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In this paper, we are eager to construct a new class of (nþ 1)-dimensional static magnetic brane
solutions in quasitopological gravity coupled to nonlinear electrodynamics such as exponential and
logarithmic forms. The solutions of this magnetic brane are horizonless and have no curvature. For ρ near
rþ, the solution fðρÞ is dependent on the values of parameters q and n, and for larger ρ, it depends on the
coefficients of LoveLock and quasitopological gravities λ, μ, and c. The obtained solutions also have a
conic singularity at r ¼ 0 with a deficit angle that is only dependent on the parameters q, n, and β. We
should remind the reader that the two forms of nonlinear electrodynamics theory have similar behaviors on
the obtained solutions. At last, by using the counterterm method, we obtain conserved quantities such as
mass and electric charge. The value of the electric charge for this static magnetic brane is obtained as zero.
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I. INTRODUCTION

Both modified theories of gravity and nonlinear electro-
dynamics theory are marvelous subjects that can solve
many problems. Models of modified gravities can find a
way to unify the early-time inflation [1] and late-time
cosmic speed-up [2,3], and also they can make a natural
gravitational alternative to dark energy. These models also
describe four cosmological phases [4,5], the hierarchy
problem, and the unification of grand unified theories with
gravity, which are theories in high-energy physics [6]. fðRÞ
gravity is one model of modified gravities in which we can
find the galactic dynamics of massive test particles without
the need of dark matter [7,8]. In another kind of modified
gravities in which violation of the equivalence principle is
obvious, the matter Lagrangian density is coupled to an
arbitrary function of scalar curvature R [9]. Another new
kind of modified gravities is quasitopological gravity,
which is similar to Lovelock theory with more benefits.
As Einstein’s equations are not the most complete ones in
higher dimensions (n > 4) and they cannot satisfy
Einstein’s assumptions [10,11], so quasitopological gravity
is a higher-derivative theory that can solve these problems.
This gravity consists of cubic and quartic terms of the
Riemann tensor and has no limitation on dimensions higher
than 5 because its terms are not true topological invariants.
As this gravity yields to at most second-order field
equations, this results in the quantization of linearized
quasitopological theory being free of ghosts.

On the other side, there are some motivations to consider
nonlinear electrodynamics theory. First, it can remove
infinite self-energy of point-like charges. Second, it can
describe complex systems and chaotic phenomena and
behaviors of the compact astrophysical objects such as
neutron stars and pulsars. Third, it has compatibility with
AdS=CFT correspondence and string theory frames and
fourth, it can describe pair creation for Hawking radiation
[12–14]. Nonlinear electrodynamics theory has also been
used in applications in cosmological models [15], such as
the description of the inflationary epoch and the late-time
accelerated expansion of the Universe [16]. This theory has
also been successful in finding the first exact regular black
hole solutions with a nonlinear electrodynamic source
satisfying the weak energy condition [17]. Nonlinear
electrodynamics theory has different types, the Born-
Infeld type of which is the first one. The Born-Infeld form
is so important because it naturally comes in the low-energy
limit of the open string theory and has applications to the
description of D-branes and AdS=CFT correspondence
[18]. We can name exponential [19] and logarithmic
[20] Lagrangians as the other types of nonlinear electro-
dynamics theory, which are defined as

LðFÞ ¼
(
4β2½expð− F

4β2
Þ − 1�; EN

−8β2 ln½1þ F
8β2

�: LN:
ð1Þ

β is the nonlinear parameter with dimension of mass, and
F ¼ FμνFμν, where Fμν is the electromagnetic field tensor
that is determined as Fμν ¼ ∂μAν − ∂νAμ and Aμ is the
vector potential. We should note that these two Lagrangians
reduce to the linear Maxwell Lagrangian as β → ∞. Like
Born-Infeld nonlinear electrodynamics, the logarithmic
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form can remove the infinity of the electric field at the
origin [21]; however, the exponential form cannot cancel
this infinity, but it causes a weaker singularity than the one
in Einstein-Maxwell theory [22].
The idea of using modified gravities with nonlinear

electrodynamics theory can be so interesting and has been
studied in many papers. For example, fðRÞ gravity in the
presence of nonlinear electrodynamics has been successful
in describing the phenomena such as power-law inflation
and late-time cosmic accelerated expansion due to breaking
conformal invariance of the electromagnetic field through a
nonminimal gravitational coupling [23]. Similar investiga-
tion has been also done in Ref. [24], in which the conformal
invariance is not broken. Dilaton black holes and dilaton
black branes with nonlinear electrodynamics in four and
higher dimensions have been studied in Refs. [21,22].
Topological and anti-de Sitter (AdS) black holes in
Lovelock-Born-Infeld gravity have also been studied in
Refs. [25,26]. Third-order Lovelock black branes in the
presence of a nonlinear electromagnetic field have been
also investigated in Ref. [27]. Magnetic brane solutions of
Lovelock gravity with nonlinear electrodynamics have
been obtained in Ref. [28].
Recently, quasitopological gravity in the presence of

nonlinear electrodynamics has been studied in many
papers. For example, Lifshitz quartic quasitopological
black holes in the presence of Born-Infeld electrodynamics
have been studied in Ref. [29]. A review of quartic
quasitopological black holes with the nonlinear electro-
magnetic Born-Infeld field is also presented in Ref. [30].
Some of us have also studied the solutions of cubic
quasitopological magnetic branes in the presence of
Maxwell and Born-Infeld electromagnetic field in
Ref. [31]. Magnetic branes are attractive because their
solutions are horizonless and have a conical geometry.
They are also flat everywhere except at the location of the
line source. Now, we have a decision to take a further step
and study the solutions of (nþ 1)-dimensional magnetic
branes with exponential and logarithmic nonlinear elec-
trodynamics in quartic quasitopological gravity.
The structure of this paper is as follows. In Sec. II, we

begin with the metric of a horizonless spacetime and an

action including nonlinear electrodynamics and quartic
quasitopological theories. Then, we obtain equations and
solutions. In Sec. III, we investigate physical structure and
behavior of the obtained solutions, and in Sec. IV, we
obtain conserved quantities using the counterterm method.
At last, in Sec. V, we write a brief result of the obtained data
from this magnetic brane.

II. GENERAL FORMALISM

To have magnetic solutions with no horizons, we start
with a metric with characteristics ðgρρÞ−1 ∝ gϕϕ and gtt ∝
−ρ2 instead of ðgρρÞ−1 ∝ gtt and gϕϕ ∝ −ρ2. So, the
(nþ 1)-dimensional metric of a horizonless spacetime with
a magnetic brane interpretation is written

ds2 ¼ −
ρ2

l2
dt2 þ dρ2

fðρÞ þ l2gðρÞdϕ2 þ ρ2

l2
dX2; ð2Þ

where l is a scale factor that is related to the cosmological
constant Λ. dX2 ¼Pn−2

i¼1 is a (n − 2)-dimensional hyper-
surface with the form of a Euclidean metric in volume Vn−2.
ρ and ϕ are, respectively, the radial and angular coordinates
at which ϕ is dimensionless and has the range 0 ≤ ϕ < 2π.
The (nþ 1)-dimensional action in the presence of

quartic quasitopological gravity and nonlinear electrody-
namics theory is

Ibulk ¼
1

16π

Z
dnþ1x

ffiffiffiffiffiffi
−g

p f−2Λþ L1 þ λ̂L2 þ μ̂L3

þ ĉL4 þ LðFÞg; ð3Þ

where Λ ¼ −nðn − 1Þ=2l2 and g is the determinant of the
metric (2). Einstein-Hilbert, Gauss-Bonnet, cubic, and
quartic quasitopological Lagrangians are, respectively,
defined as

L1 ¼ R; ð4Þ

L2 ¼ RabcdRabcd − 4RabRab þ R2; ð5Þ

L3 ¼ Ra
c
b
dRc

e
d
fRe

a
f
b þ 1

ð2n − 1Þðn − 3Þ
�
3ð3n − 5Þ

8
RabcdRabcdR − 3ðn − 1ÞRabcdRabc

eRde

þ 3ðnþ 1ÞRabcdRacRbd þ 6ðn − 1ÞRa
bRb

cRc
a −

3ð3n − 1Þ
2

Ra
bRb

aRþ 3ðnþ 1Þ
8

R3

�
; ð6Þ

L4 ¼ c1RabcdRcdefRhg
efRhg

ab þ c2RabcdRabcdRef
ef þ c3RRabRacRc

b þ c4ðRabcdRabcdÞ2
þ c5RabRacRcdRdb þ c6RRabcdRacRdb þ c7RabcdRacRbeRd

e þ c8RabcdRacefRb
eRd

f

þ c9RabcdRacRefRbedf þ c10R4 þ c11R2RabcdRabcd þ c12R2RabRab

þ c13RabcdRabefRef
c
gR

dg þ c14RabcdRaecfRgehfRgbhd; ð7Þ
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where

c1 ¼ −ðn − 1Þðn7 − 3n6 − 29n5 þ 170n4 − 349n3 þ 348n2 − 180nþ 36Þ
c2 ¼ −4ðn − 3Þð2n6 − 20n5 þ 65n4 − 81n3 þ 13n2 þ 45n − 18Þ
c3 ¼ −64ðn − 1Þð3n2 − 8nþ 3Þðn2 − 3nþ 3Þ
c4 ¼ −ðn8 − 6n7 þ 12n6 − 22n5 þ 114n4 − 345n3 þ 468n2 − 270nþ 54Þ
c5 ¼ 16ðn − 1Þð10n4 − 51n3 þ 93n2 − 72nþ 18Þ
c6 ¼ −32ðn − 1Þ2ðn − 3Þ2ð3n2 − 8nþ 3Þ
c7 ¼ 64ðn − 2Þðn − 1Þ2ð4n3 − 18n2 þ 27n − 9Þ
c8 ¼ −96ðn − 1Þðn − 2Þð2n4 − 7n3 þ 4n2 þ 6n − 3Þ
c9 ¼ 16ðn − 1Þ3ð2n4 − 26n3 þ 93n2 − 117nþ 36Þ
c10 ¼ n5 − 31n4 þ 168n3 − 360n2 þ 330n − 90

c11 ¼ 2ð6n6 − 67n5 þ 311n4 − 742n3 þ 936n2 − 576nþ 126Þ
c12 ¼ 8ð7n5 − 47n4 þ 121n3 − 141n2 þ 63n − 9Þ
c13 ¼ 16nðn − 1Þðn − 2Þðn − 3Þð3n2 − 8nþ 3Þ
c14 ¼ 8ðn − 1Þðn7 − 4n6 − 15n5 þ 122n4 − 287n3 þ 297n2 − 126nþ 18Þ: ð8Þ

λ̂, μ̂, and ĉ are, respectively, the parameters of Gauss-Bonnet, cubic, and quartic quasitopological Lagrangians

λ̂ ¼ λL2

ðn − 2Þðn − 3Þ ; ð9Þ

μ̂ ¼ 8μð2n − 1Þl4
ðn − 2Þðn − 5Þð3n2 − 9nþ 4Þ ; ð10Þ

ĉ ¼ cl6

nðn − 1Þðn − 3Þðn − 7Þðn − 2Þ2ðn5 − 15n4 þ 72n3 − 156n2 þ 150n − 42Þ : ð11Þ

The magnetic field is associated with the angular component Aϕ. So, we introduce the gauge potential for the static
solutions as

Aμ ¼ hðρÞδϕμ : ð12Þ
Using the above relations in action (3) and integrating by parts, we can get the action

S ¼ n − 1

16πl2
×
Z

dnx
Z

dρNðρÞf½ρnð1þΨþ λΨ2 þ μΨ3 þ cΨ4Þ�0 þ
8<
:

4β2l2ρn−1

n−1

h
exp
�
− h02

2l2β2N2ðρÞ
�
− 1
io

; EN;

− 8β2l2ρn−1

n−1 ln
h
1þ h02

4β2l2N2ðρÞ
io

; LN;
ð13Þ

where ΨðρÞ ¼ − l2

ρ2
fðρÞ, gðρÞ ¼ N2ðρÞfðρÞ, and the prime shows the first derivative with respect to ρ. EN and LN are,

respectively, the abbreviation of exponential and logarithmic nonlinear. Varying this action with respect to function ΨðρÞ
leads to the equation

f1þ 2λΨðρÞ þ 3μΨ2ðρÞ þ 4cΨ3ðρÞgN0ðρÞ ¼ 0: ð14Þ
The above equation shows that NðρÞmust be a constant value, which we choose NðρÞ ¼ 1. By varying the action (13) with
respect to the functions NðρÞ and hðρÞ and using the obtained condition NðρÞ ¼ 1 [or fðρÞ ¼ gðρÞ], we get the equations

fðn − 1Þρnð1þΨþ λΨ2 þ μΨ3 þ cΨ4Þg0 þ
8<
:

4ρn−1ðl2β2 þ h02Þ exp
�
− h02

2l2β2

�
− 4l2β2ρn−1 ¼ 0; EN;

−8β2l2ρn−1 ln
�
1þ h02

4β2l2

�
þ 4ρn−1h02

�
1þ h02

4β2l2

�
−1 ¼ 0; LN;

ð15Þ
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and

8>><
>>:
�
ρn−1h0 exp

h
− h02

2l2β2

i�0 ¼ 0; EN;�
ρn−1h0

�
1þ h02

4β2l2

�
−1
�0 ¼ 0; LN:

ð16Þ

If we solve Eq. (16), we get the electromagnetic field

Fϕρ ¼ h0 ¼
8<
:

lβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−LWð−ηÞ

p
; EN;

2qln−2

ρn−1
ð1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p Þ−1; LN;

ð17Þ

where η ¼ q2l2n−6

β2ρ2n−2
and q is the constant of integration. LW

is the Lambert function that has the following series
expansion:

LWðxÞ ¼ x − x2 þ 3

2
x3 þ � � � : ð18Þ

If we expand Fϕρ for large β, we get

Fϕρ ¼
qln−2

ρn−1
þ

8>><
>>:

q3l3n−8

2β2ρ3n−3
þO

�
1
β4

�
; EN;

q3l3n−8

4β2ρ3n−3
þO

�
1
β4

�
; LN;

ð19Þ

where the first term is the electromagnetic field of the
magnetic brane in the presence of linear Maxwell theory in
higher dimensions [31] and the next terms are the correc-
tions to the electromagnetic field, in the presence of
nonlinear electrodynamics. By remembering that the vector
potential Aϕ is only dependent on coordinate ρ, we get to
the relation Fϕρ ¼ −∂ρAϕ that by solving it, we obtain

Aϕ ¼

8>><
>>:

− n−1
n−2 lβ

�
ln−3q
β

� 1
n−1ð−LWð−ηÞÞ

n−2
2ðn−1Þ
n
2F1

�h
n−2

2ðn−1Þ
i
;
h

3n−4
2ðn−1Þ

i
;− 1

2ðn−1ÞLWð−ηÞ
�
− n−2

n−1 exp
�
− 1

2ðn−1ÞLWð−ηÞ
�o

; EN;

qln−2

ðn−2Þρn−2 3F2

�h
n−2

2ðn−1Þ ;
1
2
; 1
i
;
h

3n−4
2ðn−1Þ ; 2

i
; η
�
: LN:

ð20Þ

As β → ∞, we get

Aϕ ¼ qln−2

ðn − 2Þρn−2 ; ð21Þ

which is the (nþ 1)-dimensional vector potential of Maxwell theory [31]. Using Eq. (17) in Eq. (15) leads to the relation

cΨ4 þ μΨ3 þ λΨ2 þΨþ κ ¼ 0; ð22Þ
where κ is

κ ¼ 1 −
M

ðn − 1Þρn

þ

8>>>>>><
>>>>>>:

− 4l2β2

nðn−1Þ −
4ðn−1Þβqln−1
nðn−2Þρn

�
ln−3q
β

� 1
n−1ð−LWð−ηÞÞ

n−2
2ðn−1Þ × 2F1

�h
n−2

2ðn−1Þ
i
; ½ 3n−4

2ðn−1Þ
i
;− 1

2ðn−1ÞLWð−ηÞ
�

þ 4βqln−1

ðn−1Þρn−1 ½−LWð−ηÞ�12 × ½1þ 1
n ð−LWð−ηÞÞ−1�; EN;

8ð2n−1Þ
n2ðn−1Þ β

2l2½1 − ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p � − 8ðn−1Þq2l2n−4
n2ðn−2Þρ2n−2 2F1

�h
n−2

2ðn−1Þ ;
1
2

i
;
h

3n−4
2ðn−1Þ

i
; η
�
− 8

nðn−1Þ l
2β2 ln

h
2−2

ffiffiffiffiffiffi
1−η

p
η

i
; LN;

ð23Þ

andM is the integration constant and is related to the mass of this magnetic brane. In the above solution, we have used the
following relation for the Lambert function:

LWðxÞeLWðxÞ ¼ x: ð24Þ
To have real solutions for Eq. (22), the condition

Δ ¼ H2

4
þ P3

27
> 0 ð25Þ
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should be satisfied, and P and H are defined as

P ¼ −
α2

12
− γ; H ¼ −

α3

108
þ αγ

3
−
β2

8
; ð26Þ

where α, β, and γ are

α ¼ −3μ2

8c2
þ λ

c
; β ¼ μ3

8c3
−

μλ

2c2
þ 1

c
;

γ ¼ −3μ4

256c4
þ λμ2

16c3
−

μ

4c2
þ κ

c
: ð27Þ

If we define the definitions

U ¼
�
−
H
2
�

ffiffiffiffi
Δ

p �1
3

; ð28Þ

y ¼
�− 5

6
αþ U − P

3U ; U ≠ 0;

− 5
6
αþ U −

ffiffiffiffi
H3

p
; U ¼ 0;

ð29Þ

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ 2y

p
; ð30Þ

the solution fðρÞ for Eq. (22) is obtained as

fðρÞ ¼ −ρ2

l2

 
−

μ

4c
þ
�sW ∓t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð3αþ 2y�s

2β
WÞ

q
2

!
:

ð31Þ

In the above equation, two �s should both have the same
sign, while the sign of�t is independent. It is noteworthy to
say that in order to have the cubic quasitopological or
Gauss-Bonnet solutions we should replace μ ¼ 0 or λ ¼ 0
in Eq. (22) and not find the solutions in the above relations
because we get vague values.

III. PHYSICAL PROPERTIES OF THE SOLUTIONS

In this section, we aim to investigate the geometric and
physical properties of the solutions like horizons, singu-
larity, and behaviors of the function fðρÞ. As we know, to
find the horizons of the obtained solutions, the condition
fðrþÞ ¼ 0 should be satisfied where rþ is the horizon.
Suppose that rþ is the largest real root of fðρÞ ¼ 0, which
leads to the function fðρÞ being positive for ρ > rþ and
negative for ρ < rþ. The range 0 < ρ < rþ is not accept-
able as gρρ cannot be negative (which occurs for ρ < rþ,
because of the change of signature of the metric from
ðn − 1Þþ to ðn − 2Þþ. Therefore, we delete this unaccept-
able range 0 < ρ < rþ, and so the function fðρÞ is limited
to the acceptable range ρ > rþ. For ease, we can use the
suitable transformation

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − r2þ

q
⇒ dρ2 ¼ r2

r2 þ r2þ
dr2; ð32Þ

which results in

ds2 ¼ −
r2 þ r2þ

l2
dt2 þ r2dr2

ðr2 þ r2þÞfðrÞ
þ l2gðrÞdϕ2

þ r2 þ r2þ
l2

dX2: ð33Þ

By this transformation, r has the range 0 ≤ r < ∞, for
which fðrÞ is positive and real for 0 < r < ∞ and zero for
r ¼ 0. This transformation also leads to the changes for Fϕr

and κ as

Fϕr ¼
8<
:

lβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−LWð−ηÞ

p
; EN

2qln−2

ðr2þr2þÞ
n−1
2

ð1þ ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p Þ−1; LN;
ð34Þ

κ ¼ 1 −
M

ðn − 1Þðr2 þ r2þÞn2

þ

8>>>>><
>>>>>:

− 4l2β2

nðn−1Þ −
4ðn−1Þβqln−1

nðn−2Þðr2þr2þÞ
n
2

�
ln−3q
β

� 1
n−1ð−LWð−ηÞÞ

n−2
2ðn−1Þ × 2F1

�h
n−2

2ðn−1Þ
i
;
h

3n−4
2ðn−1Þ

i
;

− 1
2ðn−1ÞLWð−ηÞÞ þ 4βqln−1

ðn−1Þðr2þr2þÞ
n−1
2

½−LWð−ηÞ�12 × ½1þ 1
n ð−LWð−ηÞÞ−1�; EN

8ð2n−1Þ
n2ðn−1Þ β

2l2½1 − ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p � − 8ðn−1Þq2l2n−4
n2ðn−2Þðr2þr2þÞn−1 2F1

�h
n−2

2ðn−1Þ ;
1
2

i
;
h

3n−4
2ðn−1Þ

i
; η
�
− 8

nðn−1Þ l
2β2 ln

h
2−2

ffiffiffiffiffiffi
1−η

p
η

i
; LN

ð35Þ

where η ¼ q2l2n−6

β2ðr2þr2þÞn−1. To find the singularity of the obtained solutions, we calculate Kretschmann scalar,

K ¼ RμναβRμναβ ¼ f002 þ 2ðn − 1Þ
ρ2

f02 þ 2ðn − 1Þðn − 2Þ
ρ4

f2; ð36Þ

where the double prime is the second derivative of the function f with respect to ρ. It seems that the solutions have a
singularity at ρ ¼ 0 because the Kretschmann scalar diverges at this point, but as we found out, the point ρ ¼ 0 is not in the
acceptable range of ρ. So, this magnetic brane has no singularity.
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To know more about this magnetic brane, we have
studied the behavior of fðρÞ in Figs. 1–4. For this purpose,
we have considered l ¼ 1 without losing the issue. In
Fig. 1, we have plotted fðρÞ vs ρ for different values of q
and for exponential nonlinear (EN) and logarithmic non-
linear (LN) electrodynamics. According to our previous
sayings, the region ρ < rþ is not acceptable, and so fðρÞ is
not seen in this range in the figures. In Fig. 1, for constant
values of parameters M, β, n, λ, μ, and c, the value of rþ
depends on the value of q, and it increases by increasing the
value of q. Also, for a definite value of q, the value of rþ is
independent of the kinds of the nonlinear electrodynamics,
exponential or logarithmic. The function f is also not
sensitive to the value of q for large rþ and has a constant
value for each value of ρ, but in the region near rþ, it
decreases as q increases.

In Fig. 2, we are eager to know the behavior of f vs β for
different values of ρ. In Figs. 2(a) and 2(b), for fixed
parametersM, q, n, λ, μ, and c, there is a βmin for each value
of ρ for which the function f is not real for β < βmin, and it
has a constant value for β > βmin. The value of βmin
depends on the value of ρ and increases by decreasing
the value of ρ. It is also clear that Fig. 2(b) is similar to
Fig. 2(a). This shows that the kinds of nonlinear electro-
dynamics cannot affect the values of βmin nor f. This led us
to avoid using the same figures of f for LN electrody-
namics in Figs. 3 and 4.
We have studied the behaviors of fðρÞ vs ρ for different

values of λ, μ, and c for EN electrodynamics in Fig. 3. It is
obvious that the value of rþ is independent of the values of
λ, μ, and c. We can also realize this statement by extracting
the constant M using fðrþÞ ¼ 0,

ρ

f

0.5 1 1.5 2
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FIG. 1. fðρÞ vs ρ with M ¼ 5, β ¼ 10, n ¼ 4, λ ¼ −0.01, μ ¼ 0.4, and c ¼ −0.01.
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FIG. 2. fðρÞ vs β with M ¼ 1, q ¼ 2, n ¼ 4, λ ¼ 0.01, μ ¼ 1.1, and c ¼ −0.02.
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M ¼ ðn − 1Þrnþ þ

8>>>>><
>>>>>:

− 4l2β2

n rnþ − 4ðn−1Þ2βqln−1
nðn−2Þ

�
ln−3q
β

� 1
n−1ð−LWð−ηþÞÞ

n−2
2ðn−1Þ × 2F1

�h
n−2

2ðn−1Þ
i
;
h

3n−4
2ðn−1Þ

i
;

− 1
2ðn−1ÞLWð−ηþÞÞ þ 4βqln−1rþ½−LWð−ηþÞ�12 × ½1þ 1

n ð−LWð−ηþÞÞ−1�; EN

8ð2n−1Þ
n2 β2l2rnþ½1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p � − 8ðn−1Þ2q2l2n−4
n2ðn−2Þrn−2þ 2F1

�h
n−2

2ðn−1Þ ;
1
2

i
;
h

3n−4
2ðn−1Þ

i
; η
�
− 8

n l
2β2rnþ ln

h
2−2

ffiffiffiffiffiffi
1−η

p
η

i
; LN

ð37Þ

where ηþ ¼ ηðr ¼ 0Þ ¼ q2l2n−6

β2r2n−2þ
. We can find out from the

above equation that the value of rþ is not related to the
values of parameters λ, μ, and c. Also, for ρ near rþ, f has
similar behavior and is independent of these parameters.
However, for larger ρ and fixed values for parameters q,

M, n, and β, the function f depends on the values of λ, μ,

and c. In this region, by choosing small values for λ and c
and a large value for μ, we can have a larger region of ρ for
which f is real. For example, in Fig. 3(a), f is real for a
larger region of ρ in diagrams with λ ¼ −0.3;−0.5 than in
the one with λ ¼ −0.1.
In Fig. 4, we compare the behavior of function f for

different values of dimension n. In this case, f has behavior
similar to that in Fig. 1 for ρ near rþ or larger than it. But
we can see that for different values of n the value of rþ is
variable and it decreases as n increases. Also, near rþ, the
function f increases as the value of n increases. In the limit
rþ → ∞, the function f goes to a constant value for each
value of rþ.
Although the Kretschmann scalar does not diverge in the

range r ¼ ½0;∞Þ, this spacetime has a canonical singularity
at r ¼ 0. That is, the limit of the ratio “circumference/
radius” is not 2π as the radius r goes to zero. We can prove
this by evaluating�
limr→0

�
1

r

ffiffiffiffiffiffiffi
gϕϕ
grr

r ��
−1

¼
�
limr→0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2þ

p
lfðrÞ

r2

�
−1

¼ 2

lrþ

�
d2fðrÞ
dr2

����
r¼0

�
−1

≠ 1; ð38Þ

where we have used Taylor expansion for fðrÞ at r ¼ 0
(or r0),

fðrÞ ¼ fðrÞjr0 þ r
dfðrÞ
dr

����
r0

þ r2

2

d2fðrÞ
dr2

����
r0

þOðr3Þ; ð39Þ
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FIG. 3. fðρÞ vs ρ for EN electrodynamics.
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that fðrÞ∣r0 ¼ dfðrÞ
dr jr0 ¼ 0. We can remove this canonical

singularity at r ¼ 0, if we recognize the coordinate ϕ with
the period

Periodϕ ¼ 2π

�
limr→0

�
1

r

ffiffiffiffiffiffiffi
gϕϕ
grr

r ��
−1

¼ 2πð1 − 4τÞ; ð40Þ

where by using Eqs. (38) and (22) and the fact the fðr0Þ ¼
0; τ is given by,

τ ¼ 1

4

	
1 −

2l
r3þ

�
d2κ
dr2

����
r0

�
−1


: ð41Þ

So, metric (33) describes a locally flat spacetime that has a
conical singularity at r ¼ 0 with a deficit angle δϕ ¼ 8πτ.

Now, we tend to investigate the behavior of δϕ. The first
point is that, according to the relation (41), the deficit angle
parameter is independent of the coefficients of Gauss-
Bonnet and third- and fourth-order quasitopological
gravities, and it is only dependent on the parameters q,
β, and n. So, we have plotted δϕ vs rþ for different values
of q, β, and n in Figs. 5–7, respectively. In Fig. 5, for each
value of q, there is a minimum value for rþ (we call it
rþmin) that δϕ is determined for the range rþmin < rþ.
Also, there is a rþmax that for rþ > rþmax, δϕ is indepen-
dent of the value q and has a constant value for each value
of rþ. But for rþmin < rþ < rþmax, δϕ depends on the
value of q, and it increases as q increases. In this region,
there is also a rþ0 for which δϕ has a minimum value.
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FIG. 5. δϕ vs rþ with β ¼ 5 and n ¼ 4.
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FIG. 6. δϕ vs rþ with q ¼ 1 and n ¼ 4 for EN electrodynamics.
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FIG. 7. δϕ vs rþ with q ¼ 2 and β ¼ 4 for EN electrodynamics.
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Although for the same parameters β and n the values of
rþmin in the LN form in Fig. 5(b) are smaller than the ones
in the EN form, δϕ has similar behavior in both of them. So,
this led us to refuse to investigate δϕ for the LN form in the
next figures.
In Fig. 6 and for different values of β, the general

behavior of δϕ is almost similar to that in Figs. 5(a) and
5(b) with a little difference. For constant values of
parameters q and n, the value of δϕ in the region rþmin <
rþ < rþmax is related to the parameter β and decreases as β
increases. Also, by increasing β, the value of rþmin
decreases. Figure 7 shows different behavior than the
two previous figures. In this figure, for each value of
rþ > rþmin, the deficit angle increases as the dimension n
increases.

IV. CONSERVED QUANTITIES

According to our previous statements, we cannot define
thermodynamic quantities for magnetic branes because

they are without any event horizons. Now, we would like
to obtain conserved quantities of this magnetic brane such
as the mass density and charge. Using AdS=CFT corre-
spondence [32], we can derive the action and then the
conserved quantities. For this purpose, we define the finite
action

I1 ¼ Ibulk þ Ib; ð42Þ

where Ib is a boundary term. Ib makes the variational
principle well defined if we choose it as

Ib ¼ Ið1Þb þ Ið2Þb þ Ið3Þb þ Ið4Þb ; ð43Þ

where Ið1Þb , Ið2Þb , Ið3Þb , and Ið4Þb are, respectively, the proper
surface terms for Hilbert-Einstein [33], Gauss-Bonnet
[34,35], third-order [36] and fourth-order quasitopological
[37] gravities, which are obtained as

Ið1Þb ¼ 1

8π

Z
∂M

dnx
ffiffiffiffiffiffi
−γ

p
K; ð44Þ

Ið2Þb ¼ 1

8π

Z
∂M

dnx
ffiffiffiffiffiffi
−γ

p 2λl2

3ðn − 2Þðn − 3Þ ð3KKacKac − 2KacKcdKa
d − K3Þ; ð45Þ

Ið3Þb ¼ 1

8π

Z
∂M

dnx
ffiffiffiffiffiffi
−γ

p �
3μl4

5nðn − 2Þðn − 1Þ2ðn − 5Þ ðnK
5 − 2K3KabKab þ 4ðn − 1ÞKabKabKcdKd

eKec

− ð5n − 6ÞKKab½nKabKcdKcd − ðn − 1ÞKacKbdKcd�Þ
�
; ð46Þ

Ið4Þb ¼ 1

8π

Z
∂M

dnx
ffiffiffiffiffiffi
−γ

p 2cl6

7nðn − 1Þðn − 2Þðn − 7Þðn2 − 3nþ 3Þ fα1K
3KabKacKbdKcd þ α2K2KabKabKcdKe

cKde

þ α3K2KabKacKbdK6ceKd
e þ α4KKabKabKcdKe

cK
f
dKef þ α5KKabKc

aKbcKdeKf
dKef

þ α6KKabKacKbdKceKdfKef þ α7KabKc
aKbcKdeKdfKegKfgg: ð47Þ

In the above terms, γμν is the induced metric on the
boundary ∂M, and Kab is the extrinsic curvature of this
boundary with the trace K.
The evaluated conserved quantities of the action (42)

have the problem that they are divergent. To solve this
problem and define a finite action for asymptotically AdS
solutions with flat boundary, R̂abcdðγÞ ¼ 0, we use the
counterterm method inspired by AdS=CFT correspon-
dence. In this method, we add a new term Ict to the action
(42) to have a divergence-free stress-energy tensor [38].
Ict is defined as

Ict ¼ −
1

8π

Z
∂M

dnx
ffiffiffiffiffiffi
−γ

p ðn − 1Þ
leff

; ð48Þ

where leff is a scale length factor that is related to l and
the coefficients of Gauss-Bonnet and quasitopological
gravities. It also reduces to l as these coefficients go to zero.
To compute the conserved quantities, we first choose a

spacelike surface B in ∂M with metric σij and then write
the boundary metric in ADM form:

γabdxadxb ¼ −N2dt2 þ σijðdϕi þ VidtÞðdϕj þ VjdtÞ:
ð49Þ

N and Vi are, respectively, the lapse and shift functions, and
the coordinates ϕi are the angular variables parametrizing
the hypersurface of constant r around the origin. If we
evaluate the finite stress tensor Tab by the new finite action,
we can obtain the quasilocal conserved quantities
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QðξÞ ¼
Z
B
dn−1ϕ

ffiffiffi
σ

p
Tabnaξb; ð50Þ

where na is the timelike unit normal vector to the boundary
B and σ is the determinant of the metric σij. ξb is a Killing
vector field on the boundary for which we can obtain the
total mass per unit volume Vn−1 by its dedicated Killing
vector ξ ¼ ∂=∂t as

Mtotal ¼
M

4ðn − 1Þ : ð51Þ

We can be sure that the obtained mass is finite because we
have used the limit in which the boundary B becomes
infinite. The next step is to determine the electric charge of
this magnetic brane. To obtain the electric charge of the
spacetimes with a longitudinal magnetic field, we should
consider the projections of the electromagnetic field tensors
on special hypersurfaces with normal u0 ¼ 1

N, u
r ¼ 0, and

ui ¼ Ni

N . So, the electric field is described as

Eu ¼ gμρFρνuν: ð52Þ
By calculating the flux of the electromagnetic field at
infinity, the electric charge per unit volume Vn−1 is obtained
as zero. The zero value of the electric charge returns to the
zero value of the electric field. The electric field is obtained
when the magnetic brane has at least one rotation. As we
have considered a magnetic brane with no rotation, so it has
no electric field and followed by, no electric charge.

V. CONCLUDING RESULTS

At last, we give brief conclusion on this magnetic brane.
We started our theory with an (nþ 1)-dimensional action in
quartic quasitopological gravity that is coupled to the
exponential and logarithmic forms of the nonlinear electro-
dynamics. Quasitopological gravity is a comprehensive
higher-derivative theory that leads to, at most, second-order
field equations and has no limitations on dimensions. The
theory reduces to Einstein’s theory, as we choose the co-
efficients of quasitopological gravity zero (λ ¼ μ ¼ c ¼ 0).
Nonlinear electrodynamics theory is also a nonlinear theory
to remove some problems such as the divergence of the
electromagnetic field of Maxwell theory in the origin. This
theory reduces to the linear Maxwell one, as the non-
linearity parameter β goes to infinity.
For our purpose, we used the metric of the spacetime that

has a magnetic brane interpretation with characteristics
ðgρρÞ−1 ∝ gϕϕ and gtt ∝ −ρ2. The obtained solutions
included an electromagnetic field (Fϕρ) that is related to
the only nonzero component of the vector potential AϕðrÞ.
The other solution [fðρÞ] was made from a fourth-order
field equation and was without any horizons and curvature

singularities. The allowed region for f is defined in the
interval rþ < ρ < ∞, where does not contain the point
ρ ¼ 0. We then investigated the behaviors of the function f
for different parameters. In these figures, exponential and
logarithmic forms of nonlinear electrodynamics theory had
the same effects on the function f. We also proved that the
value of rþ is independent of the values of the coefficients
of Love-Lock and quasitopological gravities (μ, λ, and c)
and showed this in the figures. rþ increases as q increases,
or n decreases separately. For ρ near rþ, the behavior of f is
dependent on the parameters q and n and independent of
the values of λ, μ, and c. In this region and for each value
of ρ, by increasing the value of q or decreasing the value
of n separately, the function f decreases. At larger ρ, the
function f behaves in the opposite way, and it is indepen-
dent of the values of parameters q, β, and n but is related to
the parameters λ, μ, and c. Also, for constant values of q, β,
and n, the function f is real for more regions of ρ, if we
choose small values for λ and c and a large value for μ.
For each value of ρ, there is a βmin, where for β > βmin, the
function f has a constant value. The value of βmin also
depends on the value of ρ and increases by decreasing the
value of ρ.
The solutions of this magnetic brane have a conic

singularity at r ¼ 0 with a deficit angle δϕ. We proved that
the deficit angle is not related to the coefficients of Love-
Lock and quasitopological gravities and is dependent only
on the parameters q, β, and n. So, we investigated the
behavior of δϕ vs rþ for different values of q, β, and n in
some figures. There are two rþmin and rþmax that for rþmin <
rþ < rþmax, the function f is dependent on the values of q
and β. It increases as q increases, or separately, it increases as
βdecreases. But for rþ > rþmax, the function f is indepen-
dent of the values of q and β. For different n, there is no
rþmax, and for all rþ > rþmin, the function f increases, as n
increases. The figures also showed that, although the kinds
of nonlinearity cannot change the general behaviors of δϕ,
they cause a few changes. For example, for a constant value
of q, they cause different values for rþ.
As this magnetic brane did not have any horizons, we

could not consider thermodynamics for it. We just obtained
conserved quantities such as the mass density and electric
charge by using the counterterm method. The mass per unit
volume Vn−1 has a finite value, and the electric charge is zero
because there is no electric field. It is clear that both of these
quantities were independent of the nonlinearity parameter β.
In our next study, we would like to generalize this static

spacetime to the case of rotating solutions with one and
more rotation parameters.
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