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The imposition of a constraint between the metric tensor elements in both three- and four-dimensional,
rotating anti–de Sitter (AdS) space-times is shown to reduce the number of independent equations of
motion and to result in new families of solutions to the equations of motion. For the geometries
investigated, analytic solutions or partial analytic solutions of the equations of motion are obtained. In all
cases, the number of independent field equations is less than the number of independent functions, resulting
in an undetermined function which can be freely specified. For rotating, asymptotically AdS space-times,
the reduction of the number of field equations to be solved holds for vacuum black hole solutions and for
black hole solutions obtained from space-times containing matter.
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I. INTRODUCTION

In two recent works [1,2], novel classical solutions to
gravity coupled to matter were obtained in an asymptoti-
cally anti–de Sitter (AdS) background which represent
topological solitons and hairy black holes. The requirement
that the space-time be asymptotically AdS3 led to the
discovery of a hidden local symmetry of the system which
entangles the space-time metric with the matter fields.
Equivalence classes of hairy black hole solutions were
obtained for the resulting space-times.
Asymptotically AdS solutions to Einstein equations are

of current interest due to their application to holography
and their possible indication of phase transitions in the
boundary field theory [3]. Known solutions to gravity with
asymptotically AdS boundary conditions are the AdS black
hole [4] and the AdS soliton [5]. The AdS black hole is
thought to correspond to a plasma, or deconfining phase, in
the boundary theory, while the AdS soliton corresponds to a
confining phase. By comparing their free energies, it was
determined that the AdS soliton, describing the confining
phase, is stable at low temperatures, and the AdS black
hole, describing the plasma phase, is stable at high temper-
atures. The phase transition was determined to be first
order. (These issues are reviewed in Ref. [6].)
In addition to the AdS black hole and AdS soliton, a

number of other solutions have been found to the Einstein
equations, with gravity minimally coupled to matter fields,
which are also asymptotically AdS. This indicates the
possibility of a richer phase structure in the dual theory.
Solutions of this type may or may not have horizons and
have been classified as hairy versions of the AdS black hole

or the AdS soliton, respectively [7–10]. In Refs. [1,2], new
types of such asymptotically AdS solutions in three space-
time dimensions were found. Their matter contribution
is the nonlinear σ model, and they describe both self-
gravitating topological solitons and hairy black holes.
The existence of static, self-gravitating, nonlinear σ-

model solitons in an asymptotically flat 2þ 1-dimensional
space-time has been known for a long time [11]. On the
other hand, it was previously shown that static (nonrotat-
ing) nonlinear σ-model solitons which are asymptotically
AdS3 do not exist [12]. This is also evident from a simple
scaling argument. While the standard σ-model Lagrangian,
consisting of only a quadratic term, evaluated for static field
configurations, is scale invariant in two spatial dimensions,
this is no longer the case in a background anti–de Sitter
space. For the latter, the cosmological constant contribution
scales like the square of the radial distance leading to an
attractive force, which causes the collapse of any nonrotating
field configurations. In Ref. [1], stability was shown to be
recovered for rotating field configurations, and as a result
topological solitons can exist in a space which is asymp-
totically AdS3. Numerical solutions were obtained for the
asymptotically AdS3 topological solitons, along with their
masses and moments of inertia in a collective coordinate
approximation. Upon embedding the solutions in 3þ 1
dimensions, they can be interpreted as cosmic strings. No
horizons appeared for any of these solitons, and therefore
they do not correspond to black holes.
In Ref. [2], only the quartic term in the standard

nonlinear σ-model Lagrangian was kept. After coupling
this system to gravity in an asymptotically AdS space-time,
the system was shown to not possess soliton solutions but
instead infinitely many hairy black hole solutions. This is
due to the presence of a novel local symmetry which arises*bharms@ua.edu
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from the imposition of a constraint on a subset of the metric
tensor elements for this self-gravitating nonlinear σ model.
The gauge transformation simultaneously twists the sigma
model fields and changes the space-time metric. Using this
gauge symmetry, an extremal Bañados-Teitelboim-Zanelli
black hole can be continuously transformed to infinitely
many hairy black hole field configurations, all of which are
solutions to the coupled Einstein and matter field equations.
The hairy black hole solutions have an asymptotic behavior
which resembles that of extremal black holes, and they are
referred to as extremal hairy black holes. Previous searches
for solutions for AdS black holes with scalar hair generally
required introducing complicated expressions for the
potential energy density. In Ref. [2], the existence of hairy
black hole solutions was shown to be due primarily to the
existence of the hidden gauge symmetry. Unlike the hairy
black holes found in other models, in the quartic-only
model the energy-momentum source is lightlike, and the
Hawking temperature is zero. The action of the local
symmetry transformation leaves these results unchanged.

II. VACUUM BLACK HOLE SOLUTIONS IN
THREE AND FOUR DIMENSIONS

A. Three-dimensional dilatonic black holes

The imposition of a metric constraint to obtain a family
of black hole solutions applies to other three-dimensional
black holes as well as the family of hairy black holes
described above. As an example, the three-dimensional
dilatonic black hole described in Ref. [13] is characterized
after appropriate normalization by an action of the form

S ¼ 1

2π

Z
d3x

ffiffiffiffiffiffi
−g

p
e−2ΦðrÞðR − 2ΛÞ; ð1Þ

where ΦðrÞ is the dilaton field, R is the Ricci scalar, and Λ
is the cosmological constant. The general form of the
metric is

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ 2HðrÞdtdϕþMðrÞdϕ2;

ð2Þ

and a family of three-dimensional black hole solutions
exists for the constraint:

AðrÞ ¼ ω2MðrÞ þ 2ωHðrÞ: ð3Þ

In this relation, ω is an arbitrary constant. For this
constraint, the

ffiffiffiffiffiffi−gp
factor in the action simplifies to the

expression

ffiffiffiffiffiffi
−g

p ¼
ffiffiffiffiffiffiffiffiffi
BðrÞ

p
GðrÞ; ð4Þ

in which the function GðrÞ is defined as GðrÞ ¼ ωMðrÞþ
HðrÞ. As was true for the field equations obtained for

the hairy black holes, the constraint in Eq. (3) reduces the
number of field equations to one less than the number of
unknown functions, leaving one function undetermined.
The metric tensor elements in Eq. (2) can all be expressed
in terms of the arbitrary function GðrÞ. Analytic expres-
sions in terms of GðrÞ for the fields BðrÞ, HðrÞ, and ΦðrÞ
can be obtained from the field equations, allowing AðrÞ and
MðrÞ to be written in terms of GðrÞ as well:

AðrÞ ¼ ωGðrÞð1þWðrÞÞ;

BðrÞ ¼ 3G0ðrÞ2ffiffiffiffiffiffiffiffiffiffi
GðrÞp ð3b1 − 4ΛGðrÞ3=2Þ ;

HðrÞ ¼ GðrÞWðrÞ;
MðrÞ ¼ GðrÞð1 −WðrÞÞ=ω: ð5Þ

In these equations, WðrÞ is given by

WðrÞ ¼ c1 þ
c2
9b1

�
ln
�

GðrÞ3
ð3b1 − 4ΛGðrÞ3=2Þ2

��
; ð6Þ

where the prime indicates a derivative with respect to r
and b1, c1, c2, and Λð< 0Þ are constants. An event horizon
exists for GðrHÞ ¼ ð3b1=ð4ΛÞÞ2=3 for b1 < 0. The dilaton
field is

e−2ΦðrÞ ¼ cα

�ð3b1 − 4ΛGðrÞ3=2Þ2
GðrÞ1=4

�
; ð7Þ

where c is an arbitrary constant and α ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−Λ=3

p
.

The masses and angular momenta of the black holes
obtained from the geometries described by Eq. (5) can be
determined by writing the action in the Hamiltonian
formulation [14,15]

S ¼
Z

Hdtþ Bb: ð8Þ

In this expression, Bb is a boundary term and

H ¼
Z

d2xe−2ΦðrÞ½N0H0 þ NϕHϕ�; ð9Þ

with

H0 ¼ γ−1=2½πijπij − π2� − γ1=2ðR − 2ΛÞ;
Hϕ ¼ −2πjϕjj: ð10Þ

In these expressions, γ is the determinant of the spatial
part of the metric, and N0 and Nϕ are the lapse and shift
functions, respectively. The πij’s are the momenta con-
jugate to the metric tensor elements, and they are deter-
mined by the extrinsic curvature.
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For the dilatonic black hole, the metric is written as

ds2 ¼ −N0ðρÞdt2 þ ρ2ðNϕðρÞdtþ dϕÞ2 þ dρ2

fðρÞ2 : ð11Þ

The metric tensor elements in this expression are related to
those in the metric in Eq. (2) by the relations

ρ2 ¼ MðrÞ;
ρ2NϕðρÞ ¼ HðrÞ;

N0ðρÞ2 − ρ2NϕðρÞ2 ¼ AðrÞ;

fðρÞ2 ¼ ðBðrÞÞ−1
�
dρ
dr

�
2

: ð12Þ

The action as written in Eq. (8) for the metric in Eq. (11) is
varied with respect to f2, πij, and ΦðρÞ. For the three-
dimensional black hole, the only nonzero πij is πrϕ ¼
ρ3NϕðρÞ;ρ =NðρÞ, where NðρÞ ¼ N0ðρÞ=fðρÞ [4,13]. The
mass and angular momentum can be obtained from
the surface terms which arise in the variation process.
The variations of the action are rendered finite by the usual
procedure of the subtraction of the AdS background.
To obtain explicit expressions for the mass and the

angular momentum, the functionGðrÞmust be specified. In
order for the metric to be asymptotically AdS, GðrÞ could,
for example, be chosen to be GðrÞ ¼ r2. For this simple
case, the variation of the surface action terms leads to
values of the mass and angular momentum which are
somewhat complicated due to the number of undetermined
constants in the expressions in Eqs. (5)–(7) for the metric
tensor elements and the dilaton field. For the parameter
choices Λ ¼ −3, α ¼ 1, and c1 ¼ 1,

MBH ¼ 9ðjb1j lnð12ÞÞ1=2;

JBH ¼ 3
ffiffiffi
3

p
cb1

2 lnð12Þ ; ð13Þ

for the black hole mass and angular momentum,
respectively.

B. Four-dimensional black holes

The most general form of the Petrov type-D solution of
the source-free Einstein-Maxwell equations was obtained
by Plebanski and Demianski. The Plebanski and Demianski
metric [16] can be expressed in coordinates ft; r; p; σg,
where t ∈ R, r ∈ Rþ, −a ≤ p ≤ a (for some 0 < a < ∞),
and 0 ≤ σ < 2π. After a rescaling [17], the metric tensor
can be written as

ds2 ¼ −QðrÞðdτ − p2dσÞ2
ρ2

þ PðpÞðdτ þ r2dσÞ2
ρ2

þ ρ2

PðpÞ dp
2 þ ρ2

QðrÞ dr
2; ð14Þ

where ρ2 ¼ r2 þ p2 and

QðrÞ ¼ αþ q2e þ q2m − 2mrþ ϵr2 − 2nr3 − ðΛ=3Þr4;
PðpÞ ¼ αþ 2np − ϵp2 þ 2mp3 − ðq2e þ q2m þ Λ=3Þp4:

ð15Þ

In these equations qe and qm are the electric and magnetic
charges, respectively, Λ is the cosmological constant, m is
the mass parameter, and n is the Newman-Unti-Tamburino
charge. The remaining parameters α and ϵ are arbitrary.
The local symmetry between nonlinear sigma-model

fields and the space-time discovered in the rotating
2þ 1 AdS space-time found in Ref. [2] also exists in
the four-dimensional solution in Eq. (14). For certain
choices of the parameters in Eq. (15), a constraint condition
among the metric tensor elements, which is the four-
dimensional counterpart of the constraint found in
Ref. [2], holds. Written in the same form as in Ref. [2],

−gττ ¼ ω2gσσ þ 2ωgtσ: ð16Þ

This symmetry requires the functions QðrÞ and PðpÞ to
satisfy

QðrÞ − PðpÞ ¼ ω2ð−QðrÞp4 þ PðpÞr4Þ
þ 2ωðQðrÞp2 þ r2PðpÞÞ; ð17Þ

where ω is an arbitrary constant. This condition requires
that

QðrÞ ¼ ðr2 þ 1=ωÞ2=l2;
PðpÞ ¼ ðp2 − 1=ωÞ2=l2; ð18Þ

where l2 ¼ −3=Λ. These forms for QðrÞ and PðpÞ
are consistent with the forms in Eq. (15) for the parameter
sets qe ¼ qm ¼ m ¼ n ¼ 0 and α ¼ −Λ=ð3ω2Þ, ϵ ¼
−2Λ=ð3ωÞ. The condition in Eq. (17) is very restrictive
in that it holds only for a nonvanishing cosmological
constant, for zero mass, and no coupling to matter.
Nevertheless, it provides a starting point from which an
investigation of four-dimensional, rotating space-times
with matter content can begin. For ω < 0, an event horizon
exists at rH ¼ 1=

ffiffiffiffiffiffiffi
−ω

p
. To compare the geometry which

results from the constraint imposed in Eq. (16) to the
geometry discovered in Ref. [17], the coordinates can be
transformed to
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dτ ¼ dt− adϕ
Ξ

; dσ ¼ −dϕ=ðaΞÞ; p¼ a coshðθÞ:
ð19Þ

In these coordinates, the invariant line element becomes

ds2 ¼ ρ2
�

dr2

QðrÞ þ
l2a2 sinhðθÞ2dθ2

ða2 coshðθÞ2 − 1=ωÞ2
�

þ ða2 coshðθÞ2 − 1=ωÞ2
a2ρ2Ξ2

½adt − ðr2 þ a2Þdϕ�2

−
QðrÞ
ρ2Ξ2

½dtþ a sinhðθÞ2dϕ�2; ð20Þ

where ρ2 ¼ r2 þ a2 coshðθÞ2 and Ξ ¼ 1þ a2=l2.
For negative ω, the metric in Eq. (20) describes a rotating

black hole with a hyperbolic horizon surface very similar to
but distinct from the one in Ref. [18].

III. SOLUTIONS FOR FOUR-DIMENSIONAL
SPACE-TIMES WITH MATTER

A natural candidate for the inclusion of matter in four
space-time dimensions would be the Skyrme model
coupled to gravity. The Skyrme model coupled to gravity
in 3þ 1 space-time has been studied for some time and
shown to admit solitons and hairy black holes [19–37].
The quadratic term in the chiral fields was present in these
articles. The analysis in Ref. [2] shows that a hidden local
symmetry exists between chiral fields and the space-time
metric if the quadratic term is absent, and the only matter
contribution to the action is the quartic (Skyrme) term.
The Lagrangian density for the gravitating Skyrme

model with only the quartic matter contribution is

L ¼ ffiffiffiffiffiffi
−g

p �
R − 2Λ
16πG

þ 1

32e2
Trð½Kμ; Kν�½Kμ; Kν�Þ

�
; ð21Þ

where G is the gravitational constant, g is the determinant
of the metric tensor, R is the Ricci scalar, Kμ ¼ ∂μUU−1,

and U is an SUð2Þ-valued field in the defining representa-
tion. A field rotating around the z direction in internal space
with angular velocity ω is described by

U ¼ n1ðr; pÞ1þ in3ðr; pÞτz
þ in2ðr; pÞðτx cosðϕ − ωtÞ þ τy sinðϕ − ωtÞÞ; ð22Þ

where 1 is the 2 × 2 unit matrix and τx;y;z are the Pauli
matrices. n⃗ ¼ ðn1; n2; n3Þ is a unit vector. The ni are
restricted to being functions of only a radial coordinate
r and a certain projection along a constant direction,
p ¼ a cosðθÞ, where a is an arbitrary constant which can
be interpreted as a rotation parameter. ϕ and t are angular
and time coordinates, respectively. The general form for the
invariant measure describing space-time rotation which is
rotationally invariant about one axis involves five functions
of r and p, which shall be denoted by A, B, F, H, and M.
The metric is taken to be

ds2 ¼ −Aðr; pÞdt2 þ Bðr; pÞdr2 þ Fðr; pÞdp2

þHðr; pÞdtdϕþMðr; pÞdϕ2: ð23Þ

A simple choice for the ni’s is n3 ¼ 0, and

n1ðr; pÞ ¼ cosðχðr; pÞÞ; n2ðr; pÞ ¼ sinðχðr; pÞÞ:
ð24Þ

This is one of the choices for n1, n2, and n3 analyzed in
Ref. [20]. For these choices of n1, n2, and n3, the trace of
the product of the commutators is

Trð½Kμ; Kν�½Kμ; Kν�Þ ¼ Wðr; pÞ
�

1

Bðr; pÞ
�∂χðr; pÞ

∂r
�

2

þ 1

Fðr; pÞ
�∂χðr; pÞ

∂p
�

2
�
; ð25Þ

where

Wðr; pÞ ¼ 8
ðsin ðχðr; pÞÞÞ2 ffiffiffiffiffiffi−gp ð−Aðr; pÞ þMðr; pÞω2 þ 2Hðr; pÞωÞ

ðAðr; pÞMðr; pÞ þ ðHðr; pÞÞ2Þ : ð26Þ

The right-hand side is zero for the constraint in Eq. (16),

Aðr; pÞ ¼ Mðr; pÞω2 þ 2Hðr; pÞω: ð27Þ

This is the counterpart in this model to the expression found
for AðrÞ for the spinning Skyrmion in AdS3 [2].
Before replacing Aðr; pÞ by the expression in terms

of Mðr; pÞ and Hðr; pÞ, the field equations are calculated.
The result is a set of six equations, two of which are

independent of χðr; pÞ. One of the four remaining equa-
tions can be used to solve for ∂χðr; pÞ=∂r [or
∂χðr; pÞ=∂p], which is then replaced in the remaining
three equations. The expression for A in terms of M and H
reduces the sixth equation, which is obtained from the
variation δL=δχ, to zero, leaving four coupled equations in
terms of the four unknown functions B, F, H, and M. The
substitution Mðr; pÞ ¼ ðGðr; pÞ −Hðr; pÞÞ=ω makes two
of the equations equivalent, leaving three equations in the
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three unknowns Bðr; pÞ, Fðr; pÞ, and Gðr; pÞ. These three
functions can be determined analytically [independently of
the specification of the scalar function χðr; pÞ]. In parallel
with the four-dimensional vacuum solutions, the functions
Bðr; pÞ, Fðr; pÞ, and Gðr; pÞ are chosen to have the forms

Bðr; pÞ ¼ ρðr; pÞ2
UðrÞ ;

Fðr; pÞ ¼ ρðr; pÞ2
VðpÞ ;

Gðr; pÞ ¼ eLðr;pÞ; ð28Þ

respectively, where Lðr; pÞ ¼ L1ðrÞ þ L2ðpÞ. Substituting
these forms into the field equations results in differential
equations which can be solved analytically for the functions
UðrÞ, VðpÞ, and Lðr; pÞ. The resulting expressions for
Bðr; pÞ, Fðr; pÞ, and Gðr; pÞ are

Bðr; pÞ ¼ ρðr; pÞ2
ðαr2 − βÞ2 ;

Fðr; pÞ ¼ ρðr; pÞ2
ðαp2 þ βÞ2 ;

Gðr; pÞ ¼
�
4C1r2 þ ΓÞ

Γ1

��
4C1p2 − Γ

Γ2

�
; ð29Þ

respectively, where ρðr; pÞ2 ¼ p2 þ r2; Γ, Γ1, and Γ2 are
the constants of integration; and α and β are constants
which depend upon the cosmological constant and Γ:

α ¼ −2C1

3
; β ¼ Γ

12C1

; C1 ¼ �
ffiffiffiffiffiffiffiffiffiffi
−
3Λ
4

r
: ð30Þ

A horizon exists at rH ¼ ffiffiffiffiffiffiffiffi
β=α

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
Γ=6Λ

p
, for Γ < 0.

To obtain the remaining functions Aðr; pÞ, Hðr; pÞ,
Mðr; pÞ, and χðr; pÞ, one of them must be specified.
The other three can then be determined from the relations
given in Eqs. (27)–(30) or from the equations of motion. As
an example, the choice

χðr; pÞ ¼ 2 arctan

�
a
r

�
; ð31Þ

where a is an arbitrary constant, allows Hðr; pÞ to be
obtained by numerically solving the field equation which
contains Bðr; pÞ, Fðr; pÞ, Gðr; pÞ, χðrÞ, and Hðr; pÞ. The
Skyrmion field represented by χðr; pÞ in Eq. (31) is
massless, as is evident from the form of the matter
contribution to the Lagrangian, and has a topological
charge of zero. The topological charge is determined by
the spatial integral of the zeroth component of the topo-
logical current which is given by (see, for example,
Ref. [38])

Jμ ¼ ϵμνλσTrðKνKλKσÞ
24π2

ffiffiffiffiffiffi−gp : ð32Þ

For J0, one of the derivatives which determine the Kμ’s on
the right-hand side of the equation must be with respect to
p. Since the Skyrme field in Eq. (31) is independent of p,
J0 is zero, giving a topological charge of zero for the
example field in Eq. (31). For the parameters given in
Fig. 1, the event horizon is at reh ¼ 0.11 and the surface of
infinite redshift, Aðrrs; pÞ ¼ 0, is at rrs ¼ 1.08. Aðr; pÞ is
obtained from the relation Aðr;pÞ¼ωðGðr;pÞþHðr;pÞÞ.
In the asymptotic limit, r → ∞; Aðr; 0.3Þ → r2.

IV. DISCUSSION

The study of space-times which are asymptotically AdS3
and AdS4 obtained via the procedure described above is of
particular interest due to the AdS=CFT correspondence.
One goal will be to determine the effect of this hidden
symmetry on the conformal field theories which live on the
two- and three-dimensional boundaries of the three- and
four-dimensional space-times which can be generated by
various choices of the undetermined fields, e.g., the scalar
field χðr; pÞ in the model discussed in the third section.
The vanishing of the matter contribution to the on-shell

action for field configurations satisfying the equation for
Aðr; pÞ given above occurs in five dimensions, just as it
does in four dimensions. A search for solutions of the field
equations for the five-dimensional case has not yet been
carried out, but the general form of the field equations is the
same as in four dimensions. The same techniques used in
the four-dimensional case can be used to attempt to find
analytic solutions in five dimensions. If analytic solutions
are not possible, numerical methods will be used to obtain
solutions. The solutions obtained in this case will allow the
effect of the constraint on the four-dimensional conformal
field theories on the boundary to be investigated. Applying

FIG. 1. Aðr; pÞ as a function of r for p ¼ 0.3, α ¼ 1, β ¼ 1=9,
κ ¼ 0.01, and ω ¼ −1. Aðr; pÞ vanishes at r ¼ 1.08. As r
approaches infinity, Aðr; pÞ → r2.
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the method used in the three- and four-dimensional models,
the number of field equations to be solved in the five-
dimensional case can be reduced from 7 to 4. This will
facilitate the search for solutions and the analysis of the
effect of the constraint on the conformal field theories
living on the four-dimensional boundary.
Another interesting line of research is the study of the

dynamical stability of the solutions obtained in four- and
five-dimensional versions of the Skyrme model coupled to
gravity in a rotating universe. In Ref. [19], the linear
stability of self-gravitating Skyrmions against small, time-
dependent perturbations was investigated for the particle-
like solutions of the Einstein-Skyrme equations on a static
background. An investigation of the stability of the particle-
like solutions and the black hole solutions on a rotating
background which is asymptotically AdSn is another
important project.
Since the vanishing of the matter content of the on-shell

Lagrangian density for restricted field configurations
occurs in three, four, and five dimensions, it is reasonable
to assume that this result holds in any number of

dimensions. Thus, the effect of constraints on the matter
content of the Lagrangian density in an arbitrary number of
dimensions and the solutions to the corresponding field
equations is another interesting topic of investigation.
The simplification of the systems of equations which

arises due to imposing the constraint

−gtt ¼ ω2gϕϕ þ 2ωgtϕ ð33Þ

has been exploited only for rotating space-times which are
asymptotically AdS. The constraint in Eq. (33) may be
useful only for such space-times. However, other constraint
equations may reveal simplifications in space-times which
are not rotating, asymptotically AdS. The challenge is to
find the principle which governs the choice(s) of the
simplifying equation(s) of constraint.
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