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We derive analytic expressions that provide the Fourier domain gravitational wave (GW) response function
for compact binaries inspiraling along moderately eccentric orbits. These expressions include amplitude
corrections to the two GW polarization states that are accurate to the first post-Newtonian (PN) order.
Additionally, our fully third post-Newtonian (3PN)-accurate GW phase evolution incorporates eccentricity
effects up to sixth order at each PN order. Further, we develop a prescription to incorporate analytically the
effects of the 3PN-accurate periastron advance in theGWphase evolution. This is howwe provide a ready-to-
use and efficient inspiral template family for compact binaries inmoderately eccentric orbits. PreliminaryGW
data analysis explorations suggest that our template family should be required to construct analytic inspiral-
merger-ringdown templates to model moderately eccentric compact binary coalescence.
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I. INTRODUCTION

Observations of gravitational wave (GW) events by the
advanced LIGO and VIRGO GW interferometers are
ushering in the era of GW astronomy [1,2]. These GW
events include merging black hole (BH) binaries and an
inspiraling neutron star (NS) binary [3–9]. Several scenar-
ios that include long-lived (galactic) field binaries, star
clusters, galactic nuclei, and active galactic nuclei can
produce these observed GW events [10–14]. Fortunately, it
may be possible to extract valuable information about the
astrophysical origins of GW events in the near future. This
requires accurate GW measurements of the spin-orbit
misalignment or the orbital eccentricities of these GW
events [15–17]. Using both frequency and time-domain
inspiral-merger-ringdown (IMR) waveforms, residual
orbital eccentricities of the first two GW events were
restricted to be below 0.15 when these binaries entered
the aLIGO frequency window [18,19]. Strictly speaking,
the so far detected GW events do not exhibit any obser-
vational signatures of residual orbital eccentricities and are
faithfully captured by IMR templates associated with
compact binaries merging along quasicircular orbits.
However, there exists a number of astrophysical scenarios

that can produce GW events with non-negligible eccen-
tricities in the frequency windows of ground-based GW
detectors. Dense star clusters like the ubiquitous globular
clusters are the most promising sites to form aLIGO relevant

compact binaries with non-negligible orbital eccentricities
[20]. A recent realistic modeling of globular clusters that
involve general relativistic few body interactions provided a
non-negligible fraction of BH binaries with eccentricities
>0.1 as they enter the aLIGO frequencywindow [14,21–25].
Additionally, there exists a number of other astrophysical
scenarios that can force stellar mass compact binaries to
merge with orbital eccentricities. This includes a GW
induced merger during hyperbolic encounters between
BHs in dense clusters [26] and mergers influenced by the
Kozai effect in few body systems as explored in many
detailed investigations (see Ref. [27] and references therein).
Further, a very recent investigation pointed out that less
frequent binary-binary encounters in dense star clusters
can easily produce eccentric compact binary coalescence
[28]. These detailed investigations suggest that it may be
reasonable to expect GW events with non-negligible orbital
eccentricities in the coming years. Non-negligible orbital
eccentricities may be helpful to improve the accuracy with a
network of GW interferometers to constrain parameters of
compact binary mergers [29,30]. Moreover, massive BH
binaries in eccentric orbits are of definite interest tomaturing
pulsar timing arrays and the planned Laser Interferometer
Space Antenna (LISA) [31,32].
There are different ongoing investigations to model

eccentric compact binary coalescence. These efforts aim
to provide template families that model GWs from IMR
phases of eccentric coalescence. The initial effort, detailed in
Ref. [19], provided a time-domain IMR family that requires
orbital eccentricity to be negligible during the merger phase.*srishti.tiwari@tifr.res.in
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The inspiral part of the abovewaveform family was based on
a certain x model, introduced in Ref. [33], that adapted the
GW phasing formalism of Refs. [34,35]. Additionally, a
preliminary comparison with two numerical relativity (NR)
waveforms was also pursued in Ref. [19]. An improved
version of the above family was presented in Ref. [36] that
employed certain quasicircular merger waveform and which
can reproduce their NR simulations for any mass ratio
below 4. These waveform families are expected to model
GWs from eccentric coalescence when initial eccentricities
were usually below 0.2. Very recently, another time-domain
IMR family was introduced in Ref. [37]. This detailed effort
combined various elements frompost-Newtonian, self-force,
and black hole perturbation approaches in tandem with NR
simulations to model GWs from moderately eccentric non-
spinning BH binary coalescence. The resulting IMR wave-
formswerevalidatedwithmanyNRsimulations for eccentric
binary BHmergers lasting around ten orbits with mass ratios
below 5.5 and initial eccentricities below 0.2. The eccentric
binary BH coalescence is also explored in the framework of
the effective-one-body (EOB) approach [38]. A formalism to
incorporate orbital eccentricity in the existing EOB approach
to model quasicircular compact binary coalescence is pre-
sented inRef. [39]. Additionally, Ref. [40] presented anEOB
waveform family that incorporated elements of the second
post-Newtonian (2PN)-accurate eccentric orbital description
while comparing with few NR simulations for eccentric
binary BH coalescence. In contrast, the LIGO Scientific
Collaboration (LSC) adapted Ref. [41], which provided a
crude IMR prescription to model GW signals from merging
highly eccentric compact binaries. This was employed to
probe the ability of few LSC algorithms to extract burstlike
signals in the LIGO data [42]. Further, some of us developed
a ready-to-use “effective eccentric variant” of the
IMRPhenomD waveform to constrain the initial orbital
eccentricity of the GW150914 black hole binary. This was
pursued to justify the assumption of binary evolution along
circular orbits for the event [18]. A crucial ingredient of the
above IMR waveform family involved an eccentric version
of the TaylorF2 approximant that incorporated in its Fourier
phase the leading-order eccentricity corrections up to third
post-Newtonian (3PN) order. The present paper provides
fully analytic frequency domain interferometric response
function h̃ðfÞ relevant for GW data analysis of nonspinning
compact binaries inspiraling alongmoderately eccentric PN-
accurate orbits.
Our computation is aimed at extending the widely used

TaylorF2 approximant that provides analytic frequency
domainGWtemplates for compact binaries inspiraling along
quasicircular orbits [43]. This waveform family employs the
method of stationary phase approximation (SPA) to compute
analytically, the Fourier transform of temporally evolving
GW polarization states, h× and hþ, for quasicircular inspi-
rals. The popular LSC approximant provides a fully analytic
Fourier domainGWresponse function h̃ðfÞ that incorporates

the 3.5PN-accurate Fourier phase [43]. In other words, this
approximant provides general relativistic corrections to GW
phase evolution that are accurate to ðv=cÞ7 order beyond the
dominant quadrupolar order, where v is the orbital velocity.
The present manuscript details our derivation of a fully
analytic h̃ðfÞ with a 3PN-accurate Fourier phase with sixth
order eccentricity contributions in terms of certain initial
eccentricity at each PN order. Additionally, we include the
first post-Newtonian (1PN)-accurate amplitude corrections
and the effect of 3PN-accurate periastron advance on the
Fourier phases.
To derive our eccentric approximant, we extend the

postcircular scheme of Ref. [44] to higher PN orders. This
scheme involves expanding the Newtonian accurate h× and
hþ as a power series in orbital eccentricity that requires an
analytic solution to the classic Kepler equation. We extend
such a Newtonian approach by invoking a recent effort to
solve analytically the PN-accurate Kepler equation in the
small eccentricity limit [45]. This detailed computation also
provided analytic 1PN-accurate amplitude-corrected expres-
sions for h× and hþ as a sum over harmonics in certain mean
anomaly l of PN-accurate Keplerian type parametric solution
[45]. Additionally, the above PN-accurate decomposition
explicitly incorporated the effect of the periastron advance on
individual harmonics, numerically explored using a PN
description in Ref. [46]. We combine such 1PN-accurate
amplitude-correctedh× andhþ expressions that incorporated
eccentricity contributions to sixth order at each PNorderwith
the two beam pattern functions, F× and Fþ, to obtain a fully
analytic time-domain GW response function hðtÞ. Our
eccentric TaylorF2 approximant is obtained by applying
the method of stationary phase approximation to such an
analytic hðtÞ ¼ Fþhþ þ F×h× expression.
Toobtain analytic expressions for several Fourier phases at

their associated stationary points of hðtÞ, we require addi-
tional PN-accurate expressions. This involves deriving the
3PN-accurate expression for the time eccentricity et, present
in the 3PN-accurate Kepler equation [47], as a bivariate
expansion in terms of orbital angular frequency ω, its initial
value ω0 and e0, and the value of et at ω0. This lengthy
computation extends to the 3PN order, the idea of a certain
asymptotic eccentricity invariant at the quadrupolar order,
introduced in Ref. [48] and extended to 2PN in Ref. [49]. In
fact, we adapted the approach of Ref. [49] by employing the
appropriately modified 3PN-accurate dω=dt and det=dt
expressions of Refs. [50,51] to obtain the 3PN-accurate
bivariate expression for et. A careful synthesis of the above
listed PN-accurate expressions leads to a fully analytic
frequency domain TaylorF2 approximant that included
1PN-accurate amplitude corrections and 3PN-accurate
Fourier phases. An additional feature of our approximant
is the inclusion of periastron advance effects to 3PNorder. To
explore the GW data analysis implications of these features,
we perform preliminary match computations [52]. We
conclude that the influences of the periastron advance are
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non-negligible for moderately eccentric binaries, especially
in the aLIGO frequency window. This observation should be
relevant while constructing an IMR waveform family for
compact binaries merging along moderate eccentric orbits.
This paper is structured as follows. In Sec. II, we

summarize the efforts of Refs. [44,49] to obtain analytic
h̃ðfÞwith the PN-accurate Fourier phase. The crucial inputs
to construct our eccentric TaylorF2 approximant are also
listed in this section. Our approach and crucial expressions
to implement our eccentric approximant that incorporates
eccentricity contributions up toOðe6t Þ to 3PN are presented
in Sec. III. A brief summary and possible extensions are
listed in Sec. IV while detailed expressions, accurate to
Oðe40Þ, are given in Appendix C.

II. POSTCIRCULAR EXTENSIONS TO CIRCULAR
INSPIRAL TEMPLATES

We begin by reviewing two key efforts to include the
effects of orbital eccentricity onto the circular inspiral
templates [44,48]. This involves listing in Sec. II A the
steps that are crucial to compute the analytic frequency
domain GW response function with quadrupolar amplitudes
and the PN-accurate Fourier phase in some detail. Various
lengthy expressions, extracted from Refs. [45,50,51], are
listed in Sec. II B, and will be crucial to compute the time-
domain response function for eccentric binaries while
incorporating effects of the periastron advance, higher-order
radiation reaction, and amplitude corrections.

A. Quadrupolar-order h̃ðf Þ with PN-accurate
Fourier phase

Following [53], we may express the GW interferometric
response function as

hðtÞ¼FþðθS;ϕS;ψSÞhþðtÞþF×ðθS;ϕS;ψSÞh×ðtÞ; ð2:1Þ

where F×;þðθS;ϕS;ψSÞ are the two detector antenna pat-
terns. These quantities depend on ϕS; θS, the right ascension
and declination of the source, and a certain polarization angle
ψS [53]. For eccentric inspirals, the explicit expressions for
the quadrupolar-orderGWpolarization states,h× andhþ, are
given by Eqs. (3.1) of Ref. [44]. It is rather straightforward to
express these Newtonian accurate expressions as a sum over
harmonics in terms of the mean anomaly l. The resulting
expressions read

hþ;×ðtÞ ¼ −
Gmη

c2DL
x
X10
j¼1

½CðjÞ
þ;× cos jlþ SðjÞþ;× sin jl�; ð2:2Þ

where DL denotes the luminosity distance while the sym-
metric mass ratio η of a binary consisting of individual
massesm1 andm2 is defined to be η ¼ ðm1m2Þ=m2while the
total mass m ¼ m1 þm2. Further, we use the commonly

used dimensionless PN expansion parameter x ¼ ðGmω
c3 Þ2=3

whereG, c, andω are the gravitational constant, the speed of
light in vacuum, and the orbital angular frequency, respec-

tively. The Newtonian accurate amplitudes, CðjÞ
þ;× and SðjÞþ;×,

are written as a power series in orbital eccentricity et whose
coefficients involve trigonometric functions of the twoangles
ι, β that specify the line of sight vector in a certain inertial
frame. The derivation of these expressions is detailed in
Ref. [44] and the required inputs are obtained by adapting a
standard analytic approach to solve the classical Kepler
equation in terms of the Bessel functions [54].
With the help of Eqs. (2.1) and (2.2), we obtain the

interferometric strain for GWs from eccentric binaries as

hðtÞ ¼ −
Gmη

c2DL

�
Gmω

c3

�
2=3X10

j¼1

αj cos ðjlþ ϕjÞ; ð2:3Þ

where αj ¼ signðΓjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
j þ Σ2

j

q
and ϕj ¼ tan−1ð− Σj

Γj
Þ. The

two new functions, Γj and Σj, are defined as Γj ¼
FþC

ðjÞ
þ þ F×C

ðjÞ
× and Σj ¼ FþS

ðjÞ
þ þ F×S

ðjÞ
× , respectively,

as in Ref. [44]. We impose the effects of GW emission on
the above strain by specifying how et and ω ¼ 2πF, with F
being the orbital frequency, vary in time. In Ref. [44], the
temporal evolutions of ω and et are governed by the
following Newtonian (or quadrupolar) equations that were
adapted from Refs. [55–57].

dω
dt

¼ ðGmωÞ5=3ω2η

5c5ð1 − e2t Þ7=2
f96þ 292et2 þ 37et4g; ð2:4aÞ

det
dt

¼ −
ðGmωÞ5=3ωηet
15c5ð1 − e2t Þ5=2

f304þ 121et2g: ð2:4bÞ

It is customary to solve these two coupled differential
equations numerically to obtain ωðtÞ and etðtÞ and hence
temporally evolving hðtÞ. Interestingly, earlier efforts
provided a certain analytic way for obtaining a temporal
evolution for ωðtÞ and etðtÞ that mainly involves the usage
of hypergeometric functions [58–61].
However, it is possible to obtain an analytic frequency

domain counterpart of the above hðtÞ as demonstrated in
Refs. [44,48]. This traditional approach involves the
method of SPA, detailed in Ref. [62], to compute analyti-
cally the Fourier transform of hðtÞ. This was essentially
demonstrated at the leading order in initial eccentricity e0 in
Ref. [48] and later extended to Oðe80Þ in Ref. [44].
Following Refs. [44,48], we write

h̃ðfÞ ¼ Ã
�
Gmπf
c3

�
−7=6X10

j¼1

ξj

�
j
2

�
2=3

e−iðπ=4þΨjÞ; ð2:5Þ

where the overall amplitude Ã and the amplitudes of the
Fourier coefficients ξj are given by
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Ã ¼ −
�
5ηπ

384

�
1=2 G2m2

c5DL
; ð2:6aÞ

ξj ¼
ð1 − e2t Þ7=4

ð1þ 73
24
e2t þ 37

96
e4t Þ1=2

αje−iϕjðf=jÞ: ð2:6bÞ

In the approach of the stationary phase approximation, the
crucial Fourier phase is given by

Ψj½Fðt0Þ� ¼ 2π

Z
Fðt0Þ

τ0
�
j −

f
F0

�
dF0; ð2:7Þ

where τ stands for F= _F. Note that one needs to evaluate the
above integrals at appropriate stationary points t0, defined
by Fðt0Þ ¼ f=j.
To obtain a fully analytic ready-to-use expression for

h̃ðfÞ, we need to follow few additional steps. Clearly, we
require one to specify the frequency evolution of et with the
help of Eqs. (2.4a) and (2.4b). The structure of these
equations for _ω and _et allows us to write dω=det ¼
ωκNðetÞ and it turns out that κN depends only on et.
This allows us to integrate analytically the resulting
dω=ω ¼ κNðetÞdet equation. The resulting expression
can be written symbolically as ω=ω0 ¼ κ0ðet; e0Þ where
e0 is the value of et at the initial ω value, namely, ω0 [see
Eq. (62) in Ref. [34] for the explicit form for κ0ðet; e0Þ].
Interestingly, one may invert such an expression in the limit
et ≪ 1 to obtain et in terms of e0, ω, and ω0 and it reads

et ∼ e0χ−19=18 þOðe30Þ; ð2:8Þ
where χ is defined as ω=ω0 ¼ F=F0. We note that the
above result was first obtained in Ref. [48] which influ-
enced them to introduce the idea of an asymptotic eccen-
tricity invariant. This relation allows us to write τ in terms
of ω, ω0 and e0, as

τ ∼
5

96ηx4

�
Gm
c3

��
1 −

157e20
24

χ−19=9 þOðe40Þ
�
: ð2:9Þ

It is now straightforward to compute analytically the
indefinite integral for Ψj, namely,

2π

Z
τ0
�
j −

f
F0

�
dF0 ð2:10Þ

which appears in Eq. (2.7) for h̃ðfÞ. This leads to the
following expression for Ψj, accurate to Oðe20Þ corrections:

Ψj ∼ jϕc − 2πftc −
3

128η

�
Gmπf
c3

�
−5=3

�
j
2

�
8=3

×

�
1 −

2355e20
1462

χ−19=9 þOðe40Þ
�
; ð2:11Þ

where ϕc and tc are the orbital phase at coalescence and the
time of coalescence, respectively. Note that χ now stands
for f=f0 due to the use of the stationary phase condition.

Additionally, we have rescaled F0 → f0=j to ensure that
etðf0Þ ¼ e0 while employing the above expression for et,
given by Eq. (2.8). Indeed, our expression is consistent with
Eq. (4.28) of Ref. [44] that employs the chirp mass to
characterize the binary. A number of extensions to the
above result is available in the literature. In fact, Ref. [44]
computed the higher-order corrections to et in terms of e0
up to Oðe70Þ and extended Ψj to Oðe80Þ. Its PN extension,
available in Ref. [49], provided 2PN corrections for Ψj that
incorporated eccentricity corrections, accurate to Oðe60Þ at
every PN order, while Ref. [63] computed 3PN-accurateΨj

that included leading-order e0 contributions.
A crucial ingredient to such PN extensions is the

derivation of the PN-accurate et expression in terms of
e0, χ, and x. In what follows, we summarize the steps that
are required to obtain a 1PN-accurate expression for et (see
Ref. [49] for details). The starting point of such a derivation
is the 1PN-accurate differential equations for ω and et,
obtainable from Eq. (3.12) in Ref. [49]. With these inputs, it
is fairly straightforward to obtain the following 1PN-
accurate expression for dω=ω that includes only the
leading-order et contributions as

dω=ω ¼
�
−

18

19et
−

3

10108et
ð−2833þ 5516ηÞ

×

�
Gmω

c3

�
2=3

�
det: ð2:12Þ

The fact that the ω term appears only at the 1PN order
allows us to use the earlier derived Newtonian accurate
ω ¼ ω0ðe0=etÞ18=19 relation to replace ω on the right-hand
side of the above equation. This leads to

dω=ω∼
�
−

18

19et
−

3

10108

�
e12=190

e31=19t

�
ð−2833þ5516ηÞx0

�
det;

ð2:13Þ

where x0 ¼ ðGmω0=c3Þ2=3. We can integrate this
equation to obtain lnω − lnω0 in terms of et, e0, and
ω0. The exponential of the resulting expression and its
bivariate expansion in terms of x0 and et result in

ω ∼
��

e0
et

�
18=19

þ x0

�
2833 − 5516

2128
η

�

×

��
e0
et

�
18=19

−
�
e0
et

�
30=19

��
ω0: ð2:14Þ

We invert the above equation to obtain et in terms of e0
and x0 after invoking the Newtonian accurate relation et ¼
e0χ−19=18 to replace the et terms associated with the x0
term. This inversion and the associated bivariate expansion
in terms of e0 and x0 require that e0 ≪ 1 and x0 ≪ 1. The
resulting et expression reads
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et∼e0

�
χ−19=18þx0

�
2833

2016
−
197

72
η

�
ð−χ−7=18þχ−19=18Þ

�
:

ð2:15Þ

To obtain et as a bivariate expansion in terms of the
regular PN parameter x and e0, we employ the fact that
x=x0 ¼ χ2=3 and this results in

et∼e0

�
χ−19=18þx

�
2833

2016
−
197

72
η

�
ð−χ−19=18þχ−31=18Þ

�
:

ð2:16Þ

We are now in a position to obtain a 1PN-accurate Ψj

expression that includes Oðe20Þ contributions both at the
Newtonian and 1PN orders with the help of a 1PN-accurate
τ ¼ ω= _ω expression that is accurate to Oðe2t Þ terms. A
straightforward computation leads to the desiredΨj expres-
sion which reads

Ψj∼jϕc−2πftc−
�

3j
256η

�
x−5=2

�
1−

2355e20
1462

χ−19=9

þx

�
3715

756
þ55

9
ηþ

��
−
2045665

348096
−
128365

12432
η

�
χ−19=9

þ
�
−
2223905

491232
þ154645

17544
η

�
χ−25=9

�
e20

��
; ð2:17Þ

where the quantities x and χ will have to be evaluated at the
stationary point (see Ref. [49] for details). With the above

equation, we explicitly listed our approach to compute PN-
accurate Ψj that incorporates e0 corrections at each PN
order. In the present paper, we extend these computations to
3PN order while incorporating Oðe60Þ contributions at each
PN order. These higher-order e0 corrections are included as
we desire to model GWs from moderately eccentric
compact binary inspirals. In the next section, we provide
crucial inputs that will be required to compute the analytic
1PN-accurate amplitude-corrected h̃ðfÞ with 3PN-accurate
Fourier phases.

B. Analytic PN-accurate amplitude-corrected
time-domain eccentric GW templates

The previous section showed that we require analytic
expressions for the two GW polarization states as a sum
over harmonics to construct the ready-to-use analytic h̃ðfÞ.
This influenced us to adapt Eqs. (44) and (45) in Ref. [45]
that provided an analytic 1PN-accurate amplitude-cor-
rected h×;þðtÞ which additionally included the effects of
the periastron advance on individual harmonics. This may
be seen by a close inspection of appropriate terms in
Eqs. (44), (45), (46), and (47) of Ref. [45]. To describe in
detail how these improvements in GW polarization states
change the harmonic structure of hðtÞ, we restrict our
attention to quadrupolar-order contributions to h×;þðtÞ,
given in Eqs. (44) and (45) of Ref. [45]. The explicit
expressions for such “Newtonian” contributions to h×;þðtÞ
that include Oðe4t Þ corrections read

h0× ¼ Gmη

c2DL
x

�
cosðϕþ ϕ0Þ

��
−3et þ

13e3t
8

�
cis2β

�
þ sinðϕþ ϕ0Þ

��
3et −

13e3t
8

�
cic2β

�

þ cosð2ϕÞ
��

4 − 10e2t þ
23e4t
4

�
cis2β

�
þ sinð2ϕÞ

��
−4þ 10e2t −

23e4t
4

�
cic2β

�

þ cosð3ϕ − ϕ0Þ
��

9et −
171e3t
8

�
cis2β

�
þ sinð3ϕ − ϕ0Þ

��
−9et þ

171e3t
8

�
cic2β

�
þ cosð4ϕ − 2ϕ0Þ½ð16e2t − 40e4t Þcis2β� þ sinð4ϕ − 2ϕ0Þ½ð−16e2t þ 40e4t Þcic2β�

þ cosð5ϕ − 3ϕ0Þ
�
625

24
e3t cis2β

�
þ sinð5ϕ − 3ϕ0Þ

�
−625
24

e3t cic2β

�
þ cosð6ϕ − 4ϕ0Þ

�
81

2
e4t cis2β

�

þ sinð6ϕ − 4ϕ0Þ
�
−81
2

e4t cic2β

�
þ cosðϕ − 3ϕ0Þ

�
−7
24

e3t cis2β

�
þ sinðϕ − 3ϕ0Þ

�
−7
24

e3t cic2β

�

þ cosð2ϕ − 4ϕ0Þ
�
−
1

4
e4t cis2β

�
þ sinð2ϕ − 4ϕ0Þ

�
−
1

4
e4t cic2β

��
; ð2:18Þ
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h0þ¼ Gmη

c2DL
x

�
cosðϕþϕ0Þ

��
3et
2
−
13e3t
16

�
ð1þc2i Þc2β

�
þsinðϕþϕ0Þ

��
3et
2
−
13e3t
16

�
ð1þc2i Þs2β

�

þcosð2ϕÞ
��

−2þ5e2t −
23e4t
8

�
ð1þc2i Þc2β

�
þsinð2ϕÞ

��
−2þ5e2t −

23e4t
8

�
ð1þc2i Þs2β

�

þcosð3ϕ−ϕ0Þ
��

−
9et
2
þ171e3t

16

�
ð1þc2i Þc2β

�
þsinð3ϕ−ϕ0Þ

��
−
9et
2
þ171e3t

16

�
ð1þc2i Þs2β

�
þcosð4ϕ−2ϕ0Þ½ð−8e2t þ20e4t Þð1þc2i Þc2β�þsinð4ϕ−2ϕ0Þ½ð−8e2t þ20e4t Þð1þc2i Þs2β�

þcosð5ϕ−3ϕ0Þ
�
−
625

48
e3t ð1þc2i Þc2β

�
þsinð5ϕ−3ϕ0Þ

�
−
625

48
e3t ð1þc2i Þs2β

�
þcosð6ϕ−4ϕ0Þ

�
−
81

4
e4t ð1þc2i Þc2β

�

þsinð6ϕ−4ϕ0Þ
�
−
81

4
e4t ð1þc2i Þs2β

�
þcosðϕ−ϕ0Þ

��
et−

e3t
8

�
s2i

�
þcosð2ϕ−2ϕ0Þ

��
e2t −

e4t
3

�
s2i

�

þcosð3ϕ−3ϕ0Þ
�
9

8
e3t s2i

�
þcosð4ϕ−4ϕ0Þ

�
4

3
e4t s2i

�
þcosðϕ−3ϕ0Þ

�
7

48
e3t ð1þc2i Þc2β

�

þsinðϕ−3ϕ0Þ
�
−

7

48
e3t ð1þc2i Þs2β

�
þcosð2ϕ−4ϕ0Þ

�
−
1

8
e4t ð1þc2i Þc2β

�
þsinð2ϕ−4ϕ0Þ

�
−
1

8
e4t ð1þc2i Þs2β

��
; ð2:19Þ

where ϕ ¼ ð1þ kÞl, ϕ0 ¼ kl, and k provides the rate of the
periastron advance per orbit [34]. Further, we let ci ¼ cos ι,
si ¼ sin ι, c2β ¼ cos 2β, and s2β ¼ sin 2β. Note that crucial
ingredients to obtain above analytic expressions include
developing approaches to solve a PN-accurate Kepler
equation and adapting them to derive PN-accurate relations
to connect true and eccentric anomalies, detailed inRef. [45].
A close inspectionof the above two equationswithEqs. (3.3)
and (3.4) of Ref. [44] reveals that the arguments of cosine
and sine functions in the above expressions involve ϕ0 ¼ kl
and its multiples in addition to the usual orbital phase ϕ and
its multiples. These additional ϕ0 contributions are clearly

due to the periastron advance. It turns out that these addi-
tional angular contributions are sufficient to provide the
numerically inferred side bands in the power spectrum of
eccentric binaries due to the presence of k [46]. This is why
we explicitly included e4t contributions to the above h×;þ
expressions as these contributions are required to reveal the
underlying side band structure of waveforms due to the
influence of the periastron advance.
We rewrite the above expressions for h0×;þ in a more

compact form to explicitly show how various harmonics are
affected by the advance of periastron. The resulting
expressions read

h0þ;×ðtÞ ¼
�X6

j¼1

½Cj;−2
þ;× ð0Þ cosðjϕ − ðj − 2Þϕ0Þ þ Sj;−2þ;× ð0Þ sinðjϕ − ðj − 2Þϕ0Þ� þ

X4
j¼1

½Cj;0
þ;×ð0Þ cosðjϕ − jϕ0Þ

þ Sj;0þ;×ð0Þ sinðjϕ − jϕ0Þ� þ
X2
j¼1

½Cj;þ2
þ;× ð0Þ cosðjϕ − ðjþ 2Þϕ0Þ þ Sj;þ2

þ;× ð0Þ sinðjϕ − ðjþ 2Þϕ0Þ�
�
; ð2:20Þ

where we denoted the coefficient of the cosðjϕ − ðj�
nÞϕ0Þ harmonic at the quadrupolar (Newtonian) order for

the þ polarization by Cj;�n
þ ð0Þ while the coefficient of

sinðjϕ − ðj� nÞϕ0Þ is indicated by Sj;�n
þ ð0Þ. We adopt a

rather heavy notation as it is amenable to higher PN order
contributions which will be tackled below. In this con-
vention, we represent the coefficient of cosðjϕ − ðj�
nÞϕ0Þ that appears in the 1PN contributions to × polari-

zation state by Cj;�n
× ð1Þ. It should be obvious that j stands

for the harmonic variable while n provides a measure of

the shift that each harmonic experiences due to the
periastron advance. A close comparison of Eqs. (2.18)
and (2.19) reveals that these coefficients are functions of ι,
β and contain powers of et. Moreover, the arguments of
cosine and sine functions clearly show that the eccentricity
induced higher harmonics are not mere multiples of
ω ¼ Nð1þ kÞ, where N is the PN-accurate mean motion.
Clearly, this is due to the presence of nonvanishing ϕ0

contributions due to the periastron advance. Interestingly,
the plus polarization state does provide harmonics which
are integer multiples of N. It is not difficult to show that
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these Newtonian-like terms arise from specific cosine
functions with arguments jϕ − jϕ0, as evident from
Eq. (2.19). Further, it is possible to show that these
contributions arise from et cos us2i =ð1 − et cosuÞ contribu-
tions to H0þ, given by Eq. (F2a) in Ref. [45] and therefore
are not influenced by the periastron advance. Interestingly,
similar conclusions were obtained in Ref. [46].
With the above inputs, we write the time-domain GW

detector response function for eccentric inspirals as

hðtÞ¼ Gmη

c2DL
x
�X6

j¼1

½Γð0Þ
j;−2cosðjϕ−ðj−2Þϕ0Þ

þΣð0Þ
j;−2 sinðjϕ−ðj−2Þϕ0Þ�þ

X4
j¼1

½Γð0Þ
j;0 cosðjϕ−jϕ0Þ

þΣð0Þ
j;0 sinðjϕ−jϕ0Þ�þ

X2
j¼1

½Γð0Þ
j;þ2cosðjϕ−ðjþ2Þϕ0Þ

þΣð0Þ
j;þ2 sinðjϕ−ðjþ2Þϕ0Þ�

�
; ð2:21Þ

where the amplitudes of the cosine and sine functions are

denoted by rather complicated symbols Γð0Þ
j;�n and Σð0Þ

j;�n.
The definition of hðtÞ ¼ FþhþðtÞ þ F×h×ðtÞ ensures

that Γð0Þ
j;�n ¼ FþC

j;�n
þ ð0Þ þ F×C

j;�n
× ð0Þ while Σð0Þ

j;�n ¼
FþS

j;�n
þ ð0Þ þ F×S

j;�n
× ð0Þ. We list in Appendix A the

lengthy expressions for these quantities in terms of ι, β
and eccentricity contributions, accurate to Oðe4t Þ. We
display up to Oðe4t Þ contributions to demonstrate the full
harmonic structure of the quadrupolar-order GW polariza-

tion states. It turns out that Σð0Þ
j;0 contributions are zero by

construction. This is mainly because the unshifted har-
monics only appear with the cosine terms, present in the þ
polarization state. Invoking familiar trigonometric iden-
tities, we simplify the above equation and obtain

hðtÞ ¼ Gmη

c2DL
x

�X6
j¼1

αð0Þj;−2 cosðjϕ − ðj − 2Þϕ0 þ ϕ̄ð0Þ
j;−2Þ

þ
X4
j¼1

αð0Þj;0 cosðjϕ − jϕ0 þ ϕ̄ð0Þ
j;0Þ

þ
X2
j¼1

αð0Þj;þ2 cosðjϕ − ðjþ 2Þϕ0 þ ϕ̄ð0Þ
j;þ2Þ

�
; ð2:22Þ

where we introduce two new multi-index symbols αð0Þj;�n and

ϕ̄ð0Þ
j;�n to ensure that detector strain can be written in terms of

only cosine functions. Influenced by Ref. [44], these symbols

are defined as αð0Þj;�n ¼ signðΓð0Þ
j;�nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓð0Þ

j;�nÞ2 þ ðΣð0Þ
j;�nÞ2

q
and

ϕ̄ð0Þ
j;�n ¼ tan−1ð− Σð0Þ

j;�n

Γð0Þ
j;�n

Þ. We do not list explicit expressions for

these quantities that are accurate to Oðe4t Þ in eccentricity
corrections as they can be easily obtained from our Eqs. (A1)
and (A2).
A close inspection of the above equations reveals that

they provide the GW response function for compact
binaries moving along precessing eccentric orbits. To
obtain temporally evolving hðtÞ associated with compact
binaries inspiraling along precessing eccentric orbits, we
need to specify how ϕ;ϕ0;ω and et vary in time due to GW
emission. We adapt the phasing formalism, detailed in
Refs. [34,49], to provide differential equations for these
variables. And, for the time being, we will concentrate on
the secular evolution of these variables. In other words, we
will neglect GW induced quasiperiodic variations to orbital
elements and angles, detailed in Ref. [34]. The 3PN-
accurate secular evolution to ϕ and ϕ0 in the modified
harmonic gauge that are accurate to Oðe6t Þ is given by

dϕ
dt

¼ ω ¼ x3=2
c3

Gm
; ð2:23Þ

dϕ0

dt
¼ ω

k
1þ k

¼ ω

�
3x½1þ e2t þ e4t þ e6t � þ x2

�
9

2
− 7ηþ

�
87

4
−
41

2
η

�
e2t þ ð39 − 34ηÞe4t þ

�
225

4
−
95

2
η

�
e6t

�

þ x3
�
27

2
þ
�
−
481

4
þ 123π2

32

�
ηþ 7η2 þ

�
519

4
þ
�
−
2037

4
þ 1599π2

128

�
ηþ 61η2

�
e2t þ

�
2811

8

þ
�
−1174þ 3321π2

128

�
ηþ 1361

8
η2
�
e4t þ

�
10779

16
þ
�
−
16901

8
þ 2829π2

64

�
ηþ 2675

8
η2
�
e6t

��
; ð2:24Þ

dω
dt

¼ 96c6η
5G2m2

x11=2
�
1þ 157

24
e2t þ

605

32
e4t þ

3815

96
e6t þ x

�
−
743

336
−
11

4
ηþ

�
713

112
−
673

16
η

�
e2t þ

�
52333

672
−
12415

64
η

�
e4t

þ
�
13823

48
−
107765

192
η

�
e6t

�
þ _ω1.5PN þ _ω2PN þ _ω2.5PN þ _ω3PN

�
; ð2:25Þ
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det
dt

¼ −
304c3ηet
15Gm

x4
�
1þ 881

304
e2t þ

3265

608
e4t þ

20195

2432
e6t þ x

�
−
2817

2128
−
1021

228
ηþ

�
40115

4256
−
51847

1824
η

�
e2t

þ
�
87749

2128
−
298115

3648
η

�
e4t þ

�
121833

1216
−
2501905

14592
η

�
e6t

�
þ _et1.5PN þ _et2PN þ _et2.5PN þ _et3PN

�
: ð2:26Þ

The explicit 1.5,2,2.5, and 3PN order contributions to
dω=dt and det=dt that incorporate all theOðe6t Þ corrections
are provided in the Appendix B. The differential equations
for dω=dt and det=dt are extracted from expressions,
available in Refs. [50,51] and are in the modified harmonic
gauge. These papers provided above 3PN-accurate expres-
sions as the sum of certain “instantaneous” and “tail”
contributions

dω
dt

¼
�
dω
dt

�
inst

þ
�
dω
dt

�
tail
;

det
dt

¼
�
det
dt

�
inst

þ
�
det
dt

�
tail
:

The 3PN-accurate instantaneous contributions depend only
on the binary dynamics at the usual retarded time while the
hereditary contributions are sensitive to the binary dynam-
ics at all epochs prior to the usual retarded time [64]. The
instantaneous contributions to dω=dt are extracted from
Eqs. (6.14), (6.15a), (6.15), (C6), and (C7) of Ref. [50]
while for det=dt such contributions originate from
Eqs. (6.16), (6.19a), (6.19b), (C10), and (C11) in
Ref. [50]. It should be obvious that we have Taylor
expanded these equations around et ¼ 0 to obtain eccen-
tricity contributions accurate to Oðe6t Þ. The hereditary
contributions to dω=dt and det=dt are adapted from
Eqs. (6.24c) and (6.26) of Ref. [50] and they depend on
a number of eccentricity enhancement functions. We
employ such enhancement functions provided in
Ref. [51] for our computations. We now have all the inputs

to obtain the restricted time-domain hðtÞ to model GWs
from nonspinning compact binaries inspiraling along pre-
cessing moderately eccentric orbits. To obtain such time-
domain templates, we numerically solve the above listed
differential equations for ω; et;ϕ, and ϕ0 and impose their
temporal evolution in the quadrupolar-order GW response
function, given by Eq. (2.22). We now move on to describe
how we extend the quadrupolar-order GW response
function.
It should be obvious that we require a prescription to

compute analytically PN-accurate amplitude-corrected GW
polarization states to improve the above listed quadrupolar-
order GW response function. Therefore, we adapt 1PN-
accurate amplitude-corrected and fully analytic expressions
for h×;þ, available in Ref. [45], to compute GW response
function for eccentric inspirals that incorporates PN con-
tributions even to its amplitudes. We list below certain
ingredients that will be crucial to write down analytic hðtÞ
that incorporates 1PN-accurate amplitude corrections to
h×;þ while consistently keeping eccentricity contributions
up to Oðe6t Þ. We begin by displaying Eqs. (44) and (45) of
Ref. [45] as a single sum which reads

hþ;×ðtÞ ¼
Gmη

c2DL
xfh0þ;×ðtÞ þ x0.5h0.5þ;×ðtÞ þ xh1þ;×ðtÞg:

ð2:27Þ

Various PN order amplitude contributions take the follow-
ing form:

h0þ;×ðtÞ ¼
X8
j¼1

fCj;−2
þ;× ð0Þ cosðjϕ − ðj − 2Þϕ0Þ þ Sj;−2þ;× ð0Þ sinðjϕ − ðj − 2Þϕ0Þg þ

X6
j¼1

fCj;0
þ;×ð0Þ cosðjϕ − jϕ0Þ

þ Sj;0þ;×ð0Þ sinðjϕ − jϕ0Þg þ
X4
j¼1

fCj;þ2
þ;× ð0Þ cosðjϕ − ðjþ 2Þϕ0Þ þ Sj;þ2

þ;× ð0Þ sinðjϕ − ðjþ 2Þϕ0Þg; ð2:28aÞ

h0.5þ;×ðtÞ ¼ δ

�X7
j¼1

½Cj;−1
þ;× ð0.5Þ cosðjϕ − ðj − 1Þϕ0Þ þ Sj;−1þ;× ð0.5Þ sinðjϕ − ðj − 1Þϕ0Þ� þ

X5
j¼1

½Cj;þ1
þ;× ð0.5Þ cosðjϕ − ðjþ 1Þϕ0Þ

þ Sj;þ1
þ;× ð0.5Þ sinðjϕ − ðjþ 1Þϕ0Þ� þ

X9
j¼1

½Cj;−3
þ;× ð0.5Þ cosðjϕ − ðj − 3Þϕ0Þ þ Sj;−3þ;× ð0.5Þ sinðjϕ − ðj − 3Þϕ0Þ�

þ
X3
j¼1

½Cj;þ3
þ;× ð0.5Þ cosðjϕ − ðjþ 3Þϕ0Þ þ Sj;þ3

þ;× ð0.5Þ sinðjϕ − ðjþ 3Þϕ0Þ�
�
; ð2:28bÞ
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h1þ;×ðtÞ ¼
X8
j¼1

fCj;−2
þ;× ð1Þ cosðjϕ − ðj − 2Þϕ0Þ þ Sj;−2þ;× ð1Þ sinðjϕ − ðj − 2Þϕ0Þg þ

X4
j¼1

fCj;þ2
þ;× ð1Þ cosðjϕ − ðjþ 2Þϕ0Þ

þ Sj;þ2
þ;× ð1Þ sinðjϕ − ðjþ 2Þϕ0Þg þ

X10
j¼1

fCj;−4
þ;× ð1Þ cosðjϕ − ðj − 4Þϕ0Þ þ Sj;−4þ;× ð1Þ sinðjϕ − ðj − 4Þϕ0Þg

þ
X2
j¼1

fCj;þ4
þ;× ð1Þ cosðjϕ − ðjþ 4Þϕ0Þ þ Sj;þ4

þ;× ð1Þ sinðjϕ − ðjþ 4Þϕ0Þg þ
X6
j¼1

fCj;0
þ;×ð1Þ cosðjϕ − jϕ0Þ

þ Sj;0þ;×ð1Þ sinðjϕ − jϕ0Þg; ð2:28cÞ

where δ ¼ ðm1 −m2Þ=ðm1 þm2Þ and we letm1 be the heavier of the two binary components. We do not list explicitly very
lengthy expressions for these amplitudes. However, they can be easily extracted from the attached Mathematica notebook
[65]. The derivation of the above lengthy expressions includes developing analytic approaches to solve the PN-accurate
Kepler equation and PN-accurate relations connecting true and eccentric anomalies, detailed in Ref. [45]. Indeed, we have
verified that these expressions reduce to their circular counterparts, provided in Ref. [66].
The associated GW detector strain for eccentric binaries is given by

hðtÞ¼ Gmη

c2DL
x
��X8

j¼1

ðΓð0Þ
j;−2cosðjϕ−ðj−2Þϕ0ÞþΣð0Þ

j;−2 sinðjϕ−ðj−2Þϕ0ÞÞþ
X6
j¼1

ðΓð0Þ
j;0 cosðjϕ−jϕ0ÞþΣð0Þ

j;0 sinðjϕ−jϕ0ÞÞ

þ
X4
j¼1

ðΓð0Þ
j;þ2cosðjϕ−ðjþ2Þϕ0ÞþΣð0Þ

j;þ2 sinðjϕ−ðjþ2Þϕ0ÞÞ
�
þx0.5δ

�X7
j¼1

ðΓð0.5Þ
j;−1 cosðjϕ−ðj−1Þϕ0Þ

þΣð0.5Þ
j;−1 sinðjϕ−ðj−1Þϕ0ÞÞþ

X5
j¼1

ðΓð0.5Þ
j;þ1 cosðjϕ−ðjþ1Þϕ0ÞþΣð0.5Þ

j;þ1 sinðjϕ−ðjþ1Þϕ0ÞÞ

þ
X9
j¼1

ðΓð0.5Þ
j;−3 cosðjϕ−ðj−3Þϕ0ÞþΣð0.5Þ

j;−3 sinðjϕ−ðj−3Þϕ0ÞÞþ
X3
j¼1

ðΓð0.5Þ
j;þ3 cosðjϕ−ðjþ3Þϕ0Þ

þΣð0.5Þ
j;þ3 sinðjϕ−ðjþ3Þϕ0ÞÞ

�
þx

�X8
j¼1

ðΓð1Þ
j;−2cosðjϕ−ðj−2Þϕ0ÞþΣð1Þ

j;−2 sinðjϕ−ðj−2Þϕ0ÞÞ

þ
X4
j¼1

ðΓð1Þ
j;þ2cosðjϕ−ðjþ2Þϕ0ÞþΣð1Þ

j;þ2 sinðjϕ−ðjþ2Þϕ0ÞÞþ
X6
j¼1

ðΓð1Þ
j;0 cosðjϕ−jϕ0ÞþΣð1Þ

j;0 sinðjϕ−jϕ0ÞÞ

þ
X10
j¼1

ðΓð1Þ
j;−4cosðjϕ−ðj−4Þϕ0ÞþΣð1Þ

j;−4 sinðjϕ−ðj−4Þϕ0ÞÞþ
X2
j¼1

ðΓð1Þ
j;þ4cosðjϕ−ðjþ4Þϕ0Þ

þΣð1Þ
j;þ4 sinðjϕ−ðjþ4Þϕ0ÞÞ

��
; ð2:29Þ

where, as expected, we have defined

ΓðpÞ
j;�n ¼ FþC

j;�n
þ ðpÞ þ F×C

j;�n
× ðpÞ; ð2:30aÞ

ΣðpÞ
j;�n ¼ FþS

j;�n
þ ðpÞ þ F×S

j;�n
× ðpÞ: ð2:30bÞ

A further simplification is possible which requires, as
expected, additional multi-index functions

αðpÞj;�n ¼ signðΓðpÞ
j;�nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓðpÞ

j;�nÞ2 þ ðΣðpÞ
j;�nÞ2

q
; ð2:31aÞ

ϕ̄ðpÞ
j;�n ¼ tan−1

�
−
ΣðpÞ
j;�n

ΓðpÞ
j;�n

�
; ð2:31bÞ

such that
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hðtÞ ¼ Gmη

c2DL
x

��X8
j¼1

αð0Þj;−2 cosðjϕ − ðj − 2Þϕ0 þ ϕ̄ð0Þ
j;−2Þ þ

X6
j¼1

αð0Þj;0 cosðjϕ − jϕ0 þ ϕ̄ð0Þ
j;0Þ

þ
X4
j¼1

αð0Þj;þ2 cosðjϕ − ðjþ 2Þϕ0 þ ϕ̄ð0Þ
j;þ2Þ

�
þ x0.5δ

�X7
j¼1

αð0.5Þj;−1 cosðjϕ − ðj − 1Þϕ0 þ ϕ̄ð0.5Þ
j;−1 Þ

þ
X5
j¼1

αð0.5Þj;þ1 cosðjϕ − ðjþ 1Þϕ0 þ ϕ̄ð0.5Þ
j;−1 Þ þ

X9
j¼1

αð0.5Þj;−3 cosðjϕ − ðj − 3Þϕ0 þ ϕ̄ð0.5Þ
j;−3 Þ

þ
X3
j¼1

αð0.5Þj;þ3 cosðjϕ − ðjþ 3Þϕ0 þ ϕ̄ð0.5Þ
j;þ3Þ

�
þ x

�X8
j¼1

αð1Þj;−2 cosðjϕ − ðj − 2Þϕ0 þ ϕ̄ð1Þ
j;−2Þ

þ
X4
j¼1

αð1Þj;þ2 cosðjϕ − ðjþ 2Þϕ0 þ ϕ̄ð1Þ
j;þ2Þ þ

X6
j¼1

αð1Þj;0 cosðjϕ − jϕ0 þ ϕ̄ð1Þ
j;0Þ

þ
X10
j¼1

αð1Þj;−4 cosðjϕ − ðj − 4Þϕ0 þ ϕ̄ð1Þ
j;−4Þ þ

X2
j¼1

αð1Þj;þ4 cosðjϕ − ðjþ 4Þϕ0 þ ϕ̄ð1Þ
j;þ4Þ

��
: ð2:32Þ

A cursory look at the above equation may give the
impression that the summation indices in various sums are
terminated in an arbitrary manner. Interestingly, we find a
possible way to predict the maximum value that j index can
take in each of the above summations. This is related to the
argument of ϕ0 in each of these cosine series. We infer that
the argument of ϕ0 can take a maximum value of six as we
are restricting eccentricity contributions to sixth order in et.
This ensures that the j index can take maximum values of
8,6, and 4 at the Newtonian order in the above expression.
In other words, jmax in the above expression is given such
that jmax � n ¼ 6 where the �n value arises from the
argument of the ϕ0 variable in various summations. It is
easy to see that the above relation holds true even at 0.5 and
1PN orders and it provides a natural check on the structure
of these higher-order PN contributions to hðtÞ.
To obtain the GW response function for eccentric

inspirals, we need to incorporate the temporal evolution
in ω; et;ϕ, and ϕ0, given by our earlier listed 3PN-accurate
differential equations. The fact that we are required to solve
the above four coupled differential equations numerically
ensures that our approach to obtain ready-to-use hðtÞ will
be computationally expensive. This is clearly one of the

motivations to obtain fully analytic h̃ðfÞ for compact
binaries inspiraling along moderately eccentric orbits.
Fortunately, we are in a position to compute analytic
amplitude-corrected h̃ðfÞ that incorporates the 3PN-accu-
rate Fourier phase while keeping eccentricity contributions
accurate to sixth order in e0 at every PN order.

III. ANALYTIC h̃ðf Þ FOR ECCENTRIC INSPIRALS
WITH 1PN AMPLITUDE CORRECTIONS

We first provide a detailed description of our approach to
compute the analytic Fourier transform of the restricted
time-domain inspiral family, given by Eq. (2.22). This will
be followed by computing h̃ðfÞ associated with Eq. (2.32).
Preliminary data analysis implications of our analytic h̃ðfÞ
are probed in Sec. III B.

A. Approach to compute Fourier transform of hðtÞ
for compact binaries inspiraling along precessing

eccentric orbits

We begin by listing the expanded version of our
quadrupolar-order hðtÞ, namely, Eq. (2.22) with Oðe4t Þ
eccentricity contributions as

hðtÞ ¼ Gmη

c2DL
xf½αð0Þ1;−2 cos ðϕþ ϕ0 þ ϕ̄ð0Þ

1;−2Þ þ αð0Þ2;−2 cos ð2ϕþ ϕ̄ð0Þ
2;−2Þ þ αð0Þ3;−2 cos ð3ϕ − ϕ0 þ ϕ̄ð0Þ

3;−2Þ

þ αð0Þ4;−2 cos ð4ϕ − 2ϕ0 þ ϕ̄ð0Þ
4;−2Þ þ αð0Þ5;−2 cos ð5ϕ − 3ϕ0 þ ϕ̄ð0Þ

5;−2Þ þ αð0Þ6;−2 cos ð6ϕ − 4ϕ0 þ ϕ̄ð0Þ
6;−2Þ�

þ ½αð0Þ1;0 cos ðϕ − ϕ0 þ ϕ̄ð0Þ
1;0Þ þ αð0Þ2;0 cos ð2ϕ − 2ϕ0 þ ϕ̄ð0Þ

2;0Þ þ αð0Þ3;0 cos ð3ϕ − 3ϕ0 þ ϕ̄ð0Þ
3;0Þ þ αð0Þ4;0 cos ð4ϕ − 4ϕ0 þ ϕ̄ð0Þ

4;0Þ�
þ ½αð0Þ1;þ2 cos ðϕ − 3ϕ0 þ ϕ̄ð0Þ

1;þ2Þ þ αð0Þ2;þ2 cos ð2ϕ − 4ϕ0 þ ϕ̄ð0Þ
2;þ2Þ�g: ð3:1Þ
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Clearly, we see three distinct square brackets that contain
three cosine functions with explicitly time dependent
arguments, namely, jϕ − ðj − 2Þϕ0, jϕ − jϕ0, and

jϕ − ðjþ 2Þϕ0. Note that αð0Þj;�n and ϕ̄ð0Þ
j;�n experience

implicit temporal evolution due to the GW emission
induced variations to ω and et. The main reason for
displaying the above equation is to show explicitly how
the periastron advance, defined by ϕ0, influences the
harmonic structure of hðtÞ in comparison with Eq. (4.21)
of Ref. [44] or our Eq. (2.3).
We obtain an analytic Fourier domain version of the

above equation with the help of the stationary phase
approximation, detailed in [62]. How this approach can
be employed to compute h̃ðfÞ for compact binaries
spiraling along Keplerian eccentric orbits can be found
in Sec. IV of Ref. [44]. This approximation is quite
appropriate for us as it provides a prescription to compute
the asymptotic behavior of the generalized cosine time
series, as given by our Eq. (3.1). Without loss of any
generality, we may write such a time series as

SðtÞ ¼ sðtÞ cosðlϕðtÞÞ; ð3:2Þ

where l > 0 and as expected SðtÞ should be a product of
slowly varying amplitude sðtÞ and a rapidly varying cosine
function with argument lϕðtÞ. Because of the virtue of the
Riemann-Lebesgue lemma, as noted in Ref. [62], the
Fourier transform of SðtÞ becomes

SfðfÞ ¼
1

2

Z
∞

−∞
sðtÞeifð2πt−lϕðtÞ=fÞdt: ð3:3Þ

It is not difficult to gather that the argument of the
exponential function vanishes at the stationary point t0
such that l _ϕðt0Þ ¼ 2πf. This allows us to invoke the
approach of SPA to obtain the asymptotic behavior of
SfðfÞ by the following expression:

SfðfÞ ¼ sðt0Þe−iΨðt0Þ�iπ=ð2×2Þ
�

2!

fjΨð2Þðt0Þj

�1
2 Γð1=2Þ

2

¼ sðt0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
l _Fðt0Þ

q e−iðΨðt0Þ∓π=4Þ; ð3:4Þ

where the Fourier phase is defined as

ΨðtÞ ≔ −2πftþ lϕðtÞ:

Note that FðtÞ ¼ _ϕðtÞ=2π and therefore its value at the
stationary point should be Fðt0Þ ¼ f=l. Interestingly, a
rather identical computation can be done to obtain the
Fourier transform of a similar sinusoidal time series to
be iSfðfÞ.

To make operational the above expression for SfðfÞ, we
require an explicit expression for the above defined Fourier
phase at the stationary point t0, namely,

Ψðt0Þ ≔ −2πft0 þ lϕðt0Þ: ð3:5Þ

This is done by defining τ ¼ F= _F such that ϕðFÞ and tðFÞ
become

ϕðFÞ ¼ ϕc þ 2π

Z
F
τ0dF0; ð3:6Þ

tðFÞ ¼ tc þ
Z

F τ0

F0 dF
0; ð3:7Þ

where ϕc and tc are the orbital phase and time at
coalescence. In the present context, τ is defined using
our 3PN-accurate expression for _ω given by Eq. (2.25).
Additionally, we require the 3PN-accurate etðω;ω0; e0Þ
expression, namely, the 3PN extension of Eq. (2.16), for
computing these integrals analytically. The expression for
Ψ½Fðt0Þ� obtained using Eqs. (3.6) and (3.7) in (3.5) may be
written as

Ψl½Fðt0Þ�¼ lϕc−2πftcþ2π

Z
Fðt0Þ

τ0
�
l−

f
F0

�
dF0; ð3:8Þ

where Fðt0Þ ¼ f=l. In the present context, we need to
evaluate the above integral at a point of time where the
orbital frequency is related to the Fourier frequency by
Fðt0Þ ¼ f=l. A close inspection of Eq. (3.1) reveals that our
expression for the quadrupolar-order time-domain response
function is structurally similar to the above displayed
cosine time series and therefore we can easily adapt these
results to obtain the Fourier transform of our quadrupolar-
order hðtÞ. However, the SPA based h̃ðfÞ will have
contributions from a number of distinct stationary points.
This is primarily due to the fact that Eq. (3.1) consists of
cosine functions of three different arguments, namely,
jϕ − ðjþ 2Þϕ0, jϕ − ðj − 2Þϕ0 and jϕ − jϕ0. Note that
there are only three distinct types of cosine arguments as
we restricted our attention to the quadrupolar-order GW
response function for eccentric inspirals. However, we infer
from our 1PN-accurate hðtÞ, given by Eq. (2.32), that there
are nine distinct types of cosine functions with arguments
jϕ − ðj� nÞϕ0 where n ¼ 0, 1, 2, 3, 4. The associated nine
stationary points t�n are computed by demanding that
_Ψ�nðt�nÞ ¼ 0, where Ψ�nðtÞ ≔ −2πftþ jϕ − ðj� nÞϕ0.
For computing the Fourier transform of Eq. (3.1), we

solve _Ψ�nðt�nÞ ¼ 0 to get the relevant stationary points and
this leads to

−2πf þ j _ϕ − ðj� nÞ _ϕ0 ¼ 0; ð3:9Þ
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where _ϕ ¼ Nð1þ kÞ and this by definition is ω. The
treatment of _ϕ0 requires the PN approximation as _ϕ0 equals
kN (this is becauseϕ0 ¼ kl).We need to express kN in terms
of ω and this leads to _ϕ0 ¼ ωk=ð1þ kÞ as ω ¼ Nð1þ kÞ.

For computing the Fourier phase analytically, we express _ϕ0

as ωkð6Þð3Þ, where k
ð6Þ
ð3Þ stands for the 3PN-accurate expression

for k=ð1þ kÞ that incorporates et contributions accurate to
Oðe6t Þ. The resulting expression reads

kð6Þð3Þ ¼ xf3½1þ e2t þ e4t þ e6t �g þ x2
�
9

2
− 7ηþ

�
87

4
−
41η

2

�
e2t þ ½39 − 34η�e4t þ

�
225

4
−
95η

2

�
e6t

�
þ x3

�
27

2

þ
�
−
481

4
þ 123π2

32

�
ηþ 7η2 þ

�
519

4
þ
�
−
2037

4
þ 1599π2

128

�
ηþ 61η2

�
e2t þ

�
2811

8
þ
�
−1174þ 3321π2

128

�
η

þ 1361

8
η2
�
e4t þ

�
10779

16
þ
�
−
16901

8
þ 2829π2

64

�
ηþ 2675

8
η2
�
e6t

�
: ð3:10Þ

With the help of these inputs, the stationary points t�n,
where _Ψ�nðt�nÞ vanish, are given by

ðj − ðj� nÞkð6Þð3ÞÞ _ϕðt�nÞ ¼ 2πf:

In other words, the stationary phase condition is given by

Fðt�nÞ ¼ f

ðj − ðj� nÞkð6Þð3ÞÞ
: ð3:11Þ

Rewriting Ψ�nðtÞ ≔ −2πftþ jϕ − ðj� nÞϕ0 using the

relation between ϕ0 and ϕ ðϕ0 ¼ kð6Þð3ÞϕÞ gives

Ψ�nðtÞ ≔ −2πftþ ðj − ðj� nÞkð6Þð3ÞÞϕ. We are now in a

position to obtain analytic PN-accurate expressions for the
Fourier phases associated with these stationary points. With
Eqs. (3.6) and (3.7), our Eq. (3.8) becomes

Ψ�n
j ½Fðt�nÞ� ¼ ðj − ðj� nÞkð6Þð3ÞÞϕc − 2πftc

þ 2π

Z
Fðt�nÞ

τ0
�
j − ðj� nÞkð6Þð3Þ −

f
F0

�
dF0:

ð3:12Þ

Note that n takes values 0 and 2 as we are dealing with
the quadrupolar-order GW response function given by
Eq. (3.1). However, n varies from 0 to 4 if the underlying
GW response function contains 1PN-accurate amplitude
corrections that include at each PN order eccentricity
corrections accurate to Oðe6t Þ. Further, we do not display
here the 3PN-accurate expression for τ that includes the
leading-order et corrections, listed as Eqs. (6.7a) and (6.7b)
in Ref. [63]. However, we do list below the explicit 3PN-
accurate Ψ�n

j ½Fðt�nÞ� that incorporates leading-order e0
contributions at each PN order:

Ψn
j ¼ ðj − ðjþ nÞkð6Þð3ÞÞϕc − 2πftc −

3j

256ηx5=2

�
1 −

2355

1462
e20χ

−19=9 þ x

�
−
2585

756
−
25n
3j

þ 55

9
η

þ
��

69114725

14968128
þ 1805n

172j
−
128365

12432
η

�
χ−19=9 þ

�
−
2223905

491232
þ 15464

17544
η

�
χ−25=9

�
e20

��
þ x3=2

�
−16π

þ
�
65561π

4080
χ−19=9 −

295945π

35088
χ−28=9

�
e20

�
þ x2

�
−
48825515

508032
−
31805n
252j

þ
�
22105

504
−
10n
j

�
ηþ 3085

72
η2

þ
��

115250777195

2045440512
þ 323580365n

5040288j
þ
�
−
72324815665

6562454976
þ 36539875n

1260072j

�
η −

10688155

294624
η2
�
χ−19=9

þ
�
195802015925

15087873024
þ 5113565n

173376j
þ
�
−
3656612095

67356576
−
355585n
6192j

�
ηþ 25287905

447552
η2
�
χ−25=9 þ

�
936702035

1485485568

þ 3062285

260064
η −

14251675

631584
η2
�
χ−31=9

�
e20

�
þ x5=2

�
14453π

756
−
32πn
j

−
65π

9
η −

�
1675

756
þ 160n

3j
þ 65

9
η

�
π log

�
f
j

�

þ
��

−
458370775π

6837264
−
4909969πn
46512j

þ 15803101πη

229824

�
χ−19=9 þ

�
185734313π

4112640
−
12915517πη

146880

�
χ−25=9

TIWARI, GOPAKUMAR, HANEY, and HEMANTAKUMAR PHYS. REV. D 99, 124008 (2019)

124008-12



þ
�
26056251325π

1077705216
þ 680485πn

12384j
−
48393605πη

895104

�
χ−28=9 þ

�
−
7063901π

520128
þ 149064749πη

2210544

�
χ−34=9

�
e20

�

þ x3
�
13966988843531

4694215680
þ 257982425n

508032j
−
640π2

3
−
6848γ

21
þ
�
−
20562265315

3048192
−
2393105n
1512j

þ 23575π2

96

þ 1845π2n
32j

�
ηþ

�
110255

1728
þ 475n

24j

�
η2 −

127825η3

1296
−
13696 logð2Þ

21
−
3424 logðxÞ

21

þ
��

4175723876720788380517

5556561877278720000
þ 534109712725265n

2405438042112j
−
21508213π2

276480
−
734341γ

16800
þ
�
−
37399145056383727

28865256505344

−
1219797059185n
2045440512j

þ 12111605π2

264192
þ 639805nπ2

22016j

�
ηþ

�
−
159596464273381

1718170030080
þ 43766986495n

1022720256j

�
η2 −

69237581

746496
η3

−
9663919 logð2Þ

50400
þ 4602177 logð3Þ

44800
−
734341 logðxÞ

33600

�
χ−19=9 þ

�
326505451793435

2061804036096
þ 916703174045n

5080610304j

−
�
13467050491570355

39689727694848
þ 9519440485n

35282016j

�
η −

�
2186530635995

52499639808
þ 7198355375n

45362592j

�
η2 þ 2105566535

10606464
η3
�
χ−25=9

þ 24716497π2

293760
χ−28=9 þ

�
−
82471214720975

45625728024576
−
2153818055n
524289024j

þ
�
−
48415393035455

1629490286592
−
119702185n
1560384j

�
η

þ
�
906325428545

6466231296
þ 32769775n

222912j

�
η2 −

2330466575

16111872
η3
�
χ−31=9 þ

�
−
4165508390854487

16471063977984
−
96423905π2

5052672

þ 2603845γ

61404
þ
�
−
1437364085977

53477480448
þ 3121945π2

561408

�
ηþ 4499991305η2

636636672
þ 2425890995η3

68211072
þ 1898287 logð2Þ

184212

þ 12246471 logð3Þ
163744

þ 2603845 logðxÞ
122808

−
2603845 logðχÞ

184212

�
χ−37=9

�
e20

�
: ð3:13Þ

A few comments are in order. To obtain the circular
limit, we require imposing n ¼ j in jϕ − ðj − nÞϕ0 and
then letting e0 ¼ 0. This is indeed due to the fact that kð6Þð3Þ
does not go to zero in the circular limit. Additionally, we
have verified that the resulting Ψ−2

2 ðfÞ expression in the
e0 → 0 limit is identical to the 3PN-accurate version of
Eq. (6.26) in Ref. [63] while neglecting the spin con-
tributions. It is natural to expect that the Ψ0

jðfÞ version of
our above equation should be identical to Eq. (6.26) of
Ref. [63]. This is because this equation indeed provided
quadrupolar h̃ðfÞ with the 3PN-accurate Fourier phase
while incorporating leading-order e0 corrections at each
PN order by extending the postcircular approach of
Ref. [44]. However, our expression for Ψ0

jðfÞ is not
identical to Eq. (6.26) of Ref. [63]. This is because that
effort did not incorporate the effect of the periastron
advance while obtaining the analytic expression for their
Fourier phase. A close inspection of the n ¼ 0 version of
our Eq. (3.12) reveals that it will still be influenced by our

PN-accurate expression for kð6Þð3Þ. This clearly shows that it

is rather impossible to remove the effect of the periastron
advance from our Eq. (3.12). Therefore, our Eq. (3.13)
will be different from Eq. (6.26) of Ref. [63] which, as
noted earlier, neglected the effect of the periastron
advance. The differences may be attributed to the physical
fact that we are providing an analytic expression for h̃ðfÞ
associated with compact binaries inspiraling along PN-
accurate eccentric orbits. In contrast, Ref. [63] models
inspiral GWs from compact binaries spiraling in along
Newtonian orbits though frequency evolution in both
cases are fully 3PN accurate. Additionally, we are unable
to match with the 2PN order results of Ref. [49] due to
similar reasons. We note in passing that the explicit 3PN-
accurate Oðe40Þ contributions to Ψn

j ðfÞ and the associated
3PN-accurate et expression are provided in Appendix C.
We now employ fully the final result of SPA, namely,

Eq. (3.4), to compute the Fourier transform of Eq. (3.1).
This gives us
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h̃½Fðt0Þ�¼
�
5πη

384

�
1=2G2m2

c5DL

�
Gmπ2Fðt0Þ

c3

�
−7=6 ð1−e2t Þ7=4

ð1þ 73
24
e2t þ 37

96
e4t Þ1=2

�X6
j¼1

αð0Þj;−2

ffiffiffi
2

j

s
e−iϕ̄

ð0Þ
j;−2½Fðt0Þ�e−iðΨ

−2
j þπ=4Þ

þ
X4
j¼1

αð0Þj;0

ffiffiffi
2

j

s
e−iϕ̄

ð0Þ
j;0 ½Fðt0Þ�e−iðΨ

0
jþπ=4Þ þ

X2
j¼1

αð0Þj;þ2

ffiffiffi
2

j

s
e−iϕ̄

ð0Þ
j;þ2

½Fðt0Þ�e−iðΨ
þ2
j þπ=4Þ

�
; ð3:14Þ

where we have used the quadrupolar (Newtonian) order
differential equation for the orbital frequency, available in
Refs. [34,55], to compute the amplitudes of h̃½Fðt0Þ�. Note
that we require employing the earlier defined stationary
points to replace Fðt0Þ. In practice, we employ the
unperturbed stationary points, namely, Fðt0Þ ¼ f=j, while
evaluating the amplitudes of h̃ðfÞ.
In what follows, we collect the above pieces together to

display the quadrupolar-order h̃ðfÞ that incorporates fourth
order orbital eccentricity contributions while including the
effects due to the 3PN-accurate frequency, eccentricity
evolution, and periastron advance as

h̃ðfÞ ¼
�
5πη

384

�
1=2G2m2

c5DL

�
Gmπf
c3

�
−7=6

×
�X6

j¼1

ξð0Þj;−2

�
j
2

�
2=3

e−iðΨ
−2
j þπ

4
Þ

þ
X4
j¼1

ξð0Þj;0

�
j
2

�
2=3

e−iðΨ
0
jþπ

4
Þ

þ
X2
j¼1

ξð0Þj;þ2

�
j
2

�
2=3

e−iðΨ
þ2
j þπ

4
Þ
�
; ð3:15Þ

where the Fourier amplitudes ξð0Þj;�n are now given by

ξð0Þj;�n ¼
ð1 − e2t Þ7=4

ð1þ 73
24
e2t þ 37

96
e4t Þ1=2

αð0Þj;�ne
−iϕ̄ð0Þ

j;�nðf=jÞ; ð3:16Þ

and n takes values 0 and 2. A crucial expression that will
be required to operationalize the above h̃ðfÞ, namely, the
3PN-accurate expression for et in terms of e0, x, and χ, is
listed as Eq. (C1) in Appendix C. Note that the approach
to obtain such an expression for et is detailed in Ref. [49]
and briefly summarized in Sec. II A. Finally, the fully
3PN-accurate expression for Ψn

j ðfÞ that incorporates
fourth order orbital eccentricity contributions at each
PN order is displayed as Eq. (C5) in Appendix C. It
should be noted that the approach of SPA demands the
evaluation of Fourier amplitudes, ξj;�n and Fourier phases,

Ψ�n
j at Fðt�nÞ ¼ f=ðj − ðj� nÞkð6Þð3ÞÞ.
We have extended these calculations by including 1PN-

accurate amplitude corrections to h× and hþ with the help
of Eqs. (2.27), (2.28a), (2.28b), and (2.28c). Additionally,
we have included initial eccentricity corrections, accurate
to Oðe60Þ, in our 3PN-accurate et and Ψn

j ðfÞ expressions.
We note in passing that these expressions are available in
the accompanying Mathematica file [65]. The resulting
expression for h̃ðfÞ may be symbolically written as

h̃ðfÞ ¼
�
5πη
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In the above expression, the Fourier amplitudes are given by

ξðpÞj;�n ¼
� ð1 − e2t Þ7=4
ð1þ 73

24
e2t þ 37

96
e4t Þ1=2

þ ð1 − e2t Þ3=4
10752ð1þ 73

24
e2t þ 37

96
e4t Þ3=2

½11888þ 14784η − e2t ð87720 − 159600ηÞ

− e4t ð171038 − 141708ηÞ − e6t ð11717 − 8288ηÞ�
�
αðpÞj;�ne

−iϕ̄ðpÞ
j;�n ; ð3:18Þ

where the superscript p takes values 0, 0.5, and 1 in our amplitude-corrected h̃ðfÞ. Further, we have used the 1PN-accurate
differential equation for the orbital frequency while obtaining the Fourier amplitude expressions. This expression, adaptable
from Eqs. (B8a) and (B9a) of Ref. [49], reads

dF
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¼ 48c6η
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: ð3:19Þ

The explicit expressions for et and Ψn
j ðfÞ that incorpo-

rate the next-to-leading-order e0 corrections at each PN
order, as noted earlier, are listed in the Appendix C.
We move on to contrast our approach with other attempts

in the literature. Section VI of Ref. [44] indeed sketched a
road map to include PN corrections to their Newtonian
waveform family. This road map included a suggestion to
incorporate the effect of the periastron advance into their
quadrupolar-order GW polarization states, influenced by
Ref. [34]. Their suggestion involves splitting the orbital
phase evolution into two parts where one part remains
linear in the mean anomaly l while the other part is periodic
in l. These considerations influenced them to rewrite our
Eq. (2.3) essentially to be

hðtÞ ¼ −
Gmη

c2DL
x
X10
j¼1

αj cosfjlð1þ kð6Þð1ÞÞ þ ϕjg; ð3:20Þ

where kð6Þð1Þ stands for the 1PN-accurate expression for k,

given by 3x=ð1 − e2t Þ, expanded to the sixth order in et [see
our Eq. (3.10)]. It is not difficult to see that the associated
SPA based Fourier phase takes the following form:

ΨjðFÞ ¼ λ½tðf=jÞ� − 2πftðf=jÞ; ð3:21Þ

where

λ½tðf=jÞ� ¼ jϕc þ j
Z

f=j _λ0

_F0 dF
0 ð3:22Þ

tðf=jÞ ¼ tc þ
Z

f=j dF0

_F0 : ð3:23Þ

It turned out that _λ0 ≡ ω by construction. The use of ω in
the above Fourier phase expression essentially ensures that
the suggestion of Ref. [44] leads to what is detailed in
Ref. [49]. Note that Ref. [49] provided h̃ðfÞ in terms of an
infinite set of harmonics with quadrupolar-order amplitudes
and the 2PN-accurate Fourier phase. We observe that
Ref. [44] indeed commented on the absence of side bands
in their prescription in comparison with what was reported
in Refs. [67,68] and suggested future investigations to
clarify the issue. In contrast, the present investigation
employs Eq. (2.32), which explicitly incorporates the effect
of the periastron advance both in the amplitude and
phase of GW polarization states, as detailed in Ref. [45].
The use of such an expression ensures that our analytic
Fourier domain expression does indeed contain the peri-
astron advance induced frequency side bands. Additionally,
Refs. [29,59] employed the dominant order periastron
advance induced decomposition of Fourier phases, asso-
ciated with the quadrupolar-order gravitational waveform,
while exploring LISA and aLIGO relevant parameter
estimation studies. A close comparison of Eqs. (B10)
and (B11) of Ref. [59] and Eqs. (35) and (36) of
Ref. [29] with our Eq. (3.10) reveals fairly identical
expressions for the Fourier phases. These considerations
allowed us to state that our expression for h̃ðfÞ, given by
Eqs. (3.17), (3.18), (C1), and (C5), provides analytic PN-
accurate Fourier domain templates for compact binaries
inspiraling along PN-accurate precessing eccentric orbits.
We are now in a position to explore basic GW data analysis
implications of our inspiral templates.

B. Preliminary GW data analysis implications

We employ the familiar match computations to probe
basic GW data analysis implications of our PN-accurate
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inspiral templates. Following Ref. [52], the match
Mðhs; htÞ between members of two waveform classes,
namely, signal hs and template ht, is computed by
maximizing a certain overlap integral Oðhs; htÞ with
respect to the kinematic variables of the template wave-
form. In other words,

Mðhs; htÞ ¼ max
t0;ϕ0

Oðhs; htÞ; ð3:24Þ

where t0 and ϕ0 are the detector arrival time and the
associated arrival phase of our template. The overlap
integral involves the interferometer-specific normalized
inner product between members of the hs and ht families;
it reads

hhsjhti ¼ 4Re
Z

fhigh

flow

h̃�sðfÞh̃tðfÞ
ShðfÞ

df; ð3:25Þ

where h̃sðfÞ and h̃tðfÞ are the Fourier transforms of the
hsðtÞ and htðtÞ inspiral waveforms. Further, ShðfÞ denotes
the one-sided power spectral density of the detector noise.
In the following, we employ the zero-detuned, high power

(ZDHP) noise configuration of Advanced LIGO at design
sensitivity [69]. In our M estimates, we let flow be 20 Hz,
corresponding to the lower cutoff frequency of Advanced
LIGO. The upper frequency limit fhigh is chosen to be the
usual fLSO ¼ c3=ðGmπ63=2Þ of the last stable circular orbit.
We have verified that orbital eccentricities of compact
binaries reduce to well below 10−2 at fhigh ¼ fLSO, thereby
justifying the use of the last stable circular orbit frequency
for the upper frequency limit.
We require additional steps to operationalize our inspiral

templates while performing the M computations. Clearly,
these waveform families should only be implemented
within the physically allowed frequency intervals. This is
to ensure that the many higher harmonics present in these
waveform families do not cross the above listed upper
frequency limit. Influenced by Ref. [44], we invoke the unit
step function (Θ) to operationalize our inspiral templates.
This step function allows us to appropriately terminate the
waveform as ΘðyÞ ¼ 1 for y ≥ 0 and zero otherwise. The
structure of our quadrupolar amplitude inspiral family,
given by Eq. (3.15), compels us to invoke Θ functions
such that

h̃ðfÞ ¼
�
5πη

384

�
1=2G2m2

c5DL
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: ð3:26Þ

Note that we have appropriately shifted the upper
frequency limits to ensure that higher harmonics are
suitably terminated. While implementing our h̃ðfÞ we have
encountered the violation of the stationary phase condition,
namely Eq. (3.11), at a few Fourier frequencies corre-
sponding to lower harmonic indices (j ∼ 1; 2). We infer that
the periastron advance induced shift of these harmonics can
lead to negative GW frequencies. Therefore, we have
discarded such Fourier components. Interestingly,
Ref. [46] showed that these harmonics provide negligible
contributions to the GW power spectrum, which may be
used to justify our neglect of such Fourier components in
the implementation of our waveform families. The above
steps ensure smoothly varying templates which we will use
in the following to pursue match computations. We provide
three frequency series of the same length (corresponding to
hs and ht inspiral families and the ZDHP noise power
spectral density) and employ a routine from the free and
open software package PyCBC [70] to compute variousM
estimates.

We qualify the implications of our match estimates on
GW data analysis by considering the thresholdMðhs;htÞ≥
0.97, denoted in the presentation of results in Figs. 1–3 by
solid black lines. This limit corresponds to a loss of less
than 10% of all signals in the matched filter searches. In
regions of parameter space where the computed matches
are high, i.e., M ≥ 0.97, waveform models are generally
considered both effectual templates for the detection of
fiducial GW signals and reasonably faithful in the estima-
tion of GW source parameters [52]. However, even if M is
larger than 0.97, certain errors in the model waveform (due
to unmodeled effects of, e.g., eccentricity) may become
distinguishable from noise at a high signal-to-noise ratio
(SNR) and can affect the accuracy of the source parameter
estimation. Negligible systematic errors in the parameter
estimation—despite differences between the true signal
waveform and the template model—can be guaranteed only
if ðhs − ht; hs − htÞ < 1, the so-called indistinguishability
criterion [71]. In other words, such systematic errors in the
estimated source parameters may become significant when
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they mismatch 1 −Mc ≥ 1=SNR2 and clearly depend on
the amplitude of the signal. In the following analysis, we let
the signal-to-noise ratio of our fiducial GW signals be
SNR ¼ 30 (corresponding to the SNR of the binary neutron
star inspiral GW170817) and probe the distinguishability of
certain effects in our model waveforms for inspiraling
eccentric binaries. In the inset plots of Figs. 1 and 2, we
zoom into those regions of parameter space where we can
expect waveform uncertainties to become indistinguishable
from noise for SNR ¼ 30; the corresponding distinguish-
able limit Mc is represented by the dashed black lines.
We first probe the importance of higher-order eccentric-

ity corrections in the GW phasing. For this purpose, we let
the signal family hs be our quadrupolar-order h̃ðfÞ, with a
3PN-accurate Fourier phase that includes next-to-next-to-
leading-order Oðe60Þ eccentricity corrections at each PN
order. The template family is given by a quadrupolar-order
h̃ðfÞ in the low-eccentricity limit, incorporating only the
leading-order Oðe20Þ eccentricity contributions in the

3PN-accurate Fourier phase. We consider the traditional
nonspinning compact binary sources relevant for Advanced
LIGO: namely, binary neutron stars (NS-NS), NS-BH
systems, and binary black holes (BH-BH), with NS and
BH components of 1.4 M⊙ and 10 M⊙, respectively. For
each of these three configurations, we compute the match
between signal and template waveforms for different values
of the initial orbital eccentricity e0 between 0 and 0.4
(defined at the cut-off frequency 20 Hz). Figure 1 suggests
that the importance of higher-order eccentricity corrections
for GW data analysis is strongly dependent on the total
mass of an eccentric compact binary source. Given the
same e0 but for configurations with increasing total mass,
we find that templates restricted to leading-order eccen-
tricity corrections become increasingly faithful representa-
tions of those inspiral waveforms that include higher-order
eccentricity effects at each PN order. This is expected, as
compact binaries with higher total mass provide a smaller
number of inspiral GW cycles in the frequency window of
Advanced LIGO. Therefore, these systems require larger
initial eccentricities to bring on a substantial dephasing and
subsequent mismatch between our inspiral signal and
template families. Figure 1 indicates that a waveform

FIG. 1. Matches between eccentric waveform models with
different orders of eccentricity corrections. We are comparing
waveforms that take only leading-order Oðe20Þ eccentricity
corrections into account to those that include eccentricity
corrections up to next-to-next-to leading order Oðe60Þ. We
consider three configurations of a NS and a BH with masses
of 1.4 M⊙ and 10 M⊙, respectively: i.e., NS-NS (blue curve),
NS-BH (orange curve), and BH-BH (pink curve) systems. The
initial orbital eccentricity e0 refers to the eccentricity of the binary
system at 20 Hz. Given the same e0, the effect of higher-order
eccentricity corrections on the agreement between signal and
template is strongly dependent on the total mass of the compact
binary source. The solid black line denotes the threshold
M ¼ 0.97, associated with the effectualness of a model for
GW detection and its faithfulness for source parameter estimation.
The inset plot zooms into the region of parameter space where
we can expect the effect of higher-order eccentricity corrections to
become distinguishable from noise for SNR ¼ 30, leading to
systematic errors in parameter estimation; the dashed black line
represents the indistinguishability criterion.

FIG. 2. Matches between eccentric waveform models that
include or neglect effects of the periastron advance. We consider
the same three configurations of binaries with NS and BH
components as in Fig. 1: i.e., NS-NS (blue curve), NS-BH
(orange curve), and BH-BH (pink curve) systems. The initial
orbital eccentricity e0 is again defined at the lower cutoff
frequency 20 Hz. We infer that the significance of periastron
advance effects for GW data analysis is rather independent of the
total mass of the source. We interpret our results by considering
the threshold M ¼ 0.97 (represented by the solid black line)
below which a waveform model should be considered ineffectual
for detection and unfaithful for parameter estimation. In the inset
plots, we highlight the parameter space of small eccentricities to
probe the importance of systematic errors in parameter estimation
due to waveform uncertainties. The dashed black line represents
the distinguishable limit for a fiducial GW signal with SNR ¼ 30.

READY-TO-USE FOURIER DOMAIN TEMPLATES FOR … PHYS. REV. D 99, 124008 (2019)

124008-17



model restricted to only leading-order eccentricity correc-
tions would be an effectual template family for the
detection of GWs from even moderately eccentric inspirals
(with e0 ≤ 0.15 and ≤ 0.3 for our traditional NS-NS and
BH-BH binaries, respectively). However, the inset of Fig. 1
suggests that waveform effects of higher-order eccentricity
corrections become distinguishable from detector noise
at significantly lower initial eccentricities (e0 ≥ 0.07 and
≥ 0.17 for GWs from NS-NS and BH-BH systems with
SNR ¼ 30). In this region of parameter space, we should
expect systematic errors in source parameter estimation
with inspiral templates that are accurate only to leading
order in eccentricity e0. The inclusion of higher-order
eccentricity corrections in waveform modeling is therefore
desirable for an accurate follow-up of eccentric GW
signals.
We move on to probe data analysis implications of

including the effect of the periastron advance in our
eccentric inspiral waveforms h̃ðfÞ. In our match calculation
Mðhs; htÞ, the signal waveforms employ our quadrupolar-
order h̃ðfÞ given by Eq. (3.15), including both k and et
effects to the sixth order in e0 at each PN order. We build a
template family ht that neglects effects of the periastron
advance, by extending to 3PN order previously developed
eccentric inspiral waveforms (provided with the 2PN-
accurate Fourier phase in Ref. [49]). In other words, we
construct quadrupolar templates h̃tðfÞ with the help of

Eq. (2.5) and the 3PN extension of our Newtonian
equation (2.11) for Ψj while incorporating all Oðe60Þ
corrections at each PN order. Additionally, we evaluate
the Fourier phase at the unperturbed stationary point F ¼
f=j [44]. It is important to note that such a template
waveform family ignores the effect of the periastron
advance in its Fourier phase evolution. We consider the
same NS-NS, NS-BH, and BH-BH systems as before and
compute the match between signal and template waveforms
for discrete values of initial orbital eccentricity at 20 Hz,
e0 ∈ ½0; 0.4�. From our results, presented in Fig. 2, we learn
that the significance of the periastron advance effects for
GW data analysis is rather independent of the total mass of
the source, with similar match estimates for all three
traditional compact binaries under consideration. The
periastron advance starts to influence the effectualness of
GW templates for detection only for systems that have
eccentricities e0 > 0.25 at 20 Hz. This agrees with our
observation that k-induced modulations in the inspiral
waveforms presented in Fig. 5 and 6 of Ref. [34] become
clearly visible only for moderate values of initial orbital
eccentricity. However, we can expect systematic biases in
the source parameter estimation for much smaller values of
orbital eccentricity. The inset of Fig. 2 suggests that the
periastron advance effects in an eccentric GW signal with
SNR ¼ 30 would already become distinguishable from
noise for eccentricities e0 > 0.03 at 20 Hz, leading to
systematic errors in the recovered source parameters when
waveform models neglect the periastron advance.
Lastly, we explore the relevance of PN-accurate ampli-

tude corrections while constructing realistic analytic
Fourier domain waveforms for eccentric inspirals. For
these M estimates, we invoke as the expected GW signal
our 1PN-accurate amplitude-corrected h̃ðfÞ, given by
Eq. (3.17), including the effects of the 3PN-accurate
periastron advance, frequency, and eccentricity evolution
accurate to sixth order in orbital eccentricity. For the
template family, we are utilizing a quadrupolar-order
h̃ðfÞ, given by Eq. (3.15), that includes the same order
effects of the 3PN-accurate periastron advance and 3PN-
accurate frequency and eccentricity evolution as above. We
consider five compact binary configurations with a fixed
total massm ¼ m1 þm2 ¼ 20 M⊙ and varying mass ratios
q ¼ m1=m2 ∈ f1; 3; 5; 7; 9g. For each of these configura-
tions, we pursue match computations for different choices
of initial orbital eccentricity e0 ∈ ½0; 0.4� at 20 Hz, resulting
in Fig. 3. We observe that amplitude corrections are rather
unimportant while constructing template waveforms for
equal-mass binaries in eccentric orbits. This is expected, as
the dominant amplitude corrections—appearing at 0.5PN
order in Eq. (3.17)—are proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
and

therefore vanish for equal-mass binaries. Our plots suggest
that the effect of amplitude corrections on the faithfulness
of eccentric inspiral waveforms crucially depends on the
mass ratio of a binary system, with M rapidly dropping

FIG. 3. Matches between eccentric waveform models with
Newtonian and 1PN-accurate amplitudes. We consider compact
binary systems with a total mass of m ¼ m1 þm2, with different
choices for the mass ratio q ¼ m1=m2. As expected, the effect of
amplitude corrections on waveform faithfulness is largely inde-
pendent of the orbital eccentricity e0 at 20 Hz. Waveforms with
Newtonian amplitudes are faithful representations of amplitude-
corrected waveforms only if q ≤ 3 (blue and orange curves); for
higher mass ratios q ≥ 5 (pink, green and purple curves) the
match between waveforms with Newtonian and 1PN-accurate
amplitudes falls below the threshold of M ¼ 0.97 (denoted by
the black line) even in the circular limit.
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below the critical value of 0.97 as q ≥ 5, even for systems
with negligible initial eccentricities. This is a familiar result
from the modeling of compact binary inspiral along circular
orbits and points to the relevance of higher modes for GWs
from binaries with asymmetric masses [72]. In other words,
our plots in Fig. 3 essentially confirm the previous literature
that compared restricted and amplitude-corrected h̃ðfÞ for
the quasicircular inspiral. Interestingly, we find that the
q-dependent effect of amplitude corrections on the faithful-
ness of eccentric inspiral waveforms is largely unaffected
by the value of the initial eccentricity e0.

IV. CONCLUSIONS

We have provided fully analytic PN-accurate Fourier
domain gravitational waveforms for compact binaries
inspiraling along precessing moderately eccentric orbits.
Our inspiral approximant contains 1PN-accurate amplitude
corrections and its Fourier phase incorporates the effects of
the 3PN-accurate periastron advance and GW emission.
Additionally, the eccentricity effects are accurate to sixth
order in e0 at each PN order. We infer from our analytic
waveform expression that the orbital eccentricity induced
higher harmonics are no longer integer multiples of orbital
frequency due to the influence of the periastron advance.
This substantiates and extends what is detailed in Ref. [45]
for compact binaries inspiraling along PN-accurate pre-
cessing eccentric orbits. Preliminary GW data analysis
implications of our waveforms are probed with the help of
the usual match computations.
In what follows, we provide a step-by-step summary of

our effort.
(1) We start from our Eqs. (2.18) and (2.19) that provide

quadrupolar order GW polarization states from
compact binaries in PN-accurate eccentric orbits
as a sum over various harmonics.

(2) With the above inputs, we compute the time-domain
GW detector response function and express it as a
summation of several cosine functions whose argu-
ments are a sum of integer multiples of ϕ and ϕ0
associated with the orbital and periastron motions.
Amplitudes of these functions are expressed in terms
of ω, et and the angles that specify the antenna
patterns F×, Fþ, and the direction of the orbital
angular momentum vector. The quadrupolar version
of hðtÞ that explicitly incorporates the next-to-lead-
ing-order et corrections is given by Eq. (2.22) and
associated expressions like Eqs. (A1) and (A2). Its
1PN extension is symbolically provided by
Eq. (2.32) and the accompanying Mathematica file
[65] provides the explicit expressions for various PN
coefficients while incorporating Oðe6t Þ corrections.

(3) We also provide a prescription to obtain temporally
evolving hðtÞ for compact binaries inspiraling due to
3PN-accurate GW emission along precessing 3PN-
accurate orbits of moderate eccentricities. This

involves imposing temporal evolution for ω; et;ϕ0,
and ϕ with the help of PN-accurate differential
equations. The relative 3PN-accurate equations for
ω and et are due to the emission of GWs, as evident
from our Eqs. (2.25) and (2.26). The conservative
3PN-accurate differential equation for ϕ0 arises
essentially due to the periastron advance as evident
from Eq. (2.24). The differential equation for ϕ is
kinematical in nature as dϕ=dt≡ ω.

(4) The structure of the time-domain response function
allows us to involve the method of stationary phase
approximation to compute its Fourier transform. The
crucial Fourier phases and the associated “nine”
stationary points may be concisely written as
Ψ�nðtÞ ≔ −2πftþ jϕ − ðj� nÞϕ0, where n takes
values 0, 1, 2, 3, 4. The nine stationary points,
associated with the 1PN-accurate amplitude-cor-
rected hðtÞ, essentially provide relations between
the orbital and Fourier frequencies Fðt�nÞ ¼ f=
ðj − ðj� nÞk0Þ, where k0 is related to the rate of
the periastron advance per orbit. The explicit expres-
sion for the resulting 3PN-accurate Fourier phases
with leading-order initial eccentricity corrections are
provided by Eq. (3.13). Gathering various results, we
obtain Eqs. (3.15) and (3.16), which provide the
quadrupolar-order h̃ðfÞ while incorporating fourth
order orbital eccentricity contributions along with the
effects due to the 3PN-accurate frequency, eccentric-
ity evolution, and periastron advance. Additionally,
we have extended these results by including 1PN-
accurate amplitude corrections and six order eccen-
tricity contributions.

(5) A crucial ingredient to obtain a fully analytic h̃ðfÞ
involves a derivation, detailed in Sec. II, that
provides the PN-accurate analytic expression for
et in terms of e0, ω, ω0. We have obtained the 3PN-
accurate expression for etðe0;ω;ω0Þ by extending
the postcircular scheme of Refs. [44,49].

A number of extensions are possible. Influenced by
Refs. [73,74], we are incorporating the effects of leading-
order aligned spin-orbit and spin-spin interactions into
these waveforms. It will be interesting to explore data
analysis implications of our present waveforms. A possible
avenue is to explore the astrophysical implications of using
PN-accurate periastron advance contributions that depend
both on m and η, influenced by Refs. [59,75]. There are
ongoing efforts to construct analytic IMR templates to
model eccentric compact binary coalescence [19,37]. The
present waveform family will be relevant to construct IMR
templates for moderately eccentric compact binary mergers
which can be used to extract orbital eccentricity and the
periastron advance as done in Ref. [76]. Efforts are ongoing
to obtain various constructs, using elements of our post-
circular Fourier domain approximant, that should allow us
to make comparisons with a brand new PN-accurate
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frequency domain waveform family, developed in
Refs. [58,77] for moderate eccentricities.
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APPENDIX A: Γð0Þ
j;�n AND Σð0Þ

j;�n COEFFICIENTS

We list the Γð0Þ
j;�n and Σð0Þ

j;�n coefficients appearing in

Eq. (2.21). The relevant Γð0Þ
j;�n expressions read
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2
e4t cis2β

�
;

ðA1fÞ

Γð0Þ
1;0 ¼ Fþ

��
et −

e3t
8

�
s2i

�
; ðA1gÞ

Γð0Þ
2;0 ¼ Fþ

��
e2t −

e4t
3

�
s2i

�
; ðA1hÞ

Γð0Þ
3;0 ¼ Fþ

�
9

8
e3t s2i

�
; ðA1iÞ

Γð0Þ
4;0 ¼ Fþ

�
4

3
e4t s2i

�
; ðA1jÞ

Γð0Þ
1;þ2 ¼ Fþ

�
7

48
e3t ð1þ c2i Þc2β

�
þ F×

�
−

7

24
e3t cis2β

�
;

ðA1kÞ

Γð0Þ
2;þ2 ¼ Fþ

�
−
1

8
e4t ð1þ c2i Þc2β

�
þ F×

�
−
1

4
e4t cis2β

�
:

ðA1lÞ

The Σð0Þ
j;�n counterparts of the above expressions read

Σð0Þ
1;−2 ¼ Fþ

��
3et
2

−
13e3t
16

�
ð1þ c2i Þs2β

�

þ F×

��
3et −

13e3t
8

�
cic2β

�
; ðA2aÞ

Σð0Þ
2;−2 ¼ Fþ

��
−2þ 5e2t −

23e4t
8

�
ð1þ c2i Þs2β

�

þ F×

��
−4þ 10e2t −

23e4t
4

�
cic2β

�
; ðA2bÞ

Σð0Þ
3;−2 ¼ Fþ

��
−
9et
2

þ 171e3t
16

�
ð1þ c2i Þs2β

�

þ F×

��
−9et þ

171e3t
8

�
cic2β

�
; ðA2cÞ

Σð0Þ
4;−2 ¼ Fþfð−8e2t þ 20e4t Þð1þ c2i Þs2βg

þ F×fð−16e2t þ 40e4t Þcic2βg; ðA2dÞ

Σð0Þ
5;−2¼Fþ

�
−
625

48
e3t ð1þc2i Þs2β

�
þF×

�
−
625

24
e3t cic2β

�
;

ðA2eÞ

Σð0Þ
6;−2 ¼ Fþ

�
−
81

4
e4t ð1þ c2i Þs2β

�
þ F×

�
−
81

2
e4t cic2β

�
;

ðA2fÞ

Σð0Þ
1;0 ¼ 0; ðA2gÞ

Σð0Þ
2;0 ¼ 0; ðA2hÞ

Σð0Þ
3;0 ¼ 0; ðA2iÞ
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Σð0Þ
4;0 ¼ 0; ðA2jÞ

Σð0Þ
1;þ2 ¼ Fþ

�
−

7

48
e3t ð1þ c2i Þs2β

�
þ F×

�
−

7

24
e3t cic2β

�
;

ðA2kÞ

Σð0Þ
2;þ2 ¼ Fþ

�
−
1

8
e4t ð1þ c2i Þs2β

�
þ F×

�
−
1

4
e4t cic2β

�
:

ðA2lÞ

APPENDIX B: 3PN-ACCURATE dω
dt AND

det
dt

We give here the 3PN-accurate expressions for
the temporal evolution of ω and et for obtaining hðtÞ
associated with compact binaries inspiraling along
precessing eccentric orbits. 1PN-accurate dω

dt and det
dt

with Oðe6t Þ eccentricity corrections are given by
Eq. (2.25) and Eq. (2.26), respectively. The 1.5PN–3PN
contributions to dω

dt appearing in Eq. (2.25) with Oðe6t Þ
corrections are

_ω1.5PN ¼ πx3=2
�
4þ 2335

48
e2t þ

42955

192
e4t þ

6204647

9216
e6t

�
; ðB1aÞ

_ω2PN ¼ x2
�
34103

18144
þ 13661

2016
ηþ 59

18
η2 þ

�
−
479959

12096
þ 80425

4032
ηþ 213539

1728
η2
�
e2t þ

�
−
2932261

16128
−
5715083

16128
η

þ 2133235

2304
η2
�
e4t þ

�
−
19581787

48384
−
1753627

768
ηþ 25727065

6912
η2
�
e6t

�
; ðB1bÞ

_ω2.5PN ¼ πx5=2
�
−
4159

672
−
189

8
ηþ

�
7885

96
−
27645

56
η

�
e2t þ

�
44644883

43008
−
11707809

3584
η

�
e4t

þ
�
971752501

193536
−
103819241

8064
η

�
e6t

�
; ðB1cÞ

_ω3PN ¼ x3
�
16447322263

139708800
þ 16π2

3
−
1712γ

105
þ
�
−
56198689

217728
þ 451π2

48

�
ηþ 541

896
η2 −

5605

2592
η3 −

3424 logð2Þ
105

−
856 logðxÞ

105
þ
�
277391496167

139708800
þ 992π2

9
−
106144γ

315
þ
�
−
280153957

120960
þ 188231π2

2304

�
η −

73109

448
η2

−
6874115

31104
η3 −

80464 logð2Þ
315

−
234009 logð3Þ

560
−
53072 logðxÞ

315

�
e2t þ

�
974308007423

79833600
þ 3059π2

4
−
46759γ

20

þ
�
−
33126017

3780
þ 2065129π2

6144

�
η −

2804209

32256
η2 −

114255295

41472
η3 −

2730533 logð2Þ
252

þ 4446171 logð3Þ
2240

−
46759 logðxÞ

40

�
e4t þ

�
150878591021

3193344
þ 76615π2

24
−
234223γ

24
þ
�
−
7739324653

362880
þ 34978699π2

36864

�
η

þ 21116263

4608
η2 −

1935750565

124416
η3 þ 80906873 logð2Þ

2520
−
134711181 logð3Þ

35840
−
5224609375 logð5Þ

193536

−
234223 logðxÞ

48

�
e6t

�
; ðB1dÞ

where γ stands for the Euler-Mascheroni constant. The 1.5PN–3PN contributions to det
dt appearing in Eq. (2.26) with Oðe6t Þ

corrections are

_et1.5PN ¼ πx3=2
�
985

152
þ 21729

608
e2t þ

3061465

29184
e4t þ

161865935

700416
e6t

�
; ðB2aÞ
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_et2PN ¼ x2
�
−
108197

38304
þ 56407

4256
ηþ 141

19
η2 þ

�
−
1368625

51072
−
288209

17024
ηþ 274515

2432
η2
�
e2t þ

�
−
15037865

306432

−
30369109

102144
ηþ 7578425

14592
η2
�
e4t þ

�
−
13488023

408576
−
65394101

58368
ηþ 87633595

58368
η2
�
e6t

�
; ðB2bÞ

_et2.5PN ¼ πx5=2
�
−
55691

4256
−
19067

399
ηþ

�
286789

3584
−
7810371

17024
η

�
e2t þ

�
535570255

817152
−
31241795

16128
η

�
e4t

þ
�
92235604259

39223296
−
164170915723

29417472
η

�
e6t

�
; ðB2cÞ

_et3PN ¼ x3
�
246060953209

884822400
þ 769π2

57
−
82283γ

1995
þ
�
−
613139897

2298240
þ 22345π2

3648

�
η −

1046329

51072
η2 −

305005

49248
η3

−
11021 logð2Þ

285
−
234009 logð3Þ

5320
−
82283 logðxÞ

3990
þ
�
1316189396351

589881600
þ 14023π2

114
−
1500461γ

3990

þ
�
−
5882746699

4596480
þ 46453π2

1536

�
η −

554719

4788
η2 −

100330729

393984
η3 −

2271503 logð2Þ
1330

þ 6318243 logð3Þ
21280

−
1500461 logðxÞ

7980

�
e2t þ

�
1499268531223

168537600
þ 10129π2

19
−
154829γ

95
þ
�
−
543123237

170240
þ 2360575π2

29184

�
η

þ 36456205

87552
η2 −

1523467085

787968
η3 þ 41683669 logð2Þ

5985
−
281044809 logð3Þ

340480
−
1044921875 logð5Þ

204288

−
154829 logðxÞ

190

�
e4t þ

�
682257052877

26966016
þ 976185π2

608
−
2984337γ

608
þ
�
−
4722976831

875520
þ 24558057π2

155648

�
η

þ 1312493803

350208
η2 −

24620050735

3151872
η3 −

10971071339 logð2Þ
191520

−
74286859077 logð3Þ

2723840
þ 24033203125 logð5Þ

700416

−
2984337 logðxÞ

1216

�
e6t

�
: ðB2dÞ

APPENDIX C: 3PN-ACCURATE ANALYTIC
EXPRESSIONS FOR et AND Ψ�n

j

We display explicit expressions for 3PN-accurate et and
Fourier phases that incorporate next-to-leading order e0
corrections at each PN order. These expressions, along with
Eqs. (3.15), (3.16), (2.31), (A1), and (A2), are required to
make operational the fully analytic frequency domain
quadrupolar-order GW response function for eccentric
inspirals that includes Oðe40Þ corrections at every PN order.
We begin by listing explicit expressions for the 3PN-
accurate et in terms of e0, χ, and x. The underlying
computation is detailed in Ref. [49] and requires 3PN-
accurate expressions for _ω and _et, given by Eqs. (2.25) and
(2.26). The fully 3PN-accurate et expression that accounts
for all the Oðe30Þ contributions read

et ¼
X6
m¼0

Emxm=2: ðC1Þ

The coefficients Em with next-to-leading order
eccentricity corrections Oðe30Þ at each PN order can
be listed as

E0 ¼ e0χ−19=18 þ
3323

1824
ðχ−19=18 − χ−19=6Þe30; ðC2aÞ

E1 ¼ 0; ðC2bÞ
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E2 ¼
��

−
2833

2016
þ 197η

72

�
χ−19=18 þ

�
2833

2016
−
197η

72

�
χ−31=18

�
e0 þ

��
−
9414059

3677184
þ 654631η

131328

�
χ−19=18

þ
�
386822573

47803392
−
1482433η

131328

�
χ−31=18 þ

�
11412055

5311488
−
378697η

43776

�
χ−19=6

þ
�
−
9414059

1225728
þ 654631η

43776

�
χ−23=6

�
e30; ðC2cÞ

E3 ¼
�
377

144
πð−χ−19=18 þ χ−37=18Þ

�
e0 þ

�
−
1252771π

262656
χ−19=18 þ 1315151π

131328
χ−37=18 þ 396797π

43776
χ−19=6

−
1252771π

87552
χ−25=6

�
e30; ðC2dÞ

E4 ¼
��

77006005

24385536
−
1143767η

145152
þ 43807η2

10368

�
χ−19=18 þ

�
−
8025889

4064256
þ 558101η

72576
−
38809η2

5184

�
χ−31=18

þ
�
−
28850671

24385536
þ 27565η

145152
þ 33811η2

10368

�
χ−43=18

�
e0 þ

��
255890954615

44479217664
−
3800737741η

264757248

þ 145570661η2

18911232

�
χ−19=18 þ

�
−
1095868349309

96371638272
þ 65400285919η

1720922112
−
292039301η2

9455616

�
χ−31=18

þ
�
−
20952382669619

4047608807424
−
385200824731η

24092909568
þ 4301644427η2

132378624

�
χ−43=18 þ

�
8180980796033

1349202935808

þ 14604819923η

2676989952
−
317361763η2

14708736

�
χ−19=6 þ

�
32330351815

3569319936
−
10345778159η

191213568
þ 74603309η2

1050624

�
χ−23=6

þ
�
−
9164199307

2118057984
þ 1205846917η

29417472
−
13714021η2

233472

�
χ−9=2

�
e30; ðC2eÞ

E5 ¼
��

9901567π

1451520
−
202589πη

362880

�
χ−19=18 þ

�
−
1068041π

290304
þ 74269πη

10368

�
χ−31=18 þ

�
−
1068041π

290304

þ 74269πη

10368

�
χ−37=18 þ

�
778843π

1451520
−
4996241πη

362880

�
χ−49=18

�
e0 þ

��
32902907141π

2647572480

−
673203247πη

661893120

�
χ−19=18 þ

�
−
11217854617π

529514496
þ 558877241πη

18911232

�
χ−31=18 þ

�
−
3725822783π

264757248

þ 259084747πη

9455616

�
χ−37=18 þ

�
195499289159π

2647572480
−
65776041763πη

661893120

�
χ−49=18 þ

�
−
2057616403π

32686080

þ 2370731599πη

73543680

�
χ−19=6 þ

�
1124125901π

29417472
−
78169009πη

1050624

�
χ−23=6 þ

�
330949595π

19611648

−
142768769πη

2101248

�
χ−25=6 þ

�
−
12693032573π

294174720
þ 11292740311πη

73543680

�
χ−29=6

�
e30: ðC2fÞ

Because of the lengthy nature of the 3PN order terms in et, we split it in two parts as

E6 ¼ E0
6e0 þ E00

6e
3
0: ðC3Þ

The explicit form of these two contributions are
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E0
6 ¼

�
−
33320661414619

386266890240
þ 180721π2

41472
þ 3317γ

252
þ
�
161339510737

8778792960
þ 3977π2

2304

�
η −

359037739η2

20901888
þ 10647791η3

2239488

þ 12091 logð2Þ
3780

þ 26001 logð3Þ
1120

þ 3317 logðxÞ
504

�
χ−19=18 þ

�
218158012165

49161240576
−
34611934451η

1755758592
þ 191583143η2

6967296

−
8629979η3

746496

�
χ−31=18 −

142129π2

20736
χ−37=18 þ

�
81733950943

49161240576
−
6152132057η

1755758592
−
1348031η2

331776

þ 6660767η3

746496

�
χ−43=18 þ

�
216750571931393

2703868231680
þ 103537π2

41472
−
3317γ

252
þ
�
866955547

179159040
−
3977π2

2304

�
η

−
130785737η2

20901888
−
4740155η3

2239488
−
12091 logð2Þ

3780
−
26001 logð3Þ

1120
−
3317 logðxÞ

504
−
3317 logðχÞ

756

�
χ−55=18; ðC4aÞ

E00
6¼

�
−
110724557880778937

704550807797760
þ600535883π2

75644928
þ11022391γ

459648
þ
�
536131194179051

16012518359040
þ13215571π2

4202496

�
η

−
1193082406697η2

38125043712
þ35382609493η3

4084826112
þ40178393logð2Þ

6894720
þ28800441logð3Þ

680960
þ11022391logðxÞ

919296

�
χ−19=18

þ
�
29787660990550865

1165711336538112
−
591234360321013η

5947506819072
þ107636760191η2

874119168
−
64940942431η3

1361608704

�
χ−31=18

−
495811927π2

18911232
χ−37=18þ

�
59358100103030627

8159979355766784
þ2420024232862595η

291427834134528
−
103398129181999η2

1156459659264

þ847423952119η3

9531260928

�
χ−43=18þ

�
−
3881667007528080426037

2243994322835865600
þ720177509π2

75644928
þ517414657γ

2298240

þ
�
−
1395931720786001359

1457139170672640
þ295851449π2

4202496

�
η−

112681906698415η2

3469378977792
−
1549239851389η3

28593782784

þ101727523747logð2Þ
6894720

−
5477465997logð3Þ

680960
þ517414657logðxÞ

4596480
−
517414657logðχÞ

6894720

�
χ−55=18

þ
�
152896024020300184249

67999827964723200
−
95207357π2

8404992
−
245954159γ

766080
þ
�
12374839994637661

10793623486464
−
116237911π2

1400832

�
η

−
3908281091711η2

128495517696
−
42680326813η3

1059028992
−
33962745773logð2Þ

2298240
þ5362264233logð3Þ

680960
−
245954159logðxÞ

1532160

�
χ−19=6

þ
�
23176718595161489

906664372862976
−
866895029665039η

32380870459392
−
5814138473063η2

42831839232
þ62520267311η3

353009664

�
χ−23=6þ149592469π2

2101248
χ−25=6

þ
�
−
99813874374700537

234850269265920
−
429547595π2

8404992
þ11022391γ

153216
þ
�
−
62659748948903

1779168706560
þ13215571π2

1400832

�
η

−
95613034561η2

1412038656
þ22151672941η3

151289856
þ40178393logð2Þ

2298240
þ86401323logð3Þ

680960
þ11022391logðxÞ

306432
−
11022391logðχÞ

459648

�
χ−31=6

þ
�
31472267987495

6167784849408
−
318662569276073η

4625838637056
þ4844584781833η2

18356502528
−
1562882519η3

5603328

�
χ−9=2: ðC4bÞ

We have pursued careful checking of our results with what is available in Ref. [49] and observed a slight typo in the
Oðe50Þ contributions for the et expression [Eq. (A6e) of Ref. [49]]. The η independent term present in the coefficient of
χ−119=18 should be 16952610560003855=162260186038272 instead of 16633441088056655=162260186038272. Note
that the above et expression is required while computing the Fourier amplitudes ξj. Additionally, it is a crucial ingredient
while computing the analytic expression for our Fourier phases Ψj. It should be obvious that its frequency dependence is
encapsulated in χ ¼ F=F0 and the PN expansion parameter x ¼ ðGm2πF=c3Þ2=3.
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We now display our 3PN-accurate closed form expres-
sion for the Fourier phases Ψ�n

j . Recall that nine different
Fourier phases appear in our 1PN-accurate amplitude-
corrected h̃ðfÞ expression, given by Eq. (3.17). To
circumvent the task of displaying all the nine different
Fourier phases separately, we provide a general expres-
sion for these phases as Ψn

j where n ¼ 0, 1, 2, 3, 4. It is
not very difficult to obtain Ψ�n

j from Ψn
j by replacing n

with the appropriate 0�0 sign in the expression. The
general expression for the 3PN-accurate Fourier phase
reads

Ψn
j ¼ ðj − ðjþ nÞkð6Þð3ÞÞϕc − 2πftc −

3j

256ηx5=2
X6
m¼0

Pmxm=2:

ðC5Þ

Various PN coefficients Pm with next-to-leading order eccentricity contributions are given by

P0 ¼ 1 −
2355

1462
e20χ

−19=9 þ
�
−
2608555

444448
χ−19=9 þ 5222765

998944
χ−38=9

�
e40; ðC6aÞ

P1 ¼ 0; ðC6bÞ

P2 ¼ −
2585

756
−
25n
3j

þ 55η

9
þ
��

69114725

14968128
þ 1805n

172j
−
128365η

12432

�
χ−19=9 þ

�
−
2223905

491232
þ 154645η

17544

�
χ−25=9

�
e20

þ
��

229668231175

13650932736
þ 315685n

8256j
−
426556895η

11337984

�
χ−19=9 þ

�
−
14275935425

416003328
þ 209699405η

4000032

�
χ−25=9

þ
�
−
259509826776175

13976341456896
−
225548425n
6014496j

þ 1222893635η

28804608

�
χ−38=9

þ
�
14796093245

503467776
−
1028884705η

17980992

�
χ−44=9

�
e40; ðC6cÞ

P3 ¼ −16π þ
�
65561π

4080
χ−19=9 −

295945π

35088
χ−28=9

�
e20 þ

�
217859203π

3720960
χ−19=9 −

3048212305π

64000512
χ−28=9

−
6211173025π

102085632
χ−38=9 þ 1968982405π

35961984
χ−47=9

�
e40; ðC6dÞ

P4 ¼ −
48825515

508032
−
31805n
252j

þ
�
22105

504
−
10n
j

�
ηþ 3085η2

72
þ
��

115250777195

2045440512
þ 323580365n

5040288j
þ
�
−
72324815665

6562454976

þ 36539875n
1260072j

�
η −

10688155η2

294624

�
χ−19=9 þ

�
195802015925

15087873024
þ 5113565n

173376j
þ
�
−
3656612095

67356576
−
355585n
6192j

�
η

þ 25287905η2

447552

�
χ−25=9 þ

�
936702035

1485485568
þ 3062285η

260064
−
14251675η2

631584

�
χ−31=9

�
e20 þ

��
382978332618985

1865441746944

þ 1075257552895n
4596742656j

þ
�
−
240335362454795

5984958938112
þ 121422004625n

1149185664j

�
η −

35516739065η2

268697088

�
χ−19=9

þ
�
1256913822951125

12777273040896
þ 1727660975n

7727616j
þ
�
−
1182697961961875

3194318260224
−
25377635n
74304j

�
ηþ 34290527545η2

102041856

�
χ−25=9

þ
�
−
94372278903235

7251965779968
þ 126823556396665η

733829870592
−
20940952805η2

93768192

�
χ−31=9 þ

�
−
359074780345285439107

1705190973672775680

−
100456187745548465n
451108723193856j

þ
�
−
41964795442387913

5074973135930880
−
656130734149165n
3717929037312j

�
ηþ 203366083643η2

1130734080

�
χ−38=9
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þ
�
−
735191339256903775

7044076094275584
−
638978688025n
3031305984j

þ
�
55579511401449335

125787073112064
þ 44433039725n

108260928j

�
η

−
240910046095η2

518482944

�
χ−44=9 þ

�
3654447011975

98224939008
−
4300262795285η

18124839936
þ 392328884035η2

1294631424

�
χ−50=9

�
e40; ðC6eÞ

P5 ¼
14453π

756
−
32πn
j

−
65π

9
η −

�
1675

756
þ 160n

3j
þ 65η

9

�
π log

�
f
j

�
þ
��

−
458370775π

6837264
−
4909969πn
46512j

þ 15803101πη

229824

�
χ−19=9 þ

�
185734313π

4112640
−
12915517πη

146880

�
χ−25=9 þ

�
26056251325π

1077705216
þ 680485πn

12384j

−
48393605πη

895104

�
χ−28=9 þ

�
−
7063901π

520128
þ 149064749πη

2210544

�
χ−34=9ge20 þ

��
−
1523166085325π

6235584768

−
16315826987πn

42418944j
þ 52513704623πη

209599488

�
χ−19=9 þ

�
238457223541π

696563712
−
17513506613πη

33488640

�
χ−25=9

þ
�
268377522549925π

1965734313984
þ 368891935πn

1188864j
−
498450665645πη

1632669696

�
χ−28=9 þ

�
−
2408172473789π

6790791168

þ 992200223893πη

1697697792

�
χ−34=9 þ

�
34901256494241693175π

79386134731997184
þ 84423313781887πn

193345546752j
−
15387742160333πη

39404703744

�
χ−38=9

þ
�
−
17596253179825π

51451158528
þ 1223601085925πη

1837541376

�
χ−44=9 þ

�
−
7525784976509075π

38703714803712
−
85031756225πn
216521856j

þ 461030900395πη

1036965888

�
χ−47=9 þ

�
14896370333π

61544448
−
351697861441πη

476969472

�
χ−53=9

�
e40: ðC6fÞ

For the ease of presentation, we split the 3PN contributions to Ψn
j into three parts

P6 ¼ P0
6 þ P00

6e
2
0 þ P000

6 e
4
0: ðC7Þ

Various contributions to P6 are given by

P0
6 ¼

13966988843531

4694215680
þ 257982425n

508032j
−
640π2

3
−
6848γ

21
þ
�
−
20562265315

3048192
−
2393105n
1512j

þ 23575π2

96

þ 1845π2n
32j

�
ηþ

�
110255

1728
þ 475n

24j

�
η2 −

127825η3

1296
−
13696 logð2Þ

21
−
3424 logðxÞ

21
; ðC8aÞ

P00
6 ¼

�
4175723876720788380517

5556561877278720000
þ 534109712725265n

2405438042112j
−
21508213π2

276480
−
734341γ

16800
þ
�
−
37399145056383727

28865256505344

−
1219797059185n
2045440512j

þ 12111605π2

264192
þ 639805nπ2

22016j

�
ηþ

�
−
159596464273381

1718170030080
þ 43766986495n

1022720256j

�
η2 −

69237581η3

746496

−
9663919 logð2Þ

50400
þ 4602177 logð3Þ

44800
−
734341 logðxÞ

33600

�
χ−19=9 þ

�
326505451793435

2061804036096
þ 916703174045n

5080610304j

−
�
13467050491570355

39689727694848
þ 9519440485n

35282016j

�
η −

�
2186530635995

52499639808
þ 7198355375n

45362592j

�
η2 þ 2105566535η3

10606464

�
χ−25=9

þ 24716497π2

293760
χ−28=9 þ

�
−
82471214720975

45625728024576
−
2153818055n
524289024j

þ
�
−
48415393035455

1629490286592
−
119702185n
1560384j

�
η
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þ
�
906325428545

6466231296
þ 32769775n

222912j

�
η2 −

2330466575η3

16111872

�
χ−31=9 þ

�
−
4165508390854487

16471063977984
−
96423905π2

5052672

þ 2603845γ

61404
þ
�
−
1437364085977

53477480448
þ 3121945π2

561408

�
ηþ 4499991305η2

636636672
þ 2425890995η3

68211072
þ 1898287 logð2Þ

184212

þ 12246471 logð3Þ
163744

þ 2603845 logðxÞ
122808

−
2603845 logðχÞ

184212

�
χ−37=9; ðC8bÞ

P000
6 ¼

�
13875930442343179788457991

5067584432078192640000
þ 1774846575386055595n

2193759494406144j
−
71471791799π2

252149760
−
2440215143γ

15321600

þ
�
−
124277359022363124821

26325113932873728
−
4053385627671755n
1865441746944j

þ 40246863415π2

240943104
þ 2126072015nπ2

20078592j

�
η

þ
�
−
530339050780445063

1566971067432960
þ 7654615585415n

49090572288j

�
η2 −

230076481663η3

680804352
−
32113202837 logð2Þ

45964800

þ 5097678057 logð3Þ
13619200

−
2440215143 logðxÞ

30643200

�
χ−19=9 þ

�
2095939685244436475

1746053475139584
þ 5884601777755325n

4302551126016j

þ
�
−
17381974915387486205

8402882349109248
−
527634379756765n
358545927168j

�
ηþ

�
−
386694251193132845

933653594345472
−
9761006428375n
10342670976j

�
η2

þ 2855158909615η3

2418273792

�
χ−25=9 þ 254578148953π2

535818240
χ−28=9 þ

�
141251897794072110575

3786570420215611392
þ 194154433667165n

2290094456832j

þ
�
−
11182467092862313645

19319236837834752
−
15348073704055n
13631514624j

�
ηþ

�
1038816664853665

594291769344
þ 2534255435n

1741824j

�
η2

−
147245442666235η3

102858190848

�
χ−31=9 þ

�
102453749612934666311

19868699733442560
−
598067688595π2

4608036864
−
36290762107γ

56000448

þ
�
6738669506224179365

2219101528670208
−
110934582115π2

512004096

�
η−

1484623162301215η2

6604468835328
þ 128895671353745η3

217729741824

−
1140350944327 logð2Þ

24000192
þ 1296725746149 logð3Þ

49778176
−
36290762107 logðxÞ

112000896
þ 36290762107 logðχÞ

168001344

�
χ−37=9

þ
�
−
3123488330286080905561719773

355085641155718958284800
−
85280660877506238107n
124770071244349440j

þ 300051120571π2

970776576
þ 211649317γ

191520

þ
�
−
40336854286157147692937

32939298808508252160
þ 584462420500316711n

495119330334720j
þ 2786391039419π2

17972849664
−
91683875075nπ2

1089263616j

�
η

þ
�
14654969487690651143

35648591784099840
−
46042929781519n
107385626880j

�
η2 þ 49171400252465η3

91738386432
þ 2117998887803 logð2Þ

44241120

−
334711679031 logð3Þ

13108480
þ 211649317 logðxÞ

383040

�
χ−38=9 þ

�
−
1017258852718193648990131

859416250731078942720

−
284592379883138801345n
227358796489703424j

þ
�
69311096542161812013731

30693437526109962240
þ 17602484074819772515n

12179935526234112j

�
η

þ
�
3272123415010135297

2970715982008320
þ 129257754627385505n

66922722671616j

�
η2 −

40063118477671η3

20353213440

�
χ−44=9

−
2341612230425π2

3675082752
χ−47=9 þ

�
−
181582918442691290125

1374276523167055872
−
157819616198875n
591398019072j

þ
�
1741702918744309017425

1521520436363526144

þ 185709581143825n
109127015424j

�
ηþ

�
−
18130335399490218365

6037779509379072
−
16942972137575n

7794786816j

�
η2 þ 91862546967565η3

37330771968

�
χ−50=9

READY-TO-USE FOURIER DOMAIN TEMPLATES FOR … PHYS. REV. D 99, 124008 (2019)

124008-27



þ
�
259620437372696563

159257838845952
þ 691917129965π2

2589262848
−
558835855γ

2030112
þ
�
−
245999063921173

13702378991616
−
20770936405π2

575391744

�
η

þ 255806950720535η2

326247118848
−
9022269087085η3

8738762112
−
12629690323 logð2Þ

188800416
−
27159422553 logð3Þ

55940864
−
558835855 logðxÞ

4060224

þ 558835855 logðχÞ
6090336

�
χ−56=9: ðC8cÞ

Let us emphasize that the above expression indeed provides all the required Fourier phases, Ψ�n
j ’s that appear in

Eq. (3.17) for h̃ðfÞ. For instance, Fourier phases present in the quadrupolar-order h̃ðfÞ, namely, Ψ0
j , Ψ

þ2
j , and Ψ−2

j are
obtained by putting in Eq. (C5) n ¼ 0,þ2, −2, respectively. Further, one should evaluate these Fourier phases at the correct
stationary points and this requires us to use x ¼ f Gm2πf

c3ðj−ðj�nÞkð6Þð3ÞÞ
g2=3. We note in passing that the 3PN-accurate et and Ψn

j

expressions along with the 1PN-accurate Fourier amplitudes while incorporating eccentricity corrections to Oðe60Þ at each
PN order can be found in the attached Mathematica notebook [65].
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