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By using a method improved with a generalized optical metric, the deflection of light for an observer
and source at finite distance from a lens object in a stationary, axisymmetric and asymptotically flat
spacetime has been recently discussed [Ono, Ishihara, Asada, Phys. Rev. D 96, 104037 (2017)]. In this
paper, we study a possible extension of this method to an asymptotically nonflat spacetime. We discuss
a rotating global monopole. Our result of the deflection angle of light is compared with a recent work on
the same spacetime but limited within the asymptotic source and observer [Jusufi e al, Phys. Rev. D
95, 104012 (2017)], in which they employ another approach proposed by Werner with using the Nazim’s
osculating Riemannian construction method via the Randers-Finsler metric. We show that
the two different methods give the same result in the asymptotically far limit. We obtain also the
corrections to the deflection angle due to the finite distance from the rotating global monopole. Near-
future observations of Sgr A * will be able to put a bound on the global monopole parameter S as
1 —p < 1073 for a rotating global monopole model, which is interpreted as the bound on the deficit

angle 6 < 8 x 10™* [rad].
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I. INTRODUCTION

Since the experimental confirmation of the theory of
general relativity [1] succeeded in 1919 [2], a lot of
calculations of the gravitational bending of light have been
done not only for black holes [3] but also for other objects
such as wormholes and gravitational monopoles [4].
Gibbons and Werner (2008) proposed an alternative way
of deriving the deflection angle of light [5]. They assumed
that the source and receiver are located at an asymptotic
Minkowskian region, and they used the Gauss-Bonnet
theorem to a spatial domain described by the optical
metric, for which a light ray is described as a spatial
curve. Ishihara et al. have recently extended Gibbons and
Werner’s idea in order to investigate finite-distance cor-
rections in the small deflection case (corresponding to a
large impact parameter case) [6] and also in the strong
deflection limit for which the photon orbits may have the
winding number larger than unity [7]. In particular, the
asymptotic receiver and source have not been assumed. Our
method and Werner’s one are limited within asymptotically
flat spacetimes.

In this paper, we discuss an extension of our method
applied to a rotating global monopole. Due to the
existence of a deficit solid angle, the spacetime is
not asymptotically flat. A static solution of a global
monopole was found in a paper by Barriola and
Vilenkin [8]. According to their model, global monop-
oles are configurations whose energy density decreases
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with the distance as r~> and whose spacetimes exhibit a
solid deficit angle given by & = 82%5?, where 5 is the
scale of gauge-symmetry breaking. Recently, global
monopoles have been discussed as spacetimes with a
cosmological constant, e.g., in [9]. Static spherically
symmetric composite global-local monopoles have
also been studied [10]. Gravitational lensing in space-
times with a nonrotating global monopole has been
intensively investigated, for instance by Cheng and
Man [11] who studied strong gravitational lensing of
a Schwarzschild black hole with a solid deficit angle
owing to a global monopole. More recently, it has also
been proposed that gravitational microlensing by a
global monopole may even be used to test Verlinde’s
emergent gravity theory [12]. As mentioned above, we
investigate a possible extension of our method to
stationary, axisymmetric spacetimes with a solid deficit
angle, especially in order to examine finite-distance
corrections to the deflection angle of light. The geo-
metrical setups in the present paper are not those in the
optical geometry, in the sense that the photon orbit
has a nonvanishing geodesic curvature, though the light
ray in the four-dimensional spacetime obeys a null
geodesic.

This paper is organized as follows. Section II discusses a
generalized optical metric for a rotating global monopole.
Section III discusses how to define the deflection angle of
light in a stationary, axisymmetric spacetime with the
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deficit angle. In particular, it is shown that the proposed
definition of the deflection angle is also coordinate-
invariant by using the Gauss-Bonnet theorem. We discuss
also how to compute the gravitational deflection angle
of light by the proposed method. Section IV is devoted
to the conclusion. Throughout this paper, we use the
unit of G = ¢ =1, and the observer may be called the
receiver in order to avoid a confusion between r(, and r,, by
using rp.

|

ds®> = G dx! dx”

II. GENERALIZED OPTICAL METRIC FOR
ROTATING GLOBAL MONOPOLE

A. Rotating global monopole

By applying the method of complex coordinate trans-
formation, an extension of the static global monopole
solution to a rotating global monopole spacetime was
described by Teixeira Filho and Bezerra in Ref. [13].

Its spacetime metric reads

a*sin’0{2Mr — a*(1 — sin*9)}

rr—2Mr + a?

= —<1 —%) dr + [’2 —a*{(1 = p*)sin*0 — cos’0}
r- 4 a“cos-0

+ B*(r* + a*cos*0)df? + sin*0

[Prt 4+ {1 = (1 =2p%)cos’0}a’r* + 2Ma’rsin0 + a*cos?0(*cos>6 + sin’6)]

(1-5°) (r? —=2Mr + a*)? dr?

4aMrsin0

a{r*sin’0 — a*cos’0(1 + cos>0)}

d¢?

r? + a*cos’0

—————dtd 2(1 = p?
r? + a*cos?0 ¢+201-5)

where the coordinates are —co < t < +00,2M < r < 400,

0<0<r 0<¢ <2z We denote
p2=1-8up, 2)

where 7 is the scale of a gauge-symmetry breaking.

The rotating global monopole by Eq. (1) is a rotating
generalization of the global monopole black hole in
Ref. [14]. Here, M denotes the global monopole core
mass. The parameter a is the total angular momentum of
the global monopole, which gives rise to the Lense-Thirring
effect in general relativity, and the parameter f is called the
global monopole parameter of the spacetime where f
satisfies 0 < f < 1.
|

(a*cos?d + r?)
[a* + r(r — 2M)]?[a*cos®0 + r(r — 2M)]

yijdxdx) =

2 —=2Mr+ a?

drdg, (1)

|
B. Generalized optical metric

By following Ref. [15], we define the generalized optical
metric Yij (i, j = 1,2,3) by a relation as

dt =1/ ]/ijdxidxj + ﬁidxi, (3)

which is directly obtained by solving the null condition
(ds® = 0) for dt. Note that y; ; is not the induced metric in
the Arnowitt-Deser-Misner (ADM) formalism. We define a
three-dimensional space (M by the generalized optical
metric y;;dx'dx’.

For the rotating global monopole by Eq. (1), we find the
components of the generalized optical metric as

x [a*(p* — 1)sin®@ + a*{a® + r(r — 2M) }cos?0 + a*r*(f* — 1)sin’0 + (a* — 2Mr + r*)r?|dr?

B (a*cos*0 + r*)? 46+

2a(1 — p?)[r*sin?@ — a*cos*0(cos?0 + 1)]

a*cos’0 + r(r —2M)

[a@® + r(r—2M)](1 -
N sin?6(a® cos(20) + a* + 2r?)?[a*(f* — 1) cos(20) + a*(f* + 1) + 2°r(r — 2M))

2y drdg

a’cos?0+r?

8[r(r — 2M) + a*cos*6)?

We obtain the components of ; as

2aMrsin®0
a’cos?0 + r(r —2M)

pidx' = — de. (5)

dgp?. (4)

|

In the rest of the paper, we focus on the light rays in the
equatorial plane, namely 6 = 7/2. Note that the generalized
optical metric y;; does not mean an asymptotically flat
space, because there is the deficit angle of spacetime

Gf B # 1).
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III. DEFLECTION ANGLE OF LIGHT BY A
ROTATING GLOBAL MONOPOLE

A. Deflection angle of light in asymptotically
flat spacetimes

Let us begin this section with briefly summarizing the
generalized optical metric method that enables us to
calculate the deflection angle of light for a nonasymptotic
receiver (denoted as R) and source (denoted as S) [15].

We define the deflection angle of light as [15]

a=W¥g — Y5+ ¢gs. (6)

Here, Wy and W are angles between the light ray tangent and
the radial direction from the lens object, defined in a
covariant manner using the generalized optical metric, at
the receiver location and the source, respectively. On the
other hand, ¢ is the coordinate angle between the receiver
and source, where the coordinate angle is associated with the
rotational Killing vector in the spacetime. If the space under
study is Euclidean, this a becomes the deflection angle of the
curve. This is consistent with the thin lens approximation in
the standard theory of gravitational lensing.
By using the Gauss-Bonnet theorem as [16]

de+7§ kdf+5 0, =21 (7
/L[Joso or . ; ()

R

Equation (6) can be recast into [15]

R
a=- / / KdS + / k,d?. (8)
oRoEloSo S ’

where K is defined as the Gaussian curvature at some point
on the two-dimensional surface, dS denotes the infinitesi-
mal surface element defined with y;, c;gDoSo denotes a

quadrilateral embedded in a curved space with y;;, k,
denotes the geodesic curvature of the light ray in this space
and d? is an arc length defined with the generalized optical
metric (see Fig. 2 in Ref. [15]). It is shown by Asada
and Kasai that this dZ for the light ray is an affine
parameter [17].

B. Deflection angle of light in spacetimes
with a deficit angle

When we consider the deflection angle of light in a
spacetime with the deficit angle, we follow Refs. [6,7,15] to
use the definition of deflection angle of light as

a=¥, —Ys + ¢gs. 9)

In the rest of the present paper, we show that the deficit
angle contribution to the deflection angle of light can be
included.

Note that the surface integral and path integral terms
appear in the right-hand side of Eq. (8) if #; = 0 (see [6]).
However, in the rotating global monopole, Eq. (8) is
modified by the deficit angle. Equation (8) is calculated as

R Teo
// KdS+/ fgdf—i—/ Kgdf—/ Kydt
?Dobg F'so S C,

+/ k,dt + ¥ + (7 = W) + 7 = 2z, (10)
C

oo

which is rewritten as

R Teo
// KdS+/ Ifgdf—&-/ Kydt
oo Joo Teo N
RS

—/ R,df + Prs +Wr—Ws =0, (1)

r

where £ is a geodesic curvature along the radial line from
the infinity to the receiver, &, is a geodesic curvature along
the radial line from the source to the infinity, K, is a
geodesic curvature along the light ray from the source
to the receiver and «, is a geodesic curvature along the
path C,,. The path C, is a light ray from the receiver to
the source in a generalized optical metric, C, iS a
circular arcsegment of a radius R > rg,rg, and we use

dt = \/1+*™dr = {1+ O(M/r)}dr along the radial
line. We shall explain in more detail this calculation in
Sec. III D 3. Therefore, the deflection angle of light by the
rotating global monopole is rewritten as

a:—// de+/'°",<fqdf—/’°°,<jqdf
?Doso R S

-1—/(: K,dt + (1 = f)pgs. (12)

r

where we use Eqgs. (9) and (11). The deflection angle is also
a coordinate-invariant in the spacetimes with deficit angle,
because Wy and Wy are obtained by the inner product at a
receiver and a source respectively.

We have two ways in order to calculate the deflection
angle of light. We shall make detailed calculations of the
right-hand side of Eq. (12) and the right-hand side of
Eq. (9) below.

C. Gaussian curvature

For the equatorial case of a rotating global monopole, the
Gaussian curvature in the weak field approximation is
calculated as
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Rr F
K=
dety;;
2 2
_ 1 i detyij s | 9 detyij F¢¢
2 rr 2 T
\/dety W\ or\ 7
2 6 3
— [_F—rs—ﬂzaz} M—I—r—4M2—|—O(M3/r5), (13)
where yg) denotes the two-dimensional generalized optical

metric in the equatorial plane § = z/2. Here, a and M are
dimensional quantities that can be used as book-keeping
symbols in iterative calculations under the weak field
approximation. As for the first line of Eq. (13), please

|

see e.g., the p. 263 in Ref. [18]. We note that the first term
in the second line of Eq. (13) does not contribute because

I’ =0. It is not surprising that this Gaussian curvature
does not agree with Eq. (26) in Jusufi, et al. [19], because
their Gaussian curvature describes another surface that is
associated with the Randers-Finsler metric different from
our optical metric, though the same four-dimensional
spacetime is considered by two groups.

In order to perform the surface integral of the Gaussian
curvature in Eq. (8), we have to know the boundary shape
of the integration domain. In other words, we need to
describe the light ray as a function of r(¢). For the later
convenience, we introduce the inverse of r as u = r~—!'. The
orbit equation in this case becomes

de b?

b2 de

1+ 2Mu] <@>2 _ F"(] =) (bP = ) daMu(p? — 1)(b*u® — 28%)] du

23%u
b2

[5)--

dafu
b3

}M] + O(a*u?, M*u*) = 0, (14)

where b is the impact parameter of the photon. See e.g., Ref. [15] on how to obtain the photon orbit equation in the
axisymmetric and stationary spacetime. The orbit equation is iteratively solved as

() =Lsin {6+ go(1 = )} + B2+ cos? (B + do(1 ~ )]
P4 (L4 ) cos (36 + o1 =)} + (=1 -+ ) cos (3 + 34h(1 = )]

M= )sinl2{Pp+ o1 =],
b? 2b*

aM + O(M?/b%).  (15)

2b3
The area element of the equatorial plane dS is
dS = \/dety drdp = \/ 1> + O(Mr)drdp = {pr + O(M)}drdgp. (16)

By using Eq. (15) as the iterative solution for the photon orbit, the surface integral of the Gaussian curvature in Eq. (8) is

calculated as

R

r(¢) Pr 2M
—// KdS:/ dr/ d¢<——3>rﬂ+O(M3/b3,azM3/b5,a4M2/b6)
ool Joo o s r
S

u(¢) dr
- / du / dp(2MPB) + O(M3 /b3, > M3 /b, a* M? /)
0 os

or
:2Mﬂ//) d¢(fsin{ﬂ¢+¢o<1—ﬁ>}+

B(B* = 1) sin[2{fep + po(1 = p)}] a)
2b?

b s

_2mp [\/ | V - b} P MA=F) o2 o), (17)

p

where uy and ug are the inverse of rp and rg, respectively, and we used

ZMZ

sin{fips + po(1 = p)} = —>+

_ bPug?
-5, + O(aM/b?) (18)

B B
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and
(1= 1= p-tu
Sin{ﬁ¢k+¢o(1—ﬁ)}:b;R— 5 ! URa — ( b z )M+O(GM/b2) (19)
|
by Eq. (15) in the last line. Ky = _eijkNiﬂj\ka (22)

D. Geodesic curvature

1. Light ray in optical metric
The geodesic curvature plays an important role in our
calculations of the light deflection, though it is not usually
described in standard textbooks on general relativity.
Hence, we follow Ref. [15] to briefly explain the geodesic
curvature here. The geodesic curvature can be defined in
the vector form as (e.g., [20])

k=T - (T x N), (20)

where we assume a parametrized curve with a parameter 2,
T is the unit tangent vector for the curve by reparametrizing
the curve using its arc length 7, T' is its derivative with
respect to the arc length, and N is the unit normal vector for
the surface. Equation (20) can be rewritten in the tensor
form as

Kg

= e;uN'ale¥, (21)
where T and 7’ are denoted by e and a/, respectively. Here,
the Levi-Civita tensor ¢, is defined by €,;x = /7€, where
y = det(y;;), and &;; is the Levi-Civita symbol (¢),3 = 1).In
the present paper, we use y;; in the above definitions but not
gij- Note that a' # 0 in the three-dimensional optical metric
by a nonvanishing gy; [15], even though the light signal
follows a geodesic in the four-dimensional spacetime. On
the other hand, we emphasize that @’ = 0 and thus x, = 0 for
the geodesics in the optical metric, because f; = 0.

As shown first in Ref. [15], Eq. (21) is rewritten in a
convenient form as
|

where we use y;;e'e/ = 1.

Let us denote the unit normal vector to the equatorial
plane as N Pr Therefore, it satisfies N p \Y p9 = éf',, where
V, is the covariant derivative associated with y;;. Hence,
N, is written in a formas N, = Ngéf,. By noting that N, is
a unit vector (N,N,y?9 = 1), we obtain Ny = j:l/\/ﬁ.
Therefore, N, can be expressed as

1
56

where we choose the upward direction without loss of

N

(23)

p

generality.
For the equatorial case, one can show
1
eapqﬂqlp = — 77'34”, (24)

where the comma denotes the partial derivative, we use
e’ = —1/ /v and we note f3, , = 0 owing to the axisym-
metry. By using Egs. (23) and (24), the geodesic curvature of
the light ray with the generalized optical metric becomes [15]

1
N (25)
g y},ee ?,
For the global monopole case, this is obtained as
o 2 2
Kg:—WaM—'WaMZ—&—O(aMWrS). (26)

We examine the contribution from the geodesic curva-
ture. This contribution is the path integral along the light
ray (from the source to the receiver), which is computed as

car—— [F2 st — - [ b 2 /bt
/Crkgdf— /s ﬂr3aMdf+(’)(a M/bY) = /(ﬁs ,Br3aMcos2{ﬂ8+¢o(1—ﬁ)}d8+0(aM /b%)
2 dx (Beos{Bd + ¢o(1 - B)})? b
——5om | S ( b ) o (50 1 o1~} 0 OLAMP)

2
— _ZbizaM /¢R cos{p9 + ¢o(1 — p)}d9 + O(aM?/b*)
os

2aMp
-=

2aMp
-

2., 2

b2MR2

ﬂZ

=

b
- % + O(aM?bY),

[sin{r + do(1 = B)} — sin{Beps + do(1 = B)}] + O(aM?/b*)

124030-5
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where  we  use dfz@d&—&—(’)(bz/rz,M), u=  Here, the vector a’ (i = r,0, ) becomes
W—i— O(a/b,M/b). In the last line, we used
sin{fgr + po(1 = )} = /1 = 5" + Olaug. Mug) and 2P - 1)
5 a" =" a*M + O(a*/r)
. b2ug? 2 4 °
sin{gps + dpo(1 — p)} = =/ 1 ===+ Olaus, Mug) by pr
Eq. (15). The sign of the right-hand side of Eq. (27) a’ =0,
changes, if the photon orbit is retrograde. 2 - 1)
b — ————aM + O(@®/r’,aM?/r).  (32)
2. Radial lines in the generalized optical metric pr
The unit tangent vector along a radius line in ®)M is
R' = (R",0,0). On the equatorial plane, from This means that a' is zero vector in Kerr or Schwarzschild
o ) cases (f = 1).
YijR'R = 7e(R7)> =1, (28) From Eq. (23), we obtain
we obtain
. 1
. 1 N’:(O,—,0>. 33
R" = (29) V760 (33)

Vi

The acceleration vector a' along this line is By using Eqs. (21), (29), (31) and (33), an explicit form

al — R"‘ R (30) of k, is obtained as
=RR.
Its explicit form is
i 14 87r¢ 7r¢ a}/rr
x. =¢e . Na R = gp 2110 L ) (34
a,’ _ l QL + },rr a7/rr ! g VrrY 60 (7 or 2 Or ( )
2\0ryy) 2y Or
" vy Uy 7"y " : L
+ L, L L) (31) Moreover, by substituting functions of metric y;; into
Yrr OF or 2 Or Eq. (34), we obtain k, as

Ky = =/ (r=2M)2{a + r(r = 2M)} {2 (F — 1)2Mr + 1) + 1}
x [a(B* = )P {a* (B> = 1)(=8M2r + M(3r* = 5) + 2r) + a*r{12(f> = 1 )M°r
—8(B2 = )M (r* = 1) + Mr{—=6> + (> = 1)r* + 3} + >} + 2Mr*(2M — r)}]
Jl(r=2M)*{a® + r(r —=2M)}Y*{a*(p* - 1)2Mr + 1) + r*}
x {r?(a®(f* = 1)2Mr + 1) + a*r(=4(p* = )M?r +2(p* = )M (r> = 1) + p*r)
+207 7 (2M = r)(2(F = )MPr = (B2 = DM (? = 1) = r) + Pr4 (r = 2M)*) }'/2]. (35)

This is approximated as

o 2P PP 10 1)

g I . 5 aM? + O(a*M /7, aM? /), (36)

where this «, vanishes in Kerr or Schwarzschild spacetime (f = 1), since the acceleration vector a’ becomes 0.

Let us integrate the leading term of «, from the source to the infinity,

re 2(f7 — 1 ©2(f? -1 2 -1 1|"s 1-p°
/ (ﬁﬂr—s amar = [ (ﬁﬂr—3 )“Mdr:w{—z] :_%+O(“Mz/’s3)- G7)

r
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Similarly, the integral of k, from the receiver to the infinity is computed as

Teo 2 _ -p
A %aﬁ/[#_—%juo(awhﬂ, (38)

where we use d¢ = /1 +*dr = {1+ O(M/r)}dr.

3. Geodesic curvature of circular arcsegment in optical metric

The orbital equation as Eq. (14) can be solved for 4

¢
du 1
% B Fy(u)’ 39)

where we denote

1 uy’ —u’ 1 uy* (o —u) 2 a2 2.2 2g3,2
Fi(u)=—r—e—es—|1-2 a+—M 2uaM +— +O(a*u, M>u,aM?u*, M>u?),
P\ uy* —u? p B(

uoz )3/2 uﬁz(u )3/2

(40)
1 1 uy’ —u’ 1 u03(u0 u)
F_()=————=- <1 ——>a—7M—2uaM<l —— | + O(a®u,M?u,aM?u? , M>u?).

B ug* —u? ) Plug®—u?)? P (ug®—u?)*?
(41)

For ¢pg > ¢ > ¢g, we use F_ (u), while we use F_(u) for ¢pg > ¢ > . Here, we use
b= s + BM = 2ugaM + O(a*uy, M?uy, aM*uy?, M3uy?), (42)

Uo

where u, is the inverse of the distance of closest approach.
At r = ry, (ry is an infinite constant radius of the circular arc segment), we obtain d¢? = r.>f*d¢?, the geodesic
curvature K, = - —+ O(M/ry?). Let us integrate as

pins = [ wt=[“pagp=p ["ap=p [ Foansp [P wan (43)

1 uy’ — u’ 1 uy (g — u)
/Fi(u)du = /{im— (1 ﬁ2>a ZI:WM —2MOM< /}2 i—uﬁzz)uozo_ u2)3_/2) }du

1 (u 1 (Quy + u)\/uy* — u? 2uo>\ ug> — u?
= gorsin () = (1= Ju 0 G = { (< e 2Rl T e

+ O(M?/uy?). (44)

2 bzquz Z_bzuzsz
o R ) (A e
ﬁZ

»

aM + O(M?/b?), (45)

1
+ _<1_ﬂ2>(uR2_ bz\/l quZ b2\/1

2 M

where we use uy = g + M 7 2/3 M This ¢rs becomes that for the Kerr case, only if one takes the limit § — 1.
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E. Jump angles

In the previous section, the unit tangent vector along the radius line in )M is obtained as

R - <\/Ly_ ,o,o), (46)

the unit tangential vector along the spatial curve is also obtained as

¢ _,;(Z; 0, 1) (47)
where
bes = rsfﬂz - r;bﬂZM - +ﬁ;)2ﬂ21 _h—ﬂ“ + e Zf;zﬁét(b E I-Z)ﬂZ) — aM + O(M?/rs’),
Es=- rslz)ﬁ2 + r;bﬁz M+ - +ﬁr25)2ﬂ21 - %a s Zf;zﬂ4([’12(_ :bz;)ﬂz) — aM + O(M?/rs’).

Here, £, means that e’ is the tangent vector of the prograde photon orbit, and £_ means that e’ is the tangent vector of the
retrograde photon orbit. In addition, the subscripts S and R for £, mean from the source to the closest approach and from the
receiver to the closest approach, respectively. Therefore, we can define the angle measured from the outgoing radial
direction by

cosWg =y;;e'RI =y,,¢'R" +y,,e’R"

dr Yor
= yrré I 5
vimRagl "
b? N b*M b(1 = p?) 2b
rR2ﬂ2

_|_

LY
rRB 1~ ,szzﬁz &P re )1 =5

_COS(” _‘PS) = yijeiRj = yrrerRr +7/()re(/)Rr

dr

= \/ﬁf+$@ -

+Tr T
N
b? b*M 1-p°
22 > N 2ﬁ2 )‘H' 5 aM +O(M?/rg?), (49)
s rdp 1—,:’2},,2 rsp rs* 1—#

= — 1—

where Eq. (48) is at the receiver position and Eq. (49) is at the source. Therefore, Wy and Wy are obtained as

4= 2P0y

b
Yr = arcsm< > =
"rP ”Rzﬁ\/ re*py/1 —#

aM + O(M2/ 1), (50)
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M (f-1)a

2-(f-1) 1—%}

b
7 —W¥g = arcsin <—>
rsﬁ Zﬂ

2ﬁ7

rsp

+ —aM + O(M?/rg?). (51)
2 2
r's ﬂ zﬂz

F. Deflection angle
By bringing together Eqgs. (17), (27), (37), (38), (50) and (51), the deflection angle of light for the prograde case is

obtained as

1 1 _ [(bPug?
prog = <ﬁ_ 1)71— <B_ 1) {arcsm( 7

. bZMSZ
)—l—arcsm( ,B2 )}

— 26— (1 +Hp2u.2 2 1+ Hp2u2
+L§ﬁ+l)<u1e—us>a+{ l +ﬂ)2 thR p—( +/)’)2 ’;S }M
p bpyJ1 - bpy 1Lk
— 2(B — b*ug? ) 2(p - bzus2) ( - 1);2(,6 +1) (MR2 _ usz) aM + O(Mz/bz)_ (52)

bzﬂ /1 b/;lzk bzﬂ bzusz

The deflection angle for the retrograde case is

Qretro = (; - 1>7z - <; - 1) {arcsin <b2ﬂu2R2

. b2M52
> +arcsm< ﬂz >}

ﬂ2

(BBt (g — ug)a + {2ﬁ — (L +p)bug’
bp

n 2(B — b2ug?) n 2(p—

bzusz) _

26— (1 +g)b2uS2}M

bzﬂ 1 — 172/314211’2 b2ﬁ hz“sz

If p = 1, Egs. (52) and (53) agree with the known result for
the weak field approximation of the Kerr spacetime in
Ref. [15]. For both cases, the source and receiver may be
located at finite distance from the monopole. As a matter of
course, these results are also obtained by substituting
Egs. (45), (50) and (51) to Eq. (6). Equations (52) and
(53) show that the light deflection is affected by a
deficit angle.

One can see that, in the limit as rp — oo and rg — oo,
Egs. (52) and (53) become

1 4M 4aM M?
Aprog = 5 lg+—=-—-+0 7=

1 4aM M?
(B 1>”+b,<ﬁ oxp. +O<b—,(2>

(1 . aM 167[112M 4aM
p bx bi*

7 + -
327y M?
T*OQ—) >

- L N
-1)2(B+1
)ﬂz( ) (ug? = ug®) yaM + O(M?/b?). (53)
|
1 DNr st 4M n 167> M n 4aM
—_ —_— R
Oretro T bK bK sz
327wn>aM M?
+ 2T r o5 ), (55)
by by

where by is a constant of integration in Jusufi, et al. [19],
we used by = b/f and p* =1 — 8ai’. These equations
coincide with Eq. (53) in [19], in which they are restricted
within the asymptotic source and receiver (rz — oo and
rg — o0). Note that Ref. [19] obtained i% by their
method, while a method of the direct integration of the null
geodesic gives i%: The former expression agrees
with the latter one but with a different numerical coef-
ficient. Please see Appendix A of Ref. [19], especially
Eq. (53) and the last paragraph of the Appendix. According
to their comments in the last paragraph, their approxima-
tion would need to be modified to recover a correct
expression as i%. Our result as Egs. (54) and (55)

is indeed in agreement with the latter expression. In this
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sense, our present approach is better than the method
in Ref. [19].

IV. POSSIBLE ASTRONOMICAL APPLICATIONS

In this section, we discuss possible astronomical appli-
cations. The above calculations discuss the deflection angle
of light. In particular, we do not assume that the receiver
and the source are located at the infinity. The finite-distance
|

correction to the deflection angle of light, denoted as da, is
the difference between the asymptotic deflection angle a,,
and the deflection angle for the finite distance case. It is
expressed as

o= ay, — a.

(56)

The finite-distance correction to the deflection angle of
light is roughly estimated as

1 bPug’ boug? ~1)2(B+1
ba ~ (ﬁ - 1) {arcsin( ﬂqu ) + arcsin( ;25 ) } _B ?Bz(ﬁ +1) (ug — ug)a
28(y/1 =222 — 1) + (1 + Dp2ug?  28(/1 =242 — 1) + (1 + L)b2ug?
+ r __ " " r __ ' M+ O(aM /b2, M2/ 1)
bp 1—”;;? bp 1—";;'
1 . b2uR2> . <b2M52> } (ﬁ — 1)2(ﬂ -+ 1) {buRZ busz}
~ | —=—1]< arcsin + arcsin - Up — Ug)a + +—>M
(ﬁ >{ (ﬂz P P (ua = ) BB
+ O(aM /b*, M?/b?). (57)
The counterpart for the weak-field and slow-rotation Kerr metric is [15]
S0 err ~ (bug + bui)M + O(aM /b*, M?/ b?). (58)

From Egs. (57) and (58), the finite correction to the light deflection purely due to the angle deficit da — dag,,, becomes

S — 8Qgppy ~ <% - 1) {arcsin <b2uR2> + arcsin (bzusz> } — (F-1r(p+1) (ug — ug)a + <% — 1>b(uR2 +ug®>)M

B P

+ O(aM /b*, M? ] b?).

For its simplicity, we consider the mass of the rotating
global monopole equals to Sgr A * (Mgg ~4 X 10% M,
M, is the Solar mass), the spin angular momentum of the
rotating global monopole is a = 2/3Mg,, and the param-
eter f# =0,0.999,359/360. We assume ry, is the distance
from Earth to Sgr A * (rg ~ 8 x 10% [pc]). We also assume
b~ 100M and ry ~ 0.1 pc. As a rough order-of-magnitude
estimate under these assumptions, three terms in
Eq. (59) become

<% - 1) {arcsin (b?;ﬁ) + arcsin <b2ﬁz4252> }

Lf(1=p b 270.1 pc\?
~8x10 3<10_3> <100M5g,> ( P > [mas],  (60)

NUENRTES
ﬂZ

st () (1) (4 Y. o1

(ug —ug)a

ﬂ2

deflection angle

8220
8210 -
g 8200
o,
2 8190
&
8180 Kerr
----- Monopole[5=0.999]
8170 Monopole[8=359/360]
109 10" 10'2 10"3 1014 10'%
rS[km]
FIG. 1. ap,, where we assume the Sgr A*. The vertical axis

denotes the deflection angle of light with the finite-distance
correction and the horizontal axis denotes the source distance rg.
The red solid curve, blue dash curve and green dot curve
correspond to p =0 (Kerr spacetime), S =0.999 and
p =359/360, respectively. The impact parameter is assumed
to be b = 10°Mg,,.
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deflection angle

8280
8260
T
i
s,
£
$ 8240
¢ Kerr
----- Monopole[3=0.999]
8220 ~———— Monopole[3=359/360]
109 1010 oM 1012 1013 10™ 10'5
rS[km]
FIG. 2. oy, wWhere we assume the Sgr A*. The vertical

axis denotes the deflection angle of light with the finite-
distance correction, and the horizontal axis denotes the source
distance rg. The red solid curve, blue dash curve and green dot
curve correspond to =0 (Kerr spacetime), f = 0.999 and
B = 359/360, respectively. The impact parameter is assumed
to be b = 102MSgr~

<l - 1) b(ug? + ug®>)M

5
N (1-p b 0.1 pc\?2
s 10°(15%) (saone) ()
M
X <m> [mas], (62)

respectively. The second and third terms are thus beyond
reach of the present technology. On the other hand, the
first term is much larger than the second and third ones, and
it may be probed by using the present technology, if § is
large enough. If present and near-future observations at
the level of ~1 x 1073 [mas] find no evidence of the first
term, an upper bound on 1 — f will be placed by Eq. (60)
as 1—f<gx1073 ~1x107* For the deficit angle

6 = 8x*n* = n(1 — ), this bound is interpreted as &~
27(1 = B) < 8 x 107 [rad], where we use 1+ g~ 2 for
the small angle deficit. Figure 1 shows the gravitational
deflection of light in the prograde orbit for Sgr A *.
Figure 2 shows that for the retrograde orbit.

V. CONCLUSION

In the weak field approximation, we have discussed the
deflection angle of light for an observer and source at finite
distance from a rotating global monopole with a deficit
angle. We have shown that both of the Werner’s method and
the generalized optical metric method give the same
deflection angle at the leading order of the weak field
approximation, if the receiver and source are at the null
infinity. Therefore, our result is a possible extension to
asymptotically nonflat spacetimes. We have also found
corrections for the deflection angle due to the finite distance
from the global monopole. We examined whether near-
future observations of Sgr A * can put an upper bound on
the deficit angle for a rotating global monopole model. It is
left for the future to study higher order terms in the weak
field approximation of a rotating global monopole and to
examine also the strong deflection limit.
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