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A recently introduced concept of complexity for relativistic fluids is extended to the vacuum solutions
represented by the Bondi metric. A complexity hierarchy is established, ranging from the Minkowski
spacetime (the simplest one) to gravitationally radiating systems (the more complex). Particularly
interesting is the possibility to differentiate between natural nonradiative (NNRS) and non-natural
nonradiative (NNNRS) systems, the latter appearing to be simpler than the former. The relationship
between vorticity and the degree of complexity is stressed.
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I. INTRODUCTION

In a recent series of papers we have introduced a new
concept of complexity for self-gravitating relativistic fluids,
and we have applied it to the spherically symmetric case
(both in the static [1] and the dynamic situation [2]) and to
the axially symmetric static case [3]. Applications of this
concept to other theories of gravity have been proposed
in [4,5], while the charged case has been considered in [2]
and [6]. Also, applications for some particular cases of
cylindrically symmetric fluid distributions may be found
in [7].

Our purpose in this paper consists in extending the
above-mentioned concept of complexity to vacuum space-
times. More specifically, we consider the Bondi metric [8],
which includes the Minkowski spacetime, the static Weyl
metrics, nonradiative nonstatic metrics, and gravitationally
radiating metrics. Besides the fact that the Bondi metric
covers a vast numbers of spacetimes, it has, among other
things, the virtue of providing a clear and precise criterion
for the existence of gravitational radiation. Namely, if the
news function is zero over a time interval, then there is no
radiation over that interval.

In the case of fluid distributions the variable(s) measur-
ing the complexity of the fluid [the complexity factor(s)]
appear in the trace-free part of the orthogonal splitting of
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the electric Riemann tensor [9—12]. In vacuum the Riemann
tensor and the Weyl tensor are the same, so we start by
calculating the scalar functions defining the electric part of
the Weyl tensor for the Bondi metric. Following the results
obtained for the fluid case, we consider the scalars defining
this tensor as the complexity factors. Next we establish a
hierarchy of spacetimes according to their complexity.
Particularly appealing is the possibility to discriminate
between two classes of spacetimes that depend on time
but are not radiative (vanishing of the news function).
These two classes are called by Bondi [8] natural and non-
natural nonradiative moving systems, they are character-
ized by different forms of the mass aspect. As we shall see
they exhibit different degrees of complexity.

Unfortunately, though, up to the leading order of the
complexity factors analyzed here, it is impossible to
discriminate between different radiative systems according
to their complexity. Higher order terms would be necessary
for that purpose, although it is not clear at this point if it is
possible to establish such a hierarchy of radiative systems
after all.

Finally we emphasize the conspicuous link between
vorticity and complexity, and we discuss some open issues
in the last section.

II. BONDI’S FORMALISM

The general form of an axially and reflection symmetric
asymptotically flat metric given by Bondi [8] is (for the
general case see [13])

© 2019 American Physical Society
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\%
ds? = <— e — U2r2627> du? +2e* dudr
r

+2Ur?e¥dudf — r? (e* d6* + e sin’ 0d¢p?), (1)

where V, f, U and y are functions of u, r and 6.

We number the coordinates x%!>3 = u, r, 6, ¢, respec-
tively. Here, u is a timelike coordinate (g,,, > 0) converging
to the retarded time as r — oo. The hypersurfaces u =
constant define null surfaces (their normal vectors are null
vectors), which, at null infinity (» — o0), coincides with the
Minkowski null light cone open to the future. Here, 7 is a
null coordinate (g,, =0), and € and ¢ are two angle
coordinates (see [8] for details).

Regularity conditions in the neighborhood of the polar
axis (sin@ = 0) imply that as sin€ — 0,

V,B, U/ sin@,y/sin%0, (2)
each equals a function of cos @ regular on the polar axis.
The four metric functions are assumed to be expanded

in series of 1/r; then, using the field equations, one
obtains

1
7=cr—1+<c_663>r_3+”" (3)

U = —(cg+2ccot®)r=2 + 2N + 3ccy + 4c* cotO]r2...,

(4)
V:r—ZM—(N9+Ncot€—c§—4cc9cot9
L 2 -1
—Ec(1+8cot6’) rTte, (5)
12
p=——cr*4---, (6)

4

where ¢, C, N and M are functions of u and 6 satisfying the
constraint

4C, = 2c%c, +2cM + N cot@ — Ny, (7)
and letters as subscripts denote derivatives. The three

functions ¢, M and N are further related by the supple-
mentary conditions

1
Mu = —c§+§(c99—|—36‘9c0t9—20)w (8)
—3N, = My + 3cc g+ 4cc, cotd + ¢, cy. )

In the static case M equals the mass of the system, and
Bondi called this the “mass aspect,” whereas N and C are

closely related to the dipole and quadrupole moments,
respectively.
Next, Bondi defines the mass m(u) of the system as

1 n
m(u) = 5/ M sin 6d6, (10)
0
which by virtue of (8) and (2) yields

1 n
m, ———/ c? sin 0d6. (11)
2 Jo

Let us now recall the main conclusions emerging from
Bondi’s approach.

(1) If y, M and N are known for some u = a (constant)
and c,, (the news function) is known for all « in the
interval a < u < b, then the system is fully deter-
mined in that interval. In other words, whatever
happens at the source, leading to changes in the
field, it can only do so by affecting ¢, and vice versa.
In the light of this comment the relationship between
the news function and the occurrence of radiation
becomes clear.

(2) As it follows from (11), the mass of a system is
constant if and only if there is no news.

Now, for an observer at rest in the frame of (1), the four-

velocity vector has components

1
a_ (= 12
1% (A,O,O,O), (12)

with

\% 1/2
A= <e2/’ - Uzrzezy) . (13)

r

Next, let us introduce the unit, spacelike vectors K, L, S,
with components

1
K* = (Z,—e_zﬂA,0,0>

v
L* = <0’ Ureye‘zﬁ,—e—’())’ (14)
r
se—(0.0,0——¢ 15
- < b b 9_rsin0)’ ( )
or
2 2 2 24 2 2
v (a9 ) k= (042U o)),
A A A A
(16)

L,=(0,0,e'r,0),  S,=(0,0,0,ersin@),  (17)
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satisfying the following relations:

VoV = —K*Ky = =LLy = =SS, = 1. (18)

VoK*=VoL,=V*S =KL, =K*S, =5L,=0. (19)

The unitary vectors V¢, L% S§% K* form a canonical
orthonormal tetrad (ef,a)), such that

with a = 0, 1, 2, 3 (latin indices label different vectors of
the tetrad). The dual vector tetrad e‘{a> is easily computed

from the condition

_ a P
Na)(b) = Yap®(a)€(b)

where 7,5y denotes the Minkowski metric.
For the observer defined by (12) the vorticity vector may
be written as (see [14] for details)

o® = (0,0,0,w?). (20)

The explicit expressions for @w? and its absolute value
Q = (—w,o%)"/? are given in Appendix C.

III. COMPLEXITY FACTORS AND ELECTRIC
AND MAGNETIC PARTS OF WEYL TENSOR

As we mentioned in the Introduction, we extend the
definition of complexity introduced in [1,2] to the vacuum
case; this implies considering the scalars defining the
electric Weyl tensor as the complexity factors. Besides
the electric part of the Weyl tensor, we also use its magnetic
part in the discussion; accordingly, we calculate its corre-
sponding scalars as well.

The electric and magnetic parts of the Weyl tensor,
E,; and H 4, respectively, are formed from the Weyl

tensor Cys,s and its dual Caﬁy(; by contraction with the
four-velocity vector given by (12):

Eaﬁ = Cayﬂ5V7V5, (21)
H,y = C,z5V'V = ! coyrve

aff — “ayps - Eeayeﬁ Pp ,
€apys =  ~GNapys> (22)

where 77,4,5 18 the permutation symbol.

Also note that

2
/=g = r*sinfe* ~ r* sin @ exp (— %)
’
~rrsind+ O(1).
The electric part of the Weyl tensor has only three

independent nonvanishing components, whereas only two
components define the magnetic part. Thus, we may write

1
Eaﬁ — g] (K(XL/; + L(XK/;) + 52 (KGK[; + ghaﬁ>

+ & <LaLﬂ + %haﬂ> , (23)
and
Hup = H(S,Kp+ SsK,) + Hy(S, L+ SsL,).  (24)
with 4, =g,, - V,V,, and
&1 = L°KPE 5, (25)
&y = (2KKP + L°LP)E 4, (26)
&y = (2L°LP + K°KP)E 5. (27)

These three scalars will be considered the complexity
factors of our solutions.
For the magnetic part we have

H, = S°LPH, (28)

H| = S°KPH . (29)

Explicit expressions for these scalars are given in
Appendixes A and B.

Reference [15] found that if we put H;’ = 0 then the field
is nonradiative, and up to order 1/7° in y, the metric is
static; the mass, the “dipole” (V) and the “quadrupole” (C)
moments correspond to a static situation. However, the time
dependence might enter through coefficients of higher
order in y, giving rise to what Bondi calls a “non-natural
nonradiative moving system” (NNRS). In this latter case,
the system keeps the first three moments independent of
time, but allows for time dependence of higher moments.
This class of solutions is characterized by M, = 0.

A second family of time-dependent nonradiative solu-
tions exists for which My # 0. These are called “natural
nonradiative moving systems” (NNRSs), and their mag-
netic Weyl tensor is nonvanishing.

We are now ready to discuss the hierarchy of different
spacetimes belonging to the Bondi family, according to
their complexity.
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IV. HIERARCHY OF COMPLEXITY

The simplest spacetime corresponds to the vanishing of
the three complexity factors, and this is just Minkowski
spacetime.

Indeed, as it was shown in [15], if we assume EZ = 0 and
use regularity conditions, we find that the spacetime must
be Minkowski, giving further support to the conjecture that
there are no purely magnetic vacuum spacetimes [16].

On the other end (maximal complexity) we have a
gravitationally radiating system which requires all three
complexity factors to be different from zero.

Indeed, let us assume that £; = 0; then it follows at once
from (A1) that ¢, = 0 (otherwise ¢, would be a nonregular
function of @ on the symmetry axis). Thus £; = 0 implies
that the system is nonradiative.

If instead we assume that £ = 0, then from the first
order in (A2) we obtain that ¢, = 0; this implies that either
¢, = 0 or ¢, ~ u. Bondi refers to this latter case as “mass
loss without radiative Riemann tensor” and dismisses it as
being of little physical significance. As a matter of fact, in
this latter case the system would be radiating “forever,”
which according to (11) requires an unbounded source,
incompatible with an asymptotically flat spacetime.
Thus, in this case too, we have ¢, = 0, and the system
is nonradiative.

Finally, if we assume £; = 0 it follows at once from the
first order in (A3) that c¢,, = 0, leading to ¢, = 0, accord-
ing to the argument above.

Thus, a radiative system requires all three complexity
factors to be nonvanishing, implying a maximal complexity.

In the middle of the two extreme cases we have, on
the one hand, the spherically symmetric spacetime
(Schwarzschild), characterized by a single complexity factor
(the same applies for any static metric), £, = £; = 0, and
& = 37’24 On the other hand, we have the nonstatic non-
radiative case.

Let us now analyze in detail this latter case. There are
two subclasses in this group of solutions, which using
Bondi notation are as follows:

(1) NNRS characterized by M, # 0.

(2) NNNRS characterized by M, = 0.

Let us first consider the NNNRS subcase. Using (A1) we
obtain £ =0 (up to order 1/r°), while the first non-
vanishing terms in &, and &5 are, respectively, 3M and 0,
where (7), (8), (9), (A2) and (A3) have been used.

Thus, the NNNRS are characterized by only one non-
vanishing complexity factor (£,). Furthermore, as it follows
from (C3) the vorticity of the congruence of observers at
rest with respect to the frame of (1) vanishes, and the field is
purely electric. However, as mentioned before we cannot
conclude that the field is static since the u dependence
might appear through coefficients of higher order in y.

Let us now consider the NNRS. In this subcase, using
(A1) we obtain £ =0 (up to order 1/73) as for the
NNNRS subcase, while the first nonvanishing terms

in & and & (up to order 1/r%) are, respectively,
3M + % _ MHZOtQ and % _ M(,.got(;"

Also, up to the same order, it follows from (B1) and (B2)
that H; = 0 for both subcases, while the corresponding
term in H, is (for NNRS)

1
—Z(MQQ—MQCOtG), (30)

which of course vanishes for the NNNRS subcase.

It should be observed that if we assume &3 =0 or
H, = 0, then it follows at once from the above that
Mgg—Mycotd=0= M =acosf, a=constant. (31)

But this implies because of (10) that the Bondi mass
function of the system vanishes. Therefore, the only
physically meaningful NNRS requires & #0, Q#0
and H, # 0, implying that the complexity is characterized
by two complexity factors (£,, &3).

V. CONCLUSIONS

We have seen so far that the extension of the concept of
complexity, adopted for fluids in [1-3], may be extended to
the vacuum case without much trouble and provides
sensible results.

The three complexity factors corresponding to the three
scalars defining the electric part of the Weyl tensor allow us
to establish a hierarchy of solutions according to their
complexity.

The simplest system (Minkowski) is characterized by the
vanishing of all the complexity factors. Next, the static case
(including Schwarzschild) is described by a single com-
plexity factor.

The time-dependent nonradiative solutions split into two
subgroups depending on the form of the mass aspect M. If
My = 0, which corresponds to the NNNRS, the complexity
1s similar to the static case. Also, in this case, as in the static
situation, the vorticity vanishes and the field is purely
electric. This result could suggest that in fact NNNRS are
just static, and no time dependence appears in the coef-
ficients of higher order in y. On the contrary, for the NNRS
there are two complexity factors, the vorticity is non-
vanishing, and the field is not purely electric.

All these results are summarized in Tables I and II. Thus,
NNNRS and NNRS are clearly differentiated through their
degree of complexity, as measured by the complexity
factors considered here.

The fact that radiative systems necessarily decay into
NNRS, NNNRS or static systems, since the Bondi mass
function must be finite, suggests that higher degrees of
complexity might be associated with stronger stability. Of
course a proof of this conjecture requires a much more
detailed analysis.
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TABLE L

Complexity factors for different spacetimes of the Bondi metric.

Complexity hierarchy

Complexity
factors/Spacetime Minkowski Static NNNRS NNRS Radiative
& 0 0 0 eV #0,n>1
& 0 &Y =3m e =3m EF) = 3M M _ Mocord EW 0, n>1
& 0 0 0 ) =1 (Mg — Mycot 6) EW40,n>1
where 5(1"2)3 are the coefficients of order O(r™).
TABLE II. The magnetic parts of the Weyl tensor and the vorticity for different spacetimes of the Bondi metric.

Magnetic parts and vorticity
Magnetic Weyl;
Q/spacetimes Minkowski Static NNNRS NNRS Radiative
H, 0 0 0 H" #0,n>1
H, 0 0 HY = —1 (Mg — My cot ) HY £0,n>1
Q 0 0 Q® =M, QM £0,n>1

It is also worth mentioning the conspicuous link between
vorticity and complexity factors. Indeed, vorticity appears
only in NNRS and radiative systems, which are the most
complex systems, while it is absent in the simplest systems
(Minkowski, static, NNNRS). In the radiative case there are
contributions at order O(r~!) related to the news function,
and at order O(r~2), while for the NNRS there are only
contributions at order O(r~2), these describe the effect of
the tail of the wave, thereby providing “observational”
evidence for the violation of the Huygens’s principle, a
problem largely discussed in the literature (see for example
[8,17-23] and references therein).

We would like to conclude with two questions which, we
believe, deserve further attention:

(1) Is it possible to further refine the scheme proposed
here so as to discriminate between different radiative
systems according to their complexity? Or, in
other words, among radiative systems is there a
simplest one? Obviously this would require a closer

1
& == (2c,cotl+co,) +O(r™), n>4,

r

1 1 4c
52 = ;Cuu —ﬁ <C99u —4Mc,m + 2Cu + Cou cotf — 31112“9)

examination of the orders higher than the leading
ones in the complexity factors.

(i1) Is it possible to discriminate between different static
spacetimes? Again, this would require us to go
beyond the orders employed here.
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APPENDIX A: COMPLEXITY FACTORS

The complexity factors are:

1 cotd 1
+ 3 cc, +2cyc, +3M —|—T (3¢, co+ 5ccy,) —Myc+=Mgy+ Ng, + P,

2

1 4 1 3
—cotf| Mcy, +=Mg+ N, —Nc,, | —Mc, (1 ———== | +c,| cc, +=cop | + cuu(dM* +Ng) — cogu | M — ¢
2 sin-60 2 2

+0O(r™), n>4,

(A2)
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2

1
& = ;Cuu 2 (CGHu —4Mc,, +2¢, + cg, cotO —

1n29

1
+= {—4ccu + 4cyeg, + cotO(3c,cq + 5ccy,) —2M ¢ + Mgy + 2Ny, + 2P,
.

—cotf(2Mcy, + Mgy + 2N, —2Nc¢,,) — 2Mc, (1

-+ ZCW(4M2 -+ Ng) — ngu(ZM — 3C):| -+ (’)(r_"),

n>4.

4
) + cu(2cc, + cop)

APPENDIX B: MAGNETIC PART OF THE WEYL TENSOR

The magnetic part of the Weyl tensor can be calculated as follows:

1
Hy = ——(2¢c,cotf +cg,) + O(r™"), n>4,
r

2

r

1 1 2 cotd 1
H2:__Cuu_p|:_cu<l_-—> ——Cou +2¢,, (M — C)_ECHBM

sin%6

1 4 4cc 3
M, (12 ) 2% a2
r { Cu ( sin26> sino T [2

2

where P = C —%3.

The vorticity is

1 1
+—C99Cu +2C9C9u +CC% +§M99—CMM +N0u +Puu +Cuu(4C2 +4M2 —4MC+N9)} +

O(
APPENDIX C: VORTICITY
2022 P(Urie?), Ur?e¥
(UrZeZy)r + A A AZ - A2

e ﬂ
wb = — [Qﬁeew _

and for the absolute value of w®, we get

6_2/}_7
Q= (_a)awa)l/Z -

A A,
|:2ﬂ962ﬂ—2€2ﬂf (Urre¥), +2Ur*e¥ -

AA2

Feeding (3)—(6) back into (C2) and keeping only the two leading terms, we obtain

1
Q= =5, (cug + 2¢, cotf) +

1
—[Myg—M
r

124028-6
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