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The incompressible Navier-Stokes (NS) equation is known to govern the hydrodynamic limit of
essentially any fluid, and its rich nonlinear structure has critical implications in both mathematics and
physics. The employability of the methods of Riemannian geometry to the study of hydrodynamical flows
has been previously explored from a purely mathematical perspective. In this work, we propose a bulk
metric in (pþ 2) dimensions with the construction being such that the induced metric is flat on a timelike
r ¼ rc (constant) slice. We then show that the equations of parallel transport for an appropriately defined
bulk velocity vector field along its own direction on this manifold when projected onto the flat timelike
hypersurface requires the satisfaction of the incompressible NS equation in (pþ 1) dimensions.
Additionally, the incompressibility condition of the fluid arises from a vanishing expansion parameter
θ, which is known to govern the convergence (or divergence) of a congruence of arbitrary timelike curves
on a given manifold. In this approach Einstein’s equations do not play any role, and this can be regarded as
an off-shell description of fluid-gravity correspondence. We argue that our metric effectively encapsulates
the information of forcing terms in the governing equations as if a free fluid is parallel transported on this
curved background. We finally discuss the implications of this interesting observation and its potentiality in
helping us to understand hydrodynamical flows in a probable new setting.
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I. INTRODUCTION

The nonrelativistic fluid flow is dictated by the well-
known incompressible Navier-Stokes (NS) equations

_v⃗þ v⃗ ·∇v⃗þ ∇⃗P − η∇2v⃗ ¼ 0; ∇⃗ · v⃗ ¼ 0; ð1:1Þ

where v⃗ is the fluid velocity field, P the fluid pressure, and
η the kinematic viscosity. The NS equation of fluid
dynamics has played a crucial role in both mathematics
and physics. The NS differential equation that exhibits a
rich nonlinear structure has been seen to describe a wide
variety of natural phenomena [1]. The subject of hydro-
dynamics has been studied extensively for centuries now,
yet many open ended questions remain to be answered.
For instance, a consistent mathematical theory of the

phenomenon of turbulence and the existence problems
for the smooth solutions of hydrodynamic equations (1.1)
of a three-dimensional fluid are still wide open.
A simpler yet a rigorous mathematical model for fluid

dynamics is the hydrodynamics of an ideal fluid, i.e., an
Euler fluid [described by (1.1) with η ¼ 0]. According to
Arnold and Khesin [2], from themathematical point of view,
“a theory of such a fluid filling a certain domain is nothing
but a study of geodesics on the group of diffeomorphisms
of the domain that preserve volume elements. The geodesics
on this (infinite-dimensional) group are considered with
respect to the right-invariant Riemannian metric.” From this
purely mathematical perspective, the Euler equations of
fluid dynamics on a compact n-dimensional manifold M
can be regarded as the equation of geodesics on the Lie group
SDiff ðMÞ of all diffeomorphisms on the manifold M
preserving the volume form V. The description of ideal
hydrodynamical flows by means of geodesics of the right-
invariant metric allows one to employ the methods of
Riemannian geometry to the study of flows.
In our paper, we try to understand to what degree the NS

equation (1.1) can have such a manifold interpretation,
partially motivated by investigations and advances in the
domain of the fluid-gravity correspondence. One of the
earliest works regarding this interesting connection between
the equations of gravity and hydrodynamics appeared in the
doctoral thesis of Damour [3], wherein there are suggestions
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of a relation between horizon and fluid dynamics. This work
contains an expression now known as the Damour-Navier-
Stokes (DNS) equation and is known to govern thegeometric
data on any null surface. The same equation is also obtained
in terms of coordinates adapted to a null surface [4] by
projecting Einstein’s equations of motion. Moreover, a
corresponding action formulation of the same has been
greatly detailed in [5]. A connection in this regard has also
been obtained in the membrane paradigm approach by Price
and Thorne in [6]. In the AdS=CFT context, it has been
shown that the dissipative behavior of an anti–de Sitter (AdS)
black hole agrees with the hydrodynamics of the holo-
graphically dual conformal field theory (CFT). This has
been studied extensively, and important works in this regard
include [7–10]. More recently in a cutoff surface approach
by Bredberg et al. [11], it has been shown by explicit
construction that for every solution of the incompressible
NS equation in (pþ 1) dimensions, there is a uniquely
associated dual solution of the vacuum Einstein equations in
(pþ 2) dimensions. This cutoff surface approach has been
applied in various cases; see [12–14]. For example, it was
extended for higher curvature gravity theories [15–19] as
well as for the AdS [20,21] and dS [22] gravity theories (for
other theories, such as black branes, see [23]). Very recently,
two of the authors of this paper showed in [13] that an
incompressible DNS-like equation can be obtained in the
cutoff surface approach. In this case the obtained metric is a
solution of Einstein’s equations of motion in the presence of
a particular type of matter. Also a corresponding relativistic
situation has been discussed extensively in [24]. Symmetries
of the vacuum Einstein equations have been exploited to
develop a formalism for solution generating transformations
of the corresponding NS fluid duals in [25]. The fluid
description on the Kerr horizon has also been explored
extensively in [26] (see [27] for the isolated horizon case).
For extensive reviews of the fluid-gravity correspondence,
refer to [28–30].
In this paper, we present an interesting observation that

could help to understand whether the fluid-gravity corre-
spondence can serve as a window to view hydrodynamical
flows in a new setting. Here we propose a metric that is
constructed with the help of the scaling symmetry of the
incompressible (D)NS equation.1 We show that the parallel
transport equation of the fluid velocity along its own
direction on a timelike hypersurface in a manifold specified
by this metric yields (D)NS. The incompressibility con-
dition naturally arises from the vanishing of the expansion
parameter corresponding to the fluid velocity vector.
It must be noted that our whole approach, as well as the
analysis that follows, is completely different from existing
works in this direction. Moreover, here we do not need
to consider Einstein’s equations of motion explicitly.

Therefore this new approach can be regarded as an off-
shell description.
Our basic organization of the paper is roughly as follows.

In Sec. II, we begin by first writing down a bulk metric in
(pþ 2) dimensions on which we consider the parallel
transport of an appropriately defined velocity vector field.
We then show that the projection of the parallel transport
equations onto a timelike induced hypersurface require
that the incompressible fluid dynamical (D)NS equations
be satisfied in (pþ 1) dimensions. In Sec. III, we show that
the incompressibility condition of the fluid derives from a
vanishing expansion parameter θ when projected onto the
same timelike induced hypersurface. The next section is
dedicated to show that our proposed metric is inherently
curved and a solution of the vacuum Einstein equations of
motion. In Sec. V, we finally discuss the consequences of
this interesting observation and how it lends a different
perspective in viewing the (D)NS fluid dynamical equation.
The orderwise calculations of the projected parallel trans-
port equations and that of the expansion parameter θ is
explicitly shown in the Appendixes A and B.
The notations used throughout the paper are clarified as

follows: all lowercase Latin letters denote the bulk space-
time coordinate indices and run from a; b ¼ 0;…; pþ 1.
The uppercase Latin letters denote the transverse coordi-
nates (i.e., the angular sector of the metric), and they run
from A;B ¼ 1;…; p. The Greek letters denote the coor-
dinates on the flat timelike induced r ¼ rc slice, and they
run from μ; ν ¼ 0;…; p.

II. PARALLEL TRANSPORT TO FLUID
DYNAMICS

In this section, we construct a metric that effectively
captures the features of a viscous fluid such that this
viscous fluid is equivalently represented by a free fluid
parallel transported along its own flow direction on a
specific hypersurface in this background. In other words,
we want to find an equivalent gravity description such that
the metric coefficients encapsulate the information of the
forcing terms (the ones arising due to pressure gradient and
viscous dissipation), which are acting on a fluid described
on a flat space and reinterpreted as if a free fluid is flowing
on a curved background. Here we mainly concentrate on a
nonrelativistic, viscous fluid whose governing equation is
the NS equation (1.1) accompanied by the incompressibil-
ity condition.

A. The metric

To construct the metric, we shall take the help of the
well-known scaling symmetry of the incompressible NS
equation (1.1), which we shall briefly state below. Now, if
the amplitudes of its solution space ðvA; PÞ is scaled down
by the parameter ϵ,

1For the details of the scaling symmetry of (D)NS, refer to
Appendix A of [13].
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vϵAðxA; τÞ ¼ ϵvAðϵxA; ϵ2τÞ; PϵðxA; τÞ ¼ ϵ2PðϵxA; ϵ2τÞ;
ð2:1Þ

then the NS equation remains invariant under the above
scaling transformation, thus generating a family of solu-
tions parametrized by ϵ from the original solution space.
The hydrodynamic scaling of the spatial and time deriv-
atives along with the pair ðvA; PÞ follows as
vA ∼OðϵÞ; P ∼Oðϵ2Þ; ∂A ∼OðϵÞ;
∂τ ∼Oðϵ2Þ: ð2:2Þ
A review of the same can be found in [11] (also see
Appendix A of [13] for a detailed derivation of the scale
invariance of the incompressible DNS equation). As the
method adopted originally in [11], the hydrodynamic
scaling parameter ϵ is taken to be the perturbative parameter
in which the metric is expanded and will be a recurrent
feature of our analysis. Here we propose the following
metric:

ds2pþ2 ¼ gabdxadxb ¼ −rdτ2 þ 2dτdrþ dxAdxA

−
�
2a1
rc

∂APþ 2a2∂2vA þ 2a3
rc

∂Av2
�
dxAdr

þOðϵ4Þ: ð2:3Þ
The metric is constructed in such a way that the leading
order base metric at Oðϵ0Þ is in flat Rindler form in
(ingoing) Eddington-Finkelstein coordinates and serves

as the background metric gð0Þab . The next metric coefficients
appear at Oðϵ3Þ, which acts as a perturbation in the third

order in ϵ, and we denote it by hð3Þab . The metric construction
is such that the induced metric on a timelike induced slice
r ¼ rc is flat, i.e.,

γμνdxμdxν ¼ −rcdτ2 þ dxAdxA: ð2:4Þ
We also note that the velocity vAðxA; τÞ and pressure
PðxA; τÞ fields are independent of the radial coordinate
r. We shall observe that the above metric (2.3) correctly
incorporates the information of the forcing terms in the NS
equation on the r ¼ rc hypersurface through the metric
coefficient atOðϵ3Þ. Therefore the present proposed curved
spacetime, on the timelike hypersurface, acts as the gravity
dual of the governing nonrelativistic fluid equations on flat
space. This we shall show below by using the parallel
transport equations of a free fluid along its flow direction,
projected onto the timelike induced r ¼ rc hypersurface.

B. Parallel transport and fluid equation

Since the calculationwill be doneby projecting everything
onto the r ¼ rc timelike hypersurface, we first evaluate the
projectors, defined by

hab ¼ gab − nanb; ð2:5Þ

where na is the unit normal to the r ¼ rc surface, satisfying
nana ¼ þ1 (spacelike). The projectors corresponding to
the leading order background metric are listed as under

hττ ¼ −1=r; hτr ¼ 1; hτA ¼ hrA ¼ 0;

hrr ¼ −1; hAB ¼ δAB: ð2:6Þ

The corresponding contravariant components of the above
projectors are listed as follows:

hττ ¼ −
1

r
; hτr ¼ hτA ¼ 0; hrr ¼ hrA ¼ 0;

hAB ¼ δAB: ð2:7Þ

Now, the notion of “straight” paths in a curved space are
those curves xaðτÞ for which the tangent vector va ¼
ðdxa=dτÞ should be parallel transported along the same
curve. Here we consider that there is no fluid flow along the
radial direction. In this case the bulk velocity vector field
components are va ¼ ð1; 0; vAÞ. Now, parallel transport
requires that the directional derivative of vb along va (i.e.,
along its own flow direction) must vanish; i.e., we must
have the satisfaction of the following relation:

va∇avb ¼ 0: ð2:8Þ

The projection of (2.8) onto the timelike induced hyper-
surface r ¼ rc (since we are interested on this surface)
yields the relation

hbcva∇avbjr¼rc ¼ 0: ð2:9Þ

We shall show that the satisfaction of the above equation
identically up toOðϵ3Þ, i.e., up to the order themetric (2.3) is
presented, generates the (D)NS fluid dynamical equations.
Let us now start expanding Eq. (2.9) for different indices.

First setting the free index c ¼ τ in (2.9), we obtain

hbτva∇avbjr¼rc ¼ −rðΓτ
ττ þ 2Γτ

τAv
A þ Γτ

ABv
AvBÞ

þ Γr
ττ þ 2Γr

τAv
A þ Γr

ABv
AvB: ð2:10Þ

We proceed to check whether the right-hand side (RHS) of
(2.10) vanishes identically order by order in the hydro-
dynamic expansion parameter ϵ. It is found that (2.10)
vanishes identically up to Oðϵ3Þ and (2.9) is satisfied
trivially for c ¼ τ. (See Appendix A for a detailed order by
order calculation.) Next, on setting the free index c ¼ A in
(2.9), we obtain

hbAva∇avbjr¼rc ¼ δABð∂τvB þ vC∂CvB þ ΓB
ττ þ 2ΓB

Cτv
C

þ ΓB
CDv

CvDÞ: ð2:11Þ
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As before, we again proceed to check the RHS of (2.11)
order by order in the hydrodynamic expansion parameter ϵ.
Here we find that up to order ϵ2, it is automatically satisfied,
whereas the above expression, at order ϵ3, yields

Oðϵ3Þ∶ hbAva∇avbjr¼rc ¼ ∂τvA þ vC∂CvA þ a1
2
∂AP

þ a2
2
rc∂2vA þ a3

2
∂Av2: ð2:12Þ

Again, refer to Appendix A for a detailed orderwise
calculation. So the satisfaction of Eq. (2.9) requires that
the above must vanish at this order, i.e.,

∂τvA þ vC∂CvA þ a1
2
∂APþ a2

2
rc∂2vA þ a3

2
∂Av2 ¼ 0:

ð2:13Þ

Now with the identification of the constant ai’s in the
metric (2.3) to be

a1 ¼ 2; a2 ¼ −2; a3 ¼ 0; ð2:14Þ

and identifying the (kinematic) viscosity as η ¼ rc,
Eq. (2.13) yields

∂τvA þ vC∂CvA þ ∂AP − η∂2vA ¼ 0: ð2:15Þ

Note that the above equation is the incompressible NS
equation. In the next section we shall discuss how one can
obtain the incompressibility condition in the gravity dual
paradigm in the present setup.
Next if we choose a1 ¼ 2, a2 ¼ −2, and a3 ¼ 1, then

Eq. (2.13) reduces to the following form:

∂τvA þ vC∂CvA þ 1

2
∂Av2 þ ∂AP − η∂2vA ¼ 0; ð2:16Þ

which is seen to be the incompressible DNS equation, a
gravity dual of which has been extensively studied recently
in [13]. Thus, it is seen that for the metric (2.3), the parallel
transport equation when projected onto a timelike induced
flat hypersurface (2.9) leads to (D)NS fluid dynamics on
this surface. Although as seen from (2.16) again, the
incompressibility condition is yet to be obtained, which
we shall tackle in the next section.

III. EXPANSION PARAMETER AND
INCOMPRESSIBILITY

The Raychaudhuri equation governs the convergence
(or divergence) of a congruence of arbitrary timelike
curves. This is essentially done by determining the expan-
sion parameter θ of the congruence. With the already
defined vector field va ¼ ð1; 0; vAÞ, we define the expan-
sion parameter as

θ ¼ hab∇avb ¼ habð∂avb − Γc
abvcÞ

¼ habð∂avb þ rΓτ
ab − Γr

ab − ΓA
abvAÞ; ð3:1Þ

where the projectors hab are defined as given by (2.5).
Now for incompressible flows, we must have a vanishing θ.
As before, we proceed to check the right-hand side of (3.1)
in an orderwise manner in the hydrodynamic expansion
parameter ϵ. An explicit calculation shows that except
at Oðϵ2Þ, all other orders up to ϵ3 vanish identically.
The Oðϵ2Þ term in (3.1) is simply ∼∂AvA [see
Appendix B for an explicit orderwise evaluation of
(3.1)]. Therefore, to satisfy the vanishing of θ up to order
ϵ3, we need to impose the following condition:

∂AvA ¼ 0; ð3:2Þ

which is the required incompressibility condition. In the
context of fluid dynamics, we speak of incompressible
flows when there is no noticeable compression or expan-
sion of the fluid (see [1]). Therefore, it seems very natural
that the incompressibility condition emerges from a van-
ishing expansion parameter. This is what we have shown in
this section.

IV. MORE ABOUT PROPOSED METRIC

The proposed metric (2.3) is seen to effectively capture
the features of an incompressible, viscous fluid such that
this (D)NS fluid is equivalently represented by a free fluid
parallel transported along its own flow direction on a
specific hypersurface in this background, as explicitly
detailed in the preceding Secs. II and III. This metric
indeed represents a truly curved manifold as established by
the fact that the Riemann curvature tensor is seen to have
nonvanishing contributions at Oðϵ3Þ itself, for example,

Rð3Þ
Aτrτ ¼

1

2

�
a1
rc

∂APþ a2∂2vA þ a3
rc

∂Av2
�
: ð4:1Þ

Now that the metric is established to be representative of a
true curved spacetime, we need to check whether its
dynamics is governed by the Einstein field equations.
Crucially, the metric (2.3) is a solution to the vacuum
Einstein field equations up to Oðϵ3Þ, i.e., up to the order in
which the bulk metric is presented. In other words, the
Ricci tensor components vanish identically up to Oðϵ3Þ,
with nonvanishing contributions arising only at Oðϵ4Þ and
higher. That is, all components of the Einstein tensor obey

Grr; Grμ; Gμν ∼Oðϵ4Þ; ð4:2Þ

and are nonsingular for finite values of r.
It is well known that a suitable coordinate transformation

can always be chosen such that a given metric has the
Cartesian form at a given event (say P) and its first
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derivatives vanish at that event. Such a construction of a
coordinate system around an event P is known to be called
a local inertial frame at P. The fact that the second
derivatives of the metric survive after making the coor-
dinate transformation to a local inertial event at P can be
used to understand features arising from the curvature. This
is explicitly seen by virtue of a coordinate transformation,
sometimes called the Riemann normal coordinates, which
gives the metric in these coordinates to be

gab ¼ ηab −
1

3
ðRacbd þ RbcadÞxcxd: ð4:3Þ

This result explicitly shows that a coordinate system can
be set up at some event P such that the metric has the
Cartesian form with the second derivatives of the metric
traded off for the components of the Riemann curvature
tensor. For a detailed derivation of the same, refer to the
discussion in Sec. 5. 3. 1 of [31].
In a similar vein, we present a construction of a

coordinate system about a given event P (which is taken

to be a region about r ¼ 0 where Γað3Þ
bc ’s vanish) such that

the deviation of the metric (2.3) from the Rindler (in our
case) is given by the curvature tensor. To this end, we see
that the bulk metric derives from the Rindler background

(gð0Þab ) via a transformation of the coordinates of the
following form:

x̃A ¼ xA þ λ∂rΓ
Að3Þ
ττ r;

τ̃ ¼ τ;

r̃ ¼ r; ð4:4Þ

such that the event P is taken to be the origin of both the
coordinate systems and where λ is simply a constant that
shall be fixed in due course. Using (A2) and (4.4), it is easy
to see that

dx̃A ¼ dxA þ λ

2

��
a1
rc

∂APþ a2∂2vA þ a3
rc

∂Av2
��

dr

þOð≥ ϵ4Þ: ð4:5Þ

Imposing the above coordinate transformation onto the flat
background Rindler metric, we obtain

ds̃2pþ2 ¼ −r̃dτ̃2 þ 2dτ̃dr̃þ dx̃Adx̃A

¼ −rdτ2 þ 2dτdrþ dxAdxA

þ λ

�
a1
rc

∂APþ a2∂2vA þ a3
rc

∂Av2
�
dxAdr

þOðϵ4Þ: ð4:6Þ

On setting λ ¼ −2, we identically obtain our proposed bulk
metric (2.3) up to the required order, i.e., Oðϵ3Þ. Thus our

bulk metric construction (which is a true curved manifold)
can also be seen to be an expression of a curved back-
ground expressed in a locally Rindler frame.

V. DISCUSSIONS AND COMMENTS

To summarize our calculations, we first construct a bulk
metric in (pþ 2) dimensions in which the background gð0Þab

is flat Rindler space onto which a perturbation hð3Þab , para-
metrized by the velocity and pressure fields vAðxA; τÞ and
PðxA; τÞ of an incompressible fluid, kicks in at the third
order in ϵ. Now, on defining a bulk velocity vector field of
the form va ¼ ð1; 0; vAÞ, we consider the parallel transport
of va along the integral curves to this vector field on the
manifold defined by the spacetime metric (2.3) as given by
(2.8). Next, we consider the projection of these equations of
parallel transport onto the flat timelike induced r ¼ rc slice
as shown by (2.9). Crucially, the satisfaction of these
projected parallel transport equations identically up to
Oðϵ3Þ (i.e., up to the order the bulk metric is presented)
require that the incompressible fluid dynamical (D)NS
equations be satisfied at the same order. Interestingly, the
incompressibility condition arises from an identically
vanishing expansion parameter projected onto the same
flat r ¼ rc slice. As far as we know, this way of interpreting
the (D)NS fluid equations, in the context of fluid-gravity
correspondence, has not been done earlier.
This observation could lend an interesting perspective in

our viewpoint of the incompressible Navier-Stokes fluid
dynamical equations. Rewriting the incompressible NS
equation in the F ¼ ma form

∂τvA þ vB∂BvA ¼ −∂AP − η∂2vA; ð5:1Þ

where the left-hand side (LHS) is the usual fluid convective
derivative and the RHS contains the forcing terms arising
out of the pressure gradient and dissipation due to viscosity.
On observing the relation obtained in (2.11), it is seen that
these forcing terms essentially arise from the evaluation of
the Christoffel symbols defined for the metric (2.3) and is a

direct consequence of the perturbation hð3Þab . Thus, if we
were to “turn off” this perturbation [i.e., essentially setting
a1 ¼ a2 ¼ a3 ¼ 0 in (2.3)], we would essentially obtain a
forcing-free fluid. So the picture here is that a viscous,
incompressible fluid residing in flat spacetime is essentially
equivalent to a free fluid residing in a curved spacetime
manifold defined by a unique choice of the metric (2.3).
This seems to be in parallel to the interpretation that an
interacting particle with gravitational field in a flat space-
time can be equivalently pictured to be a free particle
residing in an appropriate curved spacetime manifold,
which is broadly discussed in [31] (see the discussion in
Sec. 3. 3 of this book).
A more ambitious interpretation can be the following.

We have noted that our proposed metric correctly accounts
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for the forcing terms of the (D)NS equation. Therefore the
present metric representation can be interpreted as an
equivalent theory of the viscous fluid motion. This is
similar to the equivalence principle of gravity where an
accelerated frame locally mimics gravity. Therefore, to
better understand the (D)NS equation and the properties of
a viscous fluid, this metric could probably play a major
role. Moreover, any calculation (for a free fluid) on this
background reflects the effects of forcing terms, and one
will be able to extract features of a viscous fluid, which may
be very hard to obtain directly from the (D)NS itself as it is
a highly nonlinear equation. Therefore the present analysis
can be a complete geometrical description of the (D)NS
equation. We take this as a suggestive interpretation, rather
than a conclusive one. In addition to that, it may be noted
that in our present analysis Einstein’s equations do not play
any roles that were the main input in all earlier interpre-
tations [8–27] of (D)NS as dual to a gravitational theory.
Hence we designate this approach as an off-shell fluid-
gravity duality scenario.
There are certain important issues of this approach that

can be mentioned here. First, regarding the question of
uniqueness of the metric (2.3) and how the inclusion of
other metric coefficients could affect our analysis. In this
regard we have to note that the metric (2.3) is exactly what
is needed for the (D)NS fluid data to be a condition of
parallel transport on this curved background. It has been
checked that the inclusion of metric coefficients of the form
dτdxA do not affect our analysis (also, there are other
possible terms that do not affect the present interpretation
of (D)NS as a parallel transport equation). Hence, in
principle, such terms could be added to the metric, and
consequently the metric (2.3), strictly in this sense, would
then be nonunique. But it is to be noted that we are
interested in the (D)NS equation that is a unique fluid
equation in the hydrodynamic limit (as other higher order
terms in the equation are traced out at this limit). So the
entire dynamics of the fluid is reflected by this equation,
and hence a metric description of such an equation is
completely determined by the minimum required terms in
the metric. Any other correctional terms, allowed by the
scaling argument in the metric, are regarded as “redundant
terms” as far as the dynamics is concerned. In our
prescription, such redundant terms do not affect the
dynamics and the physical results we intend to achieve.
The idea is similar to the arbitrariness up to the total
derivative or constant term in the construction of a
Lagrangian for a system. We know that such a term does
not affect the equations of motion (i.e., the dynamics) of the
system, and hence one can just neglect those terms. Thus, at
the very outset, the metric is kept devoid of such redundant
terms, and we work with the simplest metric that would
lead to the desired physical results following our prescrip-
tion. In this sense, the question of uniqueness of the
constructed metric (2.3) does not have strong physical

relevance. This feature of the metric can be related to the
gauge symmetry of the electromagnetic fields. In this case,
we know that Maxwell’s equations remain invariant under
the change of the vector potential field up to some additive
term that may be a constant or the derivative of a scalar
function. So if we are only concentrating on the (D)NS
equation, then our metric (2.3) is defined up to some extra
allowed metric coefficients that do not change this fluid
equation.
Another question that could possibly arise is, why have

the (D)NS equations solely been singled out as a condition
of parallel transport on a curved geometry? In principle
one could have correctional term(s) to the (D)NS fluid
equations and analogously recover corresponding metric
(s). The resolution of this argument is pretty simple. We are
operating in the regime of the hydrodynamic limit (ϵ → 0),
and the nonrelativistic incompressible (D)NS equations are
the precise and universal outcome of such a limit [13]. In
this limit, all reasonable types of corrections to the forcing
part are scaled away, and the incompressible NS equations
universally govern the hydrodynamic limit of essentially
any fluid. The possibility of changing the right-hand side of
the NS equation (5.1) at will is nullified in this limit. It is
this hydrodynamic limit of a fluid that we have matched to
a metric formulation and consequently as a condition of
parallel transport on this curved space.
Also, we have stressed on numerous occasions in our

paper that the Einstein field equations are not involved in
our construction. This is the fact that sets our work on a
different footing from the existing holographic approach to
the fluid-gravity correspondence where explicit use of
Einstein’s equations of motion are made. In this regard,
let us point out that there is no hard and fast rule that
Einstein’s equations of motion have to be the only guiding
principle to handle the NS equation in a metric represen-
tative construction. The interpretation of Einstein’s equa-
tions as an NS equation on a timelike surface, which has
been the main idea adopted till now in various cases, can be
regarded as one of the ways to fluid-gravity duality. But
there can be other ways to encounter such an issue. This is
precisely addressed here, and we have found another way
through the equations of parallel transport as our guide,
instead of Einstein’s field equations.
Therefore in a nutshell, once we have established that the

NS data govern the hydrodynamic limit of essentially any
fluid, we use the hydrodynamic scaling parameter ϵ as the
expansion parameter to write down the metric (2.3). The
objection about the uniqueness of the metric does not
hinder our observation in any way—corresponding to the
incompressible NS equations in the hydrodynamic limit,
the metric (2.3) is exactly what is needed for the fluid data
to be a condition of parallel transport on this curved
background. The metric is shown to be a solution to the
vacuum Einstein field equations. The field equations, in our
case, do not guide the construction of the geometry as in the
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holographic construction. Our work significantly deviates
from the existing approaches to the connection between
gravity and hydrodynamics and could potentially shed very
interesting light in our understanding of hydrodynamical
flows as we have discussed in the paper.
An important question worth asking is whether the

above calculations hint at a manifold interpretation of
the incompressible (D)NS fluid equations. In other words,
can the (D)NS equations of fluid dynamics be regarded as
the equation of geodesics on the Lie group SDiffðMÞ of
all diffeomorphisms on the manifold M defined by the
metric (2.3). There may be an important future aspect of
our result. Since we interpreted the (D)NS equation as the
free parallel transport equation (geodesics) of a fluid on
a curved background, probably it can be a path to obtain
the action representation of the (D)NS equation. The idea
is similar to the writing of an action of a free particle on a
curved background which, in turn, is identical to a particle
interacting with gravity.
Another important discussion is the systematic gener-

alization of the bulk metric (2.3) to higher orders in the
hydrodynamic expansion parameter ϵ, in the spirit of the
reconstruction executed in [32] for the vacuum solution
presented in [11] to arbitrary order. In the work by [32],
the extension of the vacuum solution in [11] to arbitrary
order is carried out through the satisfaction of suitable
integrability conditions. The validity of the integrability
conditions is ensured by invoking the Bianchi identity and
the Gauss-Codazzi equations at the required order. From
the perspective of the dual fluid, this constraint reduces to
the incompressibility condition at Oðϵ2Þ and to the exact
NS equation at Oðϵ3Þ. The higher order corrections to the
bulk metric solution subsequently lead to corrections to
the incompressibility condition at relevant even orders
in ϵ, while at higher odd orders it amounts to adding
corrections to the NS equation. A similar reconstruction of
the metric (2.3) to arbitrary order could be executed under
the purview of the formalism presented in our paper.
As we have already seen, the forcing terms in the exact
NS equation essentially arise from the evaluation of the
Christoffel symbols defined for the metric (2.3) and is

a direct consequence of the metric coefficient hð3ÞrA .
In principle, one could have higher order corrections to
the metric solution (2.3), say at order ϵn, encoded in the

corresponding metric coefficient hðnÞrA . Consequently such
correction terms in the metric, in the parallel transport
formalism, will lead to corrections to the incompressibil-
ity condition at higher even orders in ϵ (ϵ4; ϵ6;…), while at
higher odd orders (ϵ5; ϵ7;…) it will amount to adding
corrections to the NS equation of fluid dynamics. The
allowed metric corrections will be constrained by invok-
ing manifold properties, possibly the Bianchi identity
and constraints on the expansion parameter θ. On such
grounds, the metric will still continue to be a solution of

the vacuum Einstein field equations and undergo conse-
quent generalization to higher orders.
In addition to the above discussions, there are several

pertinent questions regarding possible connections between
the formalism presented in this paper with the existing
holographic approaches to fluid-gravity duality. For exam-
ple, it is to be checked whether the proposed metric (2.3)
bears any direct relationship to metrics in the various fluid-
gravity scenarios established over the past few decades.
In the cutoff surface approach to fluid-gravity duality as
developed in [11], the metric is seen to be derived by the
action of diffeomorphisms on a flat Rindler spacetime as
shown in [32]. The transformations include a constant
boost followed by a constant linear shift of the radial
coordinate r and an associated rescaling of the time
coordinate τ, applied in either order on Rindler spacetime.
Promoting the velocity vA and pressure P fields to depend
arbitrarily on the coordinates xA and treating them as small
fluctuations around the background in the hydrodynamic
limit yields the required metric as given in [11]. It would be
really interesting to see whether our metric (2.3) could be
derived by the action of diffeomorphisms on a given
background metric. Moreover, the existing fluid-gravity
approaches need to be explored for a potential interpreta-
tion along the lines of the manifold properties as discussed
in this paper.
Finally, it would also be interesting to explore the

consequences of repeating our calculations around space-
times with a different sort of horizon (instead of the
Rindler one), such as a pure de Sitter cosmological
horizon. In this case one can consider a timelike hyper-
surface near the cosmological horizon. This has been
attempted in [22] through the earlier existing approaches.
Moreover, for just mathematical interest the same has
been done for the spacelike slices foliating the region
outside the future horizon of the static patch. In both the
cases, the NS equation was recovered in the hydrody-
namic limit. Interestingly, for the timelike case the
viscosity (kinematic) coefficient is positive while for
the spacelike case it is negative. What would happen if
we do everything by our present approach by taking the
seed metric as these surfaces would be very interesting to
investigate. Similarly, the extension to this present parallel
transport approach in the context of Petrov-type con-
structions [12] would also be worthwhile to look at. We
leave such discussions open and up for careful consid-
eration in the near future.
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APPENDIX A: EVALUATION OF THE
PROJECTED PARALLEL TRANSPORT
EQS. (2.10) AND (2.11) UP TO ϵ3 ORDER

In order to explicitly evaluate Eqs. (2.10) and (2.11)
for the bulk metric defined by (2.3), we first find the
nonvanishing Christoffel symbols up to ϵ3 order. These are
listed as follows.
For the flat Rindler background gð0Þab at Oðϵ0Þ, the

nonzero Christoffel symbols are

Γrð0Þ
τr ¼ −

1

2
; Γrð0Þ

ττ ¼ r
2
; Γτð0Þ

ττ ¼ 1

2
: ðA1Þ

For the perturbation hð3Þab that kicks in at Oðϵ3Þ, the sole
nonzero Christoffel symbol is

ΓAð3Þ
ττ ¼ r

2
δAB

�
a1
rc

∂BPþ a2∂2vB þ a3
rc

∂Av2
�
: ðA2Þ

Keeping in mind the scaling of the partial derivatives as
given in (2.2) and using (A1) along with (A2), we first
evaluate the projected parallel transport equation with the
free index assuming the time variable τ, i.e., Eq. (2.10)
order by order in the hydrodynamic expansion parameter ϵ:

Oðϵ0Þ∶ − rΓτð0Þ
ττ þ Γrð0Þ

ττ ¼ −
r
2
þ r
2
¼ 0; ðA3Þ

Oðϵ1Þ∶ − rðΓτð1Þ
ττ þ 2Γτð0Þ

τA vAÞ þ Γrð1Þ
ττ þ 2Γrð0Þ

τA vA ¼ 0;

ðA4Þ

Oðϵ2Þ∶ − rðΓτð2Þ
ττ þ 2Γτð1Þ

τA vA þ Γτð0Þ
AB vAvBÞ þ Γrð2Þ

ττ

þ 2Γrð1Þ
τA vA þ Γrð0Þ

AB vAvB ¼ 0; ðA5Þ

Oðϵ3Þ∶ − rðΓτð3Þ
ττ þ 2Γτð2Þ

τA vA þ Γτð1Þ
AB vAvBÞ þ Γrð3Þ

ττ

þ 2Γrð2Þ
τA vA þ Γrð1Þ

AB vAvB ¼ 0: ðA6Þ

Thus, we find that (2.10) vanishes identically up to Oðϵ3Þ
and that (2.9) is satisfied trivially for c ¼ τ.
Now, we evaluate the projected parallel transport equa-

tion with the free index assuming the transverse angular
variables xA, i.e., Eq. (2.11) in a similar order by order
fashion in ϵ:

Oðϵ0Þ∶ ΓBð0Þ
ττ ¼ 0; ðA7Þ

Oðϵ1Þ∶ ΓBð1Þ
ττ þ 2ΓBð0Þ

Cτ vC ¼ 0; ðA8Þ

Oðϵ2Þ∶ ΓBð2Þ
ττ þ 2ΓBð1Þ

Cτ vC þ ΓBð0Þ
CD vCvD ¼ 0; ðA9Þ

Oðϵ3Þ∶ δABð∂τvB þ vC∂CvB þ ΓBð3Þ
ττ þ 2ΓBð2Þ

Cτ vC þ ΓBð1Þ
CD vCvDÞjr¼rc

¼ δAB

�
∂τvB þ vC∂CvB þ δBD

r
2

�
a1
rc

∂DPþ a2∂2vD þ a3
rc

∂Dv2
������

r¼rc

¼ ∂τvA þ vC∂CvA þ a1
2
∂APþ a2

2
rc∂2vA þ a3

2
∂Av2: ðA10Þ

So the satisfaction of Eq. (2.9) identically up to all orders in
ϵ requires that the above (A10) must vanish at this order,
which consequently leads to the fluid dynamical equations
as discussed extensively in Sec. II B.

APPENDIX B: EVALUATION OF THE
EXPANSION PARAMETER θ (3.1)

UP TO ϵ3 ORDER

As before, we proceed to explicitly check the right-hand
side of (3.1) in an orderwise manner in the hydrodynamic
expansion parameter ϵ:

Oðϵ0Þ∶ habðrΓτð0Þ
ab − Γrð0Þ

ab Þ ¼ rhττΓτð0Þ
ττ − hττΓrð0Þ

ττ

¼ r

�
−
1

r

�
1

2
−
�
−
1

r

�
r
2
¼ 0; ðB1Þ

Oðϵ1Þ∶ habðrΓτð1Þ
ab − Γrð1Þ

ab − ΓAð0Þ
ab vAÞ ¼ 0; ðB2Þ

Oðϵ2Þ∶ habð∂avb þ rΓτð2Þ
ab − Γrð2Þ

ab − ΓAð1Þ
ab vAÞ ¼ δAB∂AvB

¼ ∂AvA; ðB3Þ

Oðϵ3Þ∶ habðrΓτð3Þ
ab −Γrð3Þ

ab −ΓAð2Þ
ab vAÞ¼ 0: ðB4Þ

Thus, the vanishing of the expansion parameter θ as defined
in (3.1) identically up to all orders in ϵ requires that the
quantity in (B2) must vanish at this order, which happens
to be the incompressibility condition for the fluid flow, as
discussed extensively in Sec. III.
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