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Existing constraints on the graviton mass from gravitational-wave detections rely on the phase difference
developed between different frequencies during the propagation. Effects on the quasinormal mode
frequencies of the black-hole ringdown due to the graviton mass are often ignored. While perturbation
theories of black holes have been well developed in the context of general relativity, this is not the case for
modified gravity theories. We propose a phenomenological modification to the Teukolsky equation of
perturbed black holes to include the dispersion relation due to a gravitational field of nonzero mass. Solving
this modified Teukolsky equation by logarithmic perturbation theory, we compute the shift of the
quasinormal mode frequencies due to the presence of a graviton mass. This hypothetical shift can be used to
constrain the graviton mass with ringdown signals, either standalone or in conjunction with the phase
difference accumulated due to the wave propagation. We estimate that constraints on the graviton mass of
mg ≤ 10−15eV can be put with a detection of the ringdown signal alone by second generation gravitational-
wave detectors.
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I. INTRODUCTION

Direct detections of gravitational waves emitted by
merging binaries with the Advanced LIGO and Virgo
detectors [1–6] have provided opportunities to test general
relativity [7,8]. The dispersion relation of gravitational
waves and the graviton mass are common aspects of these
tests. According to general relativity, gravitational waves
are local Lorentz invariants. Therefore, gravitons should
have zero mass and obey the dispersion relation of ω ¼ k.
Existing gravitational-wave detections show no deviations
from this corollary of general relativity [7,8].
Existing constraints on the graviton mass from

gravitational-wave detections rely on the weak-field propa-
gation of gravitational waves [9–12]. A massive graviton is
expected to alter the dispersion relation of gravitational-
wave to ω2 − k2 ¼ m2

g, where mg is the graviton mass.
Gravitational waves of different frequencies following this
dispersion relation travel at different propagation velocities.
Consequently, a phase difference develops between differ-
ent frequencies as gravitational waves propagate. The
absence of this phase difference allows one to put con-
straints on mg up to the reciprocal of the Compton wave-
length of the propagation distance. However, this constraint
is limited to the weak-field propagation of gravitational

waves. The behavior of the alternative dispersion relations
in the strong field remains untested.
While the effects of modified gravity theories [13–17]

on the inspiral of merging binaries have been well studied
(see, e.g., Ref. [18] and references therein), studies of
these effects on the postmerger and ringdown are mostly
numerical simulations [19–27]. Due to the computational
complexity, it is impossible to directly apply numerical
simulations to parameter estimation of gravitational-wave
signals. Even though black holes in the ringdown stage can
be described by perturbation theories, these have not been
fully developed for alternative theories. There have been
extensive studies of massive perturbation fields to black
holes [28–37]. However, these studies are confined to either
Schwarzschild or slowly spinning black holes, because the
perturbation equations are generally not separable in the
Kerr metric.
The goal of this paper is to introduce a phenomenologi-

cal modification to the Teukolsky equation of perturbed
black holes to include an alternative dispersion relation
of gravitational waves. The proposed modification keeps
the perturbation equation separable, which opens up the
possibility to consider black holes of arbitrary spins.
In particular, we calculate the shift in quasinormal modes
due to the graviton mass. This allows us to probe the
graviton mass using gravitational waves from the black-
hole ringdown. This paper is organized as follows:
Section II outlines a proposed phenomenological modifi-
cation to the Teukolsky equation to account for a modified
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dispersion relation. Section III discusses the parameter
estimation of the graviton mass from the black-hole ring-
down. In Sec. IV, we discuss the implications of our study.
Throughout this paper, we will work in units of c ¼

ℏ ¼ 1 formg. Therefore,mg shares the same dimensionality
with frequency [s−1]. mg ¼ 1 s−1 ≈ 4 × 10−15 eV. The
signature of gμν ¼ ðþ;−;−;−Þ is assumed.

II. METHOD

For a Kerr black hole of massM and angular momentum
Ma, scalar, vector, and tensor perturbations obey the
Teukolsky equation [38–41]:

Lψ ¼ 4πT; ð1Þ

where L is a linear differential operator involving at most
the second order derivatives with respect to the Boyer-
Lindquist coordinates, (t, r, θ, ϕ), and T is the source term
of the black-hole perturbation. L also depends on s, the
spin weight of perturbation field [see Eq. (3) for the explicit
form], where s ¼ 0 for scalar fields, s ¼ �1 for vector
fields, and s ¼ �2 for gravitational fields. These perturba-
tion fields to the metric are massless. This is manifested by
the following properties of the Teukolsky equation: (i) It
reduces to Σgμν∇μ∇νψ ¼ 0, where Σ ¼ r2 þ a2cos2θ,
when scalar perturbations in vacuum are considered.
This is the equation of motion of a massless scalar field
in curved spacetime. (ii) For all types of perturbation,
r → ∞ ⇒ Lψ ¼ 0 → Σð∂2

t − ∂2
rÞψ ¼ 0, which is the

wave equation of a massless field. These suggest that
perturbation to black holes in modified gravity theories
requires a separate treatment.
To incorporate alternative dispersion relations of gravi-

tational waves suggested by different modified gravity
theories, for example, massive gravity [42–47], we pro-
posed a phenomenological modification based on the
following observations. Consider a general dispersion
relation of ω2 − k2 ¼ Dðθ;ϕ; kÞ, which is defined relative
to an observer in the weak-field regime (r → þ∞). We
demand that ψ obeys a wave equation in the form of
ð∂2

t − ∂2
r þDÞψ ¼ 0 in this weak-field regime. Compared

to the weak-field Teukolsky equation, an extra term ofDΣψ
is needed on the lhs of Eq. (1). Thus, a possible extension
of the Teukolsky equation which includes the modified
dispersion is given by

Lψ þDΣψ ¼ 0: ð2Þ

As a corollary, for a perturbation field of mass m, spin
weight s, and dispersion term D ¼ m2, Eq. (2) becomes
Lψ þm2Σψ ¼ 0. Explicitly, in units of c ¼ G ¼ 1, we
have

�ðr2 þ a2Þ2
Δ

− a2sin2θ

� ∂2ψ

∂t2 þ 4Mar
Δ

∂2ψ

∂t∂ϕ
þ
�
a2

Δ
−

1

sin2θ

� ∂2ψ

∂ϕ2
− Δ−s ∂

∂r
�
Δsþ1

∂ψ
∂r

�

−
1

sin θ
∂
∂θ

�
sin θ

∂ψ
∂θ

�
− 2s

�
aðr −MÞ

Δ
þ i

cos θ
sin2θ

� ∂ψ
∂ϕ

− 2s

�
Mðr2 − a2Þ

Δ
− r − ia cos θ

� ∂ψ
∂t

þ ðs2cot2θ − sÞψ þm2ðr2 þ a2cos2θÞψ ¼ 0; ð3Þ

where Δ ¼ ðr − r−Þðr − rþÞ and r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
are the outer and inner horizons of the rotating black hole.
For a massive scalar field (s ¼ 0), Eq. (3) reduces to
Σðgμν∇μ∇νψ þm2Þψ ¼ 0, which is the Klein-Gordon
equation in covariant form [48]. For gravitational pertur-
bations with a nonzero field mass, we take s ¼ −2 and
m ¼ mg, where mg is the graviton mass, in Eq. (3). In
general, m2Σψ depends on both r and θ due to frame
dragging around a rotating black hole. This term changes
both the amplitude and the angular dependence of different
quasinormal modes. We concentrate only on the effect on
quasinormal mode frequencies and ignore all the other
effects by the graviton mass, because the former is
dominant in terms of detectability. Other effects due to
the graviton mass, for example, emergence of additional
quasinormal modes, polarizations, and breaking of iso-
spectrality (see e.g., [31]), are ignored. For these reasons,
mg in Eq. (3) is actually a phenomenological graviton mass.
The effects of the mass of the gravitational field

on quasinormal mode frequencies can be calculated by
solving Eq. (3) with s ¼ −2. By separation of variables,
ψ ¼ RðrÞSðθÞeimϕþiωt, where SðθÞ is the spheroidal func-
tion that depends on θ, the angle between line of sight
and the spin of the black hole. Let u ¼ Δs=2ðr2 þ a2Þ1=2R.
u then satisfies a Schrödinger-like equation [49],

∂2u
∂r2� þ

�
ω2 − VðrÞ −m2

g
r2Δ

ðr2 þ a2Þ2
�
u ¼ 0; ð4Þ

where V is the effective potential generated by the back-
ground geometry of the black hole and r� is the tortoise
coordinate, defined by d

dr�
¼ Δ

r2þa2
d
dr. When mg ¼ 0, Eq. (4)

reduces to the radial part of Eq. (1) for T ¼ 0. Given that
recent constraints on mg indicate that it is approximately
massless, we assume ω2 ≫ m2

g [7,8]. With this assumption,
quasinormal mode frequencies of black holes described by
Eq. (4) can be approximated by perturbation theory.
Following the recipe of logarithmic perturbation theory
(LPT) [50–52], we expand the complex frequencies of the

overtone nlm as ω̃nlm ¼ ω̃ð0Þ
nlm þ ω̃ð1Þ

nlm, where ω̃ð0Þ
nlm is the

unperturbed frequency and ω̃ð1Þ
nlm is the leading order shift
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due to them2
g term, which is of orderOðm2

gÞ. The perturbed
quasinormal mode frequencies are given by

ω̃ð1Þ
nlm ≈

m2
g

2ω̃ð0Þ
nlm

;

ω̃nlm ≈ ω̃ð0Þ
nlm þ m2

g

2ω̃ð0Þ
nlm

: ð5Þ

We refer readers for details of the LPT calculation to
the Appendix. The (real) frequency and lifetime of the
nlm overtone are ωnlm ¼ ωRe

nlm ¼ Reω̃nlm and τnlm ¼
1=ωIm

nlm ¼ 1=Imω̃nlm, respectively.
Figure 1 plots the complex quasinormal mode frequen-

cies of the 022 (top panel) and 033 (bottom panel) over-
tones of a spinless black hole of 100 M⊙ with different
values of the gravitation mass mg ¼ 0; 2; 4;…; 20 s−1. As
mg increases, complex frequencies of both modes follow a
trajectory to the bottom right of complex planes, which
implies both frequencies and lifetimes are enhanced by mg.
Our finding is consistent with the existing results for
massive gravitational fields [31], vector fields [34] and
scalar fields [32,33]. Equation (5) provides an analytical
expression for computing quasinormal mode frequencies of

black holes in massive gravitational fields, which can be
conveniently used for parameter estimation efforts.
The mass of the gravitational field changes the quasi-

normal mode frequencies due to two reasons. Firstly, when
mg > 0, gravitational waves propagate at speeds slower

than the speed of light vg ¼ 1 − m2
g

2ω [9]. Quasinormal mode
frequencies in turn scale as vg=M. Therefore, a change of vg
due to a massive gravitational field alters the quasinormal
mode frequencies of black holes. Secondly, mg ≠ 0

develops an extra effective potential of gravitational
perturbation around black holes. Contribution to the
effective potential by the graviton mass selects different
characteristic frequencies of gravitational waves which are
able to propagate toward spatial infinity (leak through the
potential) [53].
We implement these changes to the quasinormal mode

frequencies into a multimode ringdown waveform model
that is calibrated against numerical simulations [54].
In particular, for a Boyer-Lindquist observer at distance
dL from the black hole, the ringdown waveform of the nlm
overtone looks like

hnlmðdL; θ;ϕ; tÞ ¼
M
dL

Anlmðη; χÞSlmðθ;ϕÞeþiω̃nlmt; ð6Þ

where θ is the angle between the line of sight and spin of
the black hole, ϕ is the azimuthal angle, Anlm is the
amplitude of the nlm overtone, which is a function of
symmetric mass ratio η, spins of the parental black holes χ,
and Slm is the spin-weighted spheroidal wave functions
[54]. The complex frequencies ω̃nlm of Eq. (6) are given
by Eq. (5).
Figure 2 shows the time domain ringdown waveforms

for several values of λg, emitted by black hole of 100 M⊙ at

FIG. 1. Quasinormal mode frequencies of 022 (top panel) and
033 (bottom panel) overtone of a spinless black hole of mass
100 M⊙ with mg ¼ 0; 2; 4;…; 20 s−1. The point of the smallest
ωRe
nlm and the largest ωIm

nlm corresponds to mg ¼ 0. Both frequen-
cies and lifetimes are enhanced by mass of gravitational field.

FIG. 2. The plus mode time domain ringdown waveforms
emitted by a black hole of 100 M⊙ at 400 Mpc for log λg ¼
6.0 (blue), 6.5 (green), and log λg ¼ ∞ (mg ¼ 0) (red). As log λ
approaches 7, waveforms of mg > 0 and mg ¼ 0 overlap almost
completely. Major overtones of nljmj ¼ 022, 122, 033, 133, 044,
055, 021, 032, and 034 are included in the plots.
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400 Mpc away when θ ¼ π=2. Overtones of the
nljmj ¼ 022, 122, 033, 133, 044, 055, 021, 032, and
034 modes are included in the plots. These are the
dominant modes in the ringdown stage found in numerical
simulations [55,56]. The phase difference due to the
propagation between different frequencies is ignored.
Both the frequencies and lifetimes of the ringdown are
increased compared with that of shorter wavelengths λg,
which correspond to more massive gravitons. As log λg
approaches ∼7.0, waveforms of mg > 0 and mg ¼ 0 over-
lap almost completely. In conclusion, the graviton mass
increases both the frequencies (ω̃Re

nlm) and lifetimes
(1=ω̃Im

nlm).

III. PARAMETER ESTIMATION

The shifts of quasinormal mode frequencies due to the
graviton mass [Eq. (5)] allow us to estimate or constrain the
graviton mass mg. We implement the modified waveforms
[Eq. (6)] to LALInference, the standard parameter estima-
tion software used by the LIGO-Virgo Collaboration [57].
An extra free parameter of log λg is added into the wave-
forms with all aforementioned overtones included, where
λg is the Compton wavelength of the phenomenological
graviton mass,

λg ¼
h
mc

¼ 1

m
: ð7Þ

We simulate a set of ringdown signals with mg ¼ 0 by
black holes of masses between M ∈ ½10; 290�M⊙ at a
luminosity distance of dL ¼ 400 Mpc, roughly the dis-
tances of the first two detected events [1,2], in stationary
Gaussian noise. The nested sampling algorithm implemen-
tation within LALInference was used to infer log λg. The
prior of log λg is set to be uniform over [0, 30].
The top panel of Fig. 3 plots the posteriors pðlog λgjd; IÞ,

corresponding to the ringdown signals from black holes of
50 M⊙ (blue), 100 M⊙ (red), 200 M⊙ (green), and
290 M⊙ (black) at 400 Mpc. The posteriors are step
functions, because the measurement rules out low values
for log λg (high values of mg), which would produce
discernible effects on the waveform. The 90% confidence
interval of this posterior for Mf ¼ 50 M⊙ is around
log λg ≈ 6.7, corresponding to a constraint of mg <
10−13 eV. Beyond log λg ∼ 6–8 the two classes of wave-
forms are indistinguishable (see Fig. 2). The bottom panel
of Fig. 3 plots the 90% confidence interval of pðlog λgjd; IÞ
as a function of the final mass of the black hole. For
black hole masses in the range of 10–290 M⊙, the
90% confidence interval of log λg spans ∼5.0–8.0,
which corresponds to constraints on mg in the range of
10−12 − 10−15 eV. At a fixed distance, the signal-to-noise
ratio of the ringdown signal increases with mass, which

naturally leads to a better constraint. Nevertheless, the
increasing trend shows fluctuation due to noise. The
accuracy is consistent with Fig. 2, which shows that as
mg ∼ 10−13 eV, the two families of waveforms overlap
almost completely.
Our constraints are not as tight as those put by the phase

difference of the inspiral waveforms even with a compa-
rable signal-to-noise ratio. This is due to the difference in
physical scales between these two methods. The phase
difference compares the Compton’s wavelength of the
graviton to the propagation distance (see, for example,
Eq. (28) of [9]). For binary black hole systems at 400 Mpc,
the expected constraint is λg ≫

ffiffiffiffiffiffiffiffiffiffiffiffi
DL=f

p
∼ 1016m. On the

other hand, detection of the dispersionless ringdown wave-
forms implies λg ≫ ωð0Þ−1 ∼M ∼ 105 m for a black hole

FIG. 3. (Top panel) The posterior of log λg obtained from the
ringdown signal by a black hole of 50 M⊙ (blue), 100 M⊙ (red),
200 M⊙ (green), and 290 M⊙ (black) at 400 Mpc. The posteriors
of different black hole masses are in step-function shape. Beyond
log λg ∼ 6–8, the ringdown waveforms of mg > 0 are almost
indistinguishable from mg ¼ 0 to the sampler. (Bottom panel)
The 90% confidence interval ofmg as a function of the final black
hole massMf . The credible interval increases with the final mass
of black holes, despite some fluctuation due to noise. Increase of
signal-to-noise ratio with mass leads to a better constraint by a
black hole of higher mass.
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of Oð300ÞM⊙. The different physical scales of the two
methods results in different constraints.

IV. CONCLUDING REMARKS

We have proposed a convenient phenomenological
modification to the Teukolsky equation that includes
different types of alternative dispersion relations of gravi-
tational waves. In particular, we focus on the case of
massive gravitational fields. We find that both the frequen-
cies and lifetimes are increased by the graviton mass, which
is consistent with the previous numerical studies [31–34].
These shifts leave signatures of the graviton mass in the
ringdown waveform of black-hole merger system.
Compared to existing numerical studies, our work presents
a simple analytical expression of quasinormal mode
frequencies as a function of the graviton mass. This makes
inferring the graviton mass with black-hole ringdown
signals possible in future studies. Although this work
concentrates solely on the graviton mass, it can be extended
to more generic forms of Lorentz violation.
By including these shifts to an existing ringdown wave-

form model, we further demonstrated the ability to put
constraints on the graviton mass solely by ringdown
signals. For black holes with masses in the range of
10 M⊙ to 290 M⊙ at 400 Mpc, observation of gravitational
waves from the ringdown with an Advanced LIGO-Virgo
network can constrain the graviton mass up to 10−12 eV to
10−15 eV. As it has been expected that the ringdowns of
stellar mass black holes and their overtones can be detected
[58,59] by Advanced LIGO and Virgo at their design
sensitivities [60], our test of the graviton mass can be
implemented for the future detection. Constraints on the
graviton mass can be improved by combining information
from the inspiral and ringdown stages.
Although our constraints on the graviton mass are less

stringent compared to those by inspiral waveforms, the
latter concerns solely with the weak-field propagation of
gravitational waves. Instead, a test using the ringdown
signal involves the strong-field regime. Our studies shed
light on the effects of alternative dispersion relations on the
strong field generation of gravitational waves by relating
the quasinormal mode frequencies of black holes to the
graviton mass.
Lastly, our studies also provide additional insight into

existing no-hair theorem tests. The dependence of quasi-
normal mode frequencies on the dispersive properties
of gravitational waves contradicts the no-hair theorem
[61–64]. Existing tests of the no-hair theorem using
gravitational-wave detections typically regard the fracti-
onal deviation of quasinormal mode frequencies to be
measurable free parameters [65–68]. These tests are model-
independent but the physical meaning of these free param-
eters may not be immediately obvious. Our works suggest
that potential deviations of the quasinormal mode

frequencies can be interpreted from the perspective of
different types of dispersion relations.
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APPENDIX: CALCULATION IN LPT

According to logarithmic perturbation theory, the lead-
ing order shift of a quasinormal mode frequency due to a
small perturbation potential Vð1Þ is given by [50–52,69]

ω̃ð1Þ ¼ 1

2ω̃ð0Þ
hujVð1Þjui
hujui ; ðA1Þ

where u is the quasinormal mode solution for Vð1Þ ¼ 0.
hujVð1Þjui and hujui are formally defined as [51,69]

hujui ¼
Z þ∞

−∞
dr�u2 ¼

Z þ∞

rþ
dr

r2 þ a2

Δ
u2;

hujVð1Þjui ¼
Z

∞

−∞
dr�Vð1Þu2 ¼

Z þ∞

rþ
dr

r2 þ a2

Δ
Vð1Þu2;

ðA2Þ

where r� is defined by d
dr�

¼ Δ
r2þa2

d
dr and rþ is the outer

event horizon of the Kerr black hole. For Eq. (4), u is the
solution for mg ¼ 0 corresponding to quasinormal mode
frequency ω̃ð0Þ of Kerr black holes in general relativity.
For a general Vð1Þ, both hujVð1Þjui and hujui diverge,

leaving Eq. (A1) indeterminate and regularization is
needed. However, if Vð1Þ ¼ m2

g
r2Δ

ðr2þa2Þ2, then Vð1Þ → m2
g

as r → þ∞. Therefore, one can introduce a cutoff r ¼ Λ so
that one can regard Vð1Þðr ≥ ΛÞ ¼ m2

g. hujVð1Þjui and hujui
then consist of two parts: one from r ∈ ½rþ;Λ� and one
from r ∈ ½Λ;þ∞Þ. If we let

I ¼
Z þ∞

Λ
dr

r2 þ a2

Δ
u2; ðA3Þ
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then we can write

hujui ¼
Z

Λ

rþ
dr

r2 þ a2

Δ
u2 þ I ;

hujVð1Þjui ¼ m2
g

�Z
Λ

rþ
dr

r2

r2 þ a2
u2 þ I

�
: ðA4Þ

Since u grows exponentially at spatial infinity for quasi-
normal mode solutions, I → þ∞ as r → þ∞. Thus, we

assume ω̃ð1Þ → m2
g=2ω̃

ð0Þ
nlm in the far-field limit where we

observe gravitational waves.
We also perform numerical integration to confirm the

above calculations. The radial Teukolsky equation can be
solved analytically [70], and its solution is given by

RðxÞ ¼ eiϵκxð−xÞ−s−iϵþτ
2 ð1 − xÞiϵ−τ2

×
Xn¼∞

n¼−∞
ανnFðnþ νþ 1 − iτ;−n − ν

− iτ; 1 − s − iϵ − iτ; xÞ; ðA5Þ

where ϵ ¼ 2Mω, κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða=MÞ2

p
, τ ¼ ðϵ −maÞ=κ,

x ¼ ωðrþ − rÞ=ϵκ, ν ¼ lþOðϵ2Þ is the renormalized
angular momentum,

aνn ¼
iϵκðnþ νþ 1þ sþ iϵÞðnþ νþ 1þ s − iϵÞ

ðnþ νþ 1Þð2nþ 2νþ 3Þ
× ðnþ νþ 1þ iτÞ; ðA6Þ

and F is the hypergeometric function. The analytic solution
of uðxÞ can then be determined by the transformation
of u ¼ Δs=2ðr2 þ a2Þ1=2R.
To numerically integrate Eq. (A2) using Eq. (A5), we

pick ω ¼ ω̃ð0Þ, the 022-quasinormal mode frequency for
Kerr black holes for a ¼ 0.7. The values of Mω̃ð0Þ for Kerr
black holes of different a have been computed [71]. Due to
computational limitation, it is impossible to include terms
up to n ¼ �∞. In practice, we sum the hypergeometric
function in Eq. (A5) from n ¼ −N to n ¼ þN for N ¼ 20,
30, and 40. Also, it is impossible to numerically evaluate
the improper integrals Eq. (A2). Instead, we evaluate the

inner product on r ∈ ½rþ; Rþ� for some finite upper limit
Rþ. Figure 4 plots the real (top panel) and imaginary part
(bottom panel) of hujVð1Þjui=hujui formg ¼ 1; a ¼ 0.7 and
N ¼ 20, 30, and 40 as functions of Rþ. The horizontal axes
denote Rþ − rþ, which, in principle, should be extended up
to þ∞. As Fig. 4 shows, for different values of N, the real
part of hujVð1Þjui=hujui trends to 1 as Rþ is extended to
∼rþ þ 50 ϵκ

ω . Meanwhile, we also observe that the imagi-
nary part of hujVð1Þjui=hujui trends to 0 as Rþ is extended
to ∼rþ þ 50 ϵκ

ω . The numerical integration independently

confirms that ˜ωð1Þ → m2
g=2ω̃

ð0Þ
nlm for the far-field limit.
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ω . This serves as a numerical proof of Eq. (5).
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