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As laser interferometer gravitational wave (GW) detectors become quantum noise dominated, under-
standing the fundamental limit on measurement sensitivity imposed by quantum uncertainty is crucial to
guide the search for further noise reduction. Recent efforts have included applying ideas from quantum
information theory to GW detection—specifically the quantum Cramer-Rao bound, which is a minimum
bound on error in parameter estimation using a quantum state and is determined by the state’s quantum
Fisher information (QFI) with respect to the parameter [Helstrom, J. Stat. Phys. 1, 231 (1969)]. Identifying
the QFI requires knowing the interaction between the quantum probe and the signal, which was rigorously
derived for GW interferometer detectors in Pang and Chen [Phys. Rev. D 98, 124006 (2018)]. In this paper,
we calculate the QFI and fundamental quantum limit (FQL) for GW detection, and furthermore we derive
explicit reciprocity relations involving the QFI that summarize information exchange between the detector
and a surrounding weak quantum GW field. Specifically, we show that the GW power radiation by the
detector’s quantum fluctuations are proportional to the QFI, and therefore are inversely proportional to its
FQL. Similarly, the detector’s decoherence rate in a white noise GW bath can be explicitly related to the
QFI/FQL. These relations are fundamental and appear generalizable to a broader class of quantum
measurement systems.
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I. INTRODUCTION

The detection of gravitational waves (GWs) by the Laser
Interferometer Gravitational-wave Observatory (LIGO) is a
remarkable achievement that confirmed a key prediction of
general relativity (GR). Together, detections by the LIGO-
VIRGO network made the first direct observation of binary
black holes, provided the first direct link between binary
neutron star inspirals and short γ-ray bursts, probed the
nature of GW polarizations, and allowed for additional tests
of GR [1–3]. These advancements mark only the beginning
of multimessenger astronomy with gravitational waves and
investigations into the properties of spacetime in the strong-
field dynamical regime [4]. The community has conceived
major upgrades that improve sensitivities across the entire
detection band, e.g., LIGOVoyager, the Einstein Telescope
[5], the Cosmic Explorer [6], as well as those that target
mainly higher [7] and lower frequencies [8].
Significant improvements in detector sensitivity have

resulted from reducing classical noise sources, such as
ground vibration (which couples into the gravitational-
wave readout via many linear and nonlinear channels) and
thermal fluctuations, with continuing effort in this direc-
tion. However, as these noise sources become suppressed
and detectors approach the quantum-limited regime, further
improvements in detection sensitivity that are required to

access farther reaches of the universe will necessitate the
manipulation of noise arising from quantum uncertainty,
specifically the quantum fluctuations of light and test
masses [9,10]. In contrast to classical noise sources, these
quantum fluctuations cannot be eliminated even in princi-
ple, but they can be manipulated to reduce their effect on
the overall signal-to-noise ratio.
Since LIGO’s inception, the GW community’s under-

standing of quantum noise for interferometer detectors
has seen steady progression. The first identification of a
quantum limit was from the direct application of the
Heisenberg uncertainty principal to the continuous mon-
itoring of the position of the test masses [11,12]. It was later
realized that this so-called standard quantum limit (SQL)
can be beaten in different ways, including the following:
(i) modifying the input quantum state of the optical field
and/or the way the outgoing field is read out [13], and/or
(ii) modifying the optomechanical dynamics of the inter-
ferometer [14–16]. Intuitively, we can surpass the SQL
either via establishing/utilizing quantum correlations
between the sensing and backaction noise or by modifying
the dynamics so that the test masses are no longer free
masses [10].
With the SQL no longer a strict limit, it is important to

find a more relevant fundamental limit for GW detection.
Braginsky, Gorodetsky, Khalili, and Thorne (BGKT)

PHYSICAL REVIEW D 99, 124016 (2019)

2470-0010=2019=99(12)=124016(13) 124016-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.124016&domain=pdf&date_stamp=2019-06-11
https://doi.org/10.1007/BF01007479
https://doi.org/10.1103/PhysRevD.98.124006
https://doi.org/10.1103/PhysRevD.99.124016
https://doi.org/10.1103/PhysRevD.99.124016
https://doi.org/10.1103/PhysRevD.99.124016
https://doi.org/10.1103/PhysRevD.99.124016


proposed the energetic quantum limit (EQL) [17], an upper
limit for the detector’s signal-to-noise ratio in terms of the
spectrum of quantum fluctuations of the in-cavity optical
energy (see also Sec. 9.2 of [18]).
Tsang, Wiseman, and Caves later obtained the quantum

Cramer-Rao bound (QCRB) for waveform estimation,
showing that the EQL is indeed a fundamental quantum
limit (FQL) for linear quantum probes at steady state [19].
We use the term “quantum probe” generally to refer to a
quantum mechanical system performing the measurement
of the classical signal, and specifically to refer to the
optomechanical system comprising an interactive cavity
mode and free mass to which a GW laser interferometer
detector (such as LIGO) can be mapped [20]. In the context
of this limit, Miao et al. [21,22] considered a broad class of
gravitational-wave detector dynamics, showing explicitly
the following: (i) the signal-to-noise ratio of these detectors
are indeed bound by the FQL, (ii) the FQL can be increased
by modifying the input quantum state of the optical field
and by modifying the system’s optomechanical dynamics,
and (iii) one can always reach within a factor of 2 (in
power) of the FQL, if a (usually frequency dependent)
homodyne detection can be performed on the outgoing
optical field.
In the work leading to the FQL for GW detectors, it was

most convenient to work in the traceless-transverse gauge
of the perturbative spacetime metric, where the interaction
Hamiltonian is a direct coupling between the GW and the
amplitude quadrature of the optical field inside the arm
cavities [23]—instead of as applying a tidal force on the test
masses. (In either viewpoint, the GW ends up modulating
the phase of the optical field.) In a previous work, we
derived the interactions between a laser interferometer and
GWs from first principles [24], providing a solid founda-
tion for such a treatment. It is the first aim of this paper to
present the rigorous FQL for gravitational-wave detectors.
It has been suggested, by Levin, that the FQL is related to
the power at which the GW detector, driven only by
quantum fluctuations, radiates GWs [25]. We shall confirm
this reciprocity relation by putting it into an explicit and
quantitative form, as the second aim of our paper.
Another effect that arises naturally as we treat GW as a

quantum field is that the probe will suffer from gravita-
tional decoherence. We will show that, in fact, as radiation
power driven by quantum fluctuations, the decoherence rate
of the detector is also directly related to the FQL. While the
reciprocity between radiation and detection has a classical
analogy to radio antennas [26], the relationship between
the fundamental bound on measurement sensitivity and the
decoherence of the quantum probe due to its coupling to the
field being measured has not, to the best of our knowledge,
been quantified before. We reiterate that the decoherence
discussed here is due to coupling with gravitational
radiation, not due to coupling with the in- and outgoing
electromagnetic fields, or to the thermal baths. As we shall

see, the rate of this decoherence also depends on the state of
the gravitational-wave field: vacuum fluctuations of gravi-
tational waves cause a negligible decoherence rate, while
the presence of strong enough gravitational waves can
cause measurable decoherence to the quantum probe.
The reciprocity relations among FQL, energy radiated,

and decoherence lead to a conceptual issue: since the
radiation emitted by the detector, driven by quantum
fluctuations, is itself quantum mechanical, we must treat
the radiated GWs quantum mechanically—even though the
QCRB is derived for a classical GW signal. We argue that
the radiation and decoherence effects here show the
limitation of the QCRB formalism: ultimately the signal
we are detecting is an excitation of an underlying quantum
field, and it will be an internal consistency that the radiation
by the detector has a power spectrum much less compared
with vacuum fluctuations of the signal itself, and that
decoherence due to coupling to the signal and the signal’s
quantum fluctuations is small compared with other
decoherence of the probe, especially the one induced by
quantum measurement itself.
We emphasize that this work focuses on the fundamental

relations among measurement, decoherence, and radiation
in the ideal case, where in the absence of gravitational
interaction, the quantum probe is in a pure, minimum
uncertainty quantum state. In this scenario, radiation of
GWs and decoherence of the quantum probe through
gravitational interaction necessarily occur due to the same
interaction that enables measurement. Of course, sensitivity
limits become more stringent in the presence of realistic
losses. For example, it has been shown that the upper bound
on sensitivity is highly constrained by optical loss [27] and
that the associated electromagnetic fluctuations (by the
fluctuation-dissipation theorem) are another source of
decoherence to the detector. These considerations are very
important in order to realize improvements in practice.
Within this work, however, we limit our attention to the
theoretical discussion where all sources of noise are
eliminated except what is necessarily introduced in order
to allow detection.
This paper is organized as follows. In Sec. II, we provide

a more detailed review of sensitivity limits of gravitational-
wave detectors. In Sec. III we briefly review the interaction
between GW and the laser interferometer derived in [24]
and use the result to obtain the QCRB. Finally, in Sec. IV
we discuss the reciprocity relations among FQL, radiation,
and decoherence.

II. SENSITIVITY LIMITS FOR
GRAVITATIONAL-WAVE DETECTION

In this section, we provide a (historical) overview
of quantum limits for GW detectors, as well as more
recent motivations for considering the fundamental quan-
tum limit.
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A. Standard quantum limit

The understanding of quantum noise in laser interfer-
ometer gravitational-wave detectors has evolved since
Braginsky’s formulation of the SQL for high precision
measurements [12].
In the simplest picture (see, e.g., Ref. [13]) of quantum

noise in a gravitational-wave detector (e.g., Fabry-Perot
Michelson interferometer), the input laser beam is in a
displaced coherent state and drives a single optical mode of
each of the arm cavities. Differential quantum fluctuations
in the cavity modes, which are responsible for the detector’s
quantum noise, are injected into the interferometer through
its antisymmetric port. The detector suffers from two types
of noise: radiation pressure noise, due to motions of mirrors
driven by amplitude fluctuations of light (which act as a
ponderomotive force), and shot noise, due to the discrete-
ness of photons when they arrive at the photodetectors.
If the outgoing field is measured directly along its phase
quadrature (which carries the gravitational wave signal),
then the measured shot noise will be due to phase
fluctuations.
Since the signal-to-noise ratio for a Poisson process goes

as 1=
ffiffiffiffi
N

p
(with N the number of photons), to decrease shot

noise one would have to increase laser power. However,
doing so would increase the radiation pressure noise. Thus,
we see that there is a trade-off between the two types of
quantum noise, which implies that we cannot make both
arbitrarily small. This is, in fact, a manifestation of the
Heisenberg uncertainty principle, since the radiation pres-
sure and shot noise are associated with conjugate quad-
ratures of the cavity mode (phase and amplitude,
represented by α̂1 and α̂2), which satisfy the canonical
commutation relation ½α̂1; α̂2� ¼ iℏ.
In the frequency domain, radiation pressure noise domi-

nates at low frequencies while shot noise dominates at high
frequencies. Heuristically speaking, this frequency depend-
ence can be attributed to the fact that radiation pressure
follows the frequency response of the test mass, which goes
as 1=Ω2, while the shot noise is frequency independent.
This trade-off between radiation pressure and shot noise as
one adjusts the input power results in a set of curves, the
locus of whose minima results in the standard quantum
limit. For a Fabry-Perot Michelson interferometer withe
arm length L and four mirrors with mass M, the free-mass
SQL for the gravitational-wave strain h, in terms of noise
spectrum at angular frequency Ω, is given by

SSQLh ¼ 8ℏ
MΩ2L2

: ð1Þ

Although the SQL depends only on fundamental quan-
tities, it is not, in fact, a fundamental sensitivity limit. After
Caves showed that detector noise can be suppressed by
injecting squeezed vacuum from the dark port [28], Unruh
showed that the appropriate squeezed vacuum can allow the

detector to surpass the SQL at certain frequencies [29].
Kimble et al. further proposed that a frequency-dependent
squeezed vacuum, produced by filtering a frequency-
independent squeezed vacuum through a detuned cavity,
allows the detector to surpass the SQL globally [13]. It was
later shown that a frequency-dependent squeezed vacuum
can also be produced when injecting an entangled squeezed
vacuum into the interferometer’s dark port, performing
separate homodyne detections after they return and making
the appropriate combination of measurement results [30].
On modification of the readout schemes, Vyatchanin and

Matsko showed that for a signal with known shape and
arrival time, an appropriate choice of a time-dependent
readout quadrature allows us to eliminate backaction noise
[31]. Such backaction evasionwas later shown to be possible
at all frequencies, e.g., by Kimble et al., if a frequency-
dependent homodyne detection is performed [13].
Yet another way to circumvent the SQL was to modify

the dynamics of the test-mass mirrors in the interferometer
[14–16]. This was shown to be possible in Fabry-Perot
Michelson interferometers with signal recycling. In these
detectors, differential optical powers in the arms depend on
the position of the mirrors, creating an “optical spring” and
amplifying the mirror’s response to gravitational waves
near the spring resonant frequency. The detector can
surpasses the free-mass SQL (1) because the SQL for
oscillators (in terms of noise spectrum) is much lower.

B. Mizuno bound, energetic quantum limit,
and white-light cavities

With the SQL no longer being a fundamental limit, we
need to search for a new and more relevant limit. Since
backaction noise is shown to be avoidable, one can focus on
shot noise.
One such bound, for interferometers with infinite masses

(i.e., ignoring radiation pressure effects), was obtained by
Mizuno, when considering signal recycling and resonant
sideband extraction interferometers. It was shown that such
interferometers can only reshape the noise curve: the peak
sensitivity over certain frequencies can be increased at the
expense of detection bandwidth [32,33]. Mizuno pointed
out that the trade-off can by summarized by the statement
that the area under the noise curve must be conserved,

Z
1

Sh

dΩ
2π

≤ Nω2
0; ð2Þ

where ω0 is the resonant frequency and N is the mean
number of intracavity photons.
A more general EQL was obtained by BGKT [17] when

considering the quantum uncertainty principle between
energy and phase (the phase being the carrier of the GW
signal). The EQL states that
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1

Sh
≤
SE
ℏ2

; ð3Þ

where SE is the noise spectrum for energy, which evaluates
to the Mizuno bound when the cavity’s optical mode is in a
coherent state. In this case, integrating the right-hand side
(RHS) of Eq. (3) over the frequency gives the result

Z
SE
ℏ2

dΩ
2π

¼ hΔE2i
ℏ2

¼ E2

ℏ2N
; ð4Þ

where E is the mean intracavity energy [note that the RHS
of Eq. (4) is equal to that of Eq. (2)]. The EQL is based on a
derivation for the minimum detectable force in general
linear quantum measurements, in which the authors con-
cluded that the maximum signal-to-noise ratio is deter-
mined by fluctuations of the interaction energy [34].
Interest in the gravitational-wave community on funda-

mental limits were reignited due to renewed research efforts
into white-light cavities (WLCs), so called because they
eliminate the frequency-dependent optical phase delay,
which would enable higher broadband sensitivity. Wicht
et al. [35,36] were the first to propose placing an atomic
gain medium with anomalous dispersion into the optical
cavity to cancel the frequency dependent propagation phase
of light, producing a simultaneous improvement of peak
sensitivity and bandwidth, which seemingly violates the
naive application of EQL. More recently, Pati et al. [37,38]
have proposed different types of active media to achieve
this same effect. Zhou et al. studied the application of active
medium to LIGO-type interferometers [39].
Independently, it was proposed to use grating systems to

realize anomalous dispersion, but this was shown not to
work [40]. Discussions in Ref. [40] indicated that anoma-
lous dispersion generally requires active amplification
processes,which was absent in the grating system.
However, it has long been known that amplification
processes in the quantum regime will bring additional
noise [41]. In particular, as noted by Kuzmich et al. [42],
the use of an active medium necessarily introduces quan-
tum noise associated with pumping. Furthermore, Ma et al.
[43] showed that, for the configuration proposed in
Ref. [38], in the parameter regime where the active medium
is stable, there is no net enhancement in shot-noise limited
sensitivity—and it was not clear at the time whether the
system can operate in the unstable regime. The existence of
additional noise and possible instability makes it unclear
whether WLCs (which are conceptually grounded in
anomalous dispersion) would be viable techniques for
improving sensitivity.
Later, Miao et al. [44] proposed using an unstable

optomechanical filter to implement the propagation phase
cancellation, and in this case the system was shown to be
controllable without sacrificing sensitivity. Zhou et al.

proposed further optomechanical realizations of negative
dispersion [45].
The above discussions strongly motivate a better under-

standing not only of the origin of the EQL but also of when
it is achievable.

C. Quantum Cramer-Rao bound and fundamental
limit for waveform detection

A formal way to deduce the fundamental quantum limit
for gravitational-wave detection comes from the field of
quantum parameter estimation in the form of the QCRB. In
analogy with the classical Cramer-Rao bound, the QCRB
formally states that the minimum variance of the optimal
estimator for a classical quantity parametrizing a quantum
probe is the inverse of the probe’s quantum Fisher
information (QFI), maximized over all possible positive
operator valued measures (POVMs). A more detailed
derivation follows.

1. QCRB for a scalar parameter

For a scalar parameter λ and a density matrix ρðλÞ that
depends on λ, we construct the quantum Fisher information

Fλλ ¼ Tr½L†
λLλρðλÞ�; ð5Þ

where Lλ is the logarithmic derivative operator defined
such that

LλρðλÞ þ ρðλÞL†
λ

2
¼ ∂ρðλÞ

∂λ : ð6Þ

Then for any unbiased estimator X for λ that satisfies
tr½XρðλÞ� ¼ λ, the estimation error satisfies the QCRB of

σ2λλ ≡ tr½ðX − λÞ2ρðλÞ� ≥ 1

Fλλ
: ð7Þ

An important special case is when λ is the amplitude of a
unitary transformation on an initial pure state ρ0 such that

ρðλÞ ¼ e−iλĜ=ℏρ0eiλĜ=ℏ; ð8Þ

where G is a Hermitian operator. One can easily obtain

Lλ ¼ −2iðĜ − cÞ; ð9Þ

where c can be any real number. It can then be shown using
Eq. (5) that

Fλλ ¼
4

ℏ2
tr½ðĜ − cÞ2ρðλÞ�≡ 4

ℏ2
hðĜ − cÞ2i: ð10Þ

Note that h·i has been used to denote the expectation value
taken with respect to ρðλÞ, which is the density matrix at the
true value of λ. The parameter c in Fλλ is arbitrary, which
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means that Eq. (7) holds true for all possible values.
The most stringent bound is obtained when Fλλ is at its
minimum for c ¼ tr½ĜρðλÞ� ¼ hĜi. In this way, we simply
define

Fλλ ¼
4

ℏ2
hΔĜ2i ð11Þ

with ΔĜ≡ Ĝ − hĜi. To summarize in words, for this
simple case where ρλ is obtained from a unitary trans-
formation on a pure initial state ρ0, the QFI is given by the
variance of the generator Ĝ (so-called because it generates a
translation of the quantum state proportional to λ) with
respect to ρðλÞ.

2. QCRB for a list of parameters

This framework can be extended to multiple parameters
λj, by identifying the operator Lj corresponding to each
parameter λj in the vector λ:

∂jρ≡ ∂ρ
∂λj ¼

Ljρþ ρL†
j

2
: ð12Þ

In this case, the quantum Fisher information matrix
(QFIM) is given by

Fjk ¼ Tr½L†
jLkρðλÞ� ð13Þ

whose inverse bounds the covariance matrix σjk of
unbiased estimators Xj for λj, or

σjk≻F−1
ij ; ð14Þ

in the sense that the quantity σjk − F−1
ij is a positive definite

quadratic form. In particular, the eigenvalues of σjk and
those of F−1

ij can be arranged in such a way that each of the
former is greater than the corresponding eigenvalue of F−1

ij .
In the particular case of a unitary transformation where

ρðλÞ ¼ e−i
P

λjĜj=ℏρ0e
i
P

λjĜj=ℏ; ð15Þ

we have

Fjk ¼
4

ℏ2
hΔĜjΔĜki: ð16Þ

3. QCRB for waveform estimation

Tsang et al. [19] applied quantum multiparameter
estimation to obtain the QCRB for a continuous waveform
xðtÞ. One key insight in this work is the principle of
deferred measurement, which states that a series of
measurements performed during the time evolution of a

system can always be performed by a set of commuting
operators on its final state. In this way, the QCRB for
measuring xðtÞ can be obtained if we know the dependence
of the final density matrix ρfin on xðtÞ. More specifically, let
us write

HðtÞ ¼ H0ðtÞ þ GðtÞxðtÞ; ð17Þ

where H0ðtÞ and GðtÞ are Schrödinger operators. Suppose
the evolution is from 0 to T; then we can write

ρfin ¼ ρ½TjxðtÞ� ¼ U½xðtÞ�ρð0ÞU†½xðtÞ�; ð18Þ

where U½xðtÞ� is the evolution operator of the system from
its initial to its final state as a functional of xðtÞ. Making a
variation in xðtÞ, we can write

δρfin
δxðt0Þ

¼ δU½xðtÞ�
δxðt0Þ

ρð0ÞU†½xðtÞ� þU½xðtÞ�ρð0Þ δU
†½xðtÞ�

δxðt0Þ
:

ð19Þ

Writing

U½xðtÞ� ¼ U½T; t0 þ Δt�U½t0 þ Δt; t0 − Δt�U½t0 − Δt; 0�;
ð20Þ

we first take the variation, let Δt → 0, and obtain

δU½xðtÞ�
δxðt0Þ

¼ −
i
ℏ
U½T; t0�Gðt0ÞU½t0; 0�: ð21Þ

Let us define

GHðt0Þ≡U½T; t0�Gðt0ÞU†½T; t0�; ð22Þ

namely the Heisenberg operator that corresponds to the
result of evolution of the Schrödinger operatorGðt0Þ, up till
the end time T. In terms of GHðt0Þ, we have

δρfin
δxðt0Þ

¼ −
i
ℏ
½GHðt0Þρfin − ρfinGHðt0Þ�: ð23Þ

In this way, viewing xðtÞ as the continuum limit of a vector,
they obtain a continuous QFIM of

Fðt; t0Þ ¼ 4

ℏ2
hΔĜHðtÞΔĜHðt0Þi0;sym; ð24Þ

where the H superscript indicates the Heisenberg picture
operator and the “sym” subscript denotes symmetrization.
This general result for the QFIM of a continuous waveform
only requires that the signal being detected appears
explicitly in the Hamiltonian. The covariance Σ of the
estimator must then satisfy
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Σðt; t0Þ≻F−1ðt; t0Þ: ð25Þ

In this paper, using the Hamiltonian developed in [24],
which describes the interaction between laser interferom-
eter gravitational-wave detectors (GW detectors for short)
and gravitational waves and the above framework for
waveform estimation developed in Ref. [19], we obtain
the QCRB for these detectors. We note that the QCRB has
previously been considered for such detectors by Downes
et al. [46] but their results were derived for the free
electromagnetic field. In contrast, our derivation of the
interaction Hamiltonian takes into account the interfero-
metric configuration of the detector and the confinement of
the cavity mode within a Fabry-Perot cavity. Our results
provide theoretical confirmation for the work of Miao et al.
[21], which showed that the QCRB for GW detectors can
always be obtained up to a factor of

ffiffiffi
2

p
, and which also

discussed the relation of the QCRB with the noise reducing
schemes mentioned in Sec. II.

III. QCRB FOR A LASER INTERFEROMETER
GRAVITATIONAL WAVE DETECTOR

Let us consider a Michelson interferometer with Fabry-
Perot cavity arms, which in the Newtonian gauge point of
view detects gravitational waves on the principle that an
incoming wave will cause a differential change in the
lengths of the two cavities. In this section, we shall first
review our previously obtained Hamiltonian, and then write
down the corresponding QCRB.

A. Interaction Hamiltonian

Since the QCRB only involves the observable that
couples to the parameters we would like to estimate, to
obtain the QCRB, we only need to focus on the part of the
probe that couples to those parameters. In the case of a
gravitational-wave detector, we will only need to consider
the long arms that contain strong carrier fields, which maps
to a simple optomechanical system comprising a Fabry-
Perot cavity with a movable end mirror and containing
optical modes. This is the system we consider in this
section.
As discussed in Ref. [24], in the transverse-traceless

(TT) gauge and for a strongly pumped single mode cavity,
the gravitational waves interact with the optomechanical
cavity according to the Hamiltonian (given here in the
interaction picture)

HI ¼ −
ω0ᾱ

2
α̂1ðtÞ

Z
d3kJλðkÞĥλðt;kÞ ð26Þ

with an implicit sum over the GW polarizations λ ¼ þ;×.
Here ω0 is the cavity’s resonant frequency, α̂1 is the
amplitude quadrature of the cavity mode, and ᾱ is its large
classical component. The amplitude quadrature is canoni-
cally conjugate to the phase α̂2, and the quadratures α̂1;2 are

given in terms of the annihilation and creation operators of
the photon mode by

α̂1 ¼
ffiffiffi
ℏ
2

r
ðâþ â†Þ; α̂2 ¼ −i

ffiffiffi
ℏ
2

r
ðâ − â†Þ; ð27Þ

where ½â; â†� ¼ 1. In writing down this Hamiltonian we
have made the linear and single mode approximations, both
of which are valid for strong pumping. We have also
decomposed the GW tensor field into its spatial Fourier
components such that

ĥijðt;xÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p τλijðk̂Þĥλðt;kÞeik·x; ð28Þ

where τλijðk̂Þ is the polarization tensor for the k-mode
component and depends only on its direction. They are
defined by their orthogonality, transverse, and traceless
properties:

τλijτ
λ0
ij ¼ δλ;λ0 ; kiτλij ¼ 0; τλii ¼ 0: ð29Þ

The term

JλðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p τλxxðk̂ÞsincðkxL=2ÞeikxL=2 ð30Þ

represents the antenna pattern that includes the projection
of the tensor wave onto the cavity axis (along the x
direction), as well as a term accounting for the variation
of the GW wave over the length of the cavity.
The time dependence of the operators reflects the free

evolution in the absence of GW interaction under the
Hamiltonian terms HS and HB for the interferometer and
GW field, respectively, with

HS ¼
p̂2

2m
−
Δ
2
ðα̂21 þ α̂22Þ −

ω0ᾱ

L
α̂1q̂þHext ð31Þ

and

HB ¼
Z

d3k

�jΠ̂λðkÞj2
2MG

þ 1

2
MGω

2
kjĥλðkÞj2

�
: ð32Þ

Here HS includes the optomechanical interaction between
the cavity mode and movable end mirror (p̂; q̂) and Hext

accounts for the laser drive. The operator Π̂λðkÞ is the
canonical field momentum for ĥλðkÞ. The quantity MG is
given by

MG ¼ c2

32πG
ð33Þ

and acts as an effective mass.
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For a large amplitude transient the GW field can be
decomposed into a classical signal component and quantum
fluctuations, so that each k mode in the signal, which
represents a plane gravitational wave, can be written
ĥλðt;kÞ ¼ h̄λðt;kÞ þ δĥλðt;kÞ. Note that waves generated
by faraway sources are well approximated by plane waves
upon their arrival on Earth. All sources of potential interest
to LIGO satisfy this condition. Then it is convenient to
identify a real parameter representing our signal that is
integrated over the wave number and depends only on the
propagation direction:

ξ̄λ
k̂
ðtÞ ¼

Z
dkffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p k2h̄λðt;kÞsinc
�
kL cos θ

2

�
eikL cos θ=2:

ð34Þ

Here k ¼ jkj, and the analogous quantum fluctuation
operator ξ̂k̂ðtÞ is defined by replacing h̄λðt;kÞ in
Eq. (34) with δĥλðt;kÞ. We point out that ξ̄k̂ðtÞ is not a
pure gravitational wave signal in that it depends on the
property L of the probe, which must therefore be given
a priori. Suppressing the polarization subscript λ, the
interaction between the probe and the GW field is then

HI ¼ −
ω0ᾱ

2
α̂1ðtÞ

Z
dk̂τxxðk̂Þ½ξ̄k̂ðtÞ þ ξ̂k̂ðtÞ�: ð35Þ

B. QCRB for GW transients

For a particular k̂ direction of the signal and using the
linearized Hamiltonian of Eq. (35), the signal generator is

Ĝk̂ðtÞ ¼ −ω0ᾱα̂1ðtÞτxxðk̂Þ=2; ð36Þ

which is proportional to α̂1 and consequently implies that
the incoming signal will displace the quantum state along
α̂2, as is consistent with our understanding of GW detec-
tors’ operation. The QFIM is

Fk̂ðt; t0Þ ¼
4

ℏ2

�
ω0ᾱ

2

�
2

½τxxðk̂Þ�2hα̂1ðtÞα̂1ðt0Þi0;sym; ð37Þ

where we have assumed that hα̂1i ¼ 0, as is the case for
current GW laser interferometer detectors using a coherent
laser drive. In principle Eq. (37) should contain the
covariance of α̂H1 instead of the interaction picture operator
α̂1. However, since α̂H1 is linear in ξ̄k̂, the signal dependence
drops out of Δα̂H1 (ignoring the quantum contribution from
ξ̂k̂). For equal time, the inverse of the point QFI Fk̂ðt; tÞ
bounds the point estimation error for the signal at time t, or

hΔξ̄k̂ðtÞ2i≡ Σk̂ðt; tÞ ≥ F−1
k̂
ðt; tÞ: ð38Þ

To bound the estimation error for the entire waveform,
assuming all stationary processes we can diagonalize the
QFIM by going to the frequency domain, and write

F k̂ðΩÞ ¼
4

ℏ2

�
ω0ᾱ

2

�
2

½τxxðk̂Þ�2Sα1ðΩÞ; ð39Þ

where Sα1ðΩÞ is the symmetrized power spectral density
(PSD) for α̂1 and depends only on the input drive. Then the
QCRB for GW detectors states that the measurement noise
for the k̂-mode signal must satisfy the fundamental boundZ

∞

−∞
dτeiΩτΣk̂ðt; t − τÞ≡ Sk̂ðΩÞ ≥ F−1

k̂
ðΩÞ; ð40Þ

where Sk̂ðΩÞ is the PSD of the estimation error. We remark
that this bound is only concerned with the quantum Fisher
information and assumes knowledge of k̂, which in
practice must be determined through other means (i.e.,
multiple detectors for sky localization). The detector itself
is not sensitive to k̂, and the additional uncertainty with
regards to propagation direction can be quantified by the
classical Fisher information of its likelihood function.

C. Discussions on the QCRB

The bound obtained in Eq. (40) through the QCRB
formalism is mathematically equivalent to the EQL. In fact,
the derivation for the EQL [34] relies on identifying an
operator that performs the same function as the symmetric
logarithmic derivative (SLD). However, whereas the EQL
was physically motivated by a single quantum system
measuring a classical force, the QCRB approach offers
clarity in situations where the cavity mode interacts
coherently with another quantum system such as in
WLCs. It was previously thought that additional fluctua-
tions introduced by the additional quantum systems can
limit the probe’s sensitivity—yet the QCRB formalism
states just the opposite: assuming a pure quantum state of
the (possibly compound) system, additional quantum
fluctuations of the field amplitude are, in fact, necessary
in order to increase the QFIM. This apparent paradox arose
because the parametric amplification process required to
achieve negative dispersion necessarily contributes an
additional noise operator to the detector’s output field,
which thereby fails to remain, on its own, a minimum
uncertainty state. However, in such cases where the
optomechanical system is entangled with an ancillary
system, the total entangled state should be viewed as the
quantum probe, of which the optomechanical system is
only part. The additional noise to the output of the
optomechanical system reflects the projection of the total
entangled state onto a subspace, discarding the information
contained in the system’s other degrees of freedom.
Attaining the maximum bound requires choosing the right
POVM for the total Hilbert space containing both the
optomechanical and the ancillary systems.
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We emphasize that the added fluctuations must be
quantum in nature; additional classical noise does not
increase the QFIM. Furthermore, in order to reach the
QCRB, one needs to have access to all outgoing degrees of
freedom that carry information of the signal. More spe-
cifically, if the introduction of additional input and output
channels increases the QFIM (e.g., due to additional
incoming fluctuations), we can only benefit from such
an increase if we make the appropriate measurement of the
output channels to optimally gather signal information.
This means, in the case of optical losses, even though
fluctuations that enter through the lossy ports can contrib-
ute to amplitude fluctuations, this will not improve but
degrade sensitivity, because information that leaks out from
the lossy ports cannot be recovered.
Equation (40) holds whether the interferometer is oper-

ating in the tuned or detuned configuration, since the
relevant quantity for calculating the QFIM is the interaction
term HD, which is the same in either case. Increasing the
maximum sensitivity for a GW detector now reduces to
tuning three independent quantities: the resonant frequency
of the cavity ω0, the average amplitude of the optical mode
ᾱ, and the fluctuations of the amplitude quadrature Sα1ðΩÞ.
We emphasize that this bound is independent of gauge
choice (as is necessary for a physical bound), although it is
more straightforwardly derived and intuitively understood
in the TT gauge, where there is a direct interaction term
between the signal and the cavity modes. Notably, the
bound is independent of test mass properties to Oðv2=c2Þ.

IV. RECIPROCITY AMONG MEASUREMENT,
RADIATION, AND DECOHERENCE

Let us now more closely investigate the role of the
quantum component of the GW field. Allowing the GW
field to interact quantum mechanically with the probe leads
to two outcomes: (i) the dynamical evolution of the
gravitational-wave modes due to interaction, and
(ii) decoherence onto the probe from the field’s quantum
fluctuations.
Of course, it is possible to model both without quantiza-

tion. One can use the equations of semiclassical gravity to
find classical GW radiation by taking the expectation values
for quantum matter, and likewise obtain decoherence from a
classical stochastic GW background. However, the results of
these classical calculations are different from the quantum-
mechanical treatment. In particular, semiclassical gravity
equations predicts zero radiated power through GW waves
while the quantum-mechanical treatment does not.
Additionally, a quantum GW bath causes decoherence even
at zero temperature in vacuum.

A. Radiation of GW energy

From Eq. (35) we obtain the quantum-mechanical
analogue of Einstein’s field equations for GW generation.

In the regime r ≫ L, the GWs are approximately radial
and their equations of motion are given by

ĥTTij ðt; rÞ ¼ Pijxx

�
4G
c2

ω0ᾱ

c2
α̂1ðt − r=cÞ

�
; ð41Þ

where Pijxx is the TT projection operator (for a precise
definition, see Ref. [24]). Using stress energy conservation,
one can show that Eq. (41) is equivalent to the quadrupole
moment formula. Note that in semiclassical gravity one
would take the expectation value of the RHS, which would
equal zero for a coherent drive. Conversely, the quantum-
mechanical treatment allows us to postpone taking the
expectation value until a measurement is made on a
physical quantity, which in our case would be the power
radiated given by

PGW ¼ −
c3

32πG

Z
dr̂r2h _̂hTTjk _̂h

TT
jk i; ð42Þ

where dr̂ is the solid angle element and the overdot is the
time derivative. Evaluating, we find an expression for the
power in terms of the PSD of α̂1 given by

PGW ¼ 32G
15c5

�
ω0ᾱ

2

�
2
Z

dΩ
2π

Ω2Sα1ðΩÞ: ð43Þ

Already in this expression we can recognize there are
similarities with Fk̂ðΩÞ in Eq. (39), but we can make the
connection more concrete by recognizing that the number
factor of 32G=15c5 in PGW includes the effect of TT
projection. If we instead write the TT projection explicitly
as an integral over the d3k, we find that the power radiated
through each channel k is

d
d3k

PGW ¼ G
π2c2

�
ω0ᾱ

2

�
2

½τxxðk̂Þ�2Sα1ðωkÞ; ωk ¼ cjkj;

ð44Þ

which can be very succinctly written as

d
d3k

PGW ¼ ℏ2G
4π2c2

F k̂: ð45Þ

This relates power radiated per d3k volume to the QFIM. In
terms of the number of quanta radiated, we have

d
d3k

_N ¼ ℏ
128π3MGωk

F k̂ ¼ 1

8

ðhzpk Þ2
ð2πÞ3 F k̂: ð46Þ

Here we have defined

hzpk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2MGωk

s
; ð47Þ
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which represents the level of zero point fluctuation in hk. In
this way, the rate at which the probe radiates gravitons into
the d3k space is the inverse of the signal-to-noise ratio
measuring hk in terms of its quantum zero point
fluctuation.

B. Gravity decoherence

Let us now turn to decoherence of the probe due to
coupling with gravitational waves. This is sometimes
referred to as gravity decoherence.

1. Master equation

To calculate decoherence we begin with the Markovian
quantum master equation in the interaction picture,

_ρsðtÞ ¼ −
1

ℏ2

Z
∞

0

dτTrB½HIðtÞ; ½HIðt − τÞ; ρsðtÞ ⊗ ρB��;

ð48Þ

where ρsðtÞ represents the state of the laser interferometer
(system) and the trace is performed over the bath state (GW
field) given by ρB. In writing down this equation we are
making the usual Born-Markov approximations [47],
which assumes that the bath is weakly coupled to the
system and that the bath’s correlation time is very short
compared to the interaction picture evolution of the system
state as well as the time t of observation. These approx-
imations enable us to write down a differential equation that
is local in time. Substituting our interaction Hamiltonian in
Eq. (35) into the general expression, we find

_ρsðtÞ ¼ −
�
ω0ᾱ

2ℏ

�
2
Z

∞

0

dτf½α̂sðtÞα̂1ðt− τÞρsðtÞ

− α̂1ðt− τÞρsðtÞα̂1ðtÞ�hΓðtÞΓðt− τÞi þH:c:g; ð49Þ

where ΓðtÞ is the bath operator given by

ΓðtÞ≡
Z

d3k½JðkÞb̂ðkÞe−iωkt þ J�ðkÞb̂†ðkÞeiωkt�: ð50Þ

Assuming that the GW field has a white noise spectrum
(i.e., in a high temperature thermal state) and is therefore
δ-function correlated in time such that hΓðtÞΓðt − τÞi ¼
2γBδðτÞ where γB is a constant, the master equation
reduces to

_ρsðtÞ ¼
�
ω0ᾱ

2ℏ

�
2

γB½2α̂1ρsα̂1 − fα̂21; ρsg�: ð51Þ

We will restrict ourselves to this Markovian case.

2. Diffusion in phase space

We can draw some intuition from Eq. (51) by mapping
the density matrix to its quasiprobability distribution in

phase space using the Wigner transform. Defining the
position and momentum operators by

â ¼ ðx̂þ ip̂=ℏÞ
ffiffiffi
2

p
ð52Þ

and its Hermitian conjugate, the Wigner transform is
given by

Wðx;pÞ ¼ 1=ð2πℏÞ
Z

dyeipy=ℏhx− y=2jρsjxþ y=2i: ð53Þ

We point out x̂ and p̂ do not literally represent spatial
position and momentum of the cavity mode, but are, in fact,
proportional to α̂1 and α̂2 modulo factors of

ffiffiffi
ℏ

p
. However,

we use the conventional normalization and notation to more
easily draw analogies with the well studied massive
harmonic oscillator. Then Eq. (51) maps to

∂
∂tW ¼ ℏ

�
ω0ᾱ

2

�
2

γB
∂2

∂p2
W ≡ ℏ2

4
D

∂2

∂p2
W: ð54Þ

The second derivative with respect to p is precisely
the decoherence term that destroys correlations between
x-separated parts of the quantum state [48], for which we
have defined the diffusion coefficient

D ¼ ð4=ℏÞðω0ᾱÞ2γB: ð55Þ

The choice of normalization for D will become clear
later on.
Let us now consider the bath decay rate γB more

carefully. We can represent it explicitly as a sum of
contributions from all angular directions k̂ of the GW field

γBδðτÞ ¼
1

2

Z
dk̂

Z
dk̂0τxxðk̂Þτxxðk̂0Þhξ̂k̂ðtÞξ̂k̂0 ðt − τÞi:

ð56Þ

We point out that both sides of Eq. (56) must be symmetric
in τ, and we can therefore replace the unsymmetrized bath
correlation on the right-hand side with the symmetrized
form. Then, applying the Fourier transform operatorR
∞
−∞ dτeiΩτ on both sides we find that γB depends on the
cross-correlation PSD between ξ̂k̂ and ξ̂k̂0 . Since the bath
modes are independent, their PSD must be given by

Z
∞

−∞
dτeiΩτhξ̂k̂ðtÞξ̂k̂0 ðt − τÞisym ¼ Sk̂δðk̂ − k̂0Þ; ð57Þ

where Sk̂ is a constant (note that Sk̂ is associated with the
cross-correlation of ξ̂k̂ operators, while Sk̂ is used to denote
the PSD of signal estimation error). Then we have
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γB ¼ 1

2

Z
dk̂½τxxðk̂Þ�2Sk̂: ð58Þ

Substituting Eq. (58) into the decoherence rate D in
Eq. (54), we find that D can be resolved into contributions
by a differential solid angle, or

d

dk̂
D ¼ 2

ℏ

�
ω0ᾱ

2

�
2

½τxxðk̂Þ�2Sk̂: ð59Þ

Comparing Eq. (59) with the expression of QFI given in
Eq. (39), we find thatD can be directly related to the QFIM
of a cavity mode prepared in the vacuum state, for which
hα̂21ð0Þi0 ¼ ℏ=2. Then we have

d

dk̂
D ¼ Fvac

k̂
ð0; 0ÞSk̂; ð60Þ

where the “vac” superscript indicates a vacuum.
Equation (60) says that the diffusion coefficient governing
the probe’s evolution is entirely determined by the proper-
ties of the bath and the point QFI at initial time. To be clear,
Eq. (60) holds independently of the probe’s actual initial
state—the vacuum state’s point QFI is simply a quantity
that can always be evaluated. Equation (60) is therefore a
general relation between diffusion and measurement that
holds for the interaction Hamiltonian in Eq. (35) for a white
spectrum GW bath with uncorrelated k̂ modes, and it is
independent of any other system or bath specifics, includ-
ing their free evolution and initial states.

3. Decoherence in position space

It is interesting to consider whether the QFIM of a
particular state can be related to its own decoherence. Let us
now consider the particular case where the probe is initially
in a superposition of Gaussian wave packets separated
along x, for which we will demonstrate that under certain
limits its quantum coherence decays linearly at a rate that is
determined by its own QFIM. The initial wave function is
given by

jψci ¼
ffiffiffiffi
N

p
ðjχþi þ jχ−iÞ; ð61Þ

where

hxjχ�i ¼
ffiffiffiffiffiffiffi
N�

p
exp

�
−
ðx� x0Þ2

2σ2

�
ð62Þ

andN;N� ensure proper normalization. The density matrix
has elements jχ�ihχ�j and jχ�ihχ∓j that are, respectively,
the noncoherent and coherent components. The coherent
components go to zero in a purely statistical mixture of jχþi
and jχ−i and represent the presence of quantum super-
position. Denoting its Wigner function by Wqc (for quan-
tum coherent), we have initially

Wqcðt ¼ 0Þ ¼ 2N
πℏ

exp

�
−
x2

σ2
−
p2σ2

ℏ2

�
cos

�
2x0
ℏ

p

�
: ð63Þ

Substituting Eq. (63) in the right-hand side of Eq. (54) and
taking the limit σ → 0, we find that the solution to the
evolution equation is

WqcðtÞ ¼ Wqcð0Þe−γdect; γdec ¼ Dx20: ð64Þ

However, x20 ¼ hΔx̂2si0 ¼ hΔα̂21si0=ℏ, where the s indicates
Schrödinger picture operators, and we have

γdec ¼
2

ℏ2

�
ω0ᾱ

2

�
2

½τxxðk̂Þ�2h½Δα̂1ð0Þ�2i0Sk̂: ð65Þ

Comparing Eqs. (65) and (37) and denoting the QFIM for
the cat state by Fc

k̂
, we have

lim
σ→0

d

dk̂
γdec ¼

1

2
Fc
k̂
ð0; 0ÞSk̂: ð66Þ

Thus, the decoherence rate for a superposition of x̂
eigenstates is entirely determined by the properties of
the GW bath and the state’s own point QFI at initial time.
Our results depend on the GW bath having a white

spectrum, which is realized when a field is in a high
temperature thermal state. Generally, Sk̂ for a thermal bath
at inverse temperature β is given by

Sth
k̂
¼ 1

ð2πÞ3
πℏjΩj
MGc3

1

eβℏjΩj − 1

�
sinc

�jΩjk̂ ·L
2c

��2
: ð67Þ

At high temperature βℏjΩj ≪ 1 and to OðΩL=cÞ2, the
frequency dependence drops out and we obtain
Sth
k̂
≈ 4G=ðπβc5Þ. Then Eqs. (60) and (65) take the forms

d

dk̂
D¼ 4G

πβc5
Fvac
k̂

ð0;0Þ; d

dk̂
γdec ¼

2G
πβc5

Fc
k̂
ð0;0Þ: ð68Þ

We observe that the diffusion coefficient and decoherence
rate depend only on the inverse bath temperature, the QFI,
and the fundamental constants.
In summary, we have demonstrated that by assuming a

white noise spectrum for the GW bath and making the usual
Born-Markov approximations for an open quantum system,
we obtain an equation of motion for the density matrix of
the probe given by Eq. (51), which has a representation in
phase space given by Eq. (54). From the latter equation we
see that while there is no friction term (i.e., no damping to
the probe from the GW bath), the probe state undergoes
diffusion at a rateD that can be expressed purely in terms of
the point QFI of vacuum and the GW bath properties as in
Eq. (60), which holds for any initial state. For the special
case where the probe is initially in an equal superposition of
α̂1 eigenstates, this diffusion results in a linear decoherence
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rate that is determined by the probe’s own QFIM, as in
Eq. (66). The choice of this initial state is motivated by the
fact that α̂1 is the Lindblad operator, and it is therefore
natural to consider decoherence along the basis of its
eigenstates.

4. Gravity decoherence in GW detectors

Let us evaluate gravity decoherence rates in actual
gravitational-wave detectors. We can convert Eq. (60) into

D ¼
Z

d2k̂
Z

Sk̂F k̂ðΩÞ
dΩ
2π

≥
Z

d2k̂
Z

Sk̂
Sk̂ðΩÞ

dΩ
2π

;

ð69Þ

where the equality sign is taken when the device reaches
sensitivity limited by QCRB, and we also have γdec ¼ D=2
from Eq. (65). From this, we get the interesting result
that the gravity decoherence rate in GW detectors is
comparable to the detection frequency scale if GW fluc-
tuations are at a level comparable to its QCRB-limited
noise spectrum. Numerically, we have, for vacuum and
thermal fluctuations,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Svac
k̂

ðΩÞ
q

≈ 10−42
�
2π × 100 Hz

Ω

�
Hz−1=2; ð70Þ

ffiffiffiffiffiffi
Sth
k̂

q
≈ 2 × 10−38

�
T
1K

�
1=2

Hz−1=2; ð71Þ

where T is the temperature of the thermal gravitational-
wave background. Both are much less than current sensi-
tivities of GW detectors. The fact that vacuum fluctuations
are far below current sensitivity is a requirement for treating
GWas an approximately classical signal—and applying the
QCRB in the first place.
In actual ground-based laser-interferometer gravita-

tional-wave detectors, the quantum state of the GW field
is not a vacuum—or thermal. Apart from the transient
gravitational-wave events, there exists an astrophysical GW
background arising from compact binary coalescence,
as well as cosmological backgrounds; see Ref. [49] and
references therein. In the absence of the transients, the
stochastic background causes the dominant gravity
decoherence of the detector.

C. Discussion of reciprocity

In this section we have shown for a laser interferometer
GW detector that the theoretical limit on its measurement
sensitivity, given by its QCRB, is fundamentally related
through its QFIM to its radiation of GWs as well as its
decoherence from a white noise GW bath (Fig. 1 summa-
rizes these relations). It is useful to point out that the power
radiation and decoherence correspond to slightly different
physical scenarios.

For radiation, the cavity is being continuously pumped
by an external laser drive such that its initial state is
forgotten and its amplitude fluctuations have a Fourier
transform, which is furthermore assumed to be a stationary
process. In this case, the QFIM, expressed in the frequency
domain as in Eq. (39), and measured in the level of zero-
point fluctuations of the gravitational-wave field, gives the
rate at which gravitons are radiated into a unit wave vector
space [Eq. (46)]. Indeed, the probe must be coupled to an
external electromagnetic field in order to vary on timescales
relevant for GWs of interest (i.e., at long wavelengths
compared to the cavity arm) and should be viewed as

FIG. 1. Relating measurement, radiation, and decoherence
through the QFIM. (a) The decomposition of the gravitational
field into a classical component ξ̄k̂ corresponding to a large
amplitude excitation and a quantum component ξ̂k̂. Both com-
ponents couple to the quantum probe through its degree of
freedom α̂1. The probe’s interaction with ξ̄k̂ is a measurement for
which the fundamental quantum limit on error is given by the
QCRB. The probe’s interaction with the ξ̂k̂ can further be
distinguished into outgoing fluctuations in the form of power
radiated as gravitational waves and incoming fluctuations that
cause decoherence. (b) All three processes can be characterized
by the QFIM, given in both the time and the frequency domain
with respect to a waveform signal (assumed to be stationary). The
QCRB that bounds the error of measurement Σk̂ (in time) or Sk̂
(in frequency) is the inverse of the QFIM [Eqs. (38) and (40)].
The power radiated is given by the QFIM and Planck scale
constants [Eq. (46)]. Finally, the diffusion coefficient of
the quantum probe in phase space is given by the point QFI
of the probe’s vacuum state and the noise spectrum of the bath,
and the decoherence rate for a cat state in the eigenbasis of the
Lindblad operator α̂1 is the QFI of the cat state itself plus the
noise spectrum [Eqs. (60) and (65)].
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a transducer between GWs and the input/output optical
fields. From this perspective, Eqs. (39) and (46) express the
idea that the conversion of GWs to photons in signal
detection is reciprocal to the conversion of photons to
gravitons in radiation. Its channel capacity as either a
receiver or a transmitter is fundamentally the same, and
they differ from each other only by a factor involving
fundamental constants.
For decoherence, both the GW field and the laser drive

should be viewed as external baths whose noise fluctua-
tions degrade the purity of the probe’s quantum state.
However, since the two baths are independent, their effects
add in quadrature and we can consider each separately.
Therefore, we ignore the effect of the laser drive (except to
ensure that at time t ¼ 0 the cavity mode has sufficient
photon occupation to linearize the Hamiltonian) and con-
sider only the effect of the GW bath. We find that the probe
state diffuses in phase space with coefficient D, which is
determined by the point QFI of vacuum along with
properties of the bath [Eqs. (54) and (60)]. Interestingly,
when the probe is initially in a superposition of α̂1
eigenstates, the decoherence occurs at a linear rate that
is determined by the initial cat state’s point QFI as in
Eq. (66). These relations show that the QFI of the probe
with respect to a GW signal has a fundamental role in the
probe’s decoherence due to the quantum fluctuations
associated with the signal.
Interestingly, the processes of radiation and decoherence

that result from the quantum component of the field are
fundamentally related through the QFI to the QCRB
resulting from the field’s classical component. In principle,
they can affect our measurement sensitivity. For example,
to lower the QCRB for the quantum probe, one must
necessarily increase its radiation and decoherence, resulting
in an increasingly mixed probe state and a consequent loss
of sensitivity. Therefore, as we account for the presence of
quantum fluctuations in the signal field, the QCRB cannot
be directly applied to obtain the ultimate maximum
sensitivity. How to more precisely formulate the maximum
bound in these cases merits further investigation. In the
present work, we simply demonstrate the connection for the
particular case of GW detection.

V. CONCLUSION

In this work we studied the interactions of a quantum
limited laser interferometer, such as LIGO, with a pertur-
bative quantum gravitational-wave field. Using the
Hamiltonian derived in [24] and decomposing the gravi-
tational-wave field into its quantum fluctuations and a large

excitation interpretable as a classical signal as in Eq. (35),
we were able to draw fundamental relations between its
interactions with the two components of the field.
Specifically, we related the three processes of quantum
measurement, radiation, and decoherence, with the first
process involving the classical component and the latter
two involving the quantum component, which is further
divisible into the outgoing and incoming fluctuations
corresponding to radiation and decoherence, respectively.
The measurement process is characterized by the QCRB

that gives the fundamental quantum limit to measurement
sensitivity. The QCRB is equal to the inverse of the
detector’s quantum Fisher information (or matrix in the
multivariate case) and is a property of the quantum probe
with respect to the signal it measures. We demonstrated that
for our system, this property of the laser interferometer
relates the GW power it radiates to fundamental constants
[Eq. (46)], hence establishing a reciprocal relationship
between detection and emission. At the same time, we
have shown that under certain conditions the detector’s
decoherence can be characterized entirely by the QFI and
the GW bath properties. Specifically, for a white noise
spectrum such as that of a high temperature thermal bath,
the detector’s diffusion coefficient in phase space is given
by the QFI of a cavity at vacuum state [Eq. (60)].
Additionally, if the detector is initially prepared in a cat
state, it experiences decoherence at a linear rate that is given
by its own initial QFI [Eq. (65)]. This choice of initial state
is highly motivated because it is a superposition of
eigenbasis states of the Lindblad operator, i.e., the basis
along which decoherence occurs. Although the bath con-
ditions are not completely general, they apply for many
systems of interest.
While these relations have been demonstrated in this

work for the specific system of a laser interferometer and
gravitational waves, they ultimately derive from the idea
that a classical signal has an underlying quantum field that
interacts analogously with any quantum probe. It is there-
fore plausible that these relations are generalizable to a
broader class of quantum measurement systems, which
merits further study.
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