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A recently introduced concept of complexity for relativistic fluids is extended to the vacuum solutions
represented by the Bondi metric. A complexity hierarchy is established, ranging from the Minkowski
spacetime (the simplest one) to gravitationally radiating systems (the more complex). Particularly
interesting is the possibility to differentiate between natural nonradiative (NNRS) and non-natural
nonradiative (NNNRS) systems, the latter appearing to be simpler than the former. The relationship
between vorticity and the degree of complexity is stressed.
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I. INTRODUCTION

In a recent series of papers we have introduced a new
concept of complexity for self-gravitating relativistic fluids,
and we have applied it to the spherically symmetric case
(both in the static [1] and the dynamic situation [2]) and to
the axially symmetric static case [3]. Applications of this
concept to other theories of gravity have been proposed
in [4,5], while the charged case has been considered in [2]
and [6]. Also, applications for some particular cases of
cylindrically symmetric fluid distributions may be found
in [7].
Our purpose in this paper consists in extending the

above-mentioned concept of complexity to vacuum space-
times. More specifically, we consider the Bondi metric [8],
which includes the Minkowski spacetime, the static Weyl
metrics, nonradiative nonstatic metrics, and gravitationally
radiating metrics. Besides the fact that the Bondi metric
covers a vast numbers of spacetimes, it has, among other
things, the virtue of providing a clear and precise criterion
for the existence of gravitational radiation. Namely, if the
news function is zero over a time interval, then there is no
radiation over that interval.
In the case of fluid distributions the variable(s) measur-

ing the complexity of the fluid [the complexity factor(s)]
appear in the trace-free part of the orthogonal splitting of

the electric Riemann tensor [9–12]. In vacuum the Riemann
tensor and the Weyl tensor are the same, so we start by
calculating the scalar functions defining the electric part of
the Weyl tensor for the Bondi metric. Following the results
obtained for the fluid case, we consider the scalars defining
this tensor as the complexity factors. Next we establish a
hierarchy of spacetimes according to their complexity.
Particularly appealing is the possibility to discriminate
between two classes of spacetimes that depend on time
but are not radiative (vanishing of the news function).
These two classes are called by Bondi [8] natural and non-
natural nonradiative moving systems, they are character-
ized by different forms of the mass aspect. As we shall see
they exhibit different degrees of complexity.
Unfortunately, though, up to the leading order of the

complexity factors analyzed here, it is impossible to
discriminate between different radiative systems according
to their complexity. Higher order terms would be necessary
for that purpose, although it is not clear at this point if it is
possible to establish such a hierarchy of radiative systems
after all.
Finally we emphasize the conspicuous link between

vorticity and complexity, and we discuss some open issues
in the last section.

II. BONDI’S FORMALISM

The general form of an axially and reflection symmetric
asymptotically flat metric given by Bondi [8] is (for the
general case see [13])
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ds2¼
�
V
r
e2β−U2r2e2γ

�
du2þ2e2βdudr

þ2Ur2e2γdudθ−r2ðe2γdθ2þe−2γ sin2 θdϕ2Þ; ð1Þ

where V, β, U and γ are functions of u, r and θ.
We number the coordinates x0;1;2;3 ¼ u; r; θ;ϕ, respec-

tively. Here, u is a timelike coordinate (guu > 0) converging
to the retarded time as r → ∞. The hypersurfaces u ¼
constant define null surfaces (their normal vectors are null
vectors), which, at null infinity (r → ∞), coincides with the
Minkowski null light cone open to the future. Here, r is a
null coordinate (grr ¼ 0), and θ and ϕ are two angle
coordinates (see [8] for details).
Regularity conditions in the neighborhood of the polar

axis (sin θ ¼ 0) imply that as sin θ → 0,

V; β; U= sin θ; γ=sin2θ; ð2Þ

each equals a function of cos θ regular on the polar axis.
The four metric functions are assumed to be expanded

in series of 1=r; then, using the field equations, one
obtains

γ ¼ cr−1 þ
�
C −

1

6
c3
�
r−3 þ � � � ; ð3Þ

U ¼ −ðcθ þ 2c cot θÞr−2 þ ½2N þ 3ccθ þ 4c2 cot θ�r−3…;

ð4Þ

V ¼ r − 2M −
�
Nθ þ N cot θ − c2θ − 4ccθ cot θ

−
1

2
c2ð1þ 8cot2θÞ

�
r−1 þ � � � ; ð5Þ

β ¼ −
1

4
c2r−2 þ � � � ; ð6Þ

where c, C, N andM are functions of u and θ satisfying the
constraint

4Cu ¼ 2c2cu þ 2cM þ N cot θ − Nθ; ð7Þ

and letters as subscripts denote derivatives. The three
functions c, M and N are further related by the supple-
mentary conditions

Mu ¼ −c2u þ
1

2
ðcθθ þ 3cθ cot θ − 2cÞu; ð8Þ

−3Nu ¼ Mθ þ 3ccuθ þ 4ccu cot θ þ cucθ: ð9Þ

In the static case M equals the mass of the system, and
Bondi called this the “mass aspect,” whereas N and C are

closely related to the dipole and quadrupole moments,
respectively.
Next, Bondi defines the mass mðuÞ of the system as

mðuÞ ¼ 1

2

Z
π

0

M sin θdθ; ð10Þ

which by virtue of (8) and (2) yields

mu ¼ −
1

2

Z
π

0

c2u sin θdθ: ð11Þ

Let us now recall the main conclusions emerging from
Bondi’s approach.
(1) If γ, M and N are known for some u ¼ a (constant)

and cu (the news function) is known for all u in the
interval a ≤ u ≤ b, then the system is fully deter-
mined in that interval. In other words, whatever
happens at the source, leading to changes in the
field, it can only do so by affecting cu and vice versa.
In the light of this comment the relationship between
the news function and the occurrence of radiation
becomes clear.

(2) As it follows from (11), the mass of a system is
constant if and only if there is no news.

Now, for an observer at rest in the frame of (1), the four-
velocity vector has components

Vα ¼
�
1

A
; 0; 0; 0

�
; ð12Þ

with

A≡
�
V
r
e2β −U2r2e2γ

�
1=2

: ð13Þ

Next, let us introduce the unit, spacelike vectorsK,L, S,
with components

Kα ¼
�
1

A
;−e−2βA; 0; 0

�

Lα ¼
�
0; Ureγe−2β;−

e−γ

r
; 0

�
; ð14Þ

Sα ¼
�
0; 0; 0;−

eγ

r sin θ

�
; ð15Þ

or

Vα ¼
�
A;

e2β

A
;
Ur2e2γ

A
;0

�
; Kα ¼

�
0;
e2β

A
;
Ur2e2γ

A
;0

�
;

ð16Þ

Lα ¼ ð0; 0; eγr; 0Þ; Sα ¼ ð0; 0; 0; e−γr sin θÞ; ð17Þ

L. HERRERA, A. DI PRISCO, and J. CAROT PHYS. REV. D 99, 124028 (2019)

124028-2



satisfying the following relations:

VαVα ¼ −KαKα ¼ −LαLα ¼ −SαSα ¼ 1; ð18Þ

VαKα ¼VαLα ¼VαSα ¼KαLα ¼KαSα ¼ SαLα ¼ 0: ð19Þ

The unitary vectors Vα, Lα, Sα, Kα form a canonical

orthonormal tetrad (eðaÞα ), such that

eð0Þα ¼ Vα; eð1Þα ¼ Kα; eð2Þα ¼ Lα; eð3Þα ¼ Sα;

with a ¼ 0, 1, 2, 3 (latin indices label different vectors of
the tetrad). The dual vector tetrad eαðaÞ is easily computed

from the condition

ηðaÞðbÞ ¼ gαβeαðaÞe
β
ðbÞ;

where ηðaÞðbÞ denotes the Minkowski metric.
For the observer defined by (12) the vorticity vector may

be written as (see [14] for details)

ωα ¼ ð0; 0; 0;ωϕÞ: ð20Þ

The explicit expressions for ωϕ and its absolute value
Ω≡ ð−ωαω

αÞ1=2 are given in Appendix C.

III. COMPLEXITY FACTORS AND ELECTRIC
AND MAGNETIC PARTS OF WEYL TENSOR

As we mentioned in the Introduction, we extend the
definition of complexity introduced in [1,2] to the vacuum
case; this implies considering the scalars defining the
electric Weyl tensor as the complexity factors. Besides
the electric part of the Weyl tensor, we also use its magnetic
part in the discussion; accordingly, we calculate its corre-
sponding scalars as well.
The electric and magnetic parts of the Weyl tensor,

Eαβ and Hαβ, respectively, are formed from the Weyl
tensor Cαβγδ and its dual C̃αβγδ by contraction with the
four-velocity vector given by (12):

Eαβ ¼ CαγβδVγVδ; ð21Þ

Hαβ ¼ C̃αγβδVγVδ ¼ 1

2
ϵαγϵδCϵδ

βρV
γVρ;

ϵαβγδ ≡ ffiffiffiffiffiffi
−g

p
ηαβγδ; ð22Þ

where ηαβγδ is the permutation symbol.

Also note that

ffiffiffiffiffiffi
−g

p ¼ r2 sin θe2β ≈ r2 sin θ exp

�
−

c2

2r2

�

≈ r2 sin θ þOð1Þ:

The electric part of the Weyl tensor has only three
independent nonvanishing components, whereas only two
components define the magnetic part. Thus, we may write

Eαβ ¼ E1ðKαLβ þ LαKβÞ þ E2

�
KαKβ þ

1

3
hαβ

�

þ E3

�
LαLβ þ

1

3
hαβ

�
; ð23Þ

and

Hαβ ¼ H1ðSαKβ þ SβKαÞ þH2ðSαLβ þ SβLαÞ: ð24Þ

with hμν ¼ gμν − VνVμ, and

E1 ¼ LαKβEαβ; ð25Þ

E2 ¼ ð2KαKβ þ LαLβÞEαβ; ð26Þ

E3 ¼ ð2LαLβ þ KαKβÞEαβ: ð27Þ

These three scalars will be considered the complexity
factors of our solutions.
For the magnetic part we have

H2 ¼ SαLβHαβ; ð28Þ

H1 ¼ SαKβHαβ: ð29Þ

Explicit expressions for these scalars are given in
Appendixes A and B.
Reference [15] found that if we putHα

β ¼ 0 then the field
is nonradiative, and up to order 1=r3 in γ, the metric is
static; the mass, the “dipole” (N) and the “quadrupole” (C)
moments correspond to a static situation. However, the time
dependence might enter through coefficients of higher
order in γ, giving rise to what Bondi calls a “non-natural
nonradiative moving system” (NNRS). In this latter case,
the system keeps the first three moments independent of
time, but allows for time dependence of higher moments.
This class of solutions is characterized by Mθ ¼ 0.
A second family of time-dependent nonradiative solu-

tions exists for which Mθ ≠ 0. These are called “natural
nonradiative moving systems” (NNRSs), and their mag-
netic Weyl tensor is nonvanishing.
We are now ready to discuss the hierarchy of different

spacetimes belonging to the Bondi family, according to
their complexity.
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IV. HIERARCHY OF COMPLEXITY

The simplest spacetime corresponds to the vanishing of
the three complexity factors, and this is just Minkowski
spacetime.
Indeed, as it was shown in [15], if we assume Eα

β ¼ 0 and
use regularity conditions, we find that the spacetime must
be Minkowski, giving further support to the conjecture that
there are no purely magnetic vacuum spacetimes [16].
On the other end (maximal complexity) we have a

gravitationally radiating system which requires all three
complexity factors to be different from zero.
Indeed, let us assume that E1 ¼ 0; then it follows at once

from (A1) that cu ¼ 0 (otherwise cu would be a nonregular
function of θ on the symmetry axis). Thus E1 ¼ 0 implies
that the system is nonradiative.
If instead we assume that E2 ¼ 0, then from the first

order in (A2) we obtain that cuu ¼ 0; this implies that either
cu ¼ 0 or cu ∼ u. Bondi refers to this latter case as “mass
loss without radiative Riemann tensor” and dismisses it as
being of little physical significance. As a matter of fact, in
this latter case the system would be radiating “forever,”
which according to (11) requires an unbounded source,
incompatible with an asymptotically flat spacetime.
Thus, in this case too, we have cu ¼ 0, and the system
is nonradiative.
Finally, if we assume E3 ¼ 0 it follows at once from the

first order in (A3) that cuu ¼ 0, leading to cu ¼ 0, accord-
ing to the argument above.
Thus, a radiative system requires all three complexity

factors to be nonvanishing, implying a maximal complexity.
In the middle of the two extreme cases we have, on

the one hand, the spherically symmetric spacetime
(Schwarzschild), characterized by a single complexity factor
(the same applies for any static metric), E1 ¼ E3 ¼ 0, and
E2 ¼ 3M

r3 . On the other hand, we have the nonstatic non-
radiative case.
Let us now analyze in detail this latter case. There are

two subclasses in this group of solutions, which using
Bondi notation are as follows:
(1) NNRS characterized by Mθ ≠ 0.
(2) NNNRS characterized by Mθ ¼ 0.
Let us first consider the NNNRS subcase. Using (A1) we

obtain E1 ¼ 0 (up to order 1=r3), while the first non-
vanishing terms in E2 and E3 are, respectively, 3M and 0,
where (7), (8), (9), (A2) and (A3) have been used.
Thus, the NNNRS are characterized by only one non-

vanishing complexity factor (E2). Furthermore, as it follows
from (C3) the vorticity of the congruence of observers at
rest with respect to the frame of (1) vanishes, and the field is
purely electric. However, as mentioned before we cannot
conclude that the field is static since the u dependence
might appear through coefficients of higher order in γ.
Let us now consider the NNRS. In this subcase, using

(A1) we obtain E1 ¼ 0 (up to order 1=r3) as for the
NNNRS subcase, while the first nonvanishing terms

in E2 and E3 (up to order 1=r3) are, respectively,
3M þ Mθθ

4
− Mθ cot θ

4
and Mθθ

2
− Mθ cot θ

2
.

Also, up to the same order, it follows from (B1) and (B2)
that H1 ¼ 0 for both subcases, while the corresponding
term in H2 is (for NNRS)

−
1

4
ðMθθ −Mθ cot θÞ; ð30Þ

which of course vanishes for the NNNRS subcase.
It should be observed that if we assume E3 ¼ 0 or

H2 ¼ 0, then it follows at once from the above that

Mθθ−Mθ cotθ¼ 0⇒M¼ acosθ; a¼ constant: ð31Þ

But this implies because of (10) that the Bondi mass
function of the system vanishes. Therefore, the only
physically meaningful NNRS requires E3 ≠ 0, Ω ≠ 0
and H2 ≠ 0, implying that the complexity is characterized
by two complexity factors (E2, E3).

V. CONCLUSIONS

We have seen so far that the extension of the concept of
complexity, adopted for fluids in [1–3], may be extended to
the vacuum case without much trouble and provides
sensible results.
The three complexity factors corresponding to the three

scalars defining the electric part of the Weyl tensor allow us
to establish a hierarchy of solutions according to their
complexity.
The simplest system (Minkowski) is characterized by the

vanishing of all the complexity factors. Next, the static case
(including Schwarzschild) is described by a single com-
plexity factor.
The time-dependent nonradiative solutions split into two

subgroups depending on the form of the mass aspect M. If
Mθ ¼ 0, which corresponds to the NNNRS, the complexity
is similar to the static case. Also, in this case, as in the static
situation, the vorticity vanishes and the field is purely
electric. This result could suggest that in fact NNNRS are
just static, and no time dependence appears in the coef-
ficients of higher order in γ. On the contrary, for the NNRS
there are two complexity factors, the vorticity is non-
vanishing, and the field is not purely electric.
All these results are summarized in Tables I and II. Thus,

NNNRS and NNRS are clearly differentiated through their
degree of complexity, as measured by the complexity
factors considered here.
The fact that radiative systems necessarily decay into

NNRS, NNNRS or static systems, since the Bondi mass
function must be finite, suggests that higher degrees of
complexity might be associated with stronger stability. Of
course a proof of this conjecture requires a much more
detailed analysis.
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It is also worth mentioning the conspicuous link between
vorticity and complexity factors. Indeed, vorticity appears
only in NNRS and radiative systems, which are the most
complex systems, while it is absent in the simplest systems
(Minkowski, static, NNNRS). In the radiative case there are
contributions at order Oðr−1Þ related to the news function,
and at order Oðr−2Þ, while for the NNRS there are only
contributions at order Oðr−2Þ, these describe the effect of
the tail of the wave, thereby providing “observational”
evidence for the violation of the Huygens’s principle, a
problem largely discussed in the literature (see for example
[8,17–23] and references therein).
We would like to conclude with two questions which, we

believe, deserve further attention:
(i) Is it possible to further refine the scheme proposed

here so as to discriminate between different radiative
systems according to their complexity? Or, in
other words, among radiative systems is there a
simplest one? Obviously this would require a closer

examination of the orders higher than the leading
ones in the complexity factors.

(ii) Is it possible to discriminate between different static
spacetimes? Again, this would require us to go
beyond the orders employed here.
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APPENDIX A: COMPLEXITY FACTORS

The complexity factors are:

E1 ¼
1

r2
ð2cu cot θ þ cθuÞ þOðr−nÞ; n ≥ 4; ðA1Þ

E2 ¼
1

r
cuu −

1

2r2

�
cθθu − 4Mcuu þ 2cu þ cθu cot θ −

4cu
sin2θ

�

þ 1

r3

�
ccu þ 2cθcθu þ 3M þ cot θ

2
ð3cucθ þ 5ccθuÞ−Mucþ

1

2
Mθθ þNθu þ Puu

− cot θ

�
Mcθu þ

1

2
Mθ þNu −Ncuu

�
−Mcu

�
1−

4

sin2θ

�
þ cu

�
ccu þ

1

2
cθθ

�
þ cuuð4M2 þNθÞ − cθθu

�
M −

3

2
c

��

þOðr−nÞ; n ≥ 4; ðA2Þ

TABLE I. Complexity factors for different spacetimes of the Bondi metric.

Complexity hierarchy

Complexity
factors/Spacetime Minkowski Static NNNRS NNRS Radiative

E1 0 0 0 0 EðnÞ
1 ≠ 0, n ≥ 1

E2 0 Eð3Þ
2 ¼ 3M Eð3Þ

2 ¼ 3M Eð3Þ
2 ¼ 3M þ Mθθ

4
− Mθ cot θ

4
EðnÞ
2 ≠ 0, n ≥ 1

E3 0 0 0 Eð3Þ
3 ¼ 1

2
ðMθθ −Mθ cot θÞ EðnÞ

3 ≠ 0, n ≥ 1

where EðnÞ
1;2;3 are the coefficients of order Oðr−nÞ.

TABLE II. The magnetic parts of the Weyl tensor and the vorticity for different spacetimes of the Bondi metric.

Magnetic parts and vorticity

Magnetic Weyl;
Ω=spacetimes Minkowski Static NNNRS NNRS Radiative

H1 0 0 0 0 HðnÞ
1 ≠ 0, n ≥ 1

H2 0 0 0 Hð3Þ
2 ¼ − 1

4
ðMθθ −Mθ cot θÞ HðnÞ

2 ≠ 0, n ≥ 1

Ω 0 0 0 Ωð2Þ ¼ Mθ ΩðnÞ ≠ 0, n ≥ 1
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E3 ¼
2

r
cuu −

1

r2

�
cθθu − 4Mcuu þ 2cu þ cθu cot θ −

4cu
sin2θ

�

þ 1

r3

�
−4ccu þ 4cθcθu þ cot θð3cucθ þ 5ccθuÞ − 2MucþMθθ þ 2Nθu þ 2Puu

− cot θð2Mcθu þMθ þ 2Nu − 2NcuuÞ − 2Mcu

�
1 −

4

sin2θ

�
þ cuð2ccu þ cθθÞ

þ 2cuuð4M2 þ NθÞ − cθθuð2M − 3cÞ
�
þOðr−nÞ; n ≥ 4: ðA3Þ

APPENDIX B: MAGNETIC PART OF THE WEYL TENSOR

The magnetic part of the Weyl tensor can be calculated as follows:

H1 ¼ −
1

r2
ð2cu cot θ þ cθuÞ þOðr−nÞ; n ≥ 4; ðB1Þ

H2 ¼−
1

r
cuu−

1

r2

�
−cu

�
1−

2

sin2θ

�
−
cotθ
2

cθuþ 2cuuðM− cÞ− 1

2
cθθu

�

−
1

r3

�
−Mcu

�
1−

4

sin2θ

�
−
4ccu
sin2θ

þ cotθ

�
3

2
cucθ −Nu−

1

2
Mθ þNcuuþ

�
7

2
c−M

�
cθu

�
þ
�
5

2
c−M

�
cθθu

þ 1

2
cθθcuþ 2cθcθuþ cc2uþ

1

2
Mθθ − cMuþNθuþPuuþ cuuð4c2þ 4M2− 4McþNθÞ

�
þOðr−nÞ; n≥ 4 ðB2Þ

where P ¼ C − c3
6
.

APPENDIX C: VORTICITY

The vorticity is

ωϕ ¼ −
e−2β

2r2 sin θ

�
2βθe2β −

2e2βAθ

A
− ðUr2e2γÞr þ

2Ur2e2γ

A
Ar þ

e2βðUr2e2γÞu
A2

−
Ur2e2γ

A2
2βue2β

�
; ðC1Þ

and for the absolute value of ωα, we get

Ω≡ ð−ωαω
αÞ1=2 ¼ e−2β−γ

2r

�
2βθe2β − 2e2β

Aθ

A
− ðUr2e2γÞr þ 2Ur2e2γ

Ar

A
þ e2β

A2
ðUr2e2γÞu − 2βu

e2β

A2
Ur2e2γ

�
: ðC2Þ

Feeding (3)–(6) back into (C2) and keeping only the two leading terms, we obtain

Ω ¼ −
1

2r
ðcuθ þ 2cu cot θÞ þ

1

r2
½Mθ −Mðcuθ þ 2cu cot θÞ − ccuθ þ 6ccu cot θ þ 2cucθ�: ðC3Þ
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