in the
final section. We are using the Weinberg’s convention [6],
thus the metric signature is ð−þþþÞwhile κ ¼ −8πG=c4.
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II. THE FIELD EQUATIONS OF THE THEORY

The complete set of field equations considered in [1] is
based on the following total Lagrangian

L ¼ Lg þ Lm ¼ ðR − λμsμÞ þ Lm; ð1Þ

where apart from the Einstein-Hilbert Lagrangian for the
geometrical sector one deals with the additional dissipative
term λμsμ while Lm is the Lagrangian of the matter fields.
In general, the background four-vector λμ depends on the
spacetime coordinates, however it can be assumed to be
constant. The field sμ is an action-density field which
disappears after the variation of the action such that the
modification to the GR counterpart is given by the four-
vector λμ only. Thus, the field equations are given by

Gμν þ Kμν −
1

2
gμνK ¼ κTμν; ð2Þ

where we have defined κ ¼ −8πG=c4, Gμν ¼ Rμν − 1
2
gμνR

is the Einstein tensor, Tμν is the perfect fluid energy
momentum sourcing the field equations

Tμν ¼ ðpþ ρÞuμuν þ pgμν; ð3Þ

where p is the pressure, ρ denotes the energy density, and
uμ is a normalized uμuν ¼ −1 four-vector field (an observer
comoving with the fluid). The symmetric geometric struc-
ture Kμν is defined as

Kμν ¼ λαΓα
μν −

1

2
ðλμΓα

να þ λνΓα
μαÞ ð4Þ

which is constructed from the particular combination of the
four-vector λμ and the Christofell symbols

Γα
μν ¼

gαβ

2
ðgβμ;ν þ gβν;μ − gμν;βÞ: ð5Þ

The quantity Kμν (and its trace K) represents the geometric
structure behind the dissipative nature of such theory.
Again, the limit of a vanishing λμ restores the dissipation-
less feature of GR.

III. STATIC SPHERICALLY-SYMMETRIC
SOLUTION

It is worth noting that the modified field equations (2)
belong to a class of modified gravity theories whose field
equations can be written according to the structure [7–9]

σðΨiÞðGμν −WμνÞ ¼ κTμν; ð6Þ

where σðΨiÞ represents a parametrized coupling to the
gravity being Ψ either a curvature invariant or even other
fields which do not have a geometric origin, like scalar

ones. The symmetric tensor Wμν parametrizes additional
geometrical terms which may appear in an specific modi-
fied theory under consideration. Clearly, in order to recast
Eq. (2) into Eq. (6) one identifies the coupling σ as the
unity, i.e.,

σðΨiÞ ¼ 1; ð7Þ

while

Wμν ¼ −Kμν þ
1

2
gμνK: ð8Þ

Therefore, since we are interested in static spherically
symmetric solutions, let us consider a spacetime metric of
the form

ds2 ¼ −c2BðrÞdt2 þ AðrÞdr2 þ r2dΩ2: ð9Þ

One may use the procedure for the modified field equations
of the form (6) presented in Ref. [10] and hence we
immediately can write down the solutions of the field
equations inside a compact object (r < R⋆, where R⋆ is a
star’s radius) such that

AðrÞ ¼
�
1 −

2GM
c2r

�
−1
; ð10Þ

BðrÞ ¼ e
R

r

0
ð−2GλrMr̃=c2−4GMþ2kr̃3pðr̃Þþλrr̃2−2λθ r̃ cotðθÞ

4GMr̃=c2−2r̃2
Þdr̃

; ð11Þ

where the mass function is defined as

M≡MðrÞ ¼
Z

r

0

�
4πr2ρ −

3λrr̃þ 2λθCotðθÞA
4GA

�
dr̃:

ð12Þ

We proceed now further by analyzing the modified
Einstein field equations (2). It is worth nothing that the
traceless part also provides additional information about the
geometrical structure of the solutions of the theory. In order
to satisfy the traceless part of the modified equation (2),

Kμν ¼ 0; μ ≠ ν; ð13Þ

one obtains

λt ¼ λϕ ¼ 0: ð14Þ

This condition reduces the available free parameters of the
theory to only two parameters λr and λθ. Also, further
analysis of (13) imposes that such remaining components
of λμ are related by
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λθ

�
A0

A
þ B0

B

�
þ 2λr cot θ ¼ 0: ð15Þ

Let us notice that we have assumed a static spherically
symmetric format for the metric components AðrÞ and
BðrÞ. Therefore, the terms including cotðθÞ should depend
on the coordinate r only. Thus, by inspection of the mass
function (12) and (15) it is worth to notice that the existence
of radially symmetric mass profiles imposes the functional
form λθ ∼ cotðθÞ−1. Applying this requirement to Eq. (15)
we obtain

λr ¼ 0; λθ ¼
λ0

cot θ
; λ0 ¼ const: ð16Þ

Therefore, the dimensionless parameter λ0, related to the λθ
component of the four-vector λμ, is the unique parameter
of the theory in static spherically symmetric spacetimes.
Henceforth, the static spherically symmetric solutions of
the action-dependent theory are written in a much more
simplified form

AðrÞ ¼
�
1 −

2GMðrÞ
c2r

�
−1
; ð17Þ

BðrÞ ¼ e
R

r

0
ð−4GMðrÞ=c2þ2κr̃3pðr̃Þ−2λ0 r̃

4GMðrÞr̃=c2−2r̃2 Þdr̃ ð18Þ
where the mass function becomes

MðrÞ ¼
Z

r

0

�
4πr2ρ −

λ0c2

2G

�
dr̃: ð19Þ

IV. THE INTERIOR SOLUTIONOFRELATIVISTIC
STARS IN ACTION-DEPENDENT

LAGRANGIAN THEORIES

By using the Bianchi identities in the field equations (2),
it turns out that the standard conservation law is replaced by

Kμν
;μ −

1

2
K;ν ¼ κTμν

;μ: ð20Þ

Using the above equation and realizing that the theory can
be recasted in the form (6) we can apply the results of [10]
to obtain the modified Tolman-Oppenheimer-Volkoff
(TOV) equation as

p0ðrÞ ¼ −
GM
r2

�
ρþ p

c2

��
1þ 4πr3ðp − λ0

κr2Þ
Mc2

�

×

�
1 −

2GM
c2r

�
−1
; ð21Þ

which together with the mass function (19) and an
appropriate EoS p ¼ pðρÞ will allow us to study the
equilibrium stellar structure in this model.
Equation (21) differs from the standard TOVequation due

to the term λ0κ=r2 added to one of the pressure contributions.

In a Newtonian-like interpretation of the TOVequation this
term appears from the active gravitational mass density, i.e.,
the one that generates the gravitational field. This kind of
contribution is usually associated with the trace of the
energy-momentum tensor T ¼ ρþ 3p. Some phenomeno-
logical extensions of the TOV equation of this nature and
how they act on the mass-radius diagram have been studied
in Ref. [11]. As already cited above (and also noted in
Refs. [2,3]) on the cosmological scenario the effective
change in the dynamics caused by this theory is a replace-
ment of the total pressure p by and effective term pþ 2λ0H
which resembles the form of a bulk viscous fluid. Therefore,
it is worth noting that the action-dependent Lagrangian
theory can also be seen as an effective change of the matter
sector.
We now calculate numerical solutions of the modified

version of the TOV equation (21) for a suitable EoS which
describes the interior of compact objects like neutron stars.
Neutron stars properties like their masses and radius

have been determined and used to constrain the cold dense
matter EoS within compact stars. Remarkably, it is worth it
to mention the discovery of well precisely measured pulsars
with masses close to 2 M⊙ as for example PSR J0348þ
432 [12], or even above this value, like PSR J2215þ 5135
with the mass around 2.27 M⊙ [13]. These results lead to
the exclusion of soft EoSs which cannot reproduce such
massive neutron stars.
Although the existence of many distinct models for the

NS interior, 2 M⊙ objects can be reproduced phenomeno-
logically via polytropic EoSs of the form p ¼ κ0ρ

γ where
κ0 and γ are fitting constants. Following the toy model
presented in [14] we adopt an approach in which a pure
neutron matter model (i.e., vanishing proton contribution)
has been fitted by the quadratic polytropic EoS γ ¼ 2

(in units preserving that p and ρ are given in MeV=fm3)
providing therefore κ0 ¼ 4.012 × 10−4 fm3=MeV.
We proceed now by solving numerically the modified

TOV system given by the Eqs. (19) and (21). Each hydro-
static equilibrium configuration is the outcome of a given
central density ρ0 which is a necessary input in order to
solve this system. By spanning many order of magnitude in
the central density, from 10−5 − 10−1 M⊙=km3, one obtains
the so called mass-radius diagram.
In Fig. 1 we plot the mass-radius diagram for the

hydrostatic equilibrium configurations using the above
mentioned EoS. Indeed, as seen in the black curve, GR
predicts 2 M⊙ objects with radius in the range ∼10–14 km.
The red line corresponds to the value λ0 ¼ −0.3 while the
blue line to λ0 ¼ þ0.3. The former simulates the effect of a
harder EoS while the latter tends to decrease the maximum
mass acquired by neuron stars as in the case of soft
EoSs. Therefore, positive values of λ0 seem to be quali-
tatively disfavored, at least in the framework of the simple
polytropic equation we have used. Let us notice that the
red curve is not allowed to proceed to high radius values
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due to numerical instability. As we shall see in the section,
the value λ0 ¼ −0.3 is close to the one for which there is the
appearance of a naked singularity.
Figure 2 shows the gravitational mass of the star as a

function of its central density. Solid lines of Fig. 2 show
stable configurations. Beyond the central density at which
the maximum mass is obtained the configuration becomes
unstable. The latter condition is shown in the dotted lines
of Fig. 2.

V. SPHERICAL SYMMETRIC COLLAPSE
OF DUST

The metric (9) with the coefficients given by (17) and
(18) takes the following form in vacuum

ds2 ¼ −c2
�
1 −

2GM0 þ λ0c2R⋆
c2ðλ0 þ 1Þr

�
dt2

þ
�
1 −

2GM0 þ λ0c2R⋆
c2r

þ λ0

�−1
dr2 þ r2dΩ2

ð22Þ
whereM0 ¼ MðR⋆Þ. The metric reduces to the well-known
GR solution, that is, the Schwarzschild one, when λ0 ¼ 0.

Before studying the gravitational collapse, it is worth
noting that the metric (22) clearly depends on the sign of
the constant λ0. Let us recall that the mass function
appearing in this expression is written as

MðrÞ ¼ M0 −
λ0c2ðr − R⋆Þ

2G
¼ Meff −

λ0c2

2G
r; ð23Þ

where Meff ¼ M0 þ λ0c2

2G R⋆. We notice that for r → ∞ one
does not deal with the asymptotically flat metric but instead
(if λ0 ≠ −1) the effective metric becomes

ds̃2 ¼ −c2dt2 þ dr̃2 þ ð1þ λ0Þr̃2dΩ2; ð24Þ
with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ0
p

r̃. Moreover, for λ0 < −1 the metric
changes the signature from ð−þþþÞ to ð− −þþÞ.
We will discuss about that later on in more details.
Allowing λ0 < −1 would also manifest a pathological

feature in the definition of the mass (23): it would grow
with r → ∞ because of the last term. Therefore, we find
here the analogy to a negative cosmological term in the
anti-de Sitter spacetime which in a similar manner intro-
duces negative energy density. On the other hand, in the
case of the positive λ0 we observe a negative effect in the
mass function (23) for r > R⋆ working analogically as a
positive cosmological term, that is, a dissipative contribu-
tion introducing a repulsive behavior at large distances.
The exterior solution of the spherical symmetric collapse

of dust is given by (here k ¼ f0;�1g is a constant
curvature of space)

ds2 ¼ −c2dτ2 þ a2ðτÞ
�

dσ2

1 − kσ2
þ σ2dΩ2

�
; ð25Þ

which will be matched by using the Darmois junction
conditions [15] with

ds2 ¼ −c2BðrÞdt2 þ AðrÞdr2 þ r2dΩ2; ð26Þ
with AðrÞ and BðrÞ given by (22). The matching hyper-
surface Σ is given by the equation σ ¼ σ0, with coordinates
ðu; θ;ϕÞ such that the canonical embedding of Σ in the
outer region is

iout∶Σ → M∶ðu; θ;ϕÞ ↦ ðτðuÞ; σ0; θ;ϕÞ ð27Þ

while embedding into the inner region

iin∶Σ → M∶ðu; θ;ϕÞ ↦ ðtðuÞ; rðuÞ; θ;ϕÞ: ð28Þ
Let us notice that σ0 ¼ R⋆, that is, the matching taken on
the star’s surface is a subclass of possible matchings [16].
Thus, equaling the first and the second fundamental forms
of the hypersurface Σ obtained in two embeddings in the
outer (25) and inner (26) regions one has the following
equations to be satisfied

ðt;uÞ2 ¼ −
ξ2A2

Bð1 − ξ2AÞ ðr;uÞ
2; ð29Þ

FIG. 1. Mass-radius diagram. The black line represents the GR
configurations. For the red (blue) line the parameter value λ0 ¼
−0.3ðþ0.3Þ has been adopted.

FIG. 2. Neutron star mass versus its central density. Stable
configurations are represented by the solid lines. Unstable
configurations are shown in the dotted lines.
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ðτ;uÞ2 ¼ −
A

ð1 − ξ2AÞ ðr;uÞ
2; ð30Þ

r2 ¼ a2σ20; ð31Þ

0 ¼ ðr;uÞ2
A2ξ2ðABÞ;r
Bð1 − Aξ2Þ2 ; ð32Þ

where ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kσ20

p
. The derivatives with respect to the

coordinate r are later on evaluated at r ¼ rðuÞ.
The last equation, since r;u ≠ 0, is satisfied when AB ¼

d ¼ const which provides the constant d as

d ¼ c2

1þ λ0
: ð33Þ

Immediately we find from (29) and (30) that

ðt0Þ2 ¼ ξ2A
B

ðτ0Þ2 ð34Þ
which is singular for rsing ¼ 0 and

rhorizon ¼
2GM0 þ λ0c2R⋆

c2ðλ0 þ 1Þ ð35Þ

reducing to the Schwarzschild radius for λ0 ¼ 0.
The analysis of the Kretschmann invariant, which is

defined I ¼ Rμνα
βRμνα

β, shows that the invariant is singular
only for r ¼ 0:

I ¼ 1

c4r4
ðr4λ20ðB00Þ2 þ 2r4λ0ðB00Þ2 þ r4ðB00Þ2

þ 4r2ðλ0 þ 1Þ2ðB0Þ2 þ 8c2ðλ0 þ 1ÞB
þ 4ðλ0 þ 1Þ2B2 þ 4c4Þ; ð36Þ

and thus the singular point (35) could be an event horizon.
We have already excluded at the beginning of the section
the value λ0 ≠ −1 which makes (35) singular.

VI. CONCLUSIONS

We have presented the static spherically symmetric
solution for the action-dependent Lagrangian theories in
which the dissipative term behavior is ruled by the back-
ground four-vector λμ. It turns out that from the field
equations we deal with λt ¼ λϕ ¼ 0 while in order to have
radially symmetric mass we need to have the radial coor-
dinate λr ¼ 0 and λθ ¼ λ0= cot θ where λ0 is an arbitrary
constant. Due to that fact, the interior spherically symmetric
solution has the forms (17) and (18). However, for λ0 ≠ 0 the
vacuum solution (22) is not an asymptotically flatmetric (24)
being singular for λ0 ¼ −1 and changing the signature for
λ0 < −1 to ð− −þþÞ.
Despite that, for λ0 > −1 one obtains the modified TOV

equation (21) with a modification ∼ − λ0=r2 entering to the
gravitating component of pressure. The numerical analysis
of a toy model described by the polytropic equation of state
p ¼ κ0ρ

2 is depicted in the Figs. 1 and 2. Mass-radius
diagram 1 shows that positive values of the parameter λ0

decrease the star’s parameter while the negative one
provides heavier stars. The stable configurations for the
chosen values of λ0 are represented by the solid lines in the
Fig. 2. Analogically to the GR case (λ0 ¼ 0) the unstable
configurations appear beyond the central density for which
the star’s mass reaches the maximum value.
In Sec. V we discussed the collapse of dust matter in the

model. We have used Darmois junction conditions to match
the exterior solution (25) with our vacuum solution (22). The
conditions are realized by the set of equations (29)–(32)
which will be satisfied whenAB ¼ c2

1þλ0
. We are dealing with

the central singularity point at r ¼ 0, which is a physical
singularity, and an event horizon given by (35). It is singular
for the value λ0 ¼ −1 and how it was discussed, this would
be a point in which the metric changes its signature from
ð−þþþÞ to ð− −þþÞ. Furthermore, for−1 < λ0 < − 2GM0

c2R⋆
one would deal with a naked singularity at r ¼ 0. Since that
problem requires deeper analysis and it is not directly related
to stellar objects, which are our main interest here, we will
leave it for the future work.
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APPENDIX: DERIVATION OF THE EQ. (15)

From the field equations (2) and the form of the perfect
fluid energy momentum tensor for the spherical-symmetric
metricwe notice that the off-diagonal elements ofRμν andTμν

are zero. Thus, we are left with the six equations such that

Ktr ¼ λtΓt
tr −

1

2
λtðΓθ

θr þ Γϕ
rϕ þ Γt

rt þ Γr
rrÞ ¼ 0; ðA1Þ

Ktθ ¼ −
1

2
λtΓ

ϕ
θϕ ¼ 0; ðA2Þ

Ktϕ ¼ −
1

2
λtΓα

ϕα ¼ 0; ðA3Þ

Krϕ ¼ 1

2
λϕΓ

ϕ
rϕ ¼ 0; ðA4Þ

Kθϕ ¼ 1

2
λϕΓ

ϕ
θϕ ¼ 0; ðA5Þ

Krθ ¼ −
1

2
λrΓ

ϕ
θϕ −

1

2
λθðΓr

rr þ Γt
rtÞ ¼ 0: ðA6Þ

From the Eqs. (A1)–(A5) we find λt ¼ λϕ ¼ 0 while from
(A6) one has the equation (15):

λθ

�
A0

A
þ B0

B

�
þ 2λr cot θ ¼ 0: ðA7Þ
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