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In this work, we study the existence of regular black hole solutions with multihorizons in general
relativity and in some alternative theories of gravity. We consider the coupling between the gravitational
theory and nonlinear electrodynamics. The coupling generates modifications in the electromagnetic sector.
The main objective of this paper is to generalize the solutions already known from general relativity to f(G)
theory. First, we correct some misprints of Odintsov and Nojiri’s work in order to introduce the formalism
that is used in f(G) gravity. In order to satisfy all field equations, the method to find solutions to alternative
theories generates different f(R) and f(G) functions for each solution, where only the nonlinear term of
f(G) contributes to the field equations. We also analyze the energy conditions, since it is expected that
some must be violated to find regular black holes, and using an auxiliary field, we analyze the nonlinearity

of the electromagnetic theory.
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I. INTRODUCTION

Black holes are one of the most interesting predictions
of general relativity [1]. These objects have a region of
nonscape where the boundary is a surface which permits the
passage only in one direction called the event horizon [2].
The most simple black hole solution is described by the
Schwarzschild metric, which is characterized only by its
mass [3]. The structure of the Schwarzschild black hole is
composed by an event horizon and a singularity in the black
hole center [4]. There are several metrics that are more
general than the Schwarzschild solution, such as the
Reissner-Nordstrom (electrically charged), Kerr (with rota-
tion), or de Sitter-like solutions (cosmological constant)
[5]. The presence of these other parameters can lead to
changes in the structure of black holes such as the Cauchy
and cosmological horizon [3,5].

Although some solutions have a singularity, this character-
istic is not necessary for black holes. Actually, it is possible
to find solutions that have an event horizon without
singularity; this kind of solution is known as a regular black
hole [6]. Bardeen proposed a metric which was later
interpreted as a solution to the Einstein equations for non-
linear electrodynamics [7] without the presence of singu-
larities [8]. As in the Reissner-Nordstrom case, due to the
charge, Bardeen’s solution presents a Cauchy horizon [9].
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Many solutions of regular black holes have arisen since then
[10-31], and several studies of their properties have been
conducted, such as absorption [32-34], scattering [35,36],
quasinormal modes [37-50], thermodynamics [51-61] and
even tidal forces [62].

Beyond general relativity, we have the alternatives
theories of gravity [63]. The Einstein equations could be
obtained from the variational principle if we consider the
Einstein-Hilbert action [64]. Modifying this action is a way
to find the field equations of these alternative theories [65].
One of the most studied modifications is f(R) theory [63],
with R being the curvature scalar, which emerged from
Starobinsky’s work in 1980, where he inserted an R? term
into the Einstein-Hilbert action [66,67]. However, we can
construct other theories if we consider different curvature
invariants in the action. A possible combination of these
scalars is the Gauss-Bonnet term G that is a topological
invariant in four dimensions [68]. Although G does not
make modifications in the field equations, a nonlinear term
of G will not be a topological invariant anymore [69-75].
This is what we call f(G) theory, which arises as an
alternative to dark matter [68].

As in general relativity, it is possible to find regular
solutions in alternative theories [76]. Rodrigues and co-
workers generalized the solutions of regular black holes
from general relativity to some modified theories of
gravity [77-80]. Ghosh et al. found a solution to five
dimensions when they included a linear term of G in the
action [81].
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As we said, due to the presence of charge, rotation, or a
cosmological constant, new structures arise in the black
holes [82]. So, in the literature, it is possible to find
solutions with multiple horizons [8§3—-88]. An example is
the Reissner-Nordsrom-de Sitter metric since it has event
horizon, Cauchy horizon and cosmological horizon [89].
Actually, if we consider vector-tensor theories, the number
of horizons should be much greater than only three. For this
type of theory, it is also possible to find metrics with
multiple singularities [90]. However, we still have the
possibility of constructing regular multihorizon black holes
in general relativity and beyond if we relax some energy
conditions and assume that the gravitational theory is
coupled with nonlinear electrodynamics [91].

This article is organized as follows. In the Sec. II, we
construct the formalism for the general relativity theory,
considering a spherically symmetric and static source, and
we obtain the electromagnetic quantities and the energy
conditions associated with the solution. In Sec. III, we use
the same formalism and generalize the solutions to f(R)
gravity, finding corrections in the electromagnetic sector. In
Sec. IV, we construct a regular model, where we generalize
the solution with two horizons already known from general
relativity to f(G) gravity in four dimensions. In Sec. V, we
present our conclusions and discussion. The analytical
expressions for L(P) are obtained in Appendix A. As
the expressions for the anti—de Sitter example and the
solution with three horizons are much too complicated,
Appendixes B and C are dedicated to finding the f(R) and
f(G) functions that are generated.

II. THE FORMALISM WITH
GENERAL RELATIVITY

In this section, we will develop the formalism to study
the solutions of regular black holes with multihorizons in
the context of general relativity so that we can generalize
these results later to the alternative theories of gravity. This
procedure was developed in [92] and used to study multi-
horizon solutions in [91]. The action that describes the
nonlinear electromagnetic theory coupled with general
relativity is

S = / d*x\/=g[R - 2«*L(1)], (1)

where R is the curvature scalar, g is the determinant of the
metric, L is the electromagnetic Lagrangian, and [ is the
electromagnetic scalar defined as I = } F*“F,,, with F,, =
d,A, — 0,A, being the Maxwell-Faraday tensor. We will
consider a spherically symmetric and static spacetime

described by the line element
ds? = —e"")di? + e dr? + r2(d6 + sin’0d¢?).  (2)

To obtain the electromagnetic and gravitational field
equations, we need to vary the Lagrangian (1) with respect

to the gauge potential A, and the metric g,,. These
equations are

1
RH, — E(SQ‘R = k*[L3) — F*PFy,0,L), (3)

V, (F*0,L) = 0,(/=gF"0,L) = 0. (4)

If we consider that the source has only electric charge, the
only nonzero component of the Maxwell-Faraday tensor is
F'°. With this, Eq. (4) becomes

9,(r*0;LF°") = 0. (5)
Integrating this equation, we obtain
q _

P =L o), (6)

where ¢ is an integration constant that represents the
electric charge of the source. Using I = —1(F°')? and

defining a new variable X = g/ 21, we get
1= rzaxL. (7)

As we can write (3) in the form G¥, = —x’T*,, and
identifying p = 7%, p, = =T', and p, = -T2, = =T°;,
where p is the energy density and p, and p, are the radial
and tangential pressures, respectively, we find the following
equations:

X

pr=-p=L-5. p=L (8)

Furthermore, from the components of the Einstein tensor,
we also have the following relations:

re‘d + e —1 = —«*r’p, 9)
re‘d +e* —1=«*rp,, (10)
re?d" + re“a”* + 2e‘a’ = 2’rp,. (11)

From these relations and (8), we have

1 d X

p=—galle =1L L="5-p
3
r/ r /
= —p-1 X=-_1p. 12
pi==p=30 5P (12)

Since we have the energy density, in terms of the radial
coordinate, it is possible to find an analytical expression
for I(r) and invert this function to obtain r(I) and
consequently L (/). However, as we are studying electric
sources, it is not possible to find the Lagrangian. Actually,
in the electric case, is more convenient to work with the
auxiliary field P,, = (9,L)F,,. In Appendix A, we will
find analytical expressions for L(P) for the solutions
presented here.
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It is also important to verify the energy conditions that
are given by the following:
(1) null energy condition (NEC) p+ p,>0 and
p+p 20
(2) weak energy condition (WEC) p>0,p+ p, >0,
and p + p, > 0;
(3) strong energy condition (SEC) p + p, +2p, >0,
p+p,20,and p+p, 20;
(4) dominant energy condition (DEC) p >0, p+£
p,>0,and p+ p, > 0.
Here we call attention to a mistake in (21) of [91], where p,
is defined. By the condition p, = —p, we expect that
p,=L~— f—z; however in (21) of [91], we see p, =
L —|—rK This modification changes the energy conditions
so that they also must be corrected.
In [91], three solutions were analyzed. Here we will
review these solutions with the necessary corrections.

A. Example in the Minkowski background

The first model is a solution that behaves asymptotically
as Minkowski and is described by

ea(r)zl_ ar2 :(r+r0)(r_rl)(r_r2) (13)
p+r p+r '
with
:r%—f—r%—i—rlrz ﬂz r%r% _ ryr
ry+r r+r’ T
(14)

If we take a =2m and f = 202m, we will recover the
regular black hole of Hayward [see Eq. (5) in [22] ].
Analyzing the regularity of the solution is enough to
calculate the Kretschmann scalar K = R"”“ﬁRﬂmﬂ; how-
ever, for future reasons, we will also calculate the curvature
scalar and the Gauss-Bonnet invariant G = R? — 4RMR,,+
RHPR

pvafs
6aB(2p — 13
R =2, (13
12224 12_49 1826_233
K(r) at(2p* +r (ﬂirra—): pr ﬂr), (16)
G(r) = 1202 (28 + 10 — 6pr3) . (17)

B +r)

We can see that the solution does not present divergences.
From (12) we get

-2 -15 -1 -0.5 0
71

FIG. 1. Electromagnetic Lagrangian for the asymptotically flat
solution with = (4/3)m?* and a = (7/3)m.

. 3ap B 3ap(2r® - p)
p_ pr_Kz(r3+ﬁ)27 pt_ K2(r3+ﬂ)3 5

~ 9apr B 3ap(2r® - p)
TTetip fT R "

The nonlinearity of the electromagnetic theory is descri-
bed by the graphical representation of L(I) in Fig. 1. Since
we have p, p,, and p,, we obtain the energy conditions

9apr’
>0, =0, =530,
p— p+p p+pt K2(r3+ﬂ)3
6ap(2r - )
2p, = ——5——, 19
p+pr+2p, prpE (19)
6af 3ap(2p — 1)
— = > O, — B e
S R ROk
(20)

The weak and null energy conditions are always satisfied;
however, inside the black hole the strong energy condition
is violated, which is normal for regular solutions, and
outside the dominant energy condition is violated, which
already happened with the Bardeen solution. Now, we
highlight that these results present corrections in relation to
[91]. From (20), we see that the dominant energy condition
is violated for » > (23)!'/3 and not r < (2)"/ as in (26) of
[91]. In [91], we also see that for r > (/2)'/3, the relation
p — p, is negative, which also violates the dominant energy
condition. However, as we corrected the definition of p,,
that problem vanishes.

B. Example in the anti-de Sitter background

Now we will analyze the model that is asymptotically
anti—de Sitter and is described by

i _ P =R =)

riry(rr4rirp)

(21)

The curvature invariants are
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2
R(r) = ﬁ(r“(;’% —16r,ry + r%) + 3r2rlr2( —4riry + rz) + 61’1r2(r1 +riry + r2) 6r6), (22)
riry(r* +ryry)

[ ——
}" f—
rirs(r? +rirp)°

+ 415y (r} = 513y + 18r1r2 S5rir3 +13) + i (19rF + 2013 1y 4+ 927373 + 207,73 + 1973)

(6r12 = 2710(r2 =167 7y + 13) + P8 (r} = 8r3ry + 721273 = 8113 + 1%)

+ 6121313 (rf = 3riry = 2313 = 3r13 + 1) + 6r1r (12 + iy + 13)?), (23)
8
G(r) = W@rs =712 = 1077y + 13) = 2r%r 1, (212 = 511y + 273)
=321y (r} + Ty + 87213 + Tryrs + 13) + 3273 (r? + 1y + 13)?), (24)

so that the solution is regular in all spacetimes. As in the previous example, from (12) we get

=3rt + 12 (1 —4riry + 13) + 3r (1 + 1y + 13)

= =— , 25
p(r) K2riry(r? + riry)? Pi(r) (25)
r(r 4 r)*(r + 511y
X(r)= 3 5 3 (26)
K 7"1"2(" + r1r2)
L(r) = 3 + 914 ry + rzrlrz(rE + 111’21r2 + r%)B— 3r%r%(r% +riry + r%) — (). (27)
K rlrz(r + r1r2)
We can see that as p, # p, we have the behavior of an anisotropic solution with an equation of state p = —p,.. We highlight

that the expression for X (r) is different from Eq. (29) in [91]. In the infinity of the radial coordinate L(r) and X(r) tend to a
constant and the nonlinear dependence of L(I) is represented in Fig. 2. The energy conditions are

=3rt 4 2 (rf —4riry + 13) + 3rn (1t 4 i 4 13) r2(ry + 1) (r* 4+ 5r112)

= s r:()’ =
r K2ryry(r? 4 rirp)? pep pp K2ryry(r? + riry)?
203 + 9% s + P2 (P2 + 11rr + 12) = 37272(r2 + ryry + 12
D+ p+2p, = ( 172 12(21 172+ 135) 1rs(ry +riry 2))’

K2 ra(r? + rirp)?

—6r% + 2r2(r% —4riry + r%) + 6r1r2(r% + i+ r%)
K2rira(r? + i) ’

—6r% + r4( —16r,ry + r2) +3r%r, r2(r] —4riry + r2) + 61’l rz(rl +riry+ r2)

—p = 28
P P Krlrz(r +r1r2)3 ( )

pP—Pr=

We can see that the energy density is not always positive,
which is not a problem since we are considering a model
that is asymptotically anti-de Sitter so that we have the
contribution of the negative cosmological constant, which
can be regarded as a negative energy density. For points
outside the event horizon, WEC and DEC are violated
while SEC is violated inside the event horizon.

C. Regular black hole with three horizons

Now we will use the formalism that we developed in the

previous section to study the multihorizon solution. We -19 -185 -18 ~17.5 -17 ~165 ~16 155 -15 -14.5
consider the configuration described by a1
2 N2 2\(2 2 FIG. 2. Graphical representation of L(I) x I associated with
(r" =) (" =)~ = r3) : presen ) X
e = _ (29) the asymptotically anti—de Sitter solution with r; = 0.5m and

12(’"2 + rlrzm)z ry = 1.5m.
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If we expand this solution near the origin and in the infinity of the radial coordinate, we get

2l 6
e 1 —p? (7 —1—7/—2) +0(r), forr—0, (30)
21 2 1
e“mz—;—z—i—%—l— 0<ﬁ>’ for r - oo, (31)
with
w=r+r3+ r%, Yy = rirrs, 5=rirs+ r%r% + r%r%. (32)

The solution behaves like de Sitter for points inside and far from the event horizon (r,). The curvature and topological
invariants are

2
R(r) = iy (1478 +4Pry + (68 — rPw + 3y%) + 2Iy(117° = 2r*w — 3726 + 6y%) + y*(28r* — 157%w + 66)),
rty
(33)
K(r) = 4(1 Y (Br'2 +807yr'0 + 215(r° — wr* + 6r% + 13y%)r® + 4Py(3r% = 3wr* + 361> + 11y%)r°
rFty
+ 14(6r'? = 201" + @?r® — 2(5w — 127%)7® + 14(8% — 2wy>)r* — 48y26r* + 157y*)r* + 4By (1172
—3wr'? + (0 = 48)r® + (116w + 9y?)r® — (118> + 46wy)r* + 4Ty*6r* + 3y*)r* 4 y*(262r® — 2300r°
+ (53w? + 568)r* — 306wr? + 68%) + 41y3 (55110 4 3wr® — 3(3w? + 168)r® + 7(3dw+y*)r* — 3(8* + Swy?)r?
+ 6y%8) + 2272 (70712 — 28wr!? + (29@?* + 128)r8 — (645w + 141y%)r + (346> + 317%w)r* — 92612 + 12/%)),
(34)
8
G(r) = 7(1 e (Br4(r® + 3726 — 10y2) + 2B 72y (3r° + 3r*w — r?6 — 97%) + P(3r'? — 1'% — 3r%(6w — Ty?)
rety
+ r*(58% + 16wy?) — 332725 + 12¢*) + 2Iy(8r'° = 3r¥@ — 3r%(0? 4 26) + r*(116w + 28y%)
—3r3(28% + 5wy?) + 6726) + y*(33r8 — 4518w + 14r* (w? + 25) — 15r°6w + 36?)). (35)

These functions are complicated; however, it is not difficult to see the regularity at the origin. In infinity of the radial
coordinate, we get

12 24 24
}, (36)

lim (R(),K().G0)} = {3756 ¢

which are viable results since the solution is asymptotically de Sitter. The fluid quantities, X(r), and the electromagnetic
Lagrangian are

p(r) = IR [Brt 4302y +13r° = o — 26 + 6y%) + y(Tr* = 57w + 38)] = —p,(r), (37)
4
X(r) = Pl (474 +4Pr?y — P(r*w + 2r28 — 15¢%) = 2ly (r* + 4w — 568) + y* (5w — 1477)], (38)
K=(Llr Y
1

L(r)= [2(=(3r8 + r*6 — 6r2y?)) = 2Ly (67° + r*w — 4r*6+3y%) + y*(=21r* + 10r*w — 38)] = p,(r). (39)

K2(Ir* +y)*

We see that p in (44) of [91] and X in (45) of [91] differ from what we obtained here in (37) and (38), so it is expected that
the Lagrangian Ly is different from (46) in [91]. The nonlinearity of the electromagnetic theory that generates this metric
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is described in Fig. 3. As in the solution before, L(r) and X(r) tend to a constant to r — co. Together with (37), the energy

conditions are

p+p, =0, (40)

p+p, . (lrgz B (47 + 4Py — P(rfo + 2r%5 — 15¢?)
2
p+p +2p = T2 1)
B 2
p—Pr= ’<2(l"2—+7)3
1
P i

+72(287* = 1572w + 65)].

We can see that there is the possibility for all energy
conditions to be violated.

III. REGULAR MULTIHORIZON BLACK HOLES
IN f(R) GRAVITY WITH NONLINEAR
ELECTRODYNAMICS

Now we will consider a line element written as

ds? = —e*")dr? + eV dr? + r?(d6* + sin® 0dg?).  (45)

When we have nonlinear electrodynamics coupled with
f(R) gravity, the action is given by

/ dr =Gl (R) - 22L(]. (46)

If we vary this action with respect to the metric, we get
the equations of motion for f(R) gravity, which can be
written as

4 1
R =5 9uR = ~f2' T = 5 9u(f = Rf%)

~ (GO =V, V) fe] = —2TSY. (47
|

[2(3r8 + r*6 — 6r2)%) + 21y (67° + r*w — 4126 + 3y?)

=2ly(r* +4r’w - 56) + y*(Sw — 14r%))], (41)

-1 = 107w + 35)],  (42)

[Br* 4+ 3827 +1(3r° — r*ow — 1?6 + 6y) + y(7r* = 57w + 36)], (43)

[l4r6 +4Prty + P(6r% — 1P + 3r2y?) + 21y (117° = 21w — 3125 + 6y?)

(44)

Identifying T eff) — plet) T }(em =—p\ 4

nd T (eff)
73(6ff> pﬁef”, we can write the energy conditions for

f(R) gravity as [93-96]

(eff)

NEC,5(r) = p© + p,57 > 0, (48)

SEC(r) = p® + pl) 4 20 > (49)

eff)

WEC, ,(r) = p + pi5” > 0, (50)
DEC,(r) = pt¢) > 0, (51)

— o eff) _ o (eff)
DEC2.3(F) =p Pri > 0’ (52)

where for nonlinear electrodynamics, we have

plett) — e’ 422 [F102e44209 L + 4k r? e’ L + 472 fR + (8r = 2r2b") dfr
e fr dr
+ [(rPd +4r)b' + 4e = 2r%a" — r*(d')? — 4ra’ —4]fp + 2rzebf} (53)
(eff) _ e 2,21 11072 ,a+2b 2.2 ,b 2 df g 2 /
Dr 55— 4 [F'P)7e ™00 L + 4k°r*e”L + (2r°a’ + 8r) ==+ [(r*a’ 4-4r)b
AP dr
+deb —2r2a" — r*(a')? — drd —4)fr + 2rzebf} (54)
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e dfr

(eff)

daf

R

p = 47,(2’2][1{ {41<2 ePL + 472 —7 + [2r2(a' = b') + 4] - + [(r*d" + 4r)b'

+4deb —2r2a" — r*(a')? —drd' — 4| fr + 2r2ehf} (55)

|

In view of the identity WEC;(r) = DEC,(r), one of the Subtracting (56) from (57) we get
conditions is not written. In [79], the following theorem
was proven: Given a solution of Eq. (47) of f(R) gravity e“fr+x*p+p,) =0. (59)
described by S, = {a(r),b(r), f(R),L,F'°(r)}, if there
exists a solution in general relativity S, = {a(r),b(r),L, ~ To obtain p=—p, with e?#0, we need & =0, so
F'°(r)}, then the energy conditions (48)—(52) are identical ~ that f is
for S; and S,. This implies that by taking the models (13), Fa=coterr (60)

(21), and (29) for f(R) gravity, the energy conditions
(48)—(52) are the same as what we have in the general
relativity cases.

Even if there are no changes in the energy conditions,
due to the coupling with f(R) gravity, we have modifica-
tions of the structure of X(r) and L. The components
of the field equations for f(R) gravity considering

a(r) = —b(r) are

e“((=rd —4)fk + fr(rd" + ra” +2d') = 2rf%)
— f(R) —2k* =0, ' (56)
e'((=rd' —4)fp + fr(ra" + ra” +2a'))
— f(R) +2&°p, =r 0, (57)
_e((rd + 1}’)f;e + ) +fR(re“a’r:— et — 1)
—@—szp, =0. (58)

In the field equations, we need to pay attention that we are

eff) ,(eff) (eff)

using p, p,, and p, and not P pi™ “and p;™" as in the

energy conditions.

where ¢ and c; are integration constants. Since we have
R(r), we can invert this function and obtain r(R) and then
we find fr(R). The f(R) function is

S(R) = ¢oR + ¢, /r(R)dR, (61)
or, in terms of the radial coordinate,
R = [ fu% (62)

Using the models (13), (21), and (29), we can find the
expressions for p, L, and X in f(R) gravity.

A. Example in the Minkowski background

Considering the model (13), we have the curvature scalar
(15). Inverting this function, we get that f5 is

1/3

a; (R) iy ’

R

2ap

fr(R) =co+c 0!1( )

(63)

with

R) = {apR\/BR(81BR — 8a) — 9ap*R2}'">.

Integrating f with respect to the curvature scalar, we get

1

f(R) = coR

<1

ﬂ2/3 {2\[tan lﬁ

a(R)

a1 (R) 2 2a a1 (R)
e )1—21n<1+\/a1(R)— + ﬁR>

_ 32_(1_ al(R) 26{ _
““(1 \/a1<R> YR *(m(m :
al( )

—4p -

X \3/2“1 (R)F* (22— 9a,(R))

Ra R3a?

—16Ra*a3(R)p + a1 (R)(a3 (R) + 9ap*R?)(8a + 3a, (R)))}

@R\ 1
BR 722*BR*

—LH(T2R32B + R*a(32a* + 60a; (R)a + 27a3(R)) f

(64)

124010-7



RODRIGUES and SILVA

PHYS. REV. D 99, 124010 (2019)

If we consider the corrections from f(R) gravity, p(r), X(r), and L(r) are

plr) = K(B+r)? 2%

73aﬂc0 +— <l <ﬁ6j‘r3 +ﬁ2/3 <ln (B3 +r? - (/[J’_r) - 21n({/ﬁ+ r) + 2v/3tan"! ( ?/%3/_/;>>

6art 4

- (ﬂ+r3)2_r>’ (65)

2r

3aficy(2r’ — 6 . (=

L = Ojczc(z(+rr3)3 | _% (ﬂ frr 7h (ln (PP +r2 = /Br) = 2In (/B + r) +2V/3tan™! ( \@\/E>>
18ar’ 27ar* 2
MR ‘r>’ (66
_ 9apegr’ cr(2p + r8(2r - 3a) + 381 (2r — Ta) + 642 3)

M=+ iy 22+ 1) o

It is easy to see that if we take the limit ¢; — O and ¢y — 1,
we recover the results presented in Sec. Il A. From (67), we
can see that, different from general relativity, due to the
coupling with f(R) gravity, X(r) diverges in infinity.

In Einstein’s theory, the energy density from the energy
conditions is equal to the electromagnetic energy density.
When we consider f(R) gravity, these two quantities are
not the same. Here, in the energy conditions (52), we have
pM) which is the same from (18), which is always positive,
while the electromagnetic energy density is given by p,
which has negative contributions due to the coupling with
f(R) theory.

With this example, we may realize the modifications that
appear in the electromagnetic quantities because of f(R)
gravity. It is also possible to apply this formalism to the
other examples. However, as the expressions are much
|

1
R;w - _g/,wR + 8[R;mvﬂ + Raugﬂﬂ

2 - Raﬂgw

more complicated, we will do this in Appendix B, where we
obtain analytical expressions for fr, X, p, and L.

IV. REGULAR MULTIHORIZON SOLUTIONS
IN £(G) GRAVITY

In this section, we will analyze the possibility of
generalizing the solutions for f(G) theory in four dimen-
sions. The action that describes this theory is

S10) = / & /=GIR + £(G) = 22L(I)].  (68)

Varying this action with respect to the metric, we get the
field equations for f(G) theory, which are written as

- R;wgﬂa =+ Rﬂﬂgya]vavﬂfG + (GfG - f)g/w = _KZT;wv (69)

where the subscript G denotes the derivation with respect to the Gauss-Bonnet term. To analyze the energy conditions, we

rewrite the field equations as

G;w = _KzT;w - S[R;ww/i - R(ll/gﬁﬂ - R{lﬁgl/ﬂ - R;wg/}a + Ryﬂgua]vav/}fG - (GfG - f)g;w = _KzTEl?/ff)9 (70)
where the components of T,(f,,ff) may be identified by
73" = diag(p ™ (r), =pi™ (r).=pi™ (). =p™ (1), (71)

where p(if) (), p

(r), and pgeff) (r) are the effective energy density, radial pressure, and tangential pressure, respectively,

with contributions from f(G) theory. The energy conditions are given by [75]
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SEC(r) = pl®) 4 pl L 2p > 0 (72)
WEC, 5(r) = NEC,5(r) = p©® + pi5” > 0. (73)
WEC;(r) = DEC,(r) = p©) > 0, (74)
DEC,5(r) = p = pi5 > 0. (75)

e‘(Afga" +d (Afgd —4f+7r)—8fL+1)

—4e(=3d fi; + fe(a” +2d"%) = 2f%) —

As in the case of f(R) theory, it was shown that due to the
fact that the energy conditions are taken on the Einstein
tensor, the energy conditions in f(G) theory are the same as
in general relativity [80].

The nonzero components of the field equations, to a line
element as (45) with a = —b, are

r2

: +f(G) +x*p =0, (76)

e(Afga’ +d (Afgd —4f+r)+1) —4e®*(fg(d" +2a?) = 3d'f;) — 1
2
,

e(a"(8e(rfy — f) +8f +1r?) +2rd (4e f + 1) + d?(8f g + r* — 16e“(fc — rf)))

+£(G) = &*p, =0, (77)

272

Subtracting (76) from (77) we obtain

8et(e® — 1 f//
(p+p,) + % =0. (79)

As e® # 1 and e* # 0, in general, we need f’é = ( to obtain
the condition p = —p,. Consequently, f is

fo=co+cyr. (80)

As we did in f(R) theory, we need to find an expression for
r = r(G) and with that construct the functions f;(G) and

f(G) by

f(G) = coG + ¢, /r(G)dG, (81)

-0.5 -1 -1.5 -2 -2.5
2
q1

FIG. 3. Behavior of the electromagnetic Lagrangian in terms of
I associated with the solution with three horizons for r; = 0.5m,
ry = 1.5m, r3 = 16m, and [ = 20m.

+ f(G) —«x*p, = 0. (78)

|
or, in terms of the radial coordinate,

16) = [ 165 dr (82)

A. Example in the Minkowski background

In [80], the f;(G) and f(G) functions were constructed
for the models (13), (A8), and (A10) in [80], with a = 2m
and = ¢°, where, due to astrophysical constraints ¢> <
m? [97], with m being the Arnowitt-Deser-Misner mass.
We expected that the Arnowitt-Deser-Misner mass assumes
values of 10717 M 4, for primordial black holes [98] and up
to 10° M, for supermassive black holes [99]. In Fig. 4, we
plot the f(G) function that generates the solution and we
compare to the linear function. Graphically, these functions
are different, and for some range of G, the intensity of
¢y = Ois smaller. Even if there are no changes in the energy
conditions, we will get corrections for the functions p(r),
X(r), and L. These functions are given by

0
4.5x10 T g T
5 ¢;=100m ——
4x10” |

3.5%10° |
6|
@ 3x10
o
= 2.5x10° |
2x10° |

1.5x10° |

1x10°

Lix10°  1.2x10°  1.3x10° 1.4x10®  1.5x10°
m4G

1x10°

FIG. 4. Comparison between the f(G) function, that generates
the solution (13), and a linear term of G with ¢ = 0.1m.
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o) =P, 12%3
KB+ 3532\ r(B+ 1)

(483 + ar® + pri(5a - 2r) + 2671 (r — a))

2r

-z
— 4a<ln (B3 4 r2 = /Br) = 2In (3/p + r) + 2v/3tan™ ( \/%/ﬁ))) =—p,, (83)

3 _ -2
L(r) = 3:2ﬂ(,(32:— r3)ﬁ3) 3;?/2;2 (a (ln (B3 + 2 = Y/Br) = 2In (/P + r) + 2+/3tan™! ( \/5\/ﬁ>>
323254 + ar't + 281 — 12671 (r = 2a) = 28°r*(a + 6r))\ "
- r(ﬁ+r3)4 = Pt ( )
B 9apr’ dac r(2f — 41° + 6ar® + 12815 = 21apr’ + 184%r%)
Y=y SRS ' )

We realize that the results of general relativity are
recovered with ¢; — 0 since ¢, does not appear. The
constant ¢, does not appear in the equations due to the
fact that it follows the linear term in the Gauss-Bonnet
invariant, which in four dimensions does not make mod-
ifications in the field equations. Different from f(R)
gravity, X is well behaved for r - co. From Sec. II, we
know that 7 = —1(F'%)2 and X = gv/=21, which implies
the electric field and X have the same behavior in relation to
the radial coordinate so that F'° is well behaved in all
spacetimes and goes to zero in the black hole center and in
infinity. In Fig. 5, we plot the electromagnetic energy
density and pressures as functions of the radial coordinate.
The energy density presents a minimal value where the
radial pressure has a maximum, while the tangential
pressure presents the minimum and maximum. In general
relativity, normal to an electrically charged regular solution,
we have the behavior of an anisotropic fluid, but near the

400000 —
my p(r)
300000 m pAr)
m pt(r )
200000 F
100000 |
0 L
—100000 K
—200000
-300000
—400000 . . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3
rlm
FIG. 5. Behavior of the electromagnetic fluid quantities in

terms of the radial coordinate with ¢; = 1m and ¢ = 0.1m.

|

black hole center, it behaves approximately as an isotropic
fluid, which is different in f(G) gravity. Expanding these
functions near the center, we find

") 32cym 2m(=8mcym + 9v3q?)  80c,mr?
r) & _
P K2q3l’ 3\/§K2q5 K2q6
+0(r?), (86)
") 32cym 2m(8zcym —9v/3¢%)  80c,mr?
r)x —
Pr K2g3r 3\/§K2q5 K2qP
+ O(r3), (87)
B 16c,m  2m(8xcym —9v3¢?)  160c,mr?
r) &~ —
Pt K2q3r 3\/§K2q5 K2q6
+0(r?). (88)

The term that arises from f(G) theory is responsible for the
anisotropy in the black hole center. In infinity of the radial
coordinate, we get

( 16zc;m*>  16¢,m 192c1m2_’_6mq3 ) 1
r) - —
P N 2 5210 216 )
(89)
16zc,m*> 16c;m  192¢,m?>  6mg® 1
~— - - o|—= |,
p(r) \/§K2q5 + P 51215 270 + 7
(90)
pu(r) ~ = 167cm? B 16c,m  288c;m*  12mq?
t \/§qu5 K‘2 ’,.4 5K2r5 K'2 r6

+o(i> (91)
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3F r
®,7)
o(r)
2 L (Dfnf(r)
1 L
O L
-1
2}
-3 .
0 0.2 0.4 0.6 0.8 1

rlm

FIG. 6. Parameters of the equations of state in terms of the
radial coordinate with ¢ = 0.1m.

The term that is constant in infinity comes from f(G)
gravity, and it is also responsible for the isotropy in this
region. The effective quantities are the same as in general
relativity, Eq. (18), where we have isotropy in the black
hole center, and the effective energy density and the
pressures are zero in infinity. We may consider that the
effective energy density is related to the radial, tangential,

and total pressures by equations of state as p\"") = w,p(M),

L(P) =

P = wp, and (pi +2p{™") = wp ™. From

,, o, and w,;, we may extract information about the
energy conditions. If the effective energy density is
positive, the case w,, < —1 implies in the violation of
WEC, ,. However, to ,, > 1 DEC, 3 is violated. And to
,,; < —1 SEC is violated. In Fig. 6, we plot the behavior
of these parameters. We may see that o, = —1,
-1 <w, <2,and -3 < w,; < 3 so that DECj is violated
outside the event horizon, while SEC is violated inside.
As we have an electric source, it is interesting to use the
H(P) formalism, which is a dual description of the same
physical problem (for more details, see Appendix A). In
this formalism, we do not work with the electric field but
with the induction field (A1) [100]. In linear electrody-
namics, we have P*¥ = F** but here they are different by
the multiplicative term 0, L. In the nonlinear case, F 10 does
not behave as Maxwellian; however, if we consider the
displacement vector, inserting (6) in (Al), we find

PlO — 2’
}’2

(eff)

(92)

which is the same result from the linear electrodynamics.
Since we have L as a function of the radial coordinate, we
can also find an analytical expression for L(P). From (A2),
we find an expression for r(P), and with that, L(P) is
given by

_12V2apv/=PP(2/*(*V=PP + f(-P)**¢*"* + V/24")

CB2PFT 5 )

el P ) e (i)

3,85/31(‘2
12v2p%/3/—P

v —=2P

V/—2P V3 VBV3(-P)'*

_ . <_48\4/§ﬁ3p2q3/2 + 16ﬂ4(—P)11/4 + 48 23/405/52(—P)3/2q5/2 + 223/4ﬂ\/3q9/2

Va(B(=2P)* + ¢*%)

+ 2422/ —PPg? — 8\ 20 (—P)%/*q + ﬁaqllﬂ)). (93)

With that, the nonlinearity of electromagnetic theory is
clear. We comment on the model (21) and (29) with f(G)
theory in Appendix C 1. In that Appendix, we obtain the
analytical expressions for f;(G) and the electromagnetic
quantities considering (21). For the solution (29), we find
the electromagnetic quantities; however, it is not possible to
write f;(G) in a closed form.

V. CONCLUSION

In this work, we analyzed the existence of regular
multihorizon black holes in general relativity and in some
alternative theories of gravity. The method presented with
general relativity was developed earlier in [91]; however,
we fixed some misprints which influenced the energy

|

conditions. The energy density is positive in the model
(13); however, due to the presence of the cosmological
constant, we can have negative energy density in the models
(21) and (29). We realized that the electromagnetic function
X(r) goes to zero in r — co for the solution that is
asymptotically flat but tends to a constant when we consider
the solution that is asymptotically anti—de Sitter and the
solution with three horizons. The strong energy condition is
violated inside the black hole for all solutions and outside for
those that are not asymptotically Minkowski.

In modified theories, in order to satisfy all the field
equations, we did not fix the f(R) and f(G). Since we
imposed the solutions that we wanted to find, we got
the correspondent f(R) and f(G) theories and the mod-
ifications in the electromagnetic sector. Because of the
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coupling with f(R) gravity, X(r) diverges in infinity of the
radial coordinate for all solutions, while in f(G) gravity, it
diverges only for those that are not asymptotically flat
solutions. This means that in f(G) theory, the electric field
is well behaved in all spacetimes for the asymptotically flat
solution, while it diverges in f(R) theory. Since f and fg
are linear in r, we have a divergence in infinity; however,
f(R) and f(G), which are the functions that appear in the
action, do not present divergence. Because of the symmetry
a = —b, the energy conditions will be the same as in
general relativity.

Since G is topologically invariant in four dimensions, the
authors of [91] needed to consider five dimensions to find
modifications in the field equations. Here, as we considered
a nonlinear function of G in the action, we did not need to
consider high dimensions to find new regular solutions.

As we considered electric sources, we showed the non-
linear behavior of the electromagnetic theory numerically by
a parametric plot of L([). In [91], the authors used auxiliary
fields B and C to find an analytical expression for what they
called Lpcx; however, the nonlinearity of this Lagrangian is
not so clear so that we considered using the scalar P that is
related to the electromagnetic scalar to represent analytically
the electromagnetic Lagrangian in Appendix A.

We also analyzed the consequences of a # —b in
alternative theories of gravity. As this symmetry modifies
the line element, differences in the energy conditions and in
the curvature invariants are expected to appear, SO some
choices can give solutions that are not regular.
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APPENDIX A: H(P) FORMALISM

As we already mentioned, for the electric sources it is not
possible to construct an analytical closed form of r([).
However, it is still possible to find an expression for the
electric Lagrangian in terms of a new scalar P = P*'P,,,
where the field P, is defined as

P, =0,LF,,. (A1)
As the nonzero components of F,,
(0;L)7", the scalar P is given by

are proportional to

(A2)

Using this relation, we can find an expression for r(P).
Moreover, we can make the Legendre transformation of L,
which results in

H =2I0,L —L. (A3)
For a spherically symmetric line element such as (2), H, in
terms of the radial coordinate, is

e‘(ra +1) -1
H(V):%-

K°r (A4)

Since we have H(r) and r(P), from (A1), we may find the
function L(P) using an inverse Legendre transformation as

L(P) =2P0pH —H. (AS)
Considering the models (13), (21), and (29), L(P) is
V24°?)

24ap(=P) (PP -

in part by the Coordenacgado de Aperfeicoamento de Pessoal Ly(P) = K2(2p(—P)3* + V2 3/2) ’ (A6)

de Nivel Superior (CAPES), Brazil, Finance Code 001. 2q

|
Ly(P) = 24P>r3r3(rt + ryry + 13) — 6\/76] +36Pqg*rr, +4\/7qulr2(r1 +11rir, + r2) (A7)
2
Pr|r2(2\/ Pr1r2 + \/_q)
Ly(P) = — 8v=p —<{(=V=2P¢*I* + 8Pqyl’ + (V-2Pwq* — 4P5q + 30V =2PPy*)I?
(V2lg +2v/=Py)”

+2y(V=2Pg* — 8Pwq + 10V/=2PP8)l + 2Py*(5V-2Pw — 14¢))’x*} ' (¢°(2V/=2PPSq — 3v/-2P¢’

+24P2) " +2P¢°y(39¢° + 2V —-2Pwq? — 2P5q + 96/ —2PPy*)1'°
—50y)q? + 18V2(—

+ V=2PP(2ws — 291y%)q> — 8P*(5°

-2¢*(12P5q* — 3V -2Pwq’
P)3/2y25q + 1080P3y*)1°

—4¢%y(=3V=2Pq° + 51Pwq® + 2V -2PP(w* + 138)g* — 9P?* (26w — 151%)4?

+2V2(=P)52(168* — 817%w)¢?
— 24P (6w — 16y2)q® + 2V/2(—P

+ 526P3y25q — 1344+/2(—

)32 (8w? + 128% — 686wy?) g + 8P*(2wd* — 197w’

P)7/2y4)18 _ q2<3ﬁ /—2Pw*q" — 17184P*y°
—14y%8)¢*
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+ 4V2(—P)5/2 (483 + 4445y + 11072%6w)q° + 32P32 (382 — T1y2w)g? + 1720V 2(—P)52 Py*sq)l’

+ 2gy(—6V=2Pwq® + 3P(210* + 85)q" + 2V—=2PP(w? + 50(wé — 37%) — 504y%)¢°

+2P2(528% — 170?65 + 27747%w)¢° + 8V2(—P)%/2(28%w — 336y26 + 137%w?)g* + 30504P*y*5q

+ 4P3(3665wy> + 93217* — 685%)g> + 8vV2(—P)5/2Py2(437%w + 1846%)¢> — 5760v/2(—P)%/2y)[6

+ 272 (=6V=2P¢° + 240Pwq® + V—2PP(443w? + 1726)q" — 24P2(20° — 156w — 444y%) ¢S

+ 2V2(—P)52(7160* + 6138w + 20852)¢° — 8P3(19852w — 9772 w? — 3070y28)q*

+ 12V2(=P)3/2P(1208° 4 11346wy* + 40677*)g® 4 32P*y2(6918% + 1101y%w)q?* + 5160V 2(—P)*y*wq
+ 21600P5y%) 5 + 4Py* (1144® + 8267/ —2Pwq’ — P(1207w? — 3088)4°

+ 2V =2PP(150° + 109480 + 6618y%)q° — 2P2(10315w* + 1685 + 6338y%w)q*

+ 8V2(—P)/2(3929y%5 + 82972 w* + 4485%w)q> + 4P3(4888° — 3693y* + 34306wy?)¢>

+ 120V2(=P)5/2Py2(5652 + 1157%w)q + 19800P*y*5)1* + 4Py*(780v/-2Pq" — 4784Pwq’
+V/=2PP(37205 — 881w?)g° — 8P2(188w> + 17036w + 4656y%)q*

+ 2V2(—P)%/2(18836w* + 43645 + 703072w)q> + 8P (8282w — 487y2w* — 3990y25) 4>
+40V2(=P)32P(628° + 152y* + 5436wy?)q + 2400P*2(58% + 3y%w)) P + 8Py (—24364°

— 2898V -2Pwq’ — P(36430* + 105446)g* + 67/ =2PP(250? + 2906w — 1414y%) g3

— 2P2(354868% + 138760 + 857472w)q* + 120V2(—P)5/2(346%w + 37y2w* + 49y26)q

+ 600P35(282 + Tyw)) 2 + 8P5(=3822V=2Pg> — 2464Pwq* + V2(—P)¥2(1775(w? — 26) + 1024268)¢°
— 8P2(1500° + 1553w + 294y2)q* + 210V/2(—P)¥2(1350? + 86% + 872w)q + 600Pw (28 + wy?))!

+ 16P3)7(20584* — 24507/ —2Pwq® — TP(2750* + 845)¢* + 10vV/—2PPw(250* + 428)q

+ 150P%®%5)). (A8)

With that, the electromagnetic Lagrangian associated with (13), (21), and (29) is not linear in the scalar P and does not
behave as Maxwellian for P ~ 0.

APPENDIX B: CORRECTIONS FROM f(R) THEORY

In this Appendix, we will write the expressions for p(r), L(r), and X(r) with the corrections from f(R) gravity for the
models (21) and (29).

1. Example in the anti-de Sitter background

Inverting (22), we find the expression for r(G) and with

a(R) = 3\/§(r%r§(r1 + 19)*(Rrry = 12)*((2R(54Rr5 = 17)r3 + 15)r + 4r,(117 — 665Rr3)r}

+2r3(8229 — 17Rr3)r} + 468r3r; + 15r3))1/2, (B1)
a3(R) = (9R(6Rr3 — 1)r3 + 4)r, (B2)
ay(R) =(r; + r2)*(a3(R) + 2r,(62 — 657Rr3)ri + (8016 — ORr3)r3r3 + 12413 r) + 413), (B3)

fr(R) is
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ci(ay(R) —y(R))™ [
\/6(R’”1 ry—12)
+ (4i(i + V3)3/2a5(R) — 2a4(R) — r2(18R(3R(6Rr4 — 41472 + (1 — iv/3)y/2a,(R) — 2a4(R))
+6902)r2 + 9i(i + V3)R3/2a5(R) — 2a4(R) + 24640)) 7S + 4r,((3R(918RF2
+9i(i + V3)R{/2a5(R) — 2a4(R) — 21364)r% 4 333(1 — iv/3)R/2a,(R) — 2a4(R) + 115876)r3
+33i(i + V3)v/ 25 (R) = 2a4(R))r} + (—=162Rr8 + 18iR(3(i + \/5 /> (R) — 2a4(R)R + 6902i) 75
+2(1323(1 — iv/3) /20, (R) — 204 (R)R + 487888) 73 — 3iy/2a,(R) — 2a4(R)
X (=i + V3)R/2a5(R) — 2a4(R) — 2756(i + v/3))r2 4+ 2(1 + i\@)(zaz(k) — 2a,(R))*3)r
+ 21, (1980R 7S + 2(333(1 — ivV/3) /25 (R) — 2a4(R)R + 115876)r3 — i/2a,(R) — 2a4(R)
x (3(=i + V3)Rv/ay(R) — 2a4(R) — 8140(i + /3))r3 4+ 22(1 + iV/3)(ay(R) — 2a4(R))*3)r}
+ (12Rr8 + (9(1 = ivV/3)R{/2a5(R) — 2a4(R) — 24640)r5 — 3iy/a»(R) — 2a4(R)
x (=i + V3)RY/ar(R) = 2a4(R) — 2756(i 4+ v/3))r4 4 6(az (R)R
+14(1 +iV3) (203 (R) = 2a4(R))*3)r3 + 4ay(R))r} — 4(68r] + 33(1 = iv/3)3/2a5(R) = 2a4(R)r3
— 11i(=i + V/3)(2a3(R) = 2a4(R))**13 + 16, (R) ) ry — 16r2 +2(1+ i\/§)r3(2a2(R) —2a4(R))*?
+ 472, (R) 4 4i(i +V3)r83/2a5(R) — 2a4(R) + (—V/3i + 1)ay(R)/2a,(R) — 2a4(R)]'"/>. (B4)

fR(R) =

—2(3Rr3 + 2)a3(R)r} — 8ry(9R(9RF3(Rr3 — 17) — 55)r5 + 34)r]

Integrating this expression with respect to the curvature scalar, we obtain the f(R) function. The corrections to p, L,
and X are

co(=3rt + 2 (r; —4riry 4+ 13) + 3r o (r] + rira + 13)) n 1

r
F) = =3(ry + ry)?tan™!
Pr) Kzl’lrz(r2+”1’”2)2 Kz(r1r2)3/2< n 2) (W)

VI (P +13) + Prir (3 + 2rry + 313) = 21313)
+ g - : (BS)
r(r* +ryry)
L(r) = co(3r° + 9r*r iy + PPriry(rF + Uriry + 13) = 3r33(r3 + ryry + 13))
B K2riry(rr 4 rirp)?
N | VIR (r} +3riry + 13) + rriry(2r + Ty +213) = 37273 53(rt + ryiry 4+ 13) + i)
K2 (rirp)3? r(r* 4 rir)?
3 2pan! [ —L , B6
+ 3(ry + ry)*tan (\/ﬁ\/ﬁ (B6)
4 202
cor*(ry +1rp)*(r* + 5r11y) cir 6072 2 4 > 2
X(r) = 2 3 2 3 2 3 2
(r) ) Pl R (r°(2rf 4+ 3ryry + 2r3) + 3r*ryry(2r7 + 31115 + 213)
) )

The electromagnetic energy density tends to a constant in infinity, while X(r) diverges due to the presence of c;.

2. Regular black hole with three horizons

As naturally the expressions for the solution with three horizons are more complicated, we expect that the f(R) function
that generates this model is not simple. Choosing

as(R) = 41 + 3Ry[> — 4wl + 28y, ag(R) = =3y? + 651 — 2Iy*R + 15y,
a;(R) = 31 —4Ry? — 3wl — 54y, ag(R) = 1P + 2Ryl*> — wl + 22y,
ag(R) = 126 + y>R + 241y, (B8)
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the fx function is

cy ag ar (P — wl = 2y) V2
fr=cot—7=9-775 YT TE 2 2 p2
AU IRE+12) | 3PRET 122 3R(RE+ 12
+ 2772 (RI> 4+ 12)a2 + 181y asagas + 2717 aZag + (v* (y(dyad — 362y (RI> + 12)asag + 27 aday
+ 18lagagas + 2712(RI? + 12)a2)* — 16(3y 2 (R + 12)ag + 3agagl + ya2)3))V/?)1/3
222/3}/
MEYITYE
32(RE + 12)
+ 18ly%asagag + 271%y*adag + (7 (y(4yad + 18lagasas + 271 agag + 2717 (RI? + 12)a?
207(1 — wl —2y)
32(RE + 12)?

) (4y3ad = 367° Pas(RI> + 12)ay

(3(RP + 12)yagl* + 3lagag + ya2)(4y3ad — 361273 (R + 12)asag + 27127 (R + 12)a?

—36%7(RI? + 12)agas)? — 16(3y(RI? + 12)agl? + 3agagl + ya§)3))1/2)—1/3} v + {
R
3(RPP +12)
+ (P} (r(18lagagas — 361> (RI> + 12)yagas + dyad + 2712 (RI> + 12)a? + 27Pd%ag)?
2023y
32(RE 4 12)
x (43ad + 18ly2asagag + 272 (RI> + 12)yak + 27y agay + (v* (y(18lagagas — 3612 (RI> + 12)yagas
+27(RI? + 12)02 + 4yad + 2712%ag)? — 16(3Py(RI> + 12)ag + 3agagl + yaz)3))1/2)~1/3
~ 2 ar (P — wl —2y) N V2 (4
P(RP +12)3 32(RP +12)>  3P(RI +12) S
—362(RI? + 12)3asay + 271> (RI*> + 12)}/20% + 181y asagag + 2712y2a§a9 + (y3(y(4yag + 18lagagas
—=3612(RI> + 12)yagas + 2712 (RI? + 12)a2 + 2712 a3ag)? — 16(3(RI + 12)yagl? + 3agagl + ya2)3))/2)1/3
2223y
T 3pRE T 12)
+ 18ly%asagag + 27127702 s + (¥ 3y (47/052 + 18lagagas — 3612 (RI? + 12)yagas + 2712 (RI> + 12)a§

-1/271/2Y 1/2
+27Padag)? — 16(3(RI> + 12)yagl? + 3agagl + ya2)?))V/?)- 1/3> } } . (B9)

(473ad = 36173 (RI> 4+ 12)asag + 2712 (RI? + 12)y%a2 + 181y asagas + 271> adag

—16(3(RI? + 12)yaol? + 3agagl + yaz)3))/2)1/3 — (3(R> + 12)yagl?> + 3agagl + ya?)

(—af + 2(RI> + 12)yasag + 2I(RI> + 12)2ya6)<

(3(RP> + 12)yagl> + 3agagl + ya2)(4y*ai — 3617 (RI? + 12) asag + 2717 (RI> 4+ 12)ya?

The corrections to the electromagnetic quantities are

(lr+)

€1 _ l VIy
+ S2EIL (—3(313}/ + 126 — lyw — 3y*)tan™! <\/;r> R (5Pr% + 3144 (r?6 + 4¢?)

p(r) = s (Pri+ 3Py + 1(3r° = o — r’6 4+ 6w?) + y(7r* = 5w + 35))

+ Briy(5rtw + 8126 + 3y?) + Py*(7r® + 16r*w — 3126 + 4y%) + 31r*3 (8% + o) + 9r2y4)> , (B10)
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L(r)=— 7(11 i (P38 + 16— 6r%92) + 2y (615 + r*w — 4176 + 37%) + P2(21r* — 107w + 36))
rr+y

Oyt 3rP(11° + o

rt 3 )

P [

fof) 3r?
+ —2K2(l}’2 7 <7l4r7 + B (76 + 25)/) + P2 (r*ow + 11726 + 39y%) +

338y + 126 — lyw — 372) (I + 7)*tan™ (\ﬂr)
+ 572,372
7 (=r® + 31w — 326 + 2yz)>

+ lry(=1® + 51w + 29726 — y?)

: (B11)
cor
2(Ir? +y)*

cyr
e )
— 72 (167° — 6r*w + ¥?)). (B12)

X(r) = (I4r* + 4Py + P(—=r*w — 2126 + 15p%) = 21y (r* + 47w — 56) + y* (50 — 147?))

(l4r8 +4Pr%y =28 (rBw — 6r*y?) — 4lrty (r® + 2rfw — 3125 + 1?)

We get the same conclusions as the anti—de Sitter model.

APPENDIX C: CORRECTIONS FROM f(G) THEORY

This Appendix is dedicated to the corrections from f(G) gravity in p(r), X(r), and L(r).

1. Example in the anti-de Sitter background
From (24), we can find r(G), and using

B1(G) =24 - Grir, (C1)

B>(G) = 243G r4r12 + 3024Gr3r!! 4 108/2(127Gr — 68)r10 4+ 1613 (1971Gr — 5309) 19
+ 6r4(6867Gr% — 62192)r8 + 48r3(657Grs — 17617)r] + 4r5(3429Gr} — 275032)r8
+4877(63Gr% — 17617)r3 + 3r3(81Grs — 124384)r4 — 849441353 — 734471072, (C2)

B3(G) = 27G*r5(256Gr + 81)r!3 4+ 216G2r5(128Gr + 267)r12 4 36Gr3(1152G/8 — 3307Gr — 3096) !
+72(384G3r12 — 12857G2r8 — 40212G 4 + 96)r10 + 18r,(384G3r12 — 83079G2rS — 383392G 4 + 88576)r
— 8r2(115713G78 + 624716Gr — 4689984)r8 — 473(29763G2r + 523184Gr4 — 35735424)
+ 8r3(7209G? 18 — 624716G % + 34942560) 78 + 3r3(729G*r8 — 2300352Gr + 116347904) 73
—96r5(30159G 4 — 2911880)r4 — 96/1(1161Gr — 1488976)3 + 375198721812 + 1594368+3r,

+ 691271, (C3)
3
(G) = \/ﬂz(G) + 3\/§\/r?r3(rl +12)°B5(G), (C4)
55(G) = 8v/2r1 121 (G) (973 + 297,15 + 9rF — 9B, (G)ryry) (ry + r2)4’ (C5)
P4(G)
Bs(G) = 3G?r3r] + 10G?r5r$ + Gr3(3Grs — 148)r] + (8 — 488Gr3)r} — 4r,(37Gr3 — 464)r; + 60007312
+ 1856r3r) + 874, (Co)

we write

124010-16



REGULAR MULTIHORIZON BLACK HOLES IN f(G) ... PHYS. REV. D 99, 124010 (2019)

91

2 2 2 )2
fe(G) = 00+W{4(r1 +1,) —2r1”2ﬂ1(G)—\/;[—ﬂ5(G) —6((ry + 1) = p1(G)riry)

2(1+227)p5(G)

= 2r1 1B (G)(16(ry + r2)? = 3B1(G)ryr2) + 2%38,(G)By(G)]' /> + {—

3
_ 8V6fs(G)(r) + r)?
V=B5(G) + 6(2(r) + 1r2)> = B1(G)ri1r2)? + 211181 (G)(16(r) + 1,)? = B1(G)riry) — 223, (G)B4(G)
.o 12 1/2
#8020+ 2 =BG + TR (16l + = 3 (G| | ()

The electromagnetic functions are

B3+ —Arr + 1)+ 3nn(rt+rn+3) o 2 6
= - 3r + 16rir, + 18rir3
pr) K2riry(rt + riry)? 2 \rr3ry(rr +rir)? (r°(3r) i i
+ 16rlrg + 3r§) + 8r4r1r2(r% +rir+ r%)(r% +5rr + r%) + rzr%r%(—?)r‘]‘ + Sr?rz - Zr%r% + 8r1r% — 3r§)
6(r2 —r3)? r
+ 84 (P 4 i+ )+ — 2 tan [ —— , C8
1 2( 1 172 2)) FZ/ZVZ/Z m ( )
L(r) = 3r° + 9rtriry + Py (i + Ly +13) =3rin(ri +nin+r3) o 2 (PAAGH + 857
K2riry(rr +rr)? K2 \rrir3(rt +rir)?t 172 !
+ 267315 + 81173 + 3r3) — r8(r? + 13) (31 + 8ryry + 373) — r4r3r3 (297 + 10873 r, + 1347313
+ 108773 +2973) — rOr ry (117} + 32737y + 261273 + 321173 + 1179)
6(r —r3)? r
—4rr(P i+ r3) - ———Ftan" ' [ —— ) ). (C9)
(1 +nn 1) - =t e
rH(ry + 1) (r* + 6121 1y + 5r313) 8¢
X(r) = 172/ 4 ! 9212 4 37,7y + 212) + 41T r 1o (202 + 37,7y + 272
(r) K2y (rr 4 rirm)? K2rir3(rr +ryry)? (rP2ri +3r1ry +2r3) +4r'nn(2ri + 311, +2r3)

—riry(6rf + 131 ry + 207313 + 13r 13 + 6r%) + 23 i 3 (3rd +4ryry + 3r3) + refry (ri + riry +13)). - (C10)
The functions p(r) and L(r) are well behaved while X(r) diverges in infinity. The modifications came from the nonlinear

terms of the f(G) function since we do not have the presence of c.

2. Regular black hole with three horizons

We are not able to find an analytical form of (G); however, we still can find the corrections to the electromagnetic theory,
which are

B Brt+382yr?* +y(7r* = 50r? +358) + 1(3r% — wr* — 6r* + 6y?)
N (1 + )%

p(r)

Ci
K2 (4141”)/3(11”2 +7)?
+ 207y (=38 — 117?)r® + 7(58% — 6wy?)r* + 288y25r> + 273y*)r* + 105782 + 101y7 (497* + 3w)r?
+ 2y5(896r* + 140wr? — 3(w* + 26))r* + 219> (3957° + 128wr* — 7(w? + 28)r* + 3(6w — Ty?))r?
+ 1572 (3(@? + 26)r® — 4(76w + 31y%)r0 + 128(8% — wy?)r* + 524y%6r + 181y*)r?
+ B4 (151710 4 500078 — 128(w? + 28)7° + 4(396w — y?)r* — 5(38% + 227%w)r? + 64y%9)
+ 2Py (49010 + T(w? — 26)r® — 32(26w + 572)r® + 3(318% + 14y%w)r* — y?6r + 64y%)]

3(257%18 + 22y68 + (56° — 6y%w)1* — 2y (6w — Ty*) P + y*(w0* + 28) 1> — 1073wl — 35y*)tan™! (%)

1. (C11)
4[9/2y7/2

[7501%2r10 + 2199(3367% + 1757%)r® + 13(3(58 — 6cwy?)r* + 308y%6r% + 640y*)r®
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(3r8 + 61 — 6212 2 + 2y(67° + wr* — 461> + 3y*) 1 + y?(21r* — 100wr? + 35)

L(r) = - (lr2 +7)4’<2

C 1
K2 \alry3(1r* +y)°

(7502112 + 11066612 + 42572)r'0 + 1°(3(56% — 6wy?)r* + 374y25r> + 990y*)r8

+ By(=2(36w — 572)r° + 17(58% — 6wy?)r* + 852y25r> + 12509*)r® + I'y*(3(w? + 268)r®

—2(178w + 11y?)r® + 6(335% — 46cwy?)r* + 1036y26r* + 919y*)r* 4+ 105¢7r2 + 51411972 + 6w)r?

+ Py7(13867* + 170wr? — 3(w? + 25))r? + Py®(1686r° + 396wr* — 17(w?* + 28)r? + 6(5w — Ty?))r?

+ %3 (34wr'® + 17(0* 4 26)r® + 12(36w — 11y?)r® + (5857 — T48wy?)r* + 1482y25r* — 267y*)r?

+ (173710 + 1716007 — 398(w? + 28)r° + 2(177w8 + 121y2)r* = 3(58% + 58wy?)r? + 32y%5)

+ By*(23r'% + 2140r'0 + 270(0? + 26)r® — 4(217w8 + 225y%)rS + 5(1118% — wy?)r* — 258y%6r> + 64¢)]

+

3257710 + 22y + (55* = 6y%w) I = 27 (60 = T*)P + 1 (@ + 26) 12 = 107wl — 35* )tan ™! (L)

r4

G
cr
(Ir* +y)%%?

X(r)

419/27/7/2

),(cu)

7 (l4r4 +4Pry + lz(—r4a) —2r%5 + 15}/2) - 217/(1’4 + 470 — 568) + yz(Sa) - 14r2))

(=814(r® = 6r% + 2y%)r® — 16PPy (315 — wr* — 61 + 3y?)r* + 162 (wr'® — 3 (6w + 3y?)r®

+ (48% + 1awy®)r* —15¢26r + 9y*)r? + 8y%(24r'0 — 300wr® + 8(w? + 28)r® — 3(2w5 + 3y*)r* + 2y*wr?

+728) + 161y (2r'? + 60r'® — 6(w? + 28)r® + (145w + 9y?)r® — 3(26% + 3y%w)r* + 5y%6r> + ).

The conclusions are the same as the previous example.
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