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We derive analytic expressions that provide the Fourier domain gravitational wave (GW) response function
for compact binaries inspiraling along moderately eccentric orbits. These expressions include amplitude
corrections to the two GW polarization states that are accurate to the first post-Newtonian (PN) order.
Additionally, our fully third post-Newtonian (3PN)-accurate GW phase evolution incorporates eccentricity
effects up to sixth order at each PN order. Further, we develop a prescription to incorporate analytically the
effects of the 3PN-accurate periastron advance in the GW phase evolution. This is how we provide a ready-to-
use and efficient inspiral template family for compact binaries in moderately eccentric orbits. Preliminary GW
data analysis explorations suggest that our template family should be required to construct analytic inspiral-

merger-ringdown templates to model moderately eccentric compact binary coalescence.
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I. INTRODUCTION

Observations of gravitational wave (GW) events by the
advanced LIGO and VIRGO GW interferometers are
ushering in the era of GW astronomy [1,2]. These GW
events include merging black hole (BH) binaries and an
inspiraling neutron star (NS) binary [3-9]. Several scenar-
ios that include long-lived (galactic) field binaries, star
clusters, galactic nuclei, and active galactic nuclei can
produce these observed GW events [10-14]. Fortunately, it
may be possible to extract valuable information about the
astrophysical origins of GW events in the near future. This
requires accurate GW measurements of the spin-orbit
misalignment or the orbital eccentricities of these GW
events [15-17]. Using both frequency and time-domain
inspiral-merger-ringdown (IMR) waveforms, residual
orbital eccentricities of the first two GW events were
restricted to be below 0.15 when these binaries entered
the aLLIGO frequency window [18,19]. Strictly speaking,
the so far detected GW events do not exhibit any obser-
vational signatures of residual orbital eccentricities and are
faithfully captured by IMR templates associated with
compact binaries merging along quasicircular orbits.

However, there exists a number of astrophysical scenarios
that can produce GW events with non-negligible eccen-
tricities in the frequency windows of ground-based GW
detectors. Dense star clusters like the ubiquitous globular
clusters are the most promising sites to form alLIGO relevant
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compact binaries with non-negligible orbital eccentricities
[20]. A recent realistic modeling of globular clusters that
involve general relativistic few body interactions provided a
non-negligible fraction of BH binaries with eccentricities
>0.1 as they enter the aLIGO frequency window [14,21-25].
Additionally, there exists a number of other astrophysical
scenarios that can force stellar mass compact binaries to
merge with orbital eccentricities. This includes a GW
induced merger during hyperbolic encounters between
BHs in dense clusters [26] and mergers influenced by the
Kozai effect in few body systems as explored in many
detailed investigations (see Ref. [27] and references therein).
Further, a very recent investigation pointed out that less
frequent binary-binary encounters in dense star clusters
can easily produce eccentric compact binary coalescence
[28]. These detailed investigations suggest that it may be
reasonable to expect GW events with non-negligible orbital
eccentricities in the coming years. Non-negligible orbital
eccentricities may be helpful to improve the accuracy with a
network of GW interferometers to constrain parameters of
compact binary mergers [29,30]. Moreover, massive BH
binaries in eccentric orbits are of definite interest to maturing
pulsar timing arrays and the planned Laser Interferometer
Space Antenna (LISA) [31,32].

There are different ongoing investigations to model
eccentric compact binary coalescence. These efforts aim
to provide template families that model GWs from IMR
phases of eccentric coalescence. The initial effort, detailed in
Ref. [19], provided a time-domain IMR family that requires
orbital eccentricity to be negligible during the merger phase.
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The inspiral part of the above waveform family was based on
a certain x model, introduced in Ref. [33], that adapted the
GW phasing formalism of Refs. [34,35]. Additionally, a
preliminary comparison with two numerical relativity (NR)
waveforms was also pursued in Ref. [19]. An improved
version of the above family was presented in Ref. [36] that
employed certain quasicircular merger waveform and which
can reproduce their NR simulations for any mass ratio
below 4. These waveform families are expected to model
GWs from eccentric coalescence when initial eccentricities
were usually below 0.2. Very recently, another time-domain
IMR family was introduced in Ref. [37]. This detailed effort
combined various elements from post-Newtonian, self-force,
and black hole perturbation approaches in tandem with NR
simulations to model GWs from moderately eccentric non-
spinning BH binary coalescence. The resulting IMR wave-
forms were validated with many NR simulations for eccentric
binary BH mergers lasting around ten orbits with mass ratios
below 5.5 and initial eccentricities below 0.2. The eccentric
binary BH coalescence is also explored in the framework of
the effective-one-body (EOB) approach [38]. A formalism to
incorporate orbital eccentricity in the existing EOB approach
to model quasicircular compact binary coalescence is pre-
sented in Ref. [39]. Additionally, Ref. [40] presented an EOB
waveform family that incorporated elements of the second
post-Newtonian (2PN)-accurate eccentric orbital description
while comparing with few NR simulations for eccentric
binary BH coalescence. In contrast, the LIGO Scientific
Collaboration (LSC) adapted Ref. [41], which provided a
crude IMR prescription to model GW signals from merging
highly eccentric compact binaries. This was employed to
probe the ability of few LSC algorithms to extract burstlike
signals in the LIGO data [42]. Further, some of us developed
a ready-to-use ‘‘effective eccentric variant” of the
IMRPhenomD waveform to constrain the initial orbital
eccentricity of the GW150914 black hole binary. This was
pursued to justify the assumption of binary evolution along
circular orbits for the event [18]. A crucial ingredient of the
above IMR waveform family involved an eccentric version
of the TaylorF2 approximant that incorporated in its Fourier
phase the leading-order eccentricity corrections up to third
post-Newtonian (3PN) order. The present paper provides
fully analytic frequency domain interferometric response
function iz( f) relevant for GW data analysis of nonspinning
compact binaries inspiraling along moderately eccentric PN-
accurate orbits.

Our computation is aimed at extending the widely used
TaylorF2 approximant that provides analytic frequency
domain GW templates for compact binaries inspiraling along
quasicircular orbits [43]. This waveform family employs the
method of stationary phase approximation (SPA) to compute
analytically, the Fourier transform of temporally evolving
GW polarization states, s, and &, for quasicircular inspi-
rals. The popular LSC approximant provides a fully analytic
Fourier domain GW response function 4 (f) that incorporates

the 3.5PN-accurate Fourier phase [43]. In other words, this
approximant provides general relativistic corrections to GW
phase evolution that are accurate to (v/c)” order beyond the
dominant quadrupolar order, where v is the orbital velocity.
The present manuscript details our derivation of a fully
analytic /1(f) with a 3PN-accurate Fourier phase with sixth
order eccentricity contributions in terms of certain initial
eccentricity at each PN order. Additionally, we include the
first post-Newtonian (1PN)-accurate amplitude corrections
and the effect of 3PN-accurate periastron advance on the
Fourier phases.

To derive our eccentric approximant, we extend the
postcircular scheme of Ref. [44] to higher PN orders. This
scheme involves expanding the Newtonian accurate 4, and
h. as a power series in orbital eccentricity that requires an
analytic solution to the classic Kepler equation. We extend
such a Newtonian approach by invoking a recent effort to
solve analytically the PN-accurate Kepler equation in the
small eccentricity limit [45]. This detailed computation also
provided analytic 1PN-accurate amplitude-corrected expres-
sions for i, and /i, as a sum over harmonics in certain mean
anomaly / of PN-accurate Keplerian type parametric solution
[45]. Additionally, the above PN-accurate decomposition
explicitly incorporated the effect of the periastron advance on
individual harmonics, numerically explored using a PN
description in Ref. [46]. We combine such 1PN-accurate
amplitude-corrected £, and i expressions that incorporated
eccentricity contributions to sixth order at each PN order with
the two beam pattern functions, F, and F, to obtain a fully
analytic time-domain GW response function A(r). Our
eccentric TaylorF2 approximant is obtained by applying
the method of stationary phase approximation to such an
analytic h(t) = F h, + F,h, expression.

To obtain analytic expressions for several Fourier phases at
their associated stationary points of 4(z), we require addi-
tional PN-accurate expressions. This involves deriving the
3PN-accurate expression for the time eccentricity e;, present
in the 3PN-accurate Kepler equation [47], as a bivariate
expansion in terms of orbital angular frequency w, its initial
value @, and e, and the value of e, at @w,. This lengthy
computation extends to the 3PN order, the idea of a certain
asymptotic eccentricity invariant at the quadrupolar order,
introduced in Ref. [48] and extended to 2PN in Ref. [49]. In
fact, we adapted the approach of Ref. [49] by employing the
appropriately modified 3PN-accurate dw/dt and de,/dt
expressions of Refs. [50,51] to obtain the 3PN-accurate
bivariate expression for e,. A careful synthesis of the above
listed PN-accurate expressions leads to a fully analytic
frequency domain TaylorF2 approximant that included
1PN-accurate amplitude corrections and 3PN-accurate
Fourier phases. An additional feature of our approximant
is the inclusion of periastron advance effects to 3PN order. To
explore the GW data analysis implications of these features,
we perform preliminary match computations [52]. We
conclude that the influences of the periastron advance are
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non-negligible for moderately eccentric binaries, especially
in the aLIGO frequency window. This observation should be
relevant while constructing an IMR waveform family for
compact binaries merging along moderate eccentric orbits.

This paper is structured as follows. In Sec. II, we
summarize the efforts of Refs. [44,49] to obtain analytic
iz( f) with the PN-accurate Fourier phase. The crucial inputs
to construct our eccentric TaylorF2 approximant are also
listed in this section. Our approach and crucial expressions
to implement our eccentric approximant that incorporates
eccentricity contributions up to O(e?) to 3PN are presented
in Sec. III. A brief summary and possible extensions are
listed in Sec. IV while detailed expressions, accurate to
O(e}), are given in Appendix C.

II. POSTCIRCULAR EXTENSIONS TO CIRCULAR
INSPIRAL TEMPLATES

We begin by reviewing two key efforts to include the
effects of orbital eccentricity onto the circular inspiral
templates [44,48]. This involves listing in Sec. IT A the
steps that are crucial to compute the analytic frequency
domain GW response function with quadrupolar amplitudes
and the PN-accurate Fourier phase in some detail. Various
lengthy expressions, extracted from Refs. [45,50,51], are
listed in Sec. II B, and will be crucial to compute the time-
domain response function for eccentric binaries while
incorporating effects of the periastron advance, higher-order
radiation reaction, and amplitude corrections.

A. Quadrupolar-order i(f) with PN-accurate
Fourier phase

Following [53], we may express the GW interferometric
response function as

h(t)=F (0s,¢ps.ws)h (t)+F.(0s,hs.ws)h (1), (2.1)

where F, (05, ¢s,ws) are the two detector antenna pat-
terns. These quantities depend on ¢, 65, the right ascension
and declination of the source, and a certain polarization angle
s [53]. For eccentric inspirals, the explicit expressions for
the quadrupolar-order GW polarization states, i, and /i, , are
given by Egs. (3.1) of Ref. [44]. It is rather straightforward to
express these Newtonian accurate expressions as a sum over
harmonics in terms of the mean anomaly /. The resulting
expressions read

Gmn

h+.>< (t) - C2DL

10
X Z [CE{?X cos jl + SSZ’)X sinjl], (2.2)
j=1

where D; denotes the luminosity distance while the sym-
metric mass ratio # of a binary consisting of individual
masses m; and m, is defined tobe y = (m;m,)/m? while the
total mass m = m + m,. Further, we use the commonly

used dimensionless PN expansion parameter x = (942)%/3

where G, ¢, and  are the gravitational constant, the speed of
light in vacuum, and the orbital angular frequency, respec-

tively. The Newtonian accurate amplitudes, C(j_)x and S(j,)x,
are written as a power series in orbital eccentricity ¢, whose
coefficients involve trigonometric functions of the two angles
1, f that specify the line of sight vector in a certain inertial
frame. The derivation of these expressions is detailed in
Ref. [44] and the required inputs are obtained by adapting a
standard analytic approach to solve the classical Kepler
equation in terms of the Bessel functions [54].

With the help of Egs. (2.1) and (2.2), we obtain the
interferometric strain for GWs from eccentric binaries as

Gmy (Gmw\ /3
— ; il ), (2.3
iy > s g). (23

h(t) =

where a; = sign(I';), /T + 27 and ¢; = tan‘l(—%). The
two new functions, I'; and X;, are defined as I'; =
F+C(+j) + Fy ¢ and X = F+S(+j) + Fy s, respectively,
as in Ref. [44]. We impose the effects of GW emission on
the above strain by specifying how ¢, and ® = 2z F, with F
being the orbital frequency, vary in time. In Ref. [44], the
temporal evolutions of w and e, are governed by the

following Newtonian (or quadrupolar) equations that were
adapted from Refs. [55-57].

do (Gmw)Pw*n

= 5(05(12—62)7/2 {96 +292¢2 +37¢4Y,  (2.4a)
t

de; (Gmw)>Pane,

= MO0 304 1 121e,2).
= T155(1 — ey B0 121e)

(2.4b)

It is customary to solve these two coupled differential
equations numerically to obtain @(z) and e,(z) and hence
temporally evolving h(z). Interestingly, earlier efforts
provided a certain analytic way for obtaining a temporal
evolution for w(¢) and e,(¢) that mainly involves the usage
of hypergeometric functions [58-61].

However, it is possible to obtain an analytic frequency
domain counterpart of the above Ai(z) as demonstrated in
Refs. [44,48]. This traditional approach involves the
method of SPA, detailed in Ref. [62], to compute analyti-
cally the Fourier transform of A(z). This was essentially
demonstrated at the leading order in initial eccentricity e in
Ref. [48] and later extended to O(ef) in Ref. [44].
Following Refs. [44,48], we write

. - (G -7/6 10 N2/3
h(f)zA( il ) Z@(é) e, (25)

J=1

where the overall amplitude A and the amplitudes of the
Fourier coefficients ¢&; are given by
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~ s5nr\ /2 G*m?
A=—-— —_, 2.6
(384) D, (2.62)
(1—e)"* —ich;(£/)
= e~/ (2.6b
ERN T L

In the approach of the stationary phase approximation, the
crucial Fourier phase is given by

W [F(1y)] = 21 / o) T'( i %) dF’,

where 7 stands for F'/ F. Note that one needs to evaluate the
above integrals at appropriate stationary points #, defined
by Flio) = f/J.

To obtain a fully analytic ready-to-use expression for
h(f), we need to follow few additional steps. Clearly, we
require one to specify the frequency evolution of e, with the
help of Egs. (2.4a) and (2.4b). The structure of these
equations for @ and ¢, allows us to write dw/de, =
wky(e,) and it turns out that xy depends only on e,.
This allows us to integrate analytically the resulting
dw/w = ky(e;)de, equation. The resulting expression
can be written symbolically as @/wy = k'(e,, ey) where
ey is the value of e, at the initial @ value, namely, o, [see
Eq. (62) in Ref. [34] for the explicit form for &'(e,, eg)].
Interestingly, one may invert such an expression in the limit
e, < 1 to obtain ¢, in terms of e,, w, and w, and it reads

(2.7)

e, ~ e 18 4+ 0(ed), (2.8)

where y is defined as w/w, = F/F,. We note that the
above result was first obtained in Ref. [48] which influ-
enced them to introduce the idea of an asymptotic eccen-
tricity invariant. This relation allows us to write 7 in terms
of w, wy and ¢, as

5 Gm 157¢2
T <7> {1 “ O(eg)] -

It is now straightforward to compute analytically the
indefinite integral for ¥;, namely,

2e [ #(1-L)ar

which appears in Eq. (2.7) for h(f). This leads to the
following expression for ¥}, accurate to O(ef) corrections:

3 (Gmaf\-5/3 [\
V.o~ i —2nft — J
i~ e = 271 128:1( 3 ) (2

2355¢2
X [1 - 714620){_19/9 + O(eg)] ,

(2.10)

(2.11)

where ¢, and ¢, are the orbital phase at coalescence and the
time of coalescence, respectively. Note that y now stands
for f/f, due to the use of the stationary phase condition.

Additionally, we have rescaled F, — f/j to ensure that
e,(fo) = eog while employing the above expression for e,,
given by Eq. (2.8). Indeed, our expression is consistent with
Eq. (4.28) of Ref. [44] that employs the chirp mass to
characterize the binary. A number of extensions to the
above result is available in the literature. In fact, Ref. [44]
computed the higher-order corrections to ¢, in terms of ¢
up to O(e}) and extended ¥; to O(ef). Its PN extension,
available in Ref. [49], provided 2PN corrections for ¥; that

incorporated eccentricity corrections, accurate to O(ef) at
every PN order, while Ref. [63] computed 3PN-accurate ¥;
that included leading-order e, contributions.

A crucial ingredient to such PN extensions is the
derivation of the PN-accurate e, expression in terms of
eo, ¥»> and x. In what follows, we summarize the steps that
are required to obtain a 1PN-accurate expression for e, (see
Ref. [49] for details). The starting point of such a derivation
is the 1PN-accurate differential equations for @ and e,
obtainable from Eq. (3.12) in Ref. [49]. With these inputs, it
is fairly straightforward to obtain the following 1PN-
accurate expression for dw/w that includes only the
leading-order e, contributions as

19¢,  10108e,

Gm 2/3
X ( 30)) }de,.
c
The fact that the @ term appears only at the 1PN order
allows us to use the earlier derived Newtonian accurate

= wy(ey/e;)'®1 relation to replace @ on the right-hand
side of the above equation. This leads to

18 3 6(1)2/19
- —2833+5516 d
19e, 10108(631/19>( + n)xO} e,

(2.13)

do/w = {—— 3 (—2833 +55167)

(2.12)

dw/a)N{

where x, = (Gmawy/c®)*?. We can integrate this

equation to obtain Inw —Inw, in terms of e, ey, and
@y. The exponential of the resulting expression and its
bivariate expansion in terms of x, and e, result in

e)W", (28335516

@ e, o\ T g T
e 18/19 e 30/19 .

€; €; o

We invert the above equation to obtain ¢, in terms of ¢
and x, after invoking the Newtonian accurate relation e, =
eoy~ /18 to replace the e, terms associated with the x,
term. This inversion and the associated bivariate expansion
in terms of e, and x require that ¢y << 1 and xy < 1. The
resulting e, expression reads

(2.14)
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2833 197
~ -19/18 o7 _.,~7/18 -19/18
e, eo{Z + X <2016 - n)( % +y )}

(2.15)

To obtain e, as a bivariate expansion in terms of the
regular PN parameter x and e,, we employ the fact that

x/xg = x*/? and this results in
2833 197
~ —19/18 =00 _,—19/18 | ,—31/18
e 6’0{)( “(2016 = n)( Uty )}-

(2.16)

We are now in a position to obtain a 1PN-accurate ¥;
expression that includes O(ej) contributions both at the
Newtonian and 1PN orders with the help of a 1PN-accurate
7= /@ expression that is accurate to O(e?) terms. A
straightforward computation leads to the desired ¥'; expres-
sion which reads

3j 23556
Vi~ jp.—2nft.— (ﬁ)x‘ﬂz{l _T620

-19/9

3715 55 2045665 128365 1 190

x —_— E— — —

756 9! 348096 12432 11X
2223905 154645 1 o0\ ,

[ 291232 | 17544 ’7}1 o] [ (2.17)

where the quantities x and y will have to be evaluated at the
stationary point (see Ref. [49] for details). With the above
|

0 _
hy, =
L

+ cos(2¢) K — 10¢? +234 4>c szﬁ] + sin(2¢) [(—4+ 10€?

+cos(3¢p —¢') [<9e, -

+ cos(4¢ —2¢)[(16€? —
8

+ cos(5¢ —3¢") [62245 e;¢; szﬁ} + sin(5¢ — 3¢’)[

+ sin(6¢ — 4¢) {1

+ cos(2¢ — 4¢’[ ]

3
CGZW;W x{cos(¢ +¢') [(—3(3[ + %) Cis2/)’:| +sin(¢p + ¢') [(361 -

4e; szﬂ} + sin(2¢ — 4¢') {—%efciczﬂ} }

equation, we explicitly listed our approach to compute PN-
accurate ¥; that incorporates e, corrections at each PN
order. In the present paper, we extend these computations to
3PN order while incorporating O(ef) contributions at each
PN order. These higher-order e, corrections are included as
we desire to model GWs from moderately eccentric
compact binary inspirals. In the next section, we provide
crucial inputs that will be required to compute the analytic
1PN-accurate amplitude-corrected /(f) with 3PN-accurate
Fourier phases.

B. Analytic PN-accurate amplitude-corrected
time-domain eccentric GW templates

The previous section showed that we require analytic
expressions for the two GW polarization states as a sum
over harmonics to construct the ready-to-use analytic /(f).
This influenced us to adapt Egs. (44) and (45) in Ref. [45]
that provided an analytic 1PN-accurate amplitude-cor-
rected &, ,(f) which additionally included the effects of
the periastron advance on individual harmonics. This may
be seen by a close inspection of appropriate terms in
Egs. (44), (45), (46), and (47) of Ref. [45]. To describe in
detail how these improvements in GW polarization states
change the harmonic structure of h(f), we restrict our
attention to quadrupolar-order contributions to A, (),
given in Egs. (44) and (45) of Ref. [45]. The explicit
expressions for such “Newtonian” contributions to &, , ()
that include O(e}) corrections read

13e}

T) ci02/3:|
23e}

I ) CiCZ/}:|

171¢} 171
Set>ci52ﬁ] +sin(3¢—¢’)[( e, + 86[>Ci02ﬂ]

40e?)c;s2p) + sin(4¢p — 24 )[(—16€} + 40ef)c;cap)

625
24

81
elc; czﬂ] + cos(6¢ — 4¢") [ ete; szﬂ}

c; czﬁ] + cos(¢p — 3¢/ ){ 7etc szﬁ] + sin(¢ — 345’)[ elc; CQﬁ}

(2.18)
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3 3
ho. :ggnx{cos(gb—kdr’) [(%— 13et> (1 +C%)C2ﬁ:| +sin(¢p+¢') [(%— 13et> (1 +C%)S2ﬂ]

. 16

23e;

+cos(2¢) { <—2 +5e7—

9 171¢3
+cos(3¢—¢'>{< T

+cos(4p—2¢")[

48
81 ,

)=
+cos(5¢—3¢) [ 625
+sin(6¢p—4¢") [

H(1+c2) szﬁ} +cos(¢p— ¢)[<
+cos(3¢p—3¢) g

+sin(¢p—3¢') [—@e?

where ¢p = (1 + k)I, ¢/ = kI, and k provides the rate of the
periastron advance per orbit [34]. Further, we let ¢; = cos,
§; = 8int, co5 = cos 2f3, and 5,5 = sin 23. Note that crucial
ingredients to obtain above analytic expressions include
developing approaches to solve a PN-accurate Kepler
equation and adapting them to derive PN-accurate relations
to connect true and eccentric anomalies, detailed in Ref. [45].
A close inspection of the above two equations with Egs. (3.3)
and (3.4) of Ref. [44] reveals that the arguments of cosine
and sine functions in the above expressions involve ¢’ = kl
and its multiples in addition to the usual orbital phase ¢) and
its multiples. These additional ¢’ contributions are clearly

6
(1) = {Z[cﬁ,f(m cos(jth = (= 24 + SI2(0)sin(jp~ (= 2)¢)] +

+ 84(0) sin(jgp - j')] +

2
j=

where we denoted the coefficient of the cos(jp — (j +
n)¢') harmonic at the quadrupolar (Newtonian) order for
the + polarization by Cj'i”(O) while the coefficient of
sin(jgp — (j £ n)¢') is indicated by $%"(0). We adopt a
rather heavy notation as it is amenable to higher PN order
contributions which will be tackled below. In this con-
vention, we represent the coefficient of cos(jp — (j £
n)¢') that appears in the 1PN contributions to x polari-
zation state by CL"(1). It should be obvious that j stands
for the harmonic variable while n provides a measure of

—e}(1+c? )czﬁ] +sin(5¢— 3¢’)[

[CL52(0) cos(jp — (j +2)¢') + 87752 (0) sin(jgp — (j + 2)¢’)J},

16
23e;

S )(l—f—c )c2ﬂ}+sm(2¢){<—2+5e% S )(1+c )s2ﬂ}

3
)1+ e | +sinap—g | (2T (1 sy

8e? +20ef)(1+4¢? )Cap] +-sin(4gp—2¢)[(— 8e? +20e})(1+4¢? )S25]

625

81
—Re, (1 +C )S2ﬁ:| +COS(6¢—4¢/) |:—Z€?(1 +C12)C2/}:|

)] reoszs-200] (55

+cos(4¢— 4¢')F€t ]+COS(¢ 3¢')[let(1+c)62ﬂ}

(1 +c%)s2ﬁ} +cos(2¢—4¢') {—%e?(l +c?)czﬁ} +sin(2¢p—4¢') [—ée?(l +c%)s2ﬁ} }, (2.19)

due to the periastron advance. It turns out that these addi-
tional angular contributions are sufficient to provide the
numerically inferred side bands in the power spectrum of
eccentric binaries due to the presence of k [46]. This is why
we explicitly included e} contributions to the above h,
expressions as these contributions are required to reveal the
underlying side band structure of waveforms due to the
influence of the periastron advance.

We rewrite the above expressions for A9 .+ in a more
compact form to explicitly show how various harmonics are
affected by the advance of periastron. The resulting
expressions read

jO
[c70.(0
|

)cos(jp — j@')

4
j=

(2.20)

the shift that each harmonic experiences due to the
periastron advance. A close comparison of Egs. (2.18)
and (2.19) reveals that these coefficients are functions of i,
f and contain powers of e,. Moreover, the arguments of
cosine and sine functions clearly show that the eccentricity
induced higher harmonics are not mere multiples of
@ = N(1 + k), where N is the PN-accurate mean motion.
Clearly, this is due to the presence of nonvanishing ¢’
contributions due to the periastron advance. Interestingly,
the plus polarization state does provide harmonics which
are integer multiples of N. It is not difficult to show that
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these Newtonian-like terms arise from specific cosine
functions with arguments j¢ — j¢', as evident from
Eq. (2.19). Further, it is possible to show that these
contributions arise from e, cos us?/(1 — e, cos u) contribu-
tions to H?H given by Eq. (F2a) in Ref. [45] and therefore

are not influenced by the periastron advance. Interestingly,
similar conclusions were obtained in Ref. [46].

With the above inputs, we write the time-domain GW
detector response function for eccentric inspirals as

6
Gm”x{Z[rE-?lzcoso(p—(j—2>¢'>

2
¢ DL j=1

h(t)=

~

—I—Z( )2s1n(]¢ (j=2)¢")]+ Z OCOSJ¢ i#)

Jj=1

[}

Z ') cos(jp— (j+2)¢)

+ Z; osin(jg—j@')] +

+E§f’lzsin<j¢—<j+z>¢'n}, 221)

where the amplitudes of the cosine and sine functions are

denoted by rather complicated symbols ﬂm and Zﬁ in

The definition of h(t) = F_ h,(t) + F,h,(f) ensures
that T\, = F,C™"(0) + F,CL™(0) while =¥, =
F S7"(0) + F SL"(0). We list in Appendix A the
lengthy expressions for these quantities in terms of 7,
and eccentricity contributions, accurate to O(e}). We
display up to O(e}) contributions to demonstrate the full
harmonic structure of the quadrupolar-order GW polariza-

(0)

tion states. It turns out that X, contributions are zero by

construction. This is mainly because the unshifted har-
monics only appear with the cosine terms, present in the +
polarization state. Invoking familiar trigonometric iden-
tities, we simplify the above equation and obtain

0 = Gl 3ot G20+

+ > dgcos(ip = ja' + i)

Mb

1

~.
Il

+

'MN

o, cos(jh - <-+2>¢/+&>§%>}, (2.22)

1

J

where we introduce two new multi-index symbols ami
P
only cosine functions. Influenced by Ref. [44], these symbols
are defined as ajoj)m = sign(T’; jE,l)\/ (F;f)in)z + (Zﬁ.?in)z and
7(0) ok
¢j,i—n

]in
these quantities that are accurate to O(e}) in eccentricity
corrections as they can be easily obtained from our Egs. (A1)
and (A2).

A close inspection of the above equations reveals that
they provide the GW response function for compact
binaries moving along precessing eccentric orbits. To
obtain temporally evolving h(f) associated with compact
binaries inspiraling along precessing eccentric orbits, we
need to specify how ¢, ¢’, @ and ¢, vary in time due to GW
emission. We adapt the phasing formalism, detailed in
Refs. [34,49], to provide differential equations for these
variables. And, for the time being, we will concentrate on
the secular evolution of these variables. In other words, we
will neglect GW induced quasiperiodic variations to orbital
elements and angles, detailed in Ref. [34]. The 3PN-
accurate secular evolution to ¢ and ¢’ in the modified
harmonic gauge that are accurate to O(e?) is given by

dg
dt

and

to ensure that detector strain can be written in terms of

= tan~' (— =5*). We do not list explicit expressions for

3
32 €

= =
Gm’

(2.23)

d¢/ k 9 87 41 225 95
TR a){3x[1 +e? + e} + e8] + x? [5—711—!— (Z—7n>e? + (39 — 34n)e} + (7_7'7)6’6]
o[ (A8 123an (51902037 1599x%\ O L (281
2 R KAl 4 128 )TN )4 8
332127\ 1361 10779 16901 28297\ 2675
—1174 2ot [0 [ = 2 ) el 2.24
+< + 128> 8”>e’+(16 < 8 e >”+ 8”)6’]}’( )
do _ 96, 157 , 605 , 3815 43 1L (713673 52333 12415
aw P2 2000 24 7002 6 = 22 200 e D330 1aald )\ 4
dr ~ 5Gm>" L7 A T A I T R ST A T 672 64 ”)e’
13823 107765
( 13 _ 192 n)e?:| +Cbl'5PN+Cb2PN+(2)2‘5PN+6;)3PN}, (225)
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2 3265
304" 608 ¢

20195

de, 304c3ne, ) 881
2432

dt  15Gm *

e,6+x[—

€;

87749 298115 4 121833 2501905
14592

2128~ 3648 1216

The explicit 1.5,2,2.5, and 3PN order contributions to
dw/dt and de,/dt that incorporate all the O(e?) corrections
are provided in the Appendix B. The differential equations
for dw/dt and de,/dt are extracted from expressions,
available in Refs. [50,51] and are in the modified harmonic
gauge. These papers provided above 3PN-accurate expres-
sions as the sum of certain “instantaneous” and “tail”
contributions

dw dw dw

dt B <dt>inst - (dt>tdll

i () ().

di dt inst dt tail
The 3PN-accurate instantaneous contributions depend only
on the binary dynamics at the usual retarded time while the
hereditary contributions are sensitive to the binary dynam-
ics at all epochs prior to the usual retarded time [64]. The
instantaneous contributions to dw/dt are extracted from
Egs. (6.14), (6.15a), (6.15), (C6), and (C7) of Ref. [50]
while for de,/dt such contributions originate from
Egs. (6.16), (6.19a), (6.19b), (C10), and (Cl1) in
Ref. [50]. It should be obvious that we have Taylor
expanded these equations around e, = 0 to obtain eccen-
tricity contributions accurate to O(e®). The hereditary
contributions to dw/dt and de,/dt are adapted from
Eqgs. (6.24c) and (6.26) of Ref. [50] and they depend on
a number of eccentricity enhancement functions. We
employ such enhancement functions provided in

Ref. [51] for our computations. We now have all the inputs
|

h (1) =

Z{c@f

19.(0) sin(jgp — j')} + Z{CJ 20

) cos(jgp = (j

7
h93. (1) {Zcuomos(m (j=1)¢) + S5 (05)sin(jgp - (j = 1)¢)]

J=1

+ 8511(0.5) sin(jgp —

g
# D ICERA09) o= 1+ 34 + 812103 it G+

7’]) 8?:| + étl'SPN + étsz + ét2.5PN + ét3PN}'

6
= 2)¢) + L2 (0)sin(jg = (j = 28)} + Y _{C1%(0)

0) cos(jgp —

9
ZCLS (0.5) cos(jp — (j

2817 1021 (40115 51847 \
2128 228 17 \a256 1824 )¢

(2.26)

|

to obtain the restricted time-domain A(¢) to model GWs
from nonspinning compact binaries inspiraling along pre-
cessing moderately eccentric orbits. To obtain such time-
domain templates, we numerically solve the above listed
differential equations for w, ¢,, ¢, and ¢’ and impose their
temporal evolution in the quadrupolar-order GW response
function, given by Eq. (2.22). We now move on to describe
how we extend the quadrupolar-order GW response
function.

It should be obvious that we require a prescription to
compute analytically PN-accurate amplitude-corrected GW
polarization states to improve the above listed quadrupolar-
order GW response function. Therefore, we adapt 1PN-
accurate amplitude-corrected and fully analytic expressions
for h, ., available in Ref. [45], to compute GW response
function for eccentric inspirals that incorporates PN con-
tributions even to its amplitudes. We list below certain
ingredients that will be crucial to write down analytic A(¢)
that incorporates 1PN-accurate amplitude corrections to
h. while consistently keeping eccentricity contributions
up to O(e?). We begin by displaying Eqs. (44) and (45) of
Ref. [45] as a single sum which reads

Gmn
c’D;

hy (1) = x{hY (1) + x°h93, (1) + xh] . (1)}.

(2.27)

Various PN order amplitude contributions take the follow-
ing form:

cos(j — j¢')

(j+2)¢) + S720)sin(ip— (j+2)¢)},  (2.28a)

5
ZC’& (0.5) cos(jgp — (j + 1))

=3)¢') + §472(0.5) sin(jgp — (j — 3)¢)]

(2.28b)
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I Z{Cif )cos(jop — (j —2)¢') + S5 (1) sin(jgp — (j = 2)¢)} + Z{C’ (1) cos(jp — (+2)¢)
10
+ ST sin(p — (i +2)¢)} + > _{CITE (1) cos(igp — (j = 4)¢') + S5 (1) sin(jp — (j - 4)¢)}
j=1

+Z{c”“ )cos(jp — (j+4)¢') + S5 (1) sin(jp — ( + 4)¢p }+Z{c 1) cos(j - j')

+ 80 (1) sin(jgp — jg')}. (2.28¢)

where § = (m; —m,)/(m; + m,) and we let m; be the heavier of the two binary components. We do not list explicitly very
lengthy expressions for these amplitudes. However, they can be easily extracted from the attached Mathematica notebook
[65]. The derivation of the above lengthy expressions includes developing analytic approaches to solve the PN-accurate
Kepler equation and PN-accurate relations connecting true and eccentric anomalies, detailed in Ref. [45]. Indeed, we have
verified that these expressions reduce to their circular counterparts, provided in Ref. [66].

The associated GW detector strain for eccentric binaries is given by

8 6
1) = L[S (1 costi— =208+ sint = =20+ 3 costi— i) + = sintig— )

j=1 j=1

O3 cos(jp—(j= 1))

HM&
M\]

j+ZCOS (jop— (j—l—2)¢’)+2§?lzsin(j¢ (j+2)¢")) }+x056{
j=1

W

+2%% sin(jp— ( Z T\ cos(jgp—(j+ 1)) + =\ sin(jgp— (j+1)¢))

w

_|_

'M°

(T cos(jp— (j—3)¢) +=\" sin(jp— ( Z ) cos(jp— (j+3))

1 j=1

J

o]

0 sin(i -G+ 30+ [Z scos(jp—(j-2)¢") + E,sin(jp— (-2)4)

4
+3 () cos(ip = (j+2)) + £ )y sin(jop = (j+2)¢)) +

j=1

(V% cos(jp— j#') + =\ sin(jp— jg'))

~.
Il =)
—

(V) cos(jgp—(j+4)4')

MN

+Z 4cos (- 4)¢’)+2§.24sin(j¢—( 4)¢')) +

1

J

+x, sin<j¢—<j+4>¢'>>} } (229)

where, as expected, we have defined (p)

T\, = F " (p) + F.CL*"(p).  (2.30a)
(p) jtn jAn 7 =tan! (=22 (2.31b)
2 = F 87 (p) + FiSE"(p). (2.30b) jn A
A further simplification is possible which requires, as

expected, additional multi-index functions such that
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Gmn

h(1) =

7
" Z )acos(i = G+ 2+ )| +x055{2 ~U-

+Z 3 cos(igp — (j+ D' + ¢\

6
{ {Z a; -, cos(jp—(j—2)¢" + 555022) + Z a;?g cos(jop — j¢' + j;%)

1¢' + ‘2’5‘??)

+Z“ ) cos(jp = (j = 3)' + B3)

+ Z +3 cos(jop— (j+3)p' + ¢j 13 } +x[2a§22 cos(jp— (j—2)¢ + @5122)
=

6
+ Z acos(jp = (j+2)¢' + B'L) + D al cos(ie — jo + B}

+Z 4COSJ¢ (Jj— 4)¢/+¢—4 +Zaj+4COSJ¢ (+4)¢/+¢]+4)}}

A cursory look at the above equation may give the
impression that the summation indices in various sums are
terminated in an arbitrary manner. Interestingly, we find a
possible way to predict the maximum value that j index can
take in each of the above summations. This is related to the
argument of ¢’ in each of these cosine series. We infer that
the argument of ¢’ can take a maximum value of six as we
are restricting eccentricity contributions to sixth order in e,.
This ensures that the j index can take maximum values of
8,6, and 4 at the Newtonian order in the above expression.
In other words, j..« in the above expression is given such
that j,.. =7 =6 where the +n value arises from the
argument of the ¢’ variable in various summations. It is
easy to see that the above relation holds true even at 0.5 and
1PN orders and it provides a natural check on the structure
of these higher-order PN contributions to A(f).

To obtain the GW response function for eccentric
inspirals, we need to incorporate the temporal evolution
in w, e,, ¢, and ¢’, given by our earlier listed 3PN-accurate
differential equations. The fact that we are required to solve
the above four coupled differential equations numerically
ensures that our approach to obtain ready-to-use /(z) will
be computationally expensive. This is clearly one of the

Gmn

h(1) =

=

(2.32)

motivations to obtain fully analytic A(f) for compact
binaries inspiraling along moderately eccentric orbits.
Fortunately, we are in a position to compute analytic
amplitude-corrected /(f) that incorporates the 3PN-accu-
rate Fourier phase while keeping eccentricity contributions
accurate to sixth order in e at every PN order.

III. ANALYTIC ﬁ(f ) FOR ECCENTRIC INSPIRALS
WITH 1PN AMPLITUDE CORRECTIONS

We first provide a detailed description of our approach to
compute the analytic Fourier transform of the restricted
time-domain inspiral family, given by Eq. (2.22). This will
be followed by computing i(f) associated with Eq. (2.32).
Preliminary data analysis implications of our analytic 71( 5
are probed in Sec. III B.

A. Approach to compute Fourier transform of h(¢)
for compact binaries inspiraling along precessing
eccentric orbits

We begin by listing the expanded version of our
quadrupolar-order h(), namely, Eq. (2.22) with O(e})
eccentricity contributions as

x{[al ), cos (p+ ¢ +B3\,) + ), cos (2 + P5) + o, cos (3 — ¢ + PL)

+0‘z(t)2005(4¢_2¢/+‘;54 2)""% 2005(545_3‘15/"‘47’5 2)"’“2 2005(645_445’4"2’6 )]

0)

+ [ajgcos (¢ — ¢ + ¢1 0) + 0‘20 cos (2¢ —2¢' + ¢2 o) + 0‘% 0 cos (3¢ — 3¢ + ¢s 0) + 0‘4(10 cos (4¢ — 49’ +
+ [agoiz cos (¢ —3¢' + ¢1,+2) + az,+2 cos (2¢p — 4¢' + ¢2,+2)}}-

~—

)]

=
o2

—
W
—

~—
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Clearly, we see three distinct square brackets that contain
three cosine functions with explicitly time dependent
arguments, namely, j¢— (j—2)¢', jo—j¢’, and
Jjo—(j+2)¢'. Note that aﬂn and (}j(oin experience
implicit temporal evolution due to the GW emission
induced variations to w and e,. The main reason for
displaying the above equation is to show explicitly how
the periastron advance, defined by ¢/, influences the
harmonic structure of /(¢) in comparison with Eq. (4.21)
of Ref. [44] or our Eq. (2.3).

We obtain an analytic Fourier domain version of the
above equation with the help of the stationary phase
approximation, detailed in [62]. How this approach can
be employed to compute %(f) for compact binaries
spiraling along Keplerian eccentric orbits can be found
in Sec. IV of Ref. [44]. This approximation is quite
appropriate for us as it provides a prescription to compute
the asymptotic behavior of the generalized cosine time
series, as given by our Eq. (3.1). Without loss of any
generality, we may write such a time series as

S(t) = s(t) cos(lp(1)), (3.2)
where [ > 0 and as expected S(¢) should be a product of
slowly varying amplitude s(¢) and a rapidly varying cosine
function with argument /¢p(¢). Because of the virtue of the
Riemann-Lebesgue lemma, as noted in Ref. [62], the
Fourier transform of S(¢) becomes

1

50 =5 / ™ (£)elfCr- 010 gy,

(3.3)
It is not difficult to gather that the argument of the
exponential function vanishes at the stationary point ¢,
such that I¢(ty) = 2zf. This allows us to invoke the
approach of SPA to obtain the asymptotic behavior of
S;(f) by the following expression:

. . 2! 2T(1/2)
— ¥ (1) £in/(2x2)
Sf(f) = s(tp)e o)t/ (222 [[lq;(z)(to)l] 2

_SW) e
24/ 1F (o)

where the Fourier phase is defined as
V(1) :== =2zft + 1p(1).

Note that F(t) = ¢(r)/2z and therefore its value at the
stationary point should be F(t,) = f/l. Interestingly, a
rather identical computation can be done to obtain the
Fourier transform of a similar sinusoidal time series to

be iS(f).

To make operational the above expression for S;(f), we
require an explicit expression for the above defined Fourier
phase at the stationary point #,, namely,

W(1y) = =2xfty + I(to). (35)

This is done by defining = = F/F such that ¢(F) and #(F)
become

F
P(F) = ¢, +2ﬂ/ 7dF’, (3.6)
(F)=1.+ /F;—l,dF’, (3.7)

where ¢,. and . are the orbital phase and time at
coalescence. In the present context, z is defined using
our 3PN-accurate expression for @ given by Eq. (2.25).
Additionally, we require the 3PN-accurate e,(w,wy, ¢g)
expression, namely, the 3PN extension of Eq. (2.16), for
computing these integrals analytically. The expression for
W[F(ty)] obtained using Egs. (3.6) and (3.7) in (3.5) may be
written as

¥, [F(ty)] =l —2nft. + 2 / o <1—%) dF', (3.8)

where F(t;) = f/I. In the present context, we need to
evaluate the above integral at a point of time where the
orbital frequency is related to the Fourier frequency by
F(ty) = f/I. A close inspection of Eq. (3.1) reveals that our
expression for the quadrupolar-order time-domain response
function is structurally similar to the above displayed
cosine time series and therefore we can easily adapt these
results to obtain the Fourier transform of our quadrupolar-
order h(t). However, the SPA based A(f) will have
contributions from a number of distinct stationary points.
This is primarily due to the fact that Eq. (3.1) consists of
cosine functions of three different arguments, namely,
j—(+2)d. jp—(j—2)¢' and jo— j¢. Note that
there are only three distinct types of cosine arguments as
we restricted our attention to the quadrupolar-order GW
response function for eccentric inspirals. However, we infer
from our 1PN-accurate A(¢), given by Eq. (2.32), that there
are nine distinct types of cosine functions with arguments
jo — (j £ n)¢’ where n =0, 1, 2, 3, 4. The associated nine
stationary points r*" are computed by demanding that
YE (1) = 0, where WE(1) == =2xft + jp — (j £ n)g.

For computing the Fourier transform of Eq. (3.1), we
solve ¥+ (1) = 0 to get the relevant stationary points and
this leads to

—2nf + jop — (j £ n)d =0, (3.9)
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where ¢ = N(1 +k) and this by definition is . The

treatment of ¢’ requires the PN approximation as ¢’ equals
kN (thisis because ¢ = kl). We need to express kN in terms

of w and this leads to ¢/ = wk/(1 + k) as @ = N(1 + k).
|

9
—="n+

kS = x{3[1+ ¢} +ef +¢f} +x2{2

472

For computing the Fourier phase analytically, we express (jﬁ/
as a)kEg;, where kg; stands for the 3PN-accurate expression

for k/(1 + k) that incorporates e, contributions accurate to
O(e?). The resulting expression reads

[87—417]}&4—[39—3477]6? |:225—95’1:|€ } {

481 12322 519 2037 159972 2811 3321x
ol e |22 (222 6112 e2 1174
+< 4 32)”+”+{4+( 4 128)"’+ ”]e’+{8 ( * 128)'7
1361 ,| , 10779 16901 282972 2675 ,|
—_— — . 3.10
8”]e’+{16 +< 8 64 >’7+8’7€’ (3.10)
|
- - : P " " . 6
Wlth.tftl: hi,lp of these 1npu.ts, the stationary points ", lp;t [F(E)] = (- (j £ n)kg 3;)¢C —2nft.
where ¥~ (+=") vanish, are given by F(e 7
+27r/ r’(j—(j:tn)kE%——,)dF’.
+n F
(= (& m)kS) (") = 2xf.
(3.12)

F(ti”> = (3.11)

In other words, the stationary phase condition is given by
S S

Yy 6)\

(= G £mkS)

Rewriting W*"(t) := —2nft + jp — (j £ n)¢ using the
¢ and ¢

(¢' = k{3)p)
WE (1) = 2mft+ (j— (j £ n)kg)d). We are now in a

relation  between gives

position to obtain analytic PN-accurate expressions for the
Fourier phases associated with these stationary points. With
Egs. (3.6) and (3.7), our Eq. (3.8) becomes

Note that n takes values 0 and 2 as we are dealing with
the quadrupolar-order GW response function given by
Eq. (3.1). However, n varies from O to 4 if the underlying
GW response function contains 1PN-accurate amplitude
corrections that include at each PN order eccentricity
corrections accurate to O(e?). Further, we do not display
here the 3PN-accurate expression for z that includes the
leading-order e, corrections, listed as Eqgs. (6.7a) and (6.7b)
in Ref. [63]. However, we do list below the explicit 3PN-
accurate W;"[F(r*")] that incorporates leading-order e
contributions at each PN order:

W—04ﬁmﬁwrhﬂe%;w{Fﬁi@”ﬁwP%§€% %n
69114725 18051 128365 2223905 15464
* <<14968128 72 T 12432 ”)"_19/9 * <_ 491232 17544”)"_25/9) H +x3/2{ tor
. (6556171 g _ 2959458y /9> eo] e [_ 48825515 _ 31805n (22105 B 1()_.;1)’7 L3085
4080 35088 508032 252) 504 72
. <<1 15250777195 | 323580365n <_ 72324815665 36539875n> 10688155 n2>x‘l9 o
2045440512 ' 5040288; 6562454976 | 1260072] 294624
. <195802015925 51135650 (_ 3656612095 35558§n> 4 23287903 n2>x‘25 oy < 936702035
15087873024 ' 173376] 67356576 6192; 447552 1485485568
3062285 14251675 144537 327n 65z (1675 160n 65
260064 | 631584 "2>’5_31/9) 63} +x5/2[ 756 9~ <ﬁ 3 ?”)”logG)
. <<_ 458370775 _ 49099697n 158031017m>)(_19 oy (185734313;; B 12915517;;;7) 5o
6837264 46512; 229824 4112640 146880
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(2605625 1325z 680485zn 483936057:;7) 2809 (_ 70639017 149064749717])){_3 4 /9> 62}
1077705216 12384 895104 520128 2210544 0
3 {13966988843531 257982425n 64072 _ 6848y <_ 20562265315 2393105~ " 235757

4694215680 508032; 3 21 3048192 1512j 96

32j 1728 1 24; 1296

18457r2n> <110255 475n> , 1278257 13696log(2) 3424log(x)
——" "y - - -
21 21

4175723876720788380517  534109712725265n 2150821372 734341y 37399145056383727
<< 5556561877278720000 2405438042112 276480 16800 (_ 28865256505344
1219797059185n 12111605722 639805172 159506464273381 437669864951\ , 69237581 |

T 045440512 264192 | 22016, )’7 +(_ 1718170030080 1022720256j> T 746496
| 9663919 10g(2) 4602177 log(3) _73434110g(x)> ooy (326505451793435 9167031740450
50400 44800 33600 2061804036096 5080610304
| (13467050491570355 95194404851\ (2186530635995  7198355375m , | 2105566535 ;\ s
( 30680727694843 | 35282016, )’7 <52499639808 + 45362592j) 10606464 ”)
247164977° (_ 82471214720975 _ 2153818055n <_ 48415393035455 119702185;1)’7

293760 45625728024576 524289024 1629490286592 1560384
(906325428545 32769775n> , 2330466575 3> e <_4165508390854487_964239057;2

6466231296 | 222912; 16111872 6471063977984 5052672
2603845y 1437364085977 312194522\ 44999913052 24258909957° 1898287 log(2)

61404 (_ 53477480448 | 561408 > 636636672 68211072 184212
1224647110g(3) | 2603845log(x) 260384510g(x)\ 510\ » i1

163744 122808 184212 ) €| (3.13)

A few comments are in order. To obtain the circular
limit, we require imposing n = j in j¢p — (j —n)¢’ and
then letting ey = 0. This is indeed due to the fact that kg;
does not go to zero in the circular limit. Additionally, we
have verified that the resulting W52(f) expression in the
eo — 0 limit is identical to the 3PN-accurate version of
Eq. (6.26) in Ref. [63] while neglecting the spin con-
tributions. It is natural to expect that the ‘PS-’ (f) version of
our above equation should be identical to Eq. (6.26) of
Ref. [63]. This is because this equation indeed provided
quadrupolar %(f) with the 3PN-accurate Fourier phase
while incorporating leading-order e corrections at each
PN order by extending the postcircular approach of
Ref. [44]. However, our expression for W)(f) is not
identical to Eq. (6.26) of Ref. [63]. This is because that
effort did not incorporate the effect of the periastron
advance while obtaining the analytic expression for their
Fourier phase. A close inspection of the n = 0 version of
our Eq. (3.12) reveals that it will still be influenced by our

PN-accurate expression for kEg;. This clearly shows that it
is rather impossible to remove the effect of the periastron
advance from our Eq. (3.12). Therefore, our Eq. (3.13)
will be different from Eq. (6.26) of Ref. [63] which, as
noted earlier, neglected the effect of the periastron
advance. The differences may be attributed to the physical
fact that we are providing an analytic expression for A(f)
associated with compact binaries inspiraling along PN-
accurate eccentric orbits. In contrast, Ref. [63] models
inspiral GWs from compact binaries spiraling in along
Newtonian orbits though frequency evolution in both
cases are fully 3PN accurate. Additionally, we are unable
to match with the 2PN order results of Ref. [49] due to
similar reasons. We note in passing that the explicit 3PN-
accurate O(ej) contributions to ¥/ (f) and the associated
3PN-accurate e, expression are provided in Appendix C.

We now employ fully the final result of SPA, namely,
Eq. (3.4), to compute the Fourier transform of Eq. (3.1).
This gives us
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J=1

where we have used the quadrupolar (Newtonian) order
differential equation for the orbital frequency, available in
Refs. [34,55], to compute the amplitudes of 2[F(z,)]. Note
that we require employing the earlier defined stationary
points to replace F(ty). In practice, we employ the
unperturbed stationary points, namely, F(t,) = f/j, while
evaluating the amplitudes of 7(f).

In what follows, we collect the above pieces together to
display the quadrupolar-order fz( f) that incorporates fourth
order orbital eccentricity contributions while including the
effects due to the 3PN-accurate frequency, eccentricity
evolution, and periastron advance as
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and n takes values 0 and 2. A crucial expression that will
be required to operationalize the above l~1( f), namely, the
3PN-accurate expression for e, in terms of e, x, and y, is
listed as Eq. (C1) in Appendix C. Note that the approach
to obtain such an expression for e, is detailed in Ref. [49]
and briefly summarized in Sec. II A. Finally, the fully
3PN-accurate expression for ‘W (f) that incorporates
fourth order orbital eccentricity contributions at each
PN order is displayed as Eq. (C5) in Appendix C. It
should be noted that the approach of SPA demands the
evaluation of Fourier amplitudes, &; 1, and Fourier phases,
Wi at F(r) = £/(j = (j £ n)k(3)).

We have extended these calculations by including 1PN-
accurate amplitude corrections to &, and i, with the help
of Egs. (2.27), (2.28a), (2.28b), and (2.28c). Additionally,
we have included initial eccentricity corrections, accurate
to O(ef), in our 3PN-accurate ¢, and W/ (f) expressions.

We note in passing that these expressions are available in
the accompanying Mathematica file [65]. The resulting

expression for 2(f) may be symbolically written as

Jz/zi[?z u jz/3-i.+21
(5) (w,+4)+z 20, (£) " e

5
)1/35[2 ( >1/3 i)

+3 ) 1/3 —i(Y34z
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8
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(3.17)
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In the above expression, the Fourier amplitudes are given by

(1=t

i, - =
(U et + 3 e)!?

— e4(171038 — 1417087) — 6(11717 — 82887})]}aﬁ.ﬁne""ﬁyiu,

10752(1 + 33 e7 + 3L e

Ik [11888 + 147841 — 7(87720 — 1596007)

(3.18)

where the superscript p takes values 0, 0.5, and 1 in our amplitude-corrected &(f). Further, we have used the 1PN-accurate
differential equation for the orbital frequency while obtaining the Fourier amplitude expressions. This expression, adaptable

from Egs. (B8a) and (B9a) of Ref. [49], reads

dF  48¢°n (Gm2aF\"A3 (143 ef +3iel)  743¢°ny (Gm2xF\13/3 1
dt 52G*m’ < c ) (1—€2)2  35zG2m? < c? ) (1—¢2)92
X{1+%’7+€2<—@+%n>+64(—@ ﬂﬂ) e6<—w+ﬁn)}. (3.19)
743 ! 1486 743 "\ 5944 © 2972 "\ 11888 ' 743

The explicit expressions for e, and (f) that incorpo-

rate the next-to-leading-order e, corrections at each PN
order, as noted earlier, are listed in the Appendix C.

We move on to contrast our approach with other attempts
in the literature. Section VI of Ref. [44] indeed sketched a
road map to include PN corrections to their Newtonian
waveform family. This road map included a suggestion to
incorporate the effect of the periastron advance into their
quadrupolar-order GW polarization states, influenced by
Ref. [34]. Their suggestion involves splitting the orbital
phase evolution into two parts where one part remains
linear in the mean anomaly / while the other part is periodic
in /. These considerations influenced them to rewrite our
Eq. (2.3) essentially to be

h(t) = — GmﬂxZaj cos{jI(1+ kE?;) + i}, (3.20)

where kg?g stands for the 1PN-accurate expression for k,
given by 3x/(1 — e?), expanded to the sixth order in e, [see
our Eq. (3.10)]. It is not difficult to see that the associated

SPA based Fourier phase takes the following form:

W;(F) = Ale(f/))] = 2zf1(f/ ). (3.21)

where
At(f/D = b+ / " %dF’ (3.22)
t(f/j) =t + / " dg. (3.23)

It turned out that ' = @ by construction. The use of @ in
the above Fourier phase expression essentially ensures that
the suggestion of Ref. [44] leads to what is detailed in
Ref. [49]. Note that Ref. [49] provided /(f) in terms of an
infinite set of harmonics with quadrupolar-order amplitudes
and the 2PN-accurate Fourier phase. We observe that
Ref. [44] indeed commented on the absence of side bands
in their prescription in comparison with what was reported
in Refs. [67,68] and suggested future investigations to
clarify the issue. In contrast, the present investigation
employs Eq. (2.32), which explicitly incorporates the effect
of the periastron advance both in the amplitude and
phase of GW polarization states, as detailed in Ref. [45].
The use of such an expression ensures that our analytic
Fourier domain expression does indeed contain the peri-
astron advance induced frequency side bands. Additionally,
Refs. [29,59] employed the dominant order periastron
advance induced decomposition of Fourier phases, asso-
ciated with the quadrupolar-order gravitational waveform,
while exploring LISA and aLIGO relevant parameter
estimation studies. A close comparison of Egs. (B10)
and (B11) of Ref. [59] and Egs. (35) and (36) of
Ref. [29] with our Eq. (3.10) reveals fairly identical
expressions for the Fourier phases. These considerations
allowed us to state that our expression for (f), given by
Egs. (3.17), (3.18), (C1), and (C5), provides analytic PN-
accurate Fourier domain templates for compact binaries
inspiraling along PN-accurate precessing eccentric orbits.
We are now in a position to explore basic GW data analysis
implications of our inspiral templates.

B. Preliminary GW data analysis implications

We employ the familiar match computations to probe
basic GW data analysis implications of our PN-accurate
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inspiral templates. Following Ref. [52], the match
M(hy, h,) between members of two waveform classes,
namely, signal A, and template h,, is computed by
maximizing a certain overlap integral O(hg, h,) with
respect to the kinematic variables of the template wave-
form. In other words,

M(hg, h,) = maxO(hg, h,),

to.o

(3.24)

where t, and ¢, are the detector arrival time and the
associated arrival phase of our template. The overlap
integral involves the interferometer-specific normalized
inner product between members of the /i, and h, families;
it reads

(hy|h,) = 4Re / fhighwdf, (3.25)

fow Sn(f)

where /,(f) and h,(f) are the Fourier transforms of the
hy(t) and h,(t) inspiral waveforms. Further, Sy, (f) denotes
the one-sided power spectral density of the detector noise.

In the following, we employ the zero-detuned, high power
|

= (5an\'2G*m?* (Gmmf\~T/0 4 )
i0=(5) e, (Ce) 15

J=1

2 N 2/3 6 .
0 J izt . . 6 0 (J
+215§,12(5) i, >x@[<J—<J+2>k§3§>fLso—zf]+Zlf§,lz(5) ‘
Jj= i=

xO[(j— (- 2)kE§;)fLso - 2f}}-

Note that we have appropriately shifted the upper
frequency limits to ensure that higher harmonics are
suitably terminated. While implementing our /(f) we have
encountered the violation of the stationary phase condition,
namely Eq. (3.11), at a few Fourier frequencies corre-
sponding to lower harmonic indices (j ~ 1, 2). We infer that
the periastron advance induced shift of these harmonics can
lead to negative GW frequencies. Therefore, we have
discarded such Fourier components. Interestingly,
Ref. [46] showed that these harmonics provide negligible
contributions to the GW power spectrum, which may be
used to justify our neglect of such Fourier components in
the implementation of our waveform families. The above
steps ensure smoothly varying templates which we will use
in the following to pursue match computations. We provide
three frequency series of the same length (corresponding to
hy and h, inspiral families and the ZDHP noise power
spectral density) and employ a routine from the free and
open software package PyCBC [70] to compute various M
estimates.

(ZDHP) noise configuration of Advanced LIGO at design
sensitivity [69]. In our M estimates, we let f,,, be 20 Hz,
corresponding to the lower cutoff frequency of Advanced
LIGO. The upper frequency limit fp, is chosen to be the

usual f; g0 = ¢3/(Gmm63/?) of the last stable circular orbit.
We have verified that orbital eccentricities of compact
binaries reduce to well below 1072 at Shigh = fLso, thereby
justifying the use of the last stable circular orbit frequency
for the upper frequency limit.

We require additional steps to operationalize our inspiral
templates while performing the M computations. Clearly,
these waveform families should only be implemented
within the physically allowed frequency intervals. This is
to ensure that the many higher harmonics present in these
waveform families do not cross the above listed upper
frequency limit. Influenced by Ref. [44], we invoke the unit
step function (©) to operationalize our inspiral templates.
This step function allows us to appropriately terminate the
waveform as ©(y) = 1 for y > 0 and zero otherwise. The
structure of our quadrupolar amplitude inspiral family,
given by Eq. (3.15), compels us to invoke ® functions
such that

2/3 —i(z . .
) e YD) ClVES JkEg;)fLSO - 2f]

2/3 e
_I(Z+\{;j2)

(3.26)

We qualify the implications of our match estimates on
GW data analysis by considering the threshold M (hy,h,)>
0.97, denoted in the presentation of results in Figs. 1-3 by
solid black lines. This limit corresponds to a loss of less
than 10% of all signals in the matched filter searches. In
regions of parameter space where the computed matches
are high, i.e., M > 0.97, waveform models are generally
considered both effectual templates for the detection of
fiducial GW signals and reasonably faithful in the estima-
tion of GW source parameters [52]. However, even if M is
larger than 0.97, certain errors in the model waveform (due
to unmodeled effects of, e.g., eccentricity) may become
distinguishable from noise at a high signal-to-noise ratio
(SNR) and can affect the accuracy of the source parameter
estimation. Negligible systematic errors in the parameter
estimation—despite differences between the true signal
waveform and the template model—can be guaranteed only
if (hy —h,, hy —h,) < 1, the so-called indistinguishability
criterion [71]. In other words, such systematic errors in the
estimated source parameters may become significant when
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FIG. 1. Matches between eccentric waveform models with

different orders of eccentricity corrections. We are comparing
waveforms that take only leading-order O(e}) eccentricity
corrections into account to those that include eccentricity
corrections up to next-to-next-to leading order O(e§). We
consider three configurations of a NS and a BH with masses
of 1.4 My and 10 M, respectively: i.e., NS-NS (blue curve),
NS-BH (orange curve), and BH-BH (pink curve) systems. The
initial orbital eccentricity e, refers to the eccentricity of the binary
system at 20 Hz. Given the same ¢, the effect of higher-order
eccentricity corrections on the agreement between signal and
template is strongly dependent on the total mass of the compact
binary source. The solid black line denotes the threshold
M =0.97, associated with the effectualness of a model for
GW detection and its faithfulness for source parameter estimation.
The inset plot zooms into the region of parameter space where
we can expect the effect of higher-order eccentricity corrections to
become distinguishable from noise for SNR = 30, leading to
systematic errors in parameter estimation; the dashed black line
represents the indistinguishability criterion.

they mismatch 1 — M, > 1/SNR? and clearly depend on
the amplitude of the signal. In the following analysis, we let
the signal-to-noise ratio of our fiducial GW signals be
SNR = 30 (corresponding to the SNR of the binary neutron
star inspiral GW170817) and probe the distinguishability of
certain effects in our model waveforms for inspiraling
eccentric binaries. In the inset plots of Figs. 1 and 2, we
zoom into those regions of parameter space where we can
expect waveform uncertainties to become indistinguishable
from noise for SNR = 30; the corresponding distinguish-
able limit M. is represented by the dashed black lines.
We first probe the importance of higher-order eccentric-
ity corrections in the GW phasing. For this purpose, we let
the signal family &, be our quadrupolar-order /(f), with a
3PN-accurate Fourier phase that includes next-to-next-to-
leading-order O(e§) eccentricity corrections at each PN
order. The template family is given by a quadrupolar-order
h(f) in the low-eccentricity limit, incorporating only the
leading-order O(e3) eccentricity contributions in the

— my=my=14M,
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0.9998
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0.9996 [*
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FIG. 2. Matches between eccentric waveform models that
include or neglect effects of the periastron advance. We consider
the same three configurations of binaries with NS and BH
components as in Fig. 1: i.e., NS-NS (blue curve), NS-BH
(orange curve), and BH-BH (pink curve) systems. The initial
orbital eccentricity e, is again defined at the lower cutoff
frequency 20 Hz. We infer that the significance of periastron
advance effects for GW data analysis is rather independent of the
total mass of the source. We interpret our results by considering
the threshold M = 0.97 (represented by the solid black line)
below which a waveform model should be considered ineffectual
for detection and unfaithful for parameter estimation. In the inset
plots, we highlight the parameter space of small eccentricities to
probe the importance of systematic errors in parameter estimation
due to waveform uncertainties. The dashed black line represents
the distinguishable limit for a fiducial GW signal with SNR = 30.

3PN-accurate Fourier phase. We consider the traditional
nonspinning compact binary sources relevant for Advanced
LIGO: namely, binary neutron stars (NS-NS), NS-BH
systems, and binary black holes (BH-BH), with NS and
BH components of 1.4 M, and 10 M, respectively. For
each of these three configurations, we compute the match
between signal and template waveforms for different values
of the initial orbital eccentricity e, between 0 and 0.4
(defined at the cut-off frequency 20 Hz). Figure 1 suggests
that the importance of higher-order eccentricity corrections
for GW data analysis is strongly dependent on the total
mass of an eccentric compact binary source. Given the
same e but for configurations with increasing total mass,
we find that templates restricted to leading-order eccen-
tricity corrections become increasingly faithful representa-
tions of those inspiral waveforms that include higher-order
eccentricity effects at each PN order. This is expected, as
compact binaries with higher total mass provide a smaller
number of inspiral GW cycles in the frequency window of
Advanced LIGO. Therefore, these systems require larger
initial eccentricities to bring on a substantial dephasing and
subsequent mismatch between our inspiral signal and
template families. Figure 1 indicates that a waveform
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FIG. 3. Matches between eccentric waveform models with
Newtonian and 1PN-accurate amplitudes. We consider compact
binary systems with a total mass of m = m,; + m,, with different
choices for the mass ratio ¢ = m; /m,. As expected, the effect of
amplitude corrections on waveform faithfulness is largely inde-
pendent of the orbital eccentricity e, at 20 Hz. Waveforms with
Newtonian amplitudes are faithful representations of amplitude-
corrected waveforms only if g < 3 (blue and orange curves); for
higher mass ratios ¢ > 5 (pink, green and purple curves) the
match between waveforms with Newtonian and 1PN-accurate
amplitudes falls below the threshold of M = 0.97 (denoted by
the black line) even in the circular limit.

model restricted to only leading-order eccentricity correc-
tions would be an effectual template family for the
detection of GWs from even moderately eccentric inspirals
(with eg < 0.15 and < 0.3 for our traditional NS-NS and
BH-BH binaries, respectively). However, the inset of Fig. 1
suggests that waveform effects of higher-order eccentricity
corrections become distinguishable from detector noise
at significantly lower initial eccentricities (e, > 0.07 and
> 0.17 for GWs from NS-NS and BH-BH systems with
SNR = 30). In this region of parameter space, we should
expect systematic errors in source parameter estimation
with inspiral templates that are accurate only to leading
order in eccentricity e,. The inclusion of higher-order
eccentricity corrections in waveform modeling is therefore
desirable for an accurate follow-up of eccentric GW
signals.

We move on to probe data analysis implications of
including the effect of the periastron advance in our
eccentric inspiral waveforms /(). In our match calculation
M(hy, h,), the signal waveforms employ our quadrupolar-
order i(f) given by Eq. (3.15), including both k and e,
effects to the sixth order in ¢, at each PN order. We build a
template family /4, that neglects effects of the periastron
advance, by extending to 3PN order previously developed
eccentric inspiral waveforms (provided with the 2PN-
accurate Fourier phase in Ref. [49]). In other words, we
construct quadrupolar templates /,(f) with the help of

Eq. (2.5) and the 3PN extension of our Newtonian
equation (2.11) for ¥; while incorporating all O(ef)
corrections at each PN order. Additionally, we evaluate
the Fourier phase at the unperturbed stationary point F =
f/j [44]. It is important to note that such a template
waveform family ignores the effect of the periastron
advance in its Fourier phase evolution. We consider the
same NS-NS, NS-BH, and BH-BH systems as before and
compute the match between signal and template waveforms
for discrete values of initial orbital eccentricity at 20 Hz,
e € [0,0.4]. From our results, presented in Fig. 2, we learn
that the significance of the periastron advance effects for
GW data analysis is rather independent of the total mass of
the source, with similar match estimates for all three
traditional compact binaries under consideration. The
periastron advance starts to influence the effectualness of
GW templates for detection only for systems that have
eccentricities ey, > 0.25 at 20 Hz. This agrees with our
observation that k-induced modulations in the inspiral
waveforms presented in Fig. 5 and 6 of Ref. [34] become
clearly visible only for moderate values of initial orbital
eccentricity. However, we can expect systematic biases in
the source parameter estimation for much smaller values of
orbital eccentricity. The inset of Fig. 2 suggests that the
periastron advance effects in an eccentric GW signal with
SNR = 30 would already become distinguishable from
noise for eccentricities ey > 0.03 at 20 Hz, leading to
systematic errors in the recovered source parameters when
waveform models neglect the periastron advance.

Lastly, we explore the relevance of PN-accurate ampli-
tude corrections while constructing realistic analytic
Fourier domain waveforms for eccentric inspirals. For
these M estimates, we invoke as the expected GW signal
our 1PN-accurate amplitude-corrected A(f), given by
Eq. (3.17), including the effects of the 3PN-accurate
periastron advance, frequency, and eccentricity evolution
accurate to sixth order in orbital eccentricity. For the
template family, we are utilizing a quadrupolar-order
h(f), given by Eq. (3.15), that includes the same order
effects of the 3PN-accurate periastron advance and 3PN-
accurate frequency and eccentricity evolution as above. We
consider five compact binary configurations with a fixed
total mass m = m + m, = 20 My and varying mass ratios
q=my/my € {1,3,5,7,9}. For each of these configura-
tions, we pursue match computations for different choices
of initial orbital eccentricity e, € [0, 0.4] at 20 Hz, resulting
in Fig. 3. We observe that amplitude corrections are rather
unimportant while constructing template waveforms for
equal-mass binaries in eccentric orbits. This is expected, as
the dominant amplitude corrections—appearing at 0.5PN
order in Eq. (3.17)—are proportional to /1 —4n and
therefore vanish for equal-mass binaries. Our plots suggest
that the effect of amplitude corrections on the faithfulness
of eccentric inspiral waveforms crucially depends on the
mass ratio of a binary system, with M rapidly dropping
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below the critical value of 0.97 as ¢ > 5, even for systems
with negligible initial eccentricities. This is a familiar result
from the modeling of compact binary inspiral along circular
orbits and points to the relevance of higher modes for GWs
from binaries with asymmetric masses [72]. In other words,
our plots in Fig. 3 essentially confirm the previous literature
that compared restricted and amplitude-corrected 71( f) for
the quasicircular inspiral. Interestingly, we find that the
g-dependent effect of amplitude corrections on the faithful-
ness of eccentric inspiral waveforms is largely unaffected
by the value of the initial eccentricity e.

IV. CONCLUSIONS

We have provided fully analytic PN-accurate Fourier
domain gravitational waveforms for compact binaries
inspiraling along precessing moderately eccentric orbits.
Our inspiral approximant contains 1PN-accurate amplitude
corrections and its Fourier phase incorporates the effects of
the 3PN-accurate periastron advance and GW emission.
Additionally, the eccentricity effects are accurate to sixth
order in ¢, at each PN order. We infer from our analytic
waveform expression that the orbital eccentricity induced
higher harmonics are no longer integer multiples of orbital
frequency due to the influence of the periastron advance.
This substantiates and extends what is detailed in Ref. [45]
for compact binaries inspiraling along PN-accurate pre-
cessing eccentric orbits. Preliminary GW data analysis
implications of our waveforms are probed with the help of
the usual match computations.

In what follows, we provide a step-by-step summary of
our effort.

(1) We start from our Egs. (2.18) and (2.19) that provide
quadrupolar order GW polarization states from
compact binaries in PN-accurate eccentric orbits
as a sum over various harmonics.

(2) With the above inputs, we compute the time-domain
GW detector response function and express it as a
summation of several cosine functions whose argu-
ments are a sum of integer multiples of ¢ and ¢’
associated with the orbital and periastron motions.
Amplitudes of these functions are expressed in terms
of w, e, and the angles that specify the antenna
patterns F,, F,, and the direction of the orbital
angular momentum vector. The quadrupolar version
of h(z) that explicitly incorporates the next-to-lead-
ing-order e, corrections is given by Eq. (2.22) and
associated expressions like Egs. (A1) and (A2). Its
1PN extension is symbolically provided by
Eq. (2.32) and the accompanying Mathematica file
[65] provides the explicit expressions for various PN
coefficients while incorporating O(e?) corrections.

(3) We also provide a prescription to obtain temporally
evolving A(t) for compact binaries inspiraling due to
3PN-accurate GW emission along precessing 3PN-
accurate orbits of moderate eccentricities. This

involves imposing temporal evolution for w, e,, ¢/,
and ¢ with the help of PN-accurate differential
equations. The relative 3PN-accurate equations for
 and e, are due to the emission of GWs, as evident
from our Egs. (2.25) and (2.26). The conservative
3PN-accurate differential equation for ¢’ arises
essentially due to the periastron advance as evident
from Eq. (2.24). The differential equation for ¢ is
kinematical in nature as d¢/dt = w.

(4) The structure of the time-domain response function
allows us to involve the method of stationary phase
approximation to compute its Fourier transform. The
crucial Fourier phases and the associated ‘“nine”
stationary points may be concisely written as
WA (¢) := =2z ft + jop — (j £ n)¢', where n takes
values 0, 1, 2, 3, 4. The nine stationary points,
associated with the 1PN-accurate amplitude-cor-
rected h(t), essentially provide relations between
the orbital and Fourier frequencies F(*") = f/
(j— (j £ n)k'), where k' is related to the rate of
the periastron advance per orbit. The explicit expres-
sion for the resulting 3PN-accurate Fourier phases
with leading-order initial eccentricity corrections are
provided by Eq. (3.13). Gathering various results, we
obtain Egs. (3.15) and (3.16), which provide the
quadrupolar-order % (f) while incorporating fourth
order orbital eccentricity contributions along with the
effects due to the 3PN-accurate frequency, eccentric-
ity evolution, and periastron advance. Additionally,
we have extended these results by including 1PN-
accurate amplitude corrections and six order eccen-
tricity contributions.

(5) A crucial ingredient to obtain a fully analytic /(f)
involves a derivation, detailed in Sec. II, that
provides the PN-accurate analytic expression for
e, in terms of e, @, wy. We have obtained the 3PN-
accurate expression for e,(ey, w, wy) by extending
the postcircular scheme of Refs. [44,49].

A number of extensions are possible. Influenced by
Refs. [73,74], we are incorporating the effects of leading-
order aligned spin-orbit and spin-spin interactions into
these waveforms. It will be interesting to explore data
analysis implications of our present waveforms. A possible
avenue is to explore the astrophysical implications of using
PN-accurate periastron advance contributions that depend
both on m and #, influenced by Refs. [59,75]. There are
ongoing efforts to construct analytic IMR templates to
model eccentric compact binary coalescence [19,37]. The
present waveform family will be relevant to construct IMR
templates for moderately eccentric compact binary mergers
which can be used to extract orbital eccentricity and the
periastron advance as done in Ref. [76]. Efforts are ongoing
to obtain various constructs, using elements of our post-
circular Fourier domain approximant, that should allow us
to make comparisons with a brand new PN-accurate
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frequency domain waveform family, developed in

Refs. [58,77] for moderate eccentricities.
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APPENDIX A: I\"}, AND %), COEFFICIENTS

We list the Fﬁ in and Zoj)m coefficients appearing in

Eq. (2.21). The relevant Fjin expressions read

3e, 13¢}
F(loiz—FJr{(Tr— 16t>(1+612)62ﬂ}

13¢}
—|—FX{< 3e, + g >c szﬁ} (Ala)
23
F<20)_2 = F+{< 2+5€[ €t> CZ/)’}
23e}
—i—FX{( —10e? + 4’)cs2,,} (Alb)
9e¢, 17le
F§012=F+{( 2t t) CZﬂ}
171
+F { (9@, e, ci szﬂ} (Alc)
I, = F{(=8¢} +20e})(1 + F)esg)
+ F {(16e} — 40¢})c;505}. (Ald)
625 625
Fg(?lz = F+{—K€t(1 +C )Cz/}} +F { 24 €?CiS2ﬂ},
(Ale)

0 81 81
F<6)—2 = F+{—Zef(1 + C%)Czﬁ + F>< Te?CiSZ/)’ s

(ALf)
3
(oD}
ro_ g AW
X e LY R (Alh)

9
iy = r.fges). (AL}
4 .
R (A1)

7
F§9)+2:F+{—e,(1+c)czﬁ}+F { 24e?cis2ﬂ},

(AIK)

0 1 1
r(z,)+2:F+{—§et(1+C)Czﬁ +Fy —Zefciszﬂ .

(A11)

The Z;?in counterparts of the above expressions read

3 13
Zg(,)zz :F+{<% et>(1+C )32/3}

1
+ FX{ (36, —%) ciczﬂ}, (A2a)
(0) ) 23ef 2
22’_2:F+ —2+581 - 3 <1+Ci)52ﬁ
23¢}
+ FX{ (—4 + 1082 — %) ciczﬂ}, (A2b)

9¢, 171é3
zg(.)lz = F+{ <—Tt+ 16 Z)(l + C?)Szﬁ}

171e}
+F><{<_9et+ 8et>CiC2ﬂ}, (A2C)

25;(,)12 = F {(=8e7 +20ef)(1 + c})s2}
+ F . {(—16e] + 40¢})c;cap},

(A2d)

625 625
e et )

(A2¢)

0 81 81
Zé’zz = F+{—Z€?(1 + C%)Szﬂ} + FX{—TE?CiCZﬂ s

(A2f)
=% =0, (A2g)
=0 =0, (A2h)
=0 =0, (A2i)
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4y =0, (A2)) APPENDIX B: 3PN-ACCURATE 4 AND %

We give here the 3PN-accurate expressions for
0) 7, 5 7, the temporal evolution of @ and e, for obtaining h(r)
L =Fy TR (14 ¢i)sop 0 + Fi T g CrCicop (- associated with compact binaries inspiraling along

precessing eccentric orbits. 1PN-accurate ‘fl—“fj and %

with  O(ef) eccentricity corrections are given by

| | Eq. (2.25) and Eq. (2.26), respectively. The 1.5PN-3PN
zg)_)ﬂ — F+{—e;‘(1 —I—c%)szﬁ} +Fx{—6’?ci€2/j}- contributions to % appearing in Eq. (2.25) with O(e?)
' 8 4 corrections are
(A21)
|

(Bla)

LLSPN _ 32 { , 2335 5 42955 | 6204647 6}’

48 ¢ T 00 9 T o016 @

ey {34103 13661 59 , (479959 80425 213539 2) , (2932261 5715083
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18144 T 2016 1T 18" 12006 " 2032 1T 1728 )@ 16128 16128
2133235 19581787 1753627 25727065
,12) o4 (_ ,72> 6}’ (B1b)

2304 ¢ 18384 768 1T 6012 ¢

4159 189 (7885 27645 ) ’ <44644883 11707809 > 4
e; n

25PN _ _5/2) _ _ %7 1087 =27h%) —
v = { 62 8 "7\ 796 " 56 " 43008 3584 )¢

971752501 103819241 \
(193536 T 8064 ")e’}’ (Blc)

i _ 2 (16447320263 167 17127 56198689 , 451\ | 541 , 5605 3424l0g(2)
N = - - o N — -
139708800 ' 3 105 217728 48 )" 7896 2592 105

856 log(x) 277391496167 + 99272 106144y 280153957 " 18823172 73109 ,
105 139708800 9 315 120960 2304 448 !

6874115 , 80464log(2) 234009log(3) 53072log(x)\ , 974.“308007423)+3)059zr2 46759y
31104 315 560 315 ! 79833600 4 20

33126017+2065129ﬂ2 2804200 , 114255295 2730533 log(2) , 4446171 log(3)
3780 6144 32256 ! 41472 252 2240

46759log(x)) , (150878591021 76615z> 234223y 7739324653 3497869972

40 )f ( 3193344 24 24 <_ 362880 | 36864 )
21116263 , 1935750565 , 80906873log(2) 134711181log(3) 5224609375 log(5)
2608 T T 12aa6 T T 2520 a 35840 a 193536

234223 10g(x)> 6 } (B1d)

48 !

where y stands for the Euler-Mascheroni constant. The 1.5PN-3PN contributions to % appearing in Eq. (2.26) with O(e?)
corrections are

(B2a)

éll.sm:ﬂxm{ﬁ 21729 , 3061465 , 161865935 6}’

152 7608 ¢ T 20184 ¢ T 700416
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_ 110211og(2)  2340091og(3) 82283 log(x)

1316189396351

140237> 1500461y

580881600 | 114
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5882746699 4645377\ 554719 , 100330729 , 2271503log(2) 6318243 1log(3)
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36456205 , 1523467085 , 416836691og(2) 2810448091l0g(3) 1044921875 log(5)
87552 ' 787968 5985 - 340480 a 204288
154829 log(x)\ , (682257052877 976185z> 2984337y 4722976831 245580577
B 190 >’ ( 26966016 | 608 608 <_ 875520 155648 >
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_ —2984‘371 16°g(x)> e } (B2d)

APPENDIX C: 3PN-ACCURATE ANALYTIC
EXPRESSIONS FOR ¢, AND ‘I‘ji"

We display explicit expressions for 3PN-accurate ¢, and
Fourier phases that incorporate next-to-leading order e
corrections at each PN order. These expressions, along with
Egs. (3.19), (3.16), (2.31), (A1), and (A2), are required to
make operational the fully analytic frequency domain
quadrupolar-order GW response function for eccentric
inspirals that includes O(e}) corrections at every PN order.
We begin by listing explicit expressions for the 3PN-
accurate e, in terms of ej, y, and x. The underlying
computation is detailed in Ref. [49] and requires 3PN-
accurate expressions for @ and ¢,, given by Egs. (2.25) and
(2.26). The fully 3PN-accurate e, expression that accounts
for all the O(e}) contributions read

6
e = Zé’mxm/z. (C1)

m=0
The coefficients &, with next-to-leading order

eccentricity corrections O(e}) at each PN order can
be listed as

3323
50 — 30)(_19/18 + T (){—19/18 _}(—19/6)e8, (C2a)
51 - 0, (C2b)
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_ (77006005 1143767y 438077 oy (8025889 558101y 388097\ Ly
471 \24385536 145152 10368 4064256 72576 5184 )%

(28850671 275651 33811772))(_43/18}6 +{(255890954615 3800737741n

724385536 145152 10368 44479217664 264757248
14557066177\ g5, (_ 1095868349300 65400285919y _2920393017%\ s, s
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g _ [ (9901567 _202589mn\ oy, (_1068041x  74269mr\ s (_ 1068041z
S L\ 1451520 362880 290304 ' 10368 )* 290304
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6732032477y ~19/18 11217854617« n 5588772417y 31/18 3725822783
661893120 529514496 18911232 264757248

259084747m7) s (19549928915971 6577604176371;1) aois (_205761640371
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2101248 294174720 73543680
Because of the lengthy nature of the 3PN order terms in e,, we split it in two parts as
Ee = Epeg + ELe}. (C3)

The explicit form of these two contributions are
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We have pursued careful checking of our results with what is available in Ref. [49] and observed a slight typo in the
O(e}) contributions for the e, expression [Eq. (A6e) of Ref. [49]]. The 5 independent term present in the coefficient of
21918 should be 16952610560003855/162260186038272 instead of 16633441088056655/162260186038272. Note
that the above e, expression is required while computing the Fourier amplitudes &;. Additionally, it is a crucial ingredient
while computing the analytic expression for our Fourier phases ¥;. It should be obvious that its frequency dependence is

encapsulated in y = F/F, and the PN expansion parameter x = (Gm2zF/c3)*/3.
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We now display our 3PN-accurate closed form expres-
sion for the Fourier phases ‘I‘f”. Recall that nine different
Fourier phases appear in our 1PN-accurate amplitude-
corrected h(f) expression, given by Eq. (3.17). To
circumvent the task of displaying all the nine different
Fourier phases separately, we provide a general expres-
sion for these phases as ‘I‘;’ where n =0, 1, 2, 3, 4. It is

not very difficult to obtain ‘Pji” from ¥} by replacing n
|

with the appropriate '+’ sign in the expression. The
general expression for the 3PN-accurate Fourier phase
reads

. 6
n s (6) _ _ 3] m/2
le (] (] + n)k(3))¢c Zﬂftc 25617x5/2 n;) me :

(C5)

Various PN coefficients P,, with next-to-leading order eccentricity contributions are given by
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For the ease of presentation, we split the 3PN contributions to ¥} into three parts
P = Py + Piel + Pleg. (C7)

Various contributions to Pg are given by
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250620437372696563 9191712996522 558835855, [ 245999063921173 207709364057
159257838845952 2580262848 2030112 13702378991616 575391744 )"
25580695072053572 9022269087085 12629690323 log(2) 27159422553 log(3) 558835855 log(x)
326247118848 8738762112 188800416 55940864 4060224
558835855 102() | _s0
6090336 } ' (C8c)

Let us emphasize that the above expression indeed provides all the required Fourier phases, ‘Pf"’s that appear in
Eq. (3.17) for h(f). For instance, Fourier phases present in the quadrupolar-order /(f), namely, ‘P?, ‘P]JFZ, and ‘I‘;z are
obtained by putting in Eq. (C5) n = 0, 42, —2, respectively. Further, one should evaluate these Fourier phases at the correct

stationary points and this requires us to use x = {%}2/ 3. We note in passing that the 3PN-accurate ¢, and w7
@)

expressions along with the 1PN-accurate Fourier amplitudes while incorporating eccentricity corrections to O(ef) at each

PN order can be found in the attached Mathematica notebook [65].
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