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Studies of neutron stars are extremely timely, given the recent detection of gravitational waves from a
binary neutron star merger GW170817 and the International Space Station payload NICER currently in
operation that aims to determine radii of neutron stars to a precision better than 5%. In many cases, neutron
star solutions are constructed numerically due to the complexity of the field equations with realistic
equations of state. However, to relate observables like the neutron star mass and radius to interior quantities
like central density and pressure, it would be useful to provide an accurate, analytic modeling of a neutron
star interior. One such solution for static and isolated neutron stars is the Tolman VII solution characterized
only by two parameters (e.g., mass and radius), though its agreement with numerical solutions is not
perfect. We introduce here an improved analytic model based on the Tolman VII solution by introducing an
additional parameter to make the analytic density profile agree better with the numerically obtained one.
This additional parameter can be fitted in terms of the stellar mass, radius, and central density in an equation
of state–insensitive way. In most cases, we find that the new model more accurately describes realistic
profiles than the original Tolman VII solution by a factor of 2–5. Our results are first-step calculations
towards constructing analytic interior solutions for more realistic neutron stars under rotation or tidal
deformation.

DOI: 10.1103/PhysRevD.99.124029

I. INTRODUCTION

Studies of neutron stars (NSs) can bring valuable
information about fundamental physics, including nuclear
physics. NSs consist of matter with densities that exceed
nuclear saturation density. Thus, they offer natural labo-
ratories to probe the nuclear matter equation of state (EoS)
(relation between pressure and energy density) that is
difficult to access with ground-based nuclear experiments
[1–3]. One way to extract internal structure information is
to measure the NS mass and radius independently [4–6],
though current measurements may contain large systematic
errors. The x-ray astrophysics payload NICER currently in
operation at the International Space Station is expected to
measure the stellar radius to approximately 5% accuracy [7]
with fewer systematics [8,9]. Another way to probe internal
structure is to measure tidal deformabilities of neutron stars
via gravitational waves. The recent event GW170817
favors softer EoS [10–12] that tend to produce NSs with
smaller radii and maximummasses. GW170817 can also be
used to infer nuclear parameters around saturation density
[13,14]. Neutron stars are also useful to probe General
Relativity, as evidenced by binary pulsar [15,16] and
gravitational wave [17,18] observations.
To connect NS observables (masses, radii, tidal deform-

abilities, etc.) to internal structure, one needs to construct
NS solutions by solving the Einstein equations with a given
EoS. Most of such solutions are constructed numerically

due to the complex nature of the field equations. Having said
this, analytic solutions to the Einstein equations that can
mimic realistic NS solutions exist. One simplest example is a
solution with constant density (Schwarzschild interior sol-
ution) [19]. Analytic solutions for modeling more realistic
stars include Buchdahl [1,19,20] and Tolman VII [1,21,22]
solutions. The latter is stable for a large range of compactness
[23], and its geometric structures are studied inRefs. [24,25].
Analytic NS solutions are useful to have a better

understanding of NS physics. NS quasinormal modes
and associated universal relations have been investigated
in detail with the Tolman VII solution [26–28]. An analytic
constant density solution with anisotropic pressure [29]
was used to study how universal relations between moment
of inertia (I), tidal Love number, and quadrupole moment
(Q), and hence I-Love-Q relations, approach the black hole
limit [30]. These analytic solutions for NSs can also be
useful to examine non-GR theories. For example, constant
density and Tolman VII solutions were used to investigate
how stellar scalar charges vanish in string-inspired theories
of gravity [31].
In this paper, we begin by comparing the Tolman VII

solution with numerical solutions. The density profile
among these solutions was investigated in Ref. [1].
Here, we also study the profiles for the interior mass,
gravitational potential, and pressure. For a 1.4 M⊙ NS with
the AP4 EoS (a soft EoS consistent with the LIGO-Virgo
tidal measurement [10–12]), the density and mass profiles
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for the Tolman solution match with the numerical ones with
a typical error of approximately 10%.
The main goal of this paper is to find an analytic model

of the NS interior that can more accurately describe the
realistic solution obtained numerically than the original
Tolman VII solution. The latter models the density to be a
quadratic function of the radial coordinate r. We introduce
here an additional parameter α to allow the density to be a
quartic function of r. We find an approximate universal
relation among this additional parameter and the stellar
mass M, radius R, and central density ρc that is insensitive
to the underlying EoS. The final expression is a three-
parameter solution in terms of M, R, and ρc. The price one
has to pay by introducing the additional parameter is that
the density profile is slightly more complicated than the
original model and we could not find an exact analytic
solution to the Einstein equations.
Having said this, we managed to find an approximate,

three-parameter solution that can more accurately model
realistic profiles than the original Tolman VII solution in
most cases. For example, the density and mass profiles of
a 1.4 M⊙ NS with the AP4 EoS now agree with the
numerical ones within an error of approximately 1%.
Regarding other masses and EoS, the new model can more
accurately model numerical results compared to the origi-
nal Tolman solution by a factor of 2–5. The new model
outperforms the original one especially for softer EoS with
a relatively large mass (greater than 1.5 M⊙). The accuracy
of the new model can be improved further if we use a fit for
α that is specific to each EoS, though the improvement from
the case with the universal-α fit is not so significant.
The remaining of the paper is organized as follows. In

Sec. II, we review the original Tolman VII solution, while
in Sec. III, we present our new model. In Sec. IV, we
compare the two models and show that the new model has
better agreement with numerical solutions than the original
model in most cases, especially for softer EoS. We
conclude in Sec. V and give possible directions for future
work. For busy readers, we summarize the original and
improved Tolman VII solutions in Table III. We use the
geometric units of c ¼ 1 and G ¼ 1 throughout this paper
unless otherwise stated.

II. ORIGINAL TOLMAN VII SOLUTION

We begin by reviewing the original Tolman VII solution
[21] that can mimic static and spherically symmetric
NSs [1]. We use the metric ansatz given by

ds2 ¼ −eνdt2 þ eλdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð1Þ

Here, ν and λ are functions of r only. We assume matter
inside a NS can be modeled by a perfect fluid of which the
stress-energy tensor is given by

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð2Þ

whereuμ is the 4-velocity of the fluid,while ρ andp represent
the matter energy density and pressure, respectively.
Substituting Eqs. (1) and (2) into the Einstein equations,

one finds independent equations as [21]

d
dr

�
e−λ − 1

r2

�
þ d
dr

�
e−λν0

2r

�
þ e−λ−ν

d
dr

�
eνν0

2r

�
¼ 0; ð3Þ

e−λ
�
ν0

r
þ 1

r2

�
−

1

r2
¼ 8πp; ð4Þ

dm
dr

¼ 4πr2ρ; ð5Þ

where a prime denotes a derivative with respect to r and

e−λ ≡ 1 −
2m
r

: ð6Þ

To close the system of equations, one normally chooses an
EoS that relates p as a function of ρ.
Instead of choosing an EoS, Tolman specified e−λ to be a

quartic function of r. This leads to the energy density
profile of

ρTolðrÞ ¼ ρcð1 − ξ2Þ; ð7Þ

where ξ ¼ r=R, with R representing the stellar radius, and
ρc is the central energy density. The subscript “Tol” refers
to the quantity in the original Tolman solution. Substituting
this into Eq. (5) and integrating over r with the boundary
condition mð0Þ ¼ 0, one finds

mTolðrÞ ¼ 4πρc

�
r3

3
−

r5

5R2

�
: ð8Þ

ρc can be expressed in terms of the stellarmassM ≡mðRÞ as

ρc ¼
15M
8πR3

: ð9Þ

Substituting this back into Eqs. (7) and (8), one finds

ρTolðrÞ ¼
15M
8πR3

ð1 − ξ2Þ; ð10Þ

mTolðrÞ ¼ M
�
5

2
ξ3 −

3

2
ξ5
�
: ð11Þ

e−λ is given by a quartic polynomial in terms of ξ as

e−λTolðrÞ ¼ 1 − Cξ2ð5 − 3ξ2Þ ð12Þ

¼ 1 −
8π

15
R2ρcξ

2ð5 − 3ξ2Þ; ð13Þ
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where

C≡M
R

¼ 8π

15
R2ρc ð14Þ

is the stellar compactness.
With these expressions at hand, Tolman [21] analytically

solved for ν and p. First, Eq. (3) can be integrated to yield

eνTolðrÞ ¼ CTol
1 cos2 ϕTol; ð15Þ

with

ϕTol ¼ CTol
2 −

1

2
log

 
ξ2 −

5

6
þ

ffiffiffiffiffiffiffiffiffiffi
e−λTol

3C

s !

¼ CTol
2 −

1

2
log

 
ξ2 −

5

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e−λTol

8πR2ρc

s !
: ð16Þ

The integration constants CTol
1 and CTol

2 are determined
from the boundary conditions

eνTolðRÞ ¼ 1 −
2M
R

; pTolðRÞ ¼ 0; ð17Þ

with pTol given by Eq. (4). One finds

CTol
1 ¼ 1 −

5C
3
; ð18Þ

CTol
2 ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

3ð1−2CÞ

s
þ1

2
log

�
1

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−2C
3C

r �
; ð19Þ

and

pTol ¼
1

4πR2

� ffiffiffiffiffiffiffiffiffiffiffiffi
3Ce−λ

p
tanϕTol −

C
2
ð5 − 3ξ2Þ

�
: ð20Þ

The above solution is the so-called Tolman VII solution.
Figure 1 presents the normalized energy density and

pressure profiles of a 1.4 M⊙ NS with the AP4 EoS for two
different parametrizations of the original Tolman solution.
For reference, we also show realistic profiles obtained
numerically. Regarding the energy density profile, observe
that the ðR; ρcÞ parametrization more accurately models the
realistic profile near the stellar center. This is because the
central density is a free parameter that we can choose to be
the value that matches the one with the numerical calcu-
lation. On the other hand, the ðR;MÞ parametrization works
better in the intermediate regime of the star. We found a
similar feature for the m profile as it is obtained simply by
integrating ρ over a volume as in Eq. (5).
Regarding the pressure profile, the ðR;MÞ parametriza-

tion works better throughout, and we found a similar

feature for the ν profile. This is because p is obtained
from ν [see Eq. (4)], which is determined from the
boundary condition at the stellar surface in terms of R
and M [Eq. (17)]. Thus, the ðR;MÞ parametrization allows
one to match ν at the surface perfectly with the numerical
value. This suggests that perhaps the ðR;MÞ parametriza-
tion has more advantages than the ðR; ρcÞ one, except near
the center of the ρ and m profiles.

III. IMPROVED TOLMAN VII MODELING

We propose here an improved model which has three
free parameters ðM;R; ρcÞ. We begin by introducing an
additional term to Eq. (7),

ρimpðrÞ ¼ ρc½1 − αξ2 þ ðα − 1Þξ4�; ð21Þ

with a constant α. The coefficients are chosen such that
ρimpðRÞ ¼ 0. The original Tolman solution is recovered in
the limit α → 1. m and λ now become

mimp ¼ 4πρcR3ξ3
�
1

3
−
α

5
ξ2 þ α − 1

7
ξ4
�
; ð22Þ
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FIG. 1. Energy density (top) and pressure (bottom) profiles for
the original Tolman solution with two different parametrizations.
We choose R ¼ 11.4 km and either ρc ¼ 9.9 × 1014 g=cm3 or
M ¼ 1.4 M⊙. We also present the numerical solution with
the AP4 EoS and ρc ¼ 9.9 × 1014 g=cm3 that corresponds to
M ¼ 1.4 M⊙ and R ¼ 11.4 km.
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e−λimp ¼ 1 − 8πR2ξ2ρc

�
1

3
−
α

5
ξ2 þ α − 1

7
ξ4
�
: ð23Þ

A. Choice of α

Before deriving the improved expression for ν and p, let
us see how we can express α in terms ofM, R, and ρc. One
way to determine this is to useM ¼ mimpðRÞ, which yields

α ¼ 5ð−21M þ 16πR3ρcÞ
24πR3ρc

: ð24Þ

However, we find that a more accurate modeling is
obtained by fitting Eq. (21) to the true density profile
obtained numerically for various EoS and ρc. We adopt 11
realistic EoS with different stiffnesses as summarized in
Table I. These EoS all support a 2 M⊙ NS [32]. We
consider fits for α in terms of M, R, and ρc given by

α ¼ a0 þ a1

�
Cn

ρcR2

�
þ a2

�
Cn

ρcR2

�
2

; ð25Þ

where C ¼ M=R and the fitted coefficients a0, a1, a2, and n
for each EoS are summarized in Table II.
Such EoS-specific fits for α are useful only if one wishes

to model the NS interior solution accurately for the EoS

presented in Table II, and perhaps it would be more useful if
we have a single, universal fit for α that is valid for any EoS.
The top panel of Fig. 2 shows α against Cn=ρcR2 with
n ¼ 0.903 for various EoS. Indeed, the relation seems to be
universal in the sense that it is insensitive to the choice of
EoS. Based on this finding, we created a single fit, again
using Eq. (25), that is valid for all 11 EoS considered here.
The fitting coefficients are summarized in Table II.

TABLE I. Eleven realistic EoS considered in this paper. They
are categorized into three different stiffness classes [33].

EoS class Members

Soft AP4 [34], SLy [35], WFF1 [36], WFF2 [36]
Intermediate ENG [37], MPA1 [38], AP3 [34], LS [39]
Stiff Shen [40], MS1 [41], MS1b [41]

TABLE II. Fitted coefficients of α in Eq. (25) for each realistic EoS. We also present a universal fit for α that is
valid for all the realistic EoS considered here within an error of 10%. The last column shows the R-squared value
that gives a statistical measure of how good the fit is. It is the coefficient of determination defined by

R2 ≡ 1 −
P

i
ðαi−ᾱÞ2P

i
ðαi−fiÞ2

, in which αi represents the numerical data, fi is the predicted value from the model, and ᾱ

is the mean of the numerical data.

EoS a0 a1 a2 n R squared

AP4 3.900 61 −1.677 16 0.112 974 0.884 655 1.000 000
SLy 4.081 25 −1.949 44 0.190 047 0.898 685 1.000 000
WFF1 3.499 02 −1.242 06 0.012 64 0.871 133 0.999 996
WFF2 5.002 28 −2.703 95 0.347 978 0.889 16 0.999 998
AP3 3.998 92 −1.755 38 0.133 497 0.881 961 1.000 000
MPA1 3.847 39 −1.580 61 0.091 9565 0.879 148 0.999 999
ENG 0.438 372 1.28922 −0.506 597 0.874 422 0.999 733
LS 4.189 45 −2.208 75 0.288 819 0.920 735 1.000 000
Shen 4.058 47 −1.924 81 0.187 936 0.906 579 0.999 998
MS1 3.746 56 −1.516 08 0.061 2786 0.911 464 0.999 909
MS1b 3.951 58 −1.691 33 0.114 453 0.891 669 0.999 914
Universal 3.706 25 −1.502 66 0.064 3875 0.903 0.998 772
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FIG. 2. (Top) α [characterizing the density profile in the
improved Tolman model in Eq. (21)] as a function of Cn=ρcR2

with n ¼ 0.903 for 11 realistic EoS. Different colors correspond to
different classes of EoS in Table I (soft in red, intermediate in
green, and stiff in blue). We also present the fit in a black solid
curvegiven byEq. (25)with the coefficients given in the last rowof
Table II. (Bottom) Relative fractional errors between numerical
results and the fit. Notice that the relations are nearly EoS
independent, with an EoS variation of 10% at most.
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The bottom panel of Fig. 2 presents the fractional
difference between each data point and the universal fit.
Observe that the fit is valid to 10% accuracy for any EoS.
Note that as one increases the central density, each
sequence reaches a maximum value for Cn=ρcR2 and starts
to turn around. This leads to the fact that the fractional
difference between the fit and data being larger for larger
Cn=ρcR2. In such a region, there can be two different values
for α for a fixed Cn=ρcR2 (again due to the turn over), and
thus it becomes more difficult to fit the relation.

B. Improved analytic expressions for ν and p

Next, we look for the expressions for ν and p. The price
we have to pay for adding the additional term in Eq. (21) is
that we are no longer able to solve Eq. (3) analytically.
Thus, we find an approximate solution instead.
Let us first derive the improved expression for ν. We

begin by approximating λ in Eq. (3) with the original
Tolman VII expression λTol and not the improved version
λimp. The solution for ν to this equation then has the same
form as Eqs. (15) and (16):

eνimpðrÞ ¼ Cimp
1 cos2 ϕimp; ð26Þ

with

ϕimp ¼ Cimp
2 −

1

2
log

 
ξ2 −

5

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5e−λTol

8πR2ρc

s !
: ð27Þ

Though the integration constants Cimp
1 and Cimp

2 are differ-
ent from the original ones CTol

1 and CTol
2 as we improve the

boundary conditions:

eνimpðRÞ ¼ 1 −
2M
R

; p̄impðRÞ ¼ 0: ð28Þ

These yield

Cimp
1 ¼ ð1 − 2CÞ

�
1þ 8πR2ρcð10 − 3αÞ2ð15 − 16πR2ρcÞ

3½105þ 16πR2ρcð3α − 10Þ�2
�

ð29Þ

Cimp
2 ¼ arctan

"
−
2ð10 − 3αÞR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πρcð15 − 16πρcR2Þ

p
48πð10 − 3αÞρcR2 − 315

#
;

þ 1

2
log

 
1

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

8πρcR2
−
2

3

s !
: ð30Þ

Next, we derive the improved expression for p. Using
Eq. (4), the pressure for the improved model is given by

p̄imp ¼
1

8π

�
e−λimp

�
ν0imp

r
þ 1

r2

�
−

1

r2

�
: ð31Þ

However,we found thatEq. (31) gives thecentral pressure that
is approximately 20% off from numerical results. Moreover,
the pressure becomes negative near the surface, which is
unphysical. These points can be remedied by changing λimp to
λTol in Eq. (31) and shifting the overall profile by a constant
such that the pressure reduces to 0 at the surface:

pimp ¼
1

8π

�
e−λTolðrÞ

�
ν0impðrÞ

r
þ 1

r2

�
−

1

r2

�

−
1

8π

�
e−λTolðRÞ

�
ν0impðRÞ

R
þ 1

R2

�
−

1

R2

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−λTolρc
10π

r
tanϕimp

R
þ 1

15
ð3ξ2 − 5Þρc

þ 6ð1 − αÞρc
16πð10 − 3αÞρcR2 − 105

: ð32Þ

TABLE III. Summary of the original Tolman solution (top) and
the improvedmodel (bottom),with ξ ¼ r=R.We present the energy
density ρ, the interior mass m, the ðt; tÞ component of the metric
eνð¼ −gttÞ, and the pressurep. The ðr; rÞ component of the metric
is related tom as grr ¼ eλ ¼ ð1 − 2m=rÞ−1. Fitting coefficients a0,
a1, a2, and n in α are summarized in Table II. The ðR; ρcÞ
parametrization of the original Tolman solution is obtained by
setting the stellar compactness as C ¼ ð8π=15ÞR2ρc, while the
ðR;MÞ parametrization of the original Tolman solution and the
improved Tolman model uses C ¼ M=R. We stress that λ entering
in pimp and ϕimp is λTol and not λimp.

Original Tolman ρTol ¼ 15C
8πR2 ð1 − ξ2Þ

mTol ¼ RCð5
2
ξ3 − 3

2
ξ5Þ

eνTol ¼ CTol
1 cos2 ϕTol

pTol ¼ 1
4πR2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ce−λTol

p
tanϕTol − C

2
ð5 − 3ξ2Þ�

ϕTol ¼ CTol
2 − 1

2
log
	
ξ2 − 5

6
þ

ffiffiffiffiffiffiffiffiffi
e−λTol
3C

q 

CTol
1 ¼ 1 − 5C

3

CTol
2 ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
C

3ð1−2CÞ
q

þ 1
2
log
	
1
6
þ

ffiffiffiffiffiffiffiffi
1−2C
3C

q 

Improved Tolman ρimp ¼ ρc½1 − αξ2 þ ðα − 1Þξ4�

mimp ¼ 4πρcR3
	
ξ3

3
− αξ5

5
þ α−1

7
ξ7



eνimp ¼ Cimp
1 cos2 ϕimp

pimp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
e−λTol ρc
10π

q
tanϕimp

R þ 1
15
ð3ξ2 − 5Þρc

þ 6ð1−αÞρc
16πð10−3αÞρcR2−105

ϕimp ¼ Cimp
2 − 1

2
log
	
ξ2 − 5

6
þ

ffiffiffiffiffiffiffiffiffiffiffi
5e−λTol
8πR2ρc

q 

Cimp
1 ¼ ð1 − 2CÞ

n
1þ 8πR2ρcð10−3αÞ2ð15−16πR2ρcÞ

3½105þ16πR2ρcð3α−10Þ�2
o

Cimp
2 ¼ arctan

h
− 2ð10−3αÞR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πρcð15−16πρcR2Þ

p
48πð10−3αÞρcR2−315

i
þ 1

2
log
	
1
6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

8πρcR2 − 2
3

q 

α ¼ a0 þ a1

	
Cn

ρcR2



þ a2

	
Cn

ρcR2



2
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The original Tolman solution and the improved model are
summarized in Table III.
We note that the set ðρimp; mimp; νimp; pimpÞ is only an

approximate solution to the Einstein equations. Having said
this, ðρTol; mTol; νimp; pimpÞ forms an exact solution to the
Einstein equations, just like ðρTol; mTol; νTol; pTolÞ. The
difference between these two sets of exact solutions
originates simply from different boundary conditions.
The former uses Eq. (28), while the latter adopts Eq. (17).

IV. COMPARISON BETWEEN THE ORIGINAL
AND IMPROVED TOLMAN MODELS

Let us next compare the original and improved Tolman
models against numerical results. We first study the radial

profiles of various quantities for a fixed mass and EoS. We
then consider root-mean-square errors (RMSEs) for various
masses and EoS.

A. Radial profiles

We begin by considering radial profiles similar to Fig. 1.
Top panels of Fig. 3 present the ρ, m, ν, and p profiles of a
1.4 M⊙ NS with the AP4 EoS for two different Tolman
solutions and the improved model, together with the
numerical results. Here, we use the universal fit for α.
The bottom panels show the fractional error of each
analytic model from the numerical profiles.
Observe how the new model generally improves the

original solution. For example, the ρ and m profiles of the
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FIG. 3. (Top) Profiles for energy density ρ using the universal fit for α (top left), interior mass m (top right), ν (related to the
gravitational potential) (bottom left), and pressure p (bottom right) for the original Tolman VII solution in terms of ðR; ρcÞ or ðR;MÞ and
the improved Tolman VII solution. The values of ρc,M, and R are the same as those in Fig. 1. We also present the numerical result with
the AP4 EoS and M ¼ 1.4 M⊙. (Bottom) Fractional errors from the profile obtained numerically. Observe that the new model works
better than the original Tolman solution especially for the ρ and m profiles.
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improved model more accurately describe the numerical
results over the original Tolman solution. Indeed, the
former can fit the realistic profiles within an error of
approximately 5% in most regions of the star. On the other
hand, the ν and p profiles of the improved model are
comparable to the original one, though the former is still
better than the latter near the stellar center. Both the original
and new solutions can model the realistic profiles within an

error of approximately 1% (approximately 10%) for the
ν (p) profiles.

B. Root-mean-square errors

The results presented in the previous subsection were
specific to one example NS. How do they change with
different masses and EoS? To address this question, we
introduce a relative RMSE, which is a measure of the error
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FIG. 4. The relative RMSE [defined in Eq. (33)] of ρ (top left), m (top right), ν (bottom left), and p (bottom right) for the original
Tolman solution with the ðR;MÞ parametrization (top panel), the improved model with the universal α (middle panel), and the improved
model with the EoS-specific α (bottom panel) as a function of the NS mass, using 11 EoS with different stiffness in different colors as in
Fig. 2. Observe how the improved models more accurately describe the realistic profiles (by having smaller relative RMSEs), especially
for soft EoS.
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of the analytic model from the numerical results throughout
the star,

ðrelative RMSEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
R
0 ½ynumðrÞ − ymodelðrÞ�2drR

R
0 y2numðrÞdr

s
; ð33Þ

with y ¼ ðρ; m; ν; pÞ.
Figure 4 presents the relative RMSE for ρ, m, ν, and p

against the NS mass. We show the relative RMSEs for the
11 EoS in terms of three models [the original Tolman

solution parametrized by ðR;MÞ, the improved Tolman
models with the universal α, and with the EoS-specific α].
Observe that in most cases the improved models have a
clear improvement over the original one in terms of
accurately describing realistic profiles. This is more sig-
nificant for soft EoS (that are more preferred from
GW170817), as in the case of the AP4 EoS, where the
accuracy improves up to a factor of approximately 5 for ρ
and m.
To compare the new models against the original one

more directly, we show in Fig. 5 the ratio between the

-0.8

-0.4

0.0

0.4

0.8

1 1.5 2 2.5
M [M

O. 
]

-0.8

-0.4

0.0

0.4

0.8
(R

M
SE

im
p -

 R
M

SE
T

ol
) 

/ (
R

M
SE

T
ol

 +
 R

M
SE

im
p)

1 1.5 2 2.5 3
M [M

O. 
]

AP4
SLy

WFF1
WFF2
AP3
MPA1
ENG
LS
Shen
MS1
MS1b

ρ m

ν p

FIG. 5. The normalized relative RMSE difference between the original Tolman solution and the improved model with the universal α.
We show the results for ρ (top left),m (top right), ν (bottom left), and p (bottom right) using the 11 EoS with different stiffness. The new
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difference and sum of the relative RMSEs for the improved
(with the universal α) and original Tolman models. The new
model more accurately describes numerical profiles than
the original one if the ratio is negative. Notice first that the
energy density profile can be better modeled by the new
approximate solution for all EoS and masses considered
here. The situation is similar for the interior mass profile,
except for the LS and Shen EoS. Regarding the gravita-
tional potential (ν) and pressure profiles, the new model
performs better, especially for soft EoS with NS masses
larger than 1.5 M⊙.
The accuracy of the new model can be improved further

by adopting the EoS-specific fit for α, as can be seen from
Fig. 6. In this case, the m and ν profiles for the new model
are always better than the original ones, with exception
only for high-mass (above approximately 1.8 M⊙) NSs
with a few EoS. The p profile has been improved also,
though there are some mass ranges (very low mass around
1 − 1.2 M⊙ and very high mass above 1.8 M⊙) in which
the original Tolman models performs better. Having said
this, the accuracy of the new model is higher than the
original one even for the pressure profile in most of the EoS
and the mass range.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we explore a method to improve the
accuracy of the original Tolman VII solution in modeling
numerical solutions. We modified the original expressions
by introducing a higher-order term in the density profile.
We also succeeded in representing the additionally intro-
duced parameter α in terms of M, R, and ρc in an EoS-
insensitive way. The accuracy can be further improved if
one uses an EoS-specific fit for α. We summarize the
expressions for the new model in Table III.
By comparing our results with the numerically solved

solutions for 11 different EoS, we showed that our
improved model agrees better with the numerical results

than the original Tolman solution. The relative RMSEs for
the improved (original) Tolman solution are roughly 10%
(20%) for energy density, 4% (10%) for the interior mass,
2% (10%) for the gravitational potential, and 10% (40%)
for pressure. The improvement is significant especially for
softer EoS that are more preferred from GW170817.
Future work includes improving the proposed model

further. For example, one may come up with a more
appropriate density profile that can correctly capture its
behavior close to the stellar surface. One can also try to find
different ways of finding approximate solutions to the
Einstein equations that will improve the modeling. The
model presented here does not apply to stellar solutions of
which the density does not vanish at the surface, such as
quark stars and self-bound stars [42]. It would be interest-
ing to construct analytic interior models appropriate for
these kinds of stars. One could also try to improve other
analytic solutions, such as the one found by Buchdahl
[19,20], which was compared against realistic neutron star
solutions in Ref. [1].
Yet, another possible avenue is to extend the analysis

presented here to more realistic NSs with rotation or tidal
deformation. The first thing one can try is to assume these
effects are small and treat them as perturbation to the
solution presented here. If one can construct such solutions
analytically, one can extract global quantities like the stellar
moment of inertia, tidal Love number, and quadrupole
moment, among which universal I-Love-Q relations are
known to exist [43–46]. Such analytic study may help us
understand the origin of the universality. Work along this
line is currently in progress.
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