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Modified theories of gravity are often built such that they contain general relativity as a limiting case.
This inclusion property implies that the Kerr metric is common to many families of theories. For example,
all analytic fðRÞ theories with vanishing constant term admit the Kerr solution. In any given theory,
however, the response of the gravitational field to astrophysical disturbances is tied to the structure of the
field equations. As such, even if black holes are Kerr, the underlying theory can, in principle, be probed
through gravitational distortions. In this paper, we study linear perturbations of a Kerr black hole in fðRÞ
gravity using the Newman-Penrose formalism. We show that, as in general relativity, the equations
governing the perturbed metric, which depend on the quadratic term of the function f, completely
decouple.
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I. INTRODUCTION

The Kerr metric describes the geometry surrounding an
isolated, rotating black hole [1]. Among the numerous
special properties of this solution is a set of uniqueness
results effectively stating that, in general relativity (GR),
astrophysically stable black holes must be Kerr [2–5]. The
implication is that a detection of prominent non-Kerr
attributes (such as those described in Refs. [6,7]) of such
an object would strongly indicate a breakdown of GR in the
strong field regime [8,9]. Many experiments aiming to, in
part, search for such features, such as those pertaining to
black hole x-ray reflection spectroscopy [10–12], gravita-
tional wave (GW) data analysis [13–15], or direct imaging
via black hole “shadows” [16–18], have been carried out.
To date, all relevant data are consistent with the Kerr metric,
though there is room for alternative theories [19].
Indeed, motivated by a number of theoretical and obser-

vational issues (e.g., the elusive nature of dark energy
[20,21]), an abundance of modified theories of gravity
aiming to extend GR in one way or another have been
introduced [22]. An aspect that is often demanded of these
extended theories is that they reduce to GR in some appro-
priate limit, much in the same way that GR reduces to the
Newtonian theory in the weak field regime [23]. As such,
although unlikely to be unique, the Kerr metric is still in fact
an exact solution in many cases [24]. In analytic fðRÞ
theories, the focus of this paper, the Kerr metric [or its
asymptotically (anti-)de Sitter variant] is always a solution
[25]. This implies that a validation of the Kerr metric does
not necessarily favor GR among all possibilities [26].
However, since the field equations dictate the character of

perturbations, the gravitational field surrounding a distorted
Kerr object, such as a black hole disturbed by an active
accretion disk [27] or a young remnant born out of a compact
object merger or core collape [28,29], will be different in
non-GR theories [26,30,31]. Future precision experiments
in GW astronomy may be able to identify whether these
subleading order signatures are present in the wave-
forms [32].
In GR, the properties of gravitational perturbations are

encapsulated by the Teukolsky equations [33,34], which
describe, using the Newman-Penrose (NP) language [35],
the dynamics of the perturbed Weyl scalars. The Weyl
scalars can then be integrated to determine the energy and
angular-momentum outfluxes at infinity [33,36]. Moreover,
as initially shown by Chrzanowski [37,38] (see also
Refs. [39–41]), the Weyl scalars actually contain enough
information to fully reconstruct the metric of a (vacuum)
perturbed Kerr spacetime in GR. Unfortunately, several
obstacles prevent an immediate generalization of these
results to modified theories of gravity. For example, certain
gauge choices, permissible in GR and necessary for the
Chrzanowski procedure [42], are inadmissible due to the
existence of additional GW polarization modes [43,44].
Nevertheless, we show here that, in fðRÞ theories of
gravity, a set of decoupled, linear differential equations
for the perturbed metric can still be derived. These can be
solved to determine the distorted spacetime structure,
which differs from its GR counterpart through an explicit
dependence on the quadratic coefficient of the function f.
This paper is organized as follows. In Sec. II, we write

down the fðRÞ field equations, present a brief recap of the
NP formalism, and give the standard Kinnersley null tetrad
description of the Kerr metric [45]. In Sec. III, we introduce
metric perturbations and the fðRÞ Teukolsky equations.*arthur.suvorov@tat.uni-tuebingen.de
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In Sec. IV, the decoupled metric equations, which con-
stitute the main result, are derived. Some brief discussion is
offered in Sec. V.

II. FIELD EQUATIONS

In this paper, we are interested in studying how pertur-
bations of the Kerr metric behave in the fðRÞ theory of
gravity. In this class of theories, the Ricci scalar, R, in the
Einstein-Hilbert Lagrangian is replaced by an arbitrary
function of this quantity, fðRÞ. The vacuum field equations
read1 (see Ref. [25] for a review)

0 ¼ f0ðRÞRμν −
fðRÞ
2

gμν þ ðgμν□ −∇μ∇νÞf0ðRÞ; ð1Þ

where Rμν ¼ Rα
μαν is the Ricci tensor, gμν is the metric

tensor, and □ ¼ ∇μ∇μ represents the d’Alembert operator.
Setting fðRÞ ¼ R returns the vacuum Einstein equations. A
simple rearrangement shows that the field equations (1) can
also be written in a manner resembling the Einstein
equations, viz.

Rμν ¼
1

f0ðRÞ
�
f0ðRÞ
2

Rgμν þ gμν
fðRÞ − f0ðRÞR

2

þ∇μ∇νf0ðRÞ − gμν□f0ðRÞ
�
: ð2Þ

Taking the trace of (2) yields a constraint between the
Ricci scalar and the function f,

3□f0ðRÞ þ Rf0ðRÞ − 2fðRÞ ¼ 0: ð3Þ

A. Newman-Penrose variables and the Kerr metric

Throughout this paper, we will make use of the well
known NP formalism [35]. For our purposes, it is sufficient
to note that this formalism introduces a set of null tetrads at
each spacetime point, fl; n;m; m̄g, which are used to
decompose the metric (see below). Relevant curvature
quantities, which depend on the metric and its derivatives,
can thus be recast in terms of the tetrads and their
derivatives, the latter of which are succinctly expressed
through the 12 spin coefficients: κ, ρ, σ, τ, λ, μ, ν, π, ϵ, γ, β,
and α. These latter quantities are formed by applying the
directional derivatives D, Δ, δ, and δ̄, defined as

D≡ lμ∇μ; Δ≡ nμ∇μ; δ≡mμ∇μ; δ̄≡ m̄μ∇μ; ð4Þ

to the tetrad components, and are related to the Christoffel
symbols [35].

The various formulas of (pseudo-)Riemannian geometry
are thus translated into relationships between the spin
coefficients, culminating in the construction of ten func-
tions (called the Ricci-NP coefficients) which completely
encode the components of the Ricci tensor (Φij for i, j ¼ 0,
1, 2 and Λ) and five functions (Weyl scalars) which detail
contractions of the Weyl tensor (ψ i for i ¼ 0;…; 4). A
major benefit of the approach is that, due to the compact
nature of the formalism, the curvature quantities Φ and ψ
often enjoy a simple description when spacetime sym-
metries are imposed. For arbitrary (i.e., potentially non-
Einstein) spacetimes, a complete description of the relation-
ships between the NP symbols is given by Pirani [46], and
we will not repeat it here.
Having briefly introduced the NP formalism, we now

utilize it to describe the Kerr metric. To this end, we
introduce the Kinnersley tetrad in Boyer-Lindquist coor-
dinates ft; r; θ;ϕg [45],

lμ ¼
� ðr2 þ a2Þ
r2 − 2Mrþ a2

; 1; 0
a

r2 − 2Mrþ a2

�
; ð5Þ

nμ ¼ ðr2 þ a2;−r2 þ 2Mr − a2; 0; aÞ
2ðr2 þ a2 cos2 θÞ ; ð6Þ

and

mμ ¼ ðia sin θ; 0; 1; i csc θÞffiffiffi
2

p ðrþ ia cos θÞ ; ð7Þ

whereM and a represent the mass and the spin parameter of
the black hole, respectively. From expressions (5)–(7), the
components of the Kerr metric are given through the
general formula

gμν ¼ lμnν þ nμlν −mμm̄ν − m̄μmν: ð8Þ

For the Kerr metric, the nonzero NP spin coefficients are
given by [33,35]

ρ ¼ −ðr − ia cos θÞ−1; β ¼ −ρ̄ cot θ=2
ffiffiffi
2

p
;

π ¼ iaρ2 sin θ=
ffiffiffi
2

p
; τ ¼ −iaρρ̄ sin θ=

ffiffiffi
2

p
;

μ ¼ ρ2ρ̄ðr2 − 2Mrþ a2Þ=2;
γ ¼ μþ ρρ̄ðr −MÞ=2; α ¼ π − β̄: ð9Þ

Additionally, being a vacuum solution to GR, the Kerr
metric has vanishing Ricci tensor, Rμν ¼ 0, which implies
that Φij ¼ Λ ¼ 0. The only nonzero Weyl scalar is ψ2 ¼
Mρ3 [33]. As is evident from (2), the Kerr metric is a
solution to all fðRÞ theories which satisfy fð0Þ ¼ 0 (i.e.,
those which have vanishing cosmological constant).

1Throughout this paper, we adopt natural units with
G ¼ c ¼ 1, use a timelike ðþ;−;−;−Þ metric signature, and
denote complex conjugation by an overhead bar.
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III. PERTURBATIONS

Through a slight abuse of notation, we begin by
introducing a metric perturbation,

gμν → gμν þ hμν; ð10Þ
where the metric g on the right-hand side of (10) is given
by (8). Throughout this paper, perturbed quantities are
denoted with a subscript h, while we omit the subscript g
on background quantities when no ambiguity arises. The
mapping (10) similarly introduces perturbations into the null
tetrads through (8), which therefore introduces perturbations
into the spin coefficients (e.g., ρ → ρþ ρh), all of which are
to be constrained through the perturbed version of the field
equations (2). In the Appendix, we give the general (i.e.,
theory-independent) expressions for the perturbed NP quan-
tities in terms of the perturbed metric [47]. We will make use
of these expressions throughout the rest of this paper.
Moving forward, we will assume that the function f is

analytic so that it may be expanded as a Maclaurin series,

fðRÞ ¼ Rþ a2
2!

R2 þ � � � : ð11Þ

Using (11), we have that, to leading order in h, the
perturbed trace equation (3) reads

3a2□gRh − Rh ¼ 0; ð12Þ

which one may recognize as the Klein-Gordon equation
over a Kerr background for a2 ≠ 0. Equation (12), which
can be solved through a separation of variables [48],
demonstrates that fðRÞ gravity predicts the existence of
a massive Ricci mode (sometimes called the scalaron)
[49,50]. One typically imposes2 a2 ≤ 0 to avoid the so-
called tachyonic instability [51,52] (though cf. Ref. [53]).

A. Perturbed Ricci-NP coefficients

As will prove useful, we proceed by computing various
contractions of the perturbed Ricci tensor with the Kerr null
tetrads. For example, noting that Rg ¼ 0, we find that

nμm̄νR
μν
h ¼ nμm̄ν∇μ∇νf0ðRhÞ

f0ð0Þ ð13Þ

¼ a2nμm̄ν∇μ∇νRh ð14Þ

¼ a2nμδ̄∇μRh ð15Þ

¼ a2½δ̄ðnμ∇μÞ − ðδ̄nμÞ∇μ�Rh ð16Þ

¼ a2½δ̄Δ − μ̄δ̄þ ðαþ β̄ÞΔ�Rh: ð17Þ

The first equality (13) holds as a consequence of ortho-
gonality relationships between the background metric and
the tetrad components (i.e., nμm̄νgμν ¼ 0), equality (14)
through the Maclaurin expansion (11), equalities (15) and
(16) from index rearrangement and a simple application of
the Leibniz rule, respectively, while the final equality (17)
is due to the NP transport equation

δ̄nμ ¼ μ̄m̄μ − ðαþ β̄Þnμ; ð18Þ

for the Kerr metric [34,35,46].
Similar expressions can likewise be obtained for the

other Ricci-NP quantities. The ones which we require are

m̄μm̄νR
μν
h ¼ a2½δ̄δ̄ − ðα − β̄Þδ̄�Rh; ð19Þ

nμnνR
μν
h ¼ a2½ΔΔþ ðγ þ γ̄ÞΔ�Rh; ð20Þ

lμmνR
μν
h ¼ a2½δD − ðᾱþ βÞDþ ρ̄δ�Rh; ð21Þ

and

lμlνR
μν
h ¼ DDRh: ð22Þ

B. Perturbed Weyl scalars

We now recall the procedure initially undertaken by
Teukolsky to derive equations for the perturbed Weyl scalars
ψh [33,34]. Teukolsky considered nonvacuum perturbations
to the Kerr metric and, only in the final step of the derivation,
replaced terms involving the perturbed Ricci tensor by
terms proportional to some potentially nonzero stress-energy
tensor as per the Einstein equations. Using the form (2) for
the field equations, which appear the same as the Einstein
equations though with some “effective” stress-energy tensor,
we see that the procedure in fðRÞ gravity is almost identical.
In particular, the null tetrad contractions of the Ricci tensor
which appear in the Teukolsky equations are precisely those
given above in (13)–(22). Of course, the right-hand side of
the resulting Teukolsky equations containing the “source
terms” will now contain terms proportional to the metric and
its derivatives through Rh and thus may not be immediately
“solvable” in the sameway as it is in GR (though see below).
We therefore find that, in fðRÞ gravity, the Weyl scalar3

ψh
4 satisfies the Teukolsky equation [33]

2If we were to use the spacelike sign convention ð−;þ;þ;þÞ
for the metric, this condition would read a2 ≥ 0 instead.

3As a consequence of Sachs’s peeling theorem [36], the
complex components of the Weyl scalar ψh

4 are related to the
tensorial þ and ×GW polarization modes through ψ4 ¼
− 1

2
∂2
∂t2 ðhþ − ih×Þ [30,33] (though cf. Ref. [54]). The GW energy

flux is then evaluable through a theory-dependent gravitational
energy-momentum pseudotensor [55–57]. The relationships
between other (massless) polarization modes, if they exist in a
theory, and the perturbed Weyl scalars are determined through the
Eð2Þ classification of the theory [50].
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½ðΔþ 3γ − γ̄ þ 4μþ μ̄ÞðDþ 4ϵ − ρÞ − ðδ̄ − τ̄ þ β̄ þ 3αþ 4πÞðδ − τ þ 4βÞ − 3ψg
2�ψh

4

¼ a2
2
ðΔþ 3γ − γ̄ þ 4μþ μ̄ÞfðΔþ 2γ − 2γ̄ þ μ̄Þ½δ̄δ̄ − ðα − β̄Þδ̄�Rh − ðδ̄ − 2τ̄ þ 2αÞ½δ̄Δ − μ̄δ̄þ ðαþ β̄ÞΔ�Rhg

þ a2
2
ðδ̄ − τ̄ þ β̄ þ 3αþ 4πÞfðδ̄ − τ̄ þ 2β̄ þ 2αÞ½ΔΔþ ðγ þ γ̄ÞΔ�Rh − ðΔþ 2γ þ 2μ̄Þ½δ̄Δ − μ̄δ̄þ ðαþ β̄ÞΔ�Rhg; ð23Þ

where Rh is determined through (12) and we have explicitly used expressions (13)–(20). A similar equation is satisfied by
the scalar ψh

0 [33],

½ðD − 3ϵþ ϵ̄ − 4ρ − ρ̄ÞðΔ − 4γ þ μÞ − ðδþ π̄ − ᾱ − 3β − 4τÞðδ̄þ π − 4αÞ − 3ψg
2�ψh

0

¼ −
a2
2
ðδþ π̄ − ᾱ − 3β − 4τÞfðD − 2ϵ − 2ρ̄Þ½δD − ðᾱþ βÞDþ ρ̄δ�Rh − ðδþ π̄ − 2ᾱ − 2βÞDDRhg

−
a2
2
ðD − 3ϵþ ϵ̄ − 4ρ − ρ̄Þfðδþ 2π̄ − 2βÞ½δD − ðᾱþ βÞDþ ρ̄δ�Rh − ðD − 2ϵþ 2ϵ̄ − ρ̄Þ½δδ − ðᾱ − βÞδ�Rhg; ð24Þ

where we have used the conjugated version of (19) together
with (21) and (22).
Equations (23) and (24) are to be subjected to boundary

conditions which ensure that no radiation enters inward
from infinity and that no radiation escapes the black hole
horizon [58].
As noted before, independently of whether Eqs. (23) and

(24) can be readily integrated or not, they still provide a
description for the perturbed Weyl scalars in fðRÞ (or any
other, provided the perturbed Ricci tensor is kept) theory of
gravity. However, a critical feature of the fðRÞ theory is the
following: the “source” terms involving Rh featured within
(23) and (24) can be expressed in terms of background
quantities because the perturbed trace equation (12) com-
pletely determines Rh. As such, although the Teukolsky
equations (23) and (24) contain metric pieces implicitly
through Rh, they represent decoupled differential equations
for the Weyl scalars once a suitable solution to (12) has
been selected.
Interestingly enough, however, upon expansion of the

right-hand sides of (23) and (24), one finds that all of these
source terms involving Rh cancel out exactly. Though we
present it without proof because the algebra is long (though
not especially difficult), employing the commutator proper-
ties (A4)–(A7) for the operators appearing on the right-
hand sides of (23) and (24) shows that total cancellations
occur, regardless of the functional form of Rh. In particular,
the fðRÞ Teukolsky equations for ψh

4 and ψh
0 over a Kerr

background are identical to the vacuum GR case with
vanishing right-hand side. This does not, however, imply
that the metric perturbation is identical, as we show in the
next section.

IV. METRIC RECONSTRUCTION

As mentioned earlier, introducing a perturbation into the
metric likewise introduces a perturbation into the null
tetrads (5)–(7). In turn, perturbing the general expression
(8), one can show that the tensorial components of the

metric perturbation h take the form [42] (see also
Appendix)

hμν ¼ hnnlμlν − 2hnm̄lðμmνÞ − 2hnmlðμm̄νÞ
þ 2hlnlðμnνÞ þ hllnμnν − 2hlm̄nðμmνÞ
− 2hlmnðμm̄νÞ þ hmmm̄μm̄ν

þ 2hmm̄mðμm̄νÞ þ hm̄ m̄mμmν; ð25Þ

where the round brackets denote the usual symmetrization
operation: UðijÞk ≡ 1

2
ðUijk þ UjikÞ.

In vacuum GR, one can build all components of h in (25)
through the introduction of generalized Debye potentials,
which are related to solutions of the Teukolsky equa-
tions (23) and (24) [38–41].
However, when sources are present or when modified

gravity is being considered, the problem is more compli-
cated. Specifically, the terms ψh

4 and ψh
0 alone are not

sufficient to determine the metric for two reasons. The first
is that the gauge conditions necessary for the construction
of the generalized Debye potentials do not exist when the
perturbed Einstein tensor does not satisfy certain symmetry
properties [42]. In modified gravity, these symmetries are,
in general, violated because additional, nontensorial GW
polarization modes are excitable [43,44]. In particular,
imposing a transverse and traceless constraint on the
perturbed metric (25) would a priori forbid the possibility
of these propagating modes [49,52]. The second (though
related) reason is that the Ricci identities (see below)
contain terms proportional to Rμν

h [46], which need not
vanish in vacuum for modified theories of gravity (see
Sec. III A). These pieces cannot, in general, be expressed
purely in terms of the Weyl scalars, though they must enter
into the metric [59,60].
As in GR, we are free to exploit coordinate and tetrad

freedoms to fix a gauge which simplifies the resulting
algebra. In particular, owing to the fact that l is a repeated
principal null direction (i.e., a repeated eigenvector of the
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Weyl tensor) for the Kerr metric [61], we maintain enough
freedom to set4 [49,51]

hll ¼ hln ¼ hlm ¼ hlm̄ ¼ 0: ð26Þ

Additionally, the simple observation that [37]

hmm ≡ ðmμmνhμνÞ ¼ m̄μm̄νhμν ≡ hm̄ m̄ ð27Þ

and

hnm ≡ ðnμmνhμνÞ ¼ nμm̄νhμν ≡ hnm̄ ð28Þ

means that we only need to determine four independent
metric functions: hnn, hnm, hmm̄, and hmm. To achieve this,
we require four independent equations. The Ricci identities
fulfill this purpose, and the four equations we need, when
expressed using the NP variables for an arbitrary spacetime,
are given exactly by (e.g., p. 350 of Ref. [46])

Dρ − δ̄κ ¼ ρ2 þ σσ̄ þ ðϵþ ϵ̄Þρ − κ̄τ

− κð3αþ β̄ − πÞ − 1

2
lμlνRμν; ð29Þ

Dσ − δκ ¼ ðρþ ρ̄Þσ þ ð3ϵ − ϵ̄Þσ
− ðτ − π̄ þ ᾱþ 3βÞκ þ ψ0; ð30Þ

Dα − δ̄ϵ ¼ ðρþ ϵ̄ − 2ϵÞαþ βσ̄ − β̄ϵ − κλ

− κ̄γ þ ðϵþ ρÞπ −
1

2
lμm̄νRμν; ð31Þ

and

Δλ − δ̄ν ¼ −ðμþ μ̄þ 3γ − γ̄Þλ
þ ð3αþ β̄uþ π − τ̄Þν − ψ4: ð32Þ

Perturbing expressions (29)–(32) and making use of
(13)–(22) together with (26), we find that, for a perturbed
Kerr spacetime in fðRÞ gravity,

Dρh ¼ 2ρρh −
a2
2
DDRh; ð33Þ

Dσh ¼ ðρþ ρ̄Þσh þ ψh
0; ð34Þ

Dαh − δ̄ϵh ¼ ραh þ ρhαþ βσh − β̄ϵh

þ ðϵ̄uh − 2ϵhÞαþ ρπh þ ðϵh þ ρhÞπ
−
a2
2
½δ̄D − ðαþ β̄ÞDþ ρδ̄�Rh; ð35Þ

and

δ̄νh − Δλh ¼ ðμþ μ̄þ 3γ − γ̄Þλh
− ð3αþ β̄ þ π − τ̄Þνh þ ψh

4; ð36Þ

respectively.

A. Metric components

In this section, we show that the set of equations (33)–
(36) yields a linear, decoupled system which, when solved,
allows for a total reconstruction of the metric (25).
Expanding Eq. (33) in terms of the components of h
[using expression (A13) from Appendix], we find that

ðD − 2ρÞðDþ ρ − ρ̄Þhmm̄ ¼ −a2DDRh; ð37Þ

where, again, we note that Rh is determined through (12),
so that (37) can be expressed purely in terms of background
quantities. The differential operator appearing on the left-
hand side of (37) may be readily expressed in a coordinate
basis using (5) and (9) together with the definition of the
directional derivatives (4). Note that Eq. (37) implies that
one can set hmm̄ ¼ 0 when a2 ¼ 0 without loss of general-
ity, as in GR [38,40,58]. One can thus clearly see how the
massive Ricci mode manifests in the perturbed metric.
From the second NP relationship (34), we obtain a

similar expression for hmm, viz.

ðD − ρ − ρ̄ÞðDþ ρ − ρ̄Þhmm ¼ 2ψh
0; ð38Þ

where ψh
0 is solved through (24) and we have used (A9).

The expression for hnm ¼ hnm̄ is slightly more compli-
cated, though it can still be expressed in terms of back-
ground terms and the other components given above. From
expression (35), using (A14), (A15), and (A17) and group-
ing terms, we find

½ðD − ρÞðD − 2ρ̄ − ρÞ þ 2ρðD − ρÞ�hnm̄
¼ ½δ̄ðρ − ρ̄Þ − ðD − ρÞðδ̄þ 2α − π − τ̄Þ
þ αð2Dþ ρ̄ − ρÞ − β̄ðρ − ρ̄Þ
− 2ρτ̄ þ πð2Dþ 3ρ − 3ρ̄Þ�hmm̄

þ ½ðD − ρÞðδ − 2ᾱþ π̄ þ τÞ − 2ρτ�hm̄ m̄

þ 2βðDþ ρ − ρ̄Þhmm − 2a2½δ̄D − ðαþ β̄ÞDþ ρδ̄�Rh;

ð39Þ

4In GR, one typically employs either the so-called ingoing
radiation (ING) or outgoing radiation (ORG) gauges initially
developed by Chrzanowski [38]. These gauges, however, incor-
porate a traceless condition on the perturbed metric, which is
physically incompatible with the possibility of Ricci mode
excitations [43,44]. In general, as proven in Ref. [42], when
the perturbed Ricci tensor is not orthogonal to the null tetard l
(n), i.e., when lμlνR

μν
h ≠ 0 (nμnνRμν ≠ 0), the ING (ORG) does

not exist [cf. expressions (22) and (20), respectively]. Expression
(26) (lμhμν ¼ 0) is a weaker form of the ING.
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where hmm̄ is given through (37) and hmm ¼ hm̄ m̄ is given
through (38).
Finally, we determine hnn through expression (36),

ðδ̄þ 3αþ β̄ þ π − τ̄Þðδ̄þ 2αþ 2β̄ − π − τ̄Þhnn
¼ 2½ðδ̄þ 3αþ β̄ þ π − τ̄ÞðΔþ μ̄þ 2γÞ
− ðΔþ μþ μ̄þ 3γ − γ̄Þðτ̄ þ πÞ�hnm̄ þ 2ψh

4

− ðΔþ μþ μ̄þ 3γ − γ̄ÞðΔþ μ̄ − μþ 2γ − 2γ̄Þhm̄ m̄;

ð40Þ

where one uses (A10), (A11), and (23) and evaluates hnm̄
via (39).
Therefore, keeping in mind the conjugations (27) and

(28) and the gauge choice (26), we have shown that
expressions (37)–(40) completely describe the geometry
surrounding a gravitationally perturbed Kerr black hole
in fðRÞ gravity. Importantly, these equations are all
decoupled, and thus can be solved using standard tech-
niques suited to linear, second order partial differential
equations. Just as in GR, the metric equations (37)–(40) are
subject to boundary conditions which prevent radiation
entering from infinity or escaping from the black hole [58].
An explicit solution to these equations will be presented
elsewhere.

V. DISCUSSION

In GR, the geometry surrounding an isolated black hole
must be Kerr [2–4]. Searches for non-Kerr features in
astrophysically stable black holes therefore provide one of
the best means to probe GR in the strong field regime
[5,6,8,9,15]. In contrast, validations of the Kerr metric do
not necessarily signal that GR alone describes the gravi-
tational field of black holes because the Kerr solution is
common to many theories of gravity [24]. However, the
way in which a black hole responds to disturbances
depends intimately on the structure of the field equations
[26,31]. Astrophysically distorted Kerr black holes can
therefore still provide a natural laboratory to probe GR.
Though theory-dependent signatures are subleading in this
case, they may be detectable with upcoming precision GW
experiments [32]. In this paper, we have provided tools
which allow for a simple description of gravitational
perturbations of the Kerr spacetime in the fðRÞ family
of theories. The major results are encoded within Eqs. (37)–
(40), which provide a set of linear, decoupled equations for
the perturbed metric tensor components. The dependence
of the perturbed fields on the theory is evident through the
appearance of the quadratic fðRÞ parameter a2 defined in
(11). Though we have focused on the Kerr metric, our
results could easily be extended to any type II Einstein
background [61].
Under favorable conditions, a GW incident on a rapidly

rotating black hole in GR can have its amplitude h

increased by up to ≈138% [34]. This effect, known as
superradiance, can lead to an instability (coined the “black
hole bomb”) wherein trapped waves are repeatedly ampli-
fied [62]. This scenario potentially has astrophysical
consequences, such as for the production of relativistic
jets [63,64]. The results presented here could be a starting
point for one to investigate gravitational superradiance in
fðRÞ gravity and, more generally, GW scattering by black
holes in fðRÞ gravity. Incidentally, massive scalar fields are
known to be particularly prone to superradiant instabilities
[65]. This fact may have important consequences for fðRÞ
gravity since the Ricci mode satisfies the Klein-Gordon
equation (12) [66] (see also Refs. [67,68]).
Massive modes can be searched for directly by using

facilities such as the Laser Interferometer Gravitational-
Wave Observatory [69,70]. Moreover, the data from
GW170104 place an upper bound on the graviton mass
mgraviton < 7.7 × 10−23 eV=c2 [15], which applies directly
to the parameter a2 within (11). In general, following a
compact object merger or core collapse event, the remnant
object is expected to be born into a ringdown phase wherein
it oscillates (e.g., Ref. [28]). An analysis of the associated
quasinormal mode features may then further constrain a2
[71,72]. Moreover, in treatments of the two-body problem
(especially relevant to the early stages of an inspiral), an
explicit form for the metric is required to model self-force
effects [59,60]. The results presented in this paper may then
prove useful in a study of black hole backreaction in an
fðRÞ theory.
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APPENDIX: NEWMAN-PENROSE EXPRESSIONS

Here, we present expressions for the NP spin coefficients
(κ; ρ; σ;…) in terms of the components of the perturbed
metric tensor hμν. In general, the freedom offered through
infinitesimal tetrad transformations allows for the perturbed
null tetrad to be expressed as (see expressions (2.1)–(2.6) of
Ref. [39])

lμ
h ¼ −

1

2
hllnμ; ðA1Þ

nμh ¼ −
1

2
hnnlμ − hnlnμ; ðA2Þ

and

mμ
h ¼

1

2
hmmm̄μ þ 1

2
hmm̄mμ − hmlnμ − hmnlμ: ðA3Þ
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From expressions (A1)–(A3), one can readily define the
perturbed NP derivatives (4) and their commutation rela-
tions. In general, these latter relations read (e.g., Ref. [46])

ΔD −DΔ ¼ ðγ þ γ̄ÞDþ ðϵþ ϵ̄ÞΔ − ðτ̄ þ πÞδ − ðτ þ π̄Þδ̄;
ðA4Þ

δD −Dδ ¼ ðᾱþ β − π̄ÞDþ κΔ − ðρ̄þ ϵ − ϵ̄Þδ − σδ̄;

ðA5Þ

δΔ − Δδ ¼ −ν̄Dþ ðτ − ᾱ − βÞΔþ ðμþ γ̄ − γÞδ − λ̄δ̄;

ðA6Þ

and

δ̄δ − δδ̄ ¼ ðμ̄ − μÞDþ ðρ̄ − ρÞΔþ ðα − β̄Þδþ ðβ − ᾱÞδ̄:
ðA7Þ

Expressions (A1)–(A3) allow for the NP spin coefficients
to be expressed in terms of the metric components by
matching the coefficients in expressions (A4)–(A7). The
spin coefficients are then given through (see Eqs. (A4) of
Ref. [47])

κh ¼ ðD − ρ̄ − 2ϵÞhlm −
1

2
ðδ − 2α − 2β þ π̄ þ τÞhll;

ðA8Þ

σh ¼ ðπ̄ þ τÞhlm þ 1

2
ðDþ ρ − ρ̄þ 2ϵ̄ − 2ϵÞhmm; ðA9Þ

νh ¼ −ðΔþ μ̄þ 2γÞhnm̄ þ 1

2
ðδ̄þ 2αþ 2β̄ − π − τ̄Þhnn;

ðA10Þ

λh ¼ −ðτ̄ þ πÞhnm̄ −
1

2
ðΔþ μ̄ − μþ 2γ − 2γ̄Þhm̄ m̄;

ðA11Þ

2μh ¼ ρhnn − ðδþ 2β þ τÞhnm̄ þ ðδ̄þ 2β̄ − 2π − τ̄Þhnm
−
1

2
ð2Δþ μ̄ − μþ γ − γ̄Þhmm̄; ðA12Þ

2ρh ¼ μ̄hll þ ðρ − ρ̄Þhnl þ ðDþ ρ − ρ̄Þhmm̄

− ðδ − 2ᾱ − π̄Þhlm̄ þ ðδ̄þ 2τ̄ − 2αþ πÞhlm;
ðA13Þ

2ϵh ¼ ðDþ ρ − ρ̄Þhnl þ
1

2
ðδ̄ − 2α − πÞhlm

−
1

2
ðδ − 2ᾱþ 3π þ 4τÞhlm̄

þ 1

2
ðρ − ρ̄Þhmm̄ −

1

2
ðΔþ 2γÞhll; ðA14Þ

2πh ¼ −ðD − ρ − 2ϵÞhnm̄ − ðδ̄þ τ̄ þ πÞhnl
− ðΔþ μ̄ − 2γ̄Þhlm̄ − τ̄hmm̄ − τhm̄ m̄; ðA15Þ

2τh ¼ ðD − ρ̄þ 2ϵ̄Þhnm þ ðδ − π̄ − τÞhnl
þ ðΔþ μ − 2γÞhlm − π̄hmm̄ − πhmm; ðA16Þ

4αh ¼ ðD − 2ρ̄ − ρ − 2ϵÞhnm̄
− ðΔþ 4γ − 2μþ μ̄ − 2γ̄Þhlm̄
− ðδ̄þ π þ τ̄Þhnl
þ ðδ̄þ 2α − π − τ̄Þhmm̄

− ðδ − 2ᾱþ π̄ þ τÞhm̄ m̄; ðA17Þ
4βh ¼ ðD − ρ̄ − 4ϵþ 2ρþ 2ϵ̄Þhnm

− ðΔþ μþ 2μ̄þ 2γÞhlm
− ðδþ π̄ þ τÞhnl
− ðδ − 2β þ π̄ þ τÞhmm̄

þ ðδ̄þ 2β − π − τ̄Þhmm; ðA18Þ
and finally

2γh ¼ −ðγ̄ þ γÞhnl þ
1

2
ðDþ ρ − ρ̄þ 2ϵ̄Þhnn

−
1

2
ðδþ 2β þ 2π̄ þ 3τÞhnm̄

þ 1

2
ðδ̄þ 2β̄ − 2π − τ̄Þhnm

þ 1

4
ð3μ̄ − 2μþ γ − γ̄Þhmm̄: ðA19Þ
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