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We study the weak deflection of light by nonrelativistic mass distributions described by two-power-law
densities ρðRÞ ¼ ρ0R−αðRþ 1Þβ−α, where α and β are non-negative integers. New analytic expressions of
deflection angles are obtained via the application of the Gauss-Bonnet theorem to a chosen surface on the
optical manifold. Some of the well-known models of this two-power-law form are the Navarro-Frenk-
White (NFW) model ðα; βÞ ¼ ð1; 3Þ, Hernquist (1,4), Jaffe (2,4), and the singular isothermal sphere (2,2).
The calculated deflection angles for Hernquist and NFW agree with that of Keeton and Bartelmann,
respectively. The limiting values of these deflection angles (at zero or infinite impact parameter) are either
vanishing or similar to the deflection due to a singular isothermal sphere. We show that these behaviors can
be attributed to the topological properties of the optical manifold, thus extending the pioneering insight of
Werner and Gibbons to a broader class of mass densities.
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I. INTRODUCTION

Gravitational lensing has come a long way since its entry
to modern science. Eddington’s famous expedition to
capture light deflection from the solar eclipse of 1919 is
generally recognized as the first to provide general rela-
tivity its sound empirical grounding [1,2]. In the years
since, the bond between lensing and general relativity has
only strengthened, aided by increasingly more sophisti-
cated instruments and techniques [3,4]. In the process,
gravitational lensing has slowly outgrown its status as a
mere theoretical prediction. It is now an indispensable tool
for much of modern astrophysics and cosmology, serving
as a primary probe for characterizing mass distributions
throughout the cosmos [5–12], particularly in the high
redshift regime [13–18].
This paper returns to lensing’s classic roots, by focusing

on the relation between the lensing behavior of a galaxy and
its mass distribution. A lens model is an important initial
assumption in inverting lensed images back to its source
image [19,20]. In astrophysics, knowing the expected
lensing behavior of a density model is essential in testing
its applicability for modeling mass clusters. Generally, the
lensing properties of a density function, such as the
deflection angle and magnification, are not readily solvable.
Massmodels are then typically chosen based on how readily
observables can be calculated from them.
Many of the commonly used density functions for

galaxies and dark matter halos belong to the family of

density parametrizations whose generalized form first
appeared in a paper by Hernquist [21],

ρðRÞ ¼ ρ0
RαðR1=γ þ 1Þðβ−αÞγ ; ð1Þ

where R ¼ r=r0. This has become a common choice for
modeling due to its relatively simple form and its analytic
properties [22–24]. Here, there are two scale parameters r0
and ρ0, and three exponential parameters ðα; β; γÞ that
modify the general shape of the distribution. Central growth
is controlled by α∶ ρ ∼ R−α for small R. This takes into
account the central cusp observed on the surface brightness
profiles of some galaxies, even at high resolution imaging
[25–27]. The allowed divergence is restricted to values
α < 3, so that the mass function (10) may still be defined.
Meanwhile, radial decay is regulated by β∶ ρ ∼ R−β for
large R. Physically relevant distributions decay no slower
than 1=r2, so we limit our discussion to the range β ≥ 2.
The density profile (1) is a function that provides a smooth
transition between these two power laws, with the exponent
γ measuring the width of the transition region.
Here, we study the weak gravitational deflection of the

so-called two-power-law densities, the γ ¼ 1 subset of the
Hernquist family,

ρðRÞ ¼ ρ0
RαðRþ 1Þβ−α : ð2Þ

In particular, we calculate the deflection angle in the high-
frequency and weak-field limit, with the source and
observer both at spatial infinity. It turns out that for integer

*kndeleon@nip.upd.edu.ph
†ivega@nip.upd.edu.ph

PHYSICAL REVIEW D 99, 124007 (2019)

2470-0010=2019=99(12)=124007(12) 124007-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.124007&domain=pdf&date_stamp=2019-06-10
https://doi.org/10.1103/PhysRevD.99.124007
https://doi.org/10.1103/PhysRevD.99.124007
https://doi.org/10.1103/PhysRevD.99.124007
https://doi.org/10.1103/PhysRevD.99.124007


values of α and β, the deflection angle can be expressed
analytically, and so we limit our discussion to these values.
Models belonging to this set include the famous Navarro-
Frenk-White (NFW) model ðα; βÞ ¼ ð1; 3Þ, Hernquist
(1,4), Jaffe (2,4), and the singular isothermal sphere
(2,2) [21,28,29]. Previous calculations have worked out
deflection angles arising from densities related to this form,
but with significant restrictions, such as on the ðα; β; 1=2Þ
subset that closely resembles the two-power law [30,31], a
much restricted range of the two-power law [32], and on
individual values of α and β [33]. Evans andWilkinson [34]
have also studied two-power-law forms similar to Eq. (2),
but for the projected surface mass density rather than the
three-dimensional density we use here.
Our calculation utilizes the Gauss-Bonnet method by

Gibbons andWerner [35], which nicely highlights the often
overlooked role of topology in gravitational lensing. This
seminal work motivated us to understand the extent to
which the topological arguments made by [35] generalize
to a much broader class of density functions. Our results
shall show that, indeed, gross features of weak deflection
are due to topological properties of an underlying optical
manifold. Beyond this question of principle, we also argue
that for weak deflection of (at least) spherically symmetric
distributions, the Gauss-Bonnet approach holds a number
of advantages over common methods such as the thin-lens
approximation and direct calculations based on metric
components. (We shall say more about this in Sec. IV.)
Previous works have exploited these advantages to study
weak deflection in various contexts [36–38]. Though
curiously, almost none of the extant literature applies to
model density functions that are particularly useful for
astrophysical work. Our work partly seeks to rectify this
state of affairs.
The rest of this paper proceeds as follows: first, we go

over some preliminaries, particularly the Gauss-Bonnet
theorem based on the optical metric, and a short summary
of Gibbons and Werner’s method. New expressions for the
deflection angles of the densities are then derived, and this
is followed by a discussion of general observations and
comparisons. This brings to the fore the perspective
advocated by Gibbons and Werner that gross physical
features of weak deflection are primarily determined by the
topology and geometry of the underlying optical manifold.
The examples we explicitly work out all lend further
credence to this point of view. Finally, the paper concludes
with a summary and recommendations for future work.
We will use the signature ð−;þ;þ;þÞ and geometric

units wherein c ¼ G ¼ 1 throughout.

II. GAUSS-BONNET THEOREM

In the Gibbons-Werner approach to the weak gravita-
tional deflection of light, the deflection angle is directly
calculated from the well-known Gauss-Bonnet theorem of
classical differential geometry. The theorem has made

many appearances in various fields of physics. (See e.g.,
[39–44], just to name a few.) For completeness, we briefly
review this here.
LetM be a compact, oriented (and thus, triangularizable)

surface with a piecewise-smooth boundary ∂M, where the
curve is arclength-parametrized and traversed in the pos-
itive sense. The Gauss-Bonnet theorem then states that

Z Z
M
KdSþ

Z
∂M

κdtþ
X
i

αi ¼ 2πχðMÞ; ð3Þ

where t is the arclength parameter, αi are the external angles
at the vertices of ∂M, K is the Gaussian curvature, κ is the
geodesic curvature, and χ is the Euler characteristic of M
(e.g., [45], p. 139). The geodesic curvature of a smooth
curve γ on a surface with metric g, with unit tangent vector
_γ, and unit acceleration vector ̈γ, is defined as

κ ¼ gð∇_γ _γ; ̈γÞ; ð4Þ

while the Gaussian curvature is proportional to the single
nontrivial component of the Riemann curvature tensor for
two dimensions (Gauss’s Theorema Egregium):

K ¼ R1212=jgj ð5Þ

with jgj the determinant of the metric [45][pp. 64, 78].
The theorem is applied to a choice of surface D defined

on the optical metric space, which then generates an
expression involving the deflection angle.

III. OPTICAL METRIC

The metric of a static and spherically symmetric space-
time has the general form

ds2 ¼ −e2AðrÞdt2 þ e2BðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð6Þ

Spherical symmetry guarantees that geodesics lie on a
plane and are equivalent up to spatial rotations about the
origin. Thus, we can set any geodesic to lie on the
equatorial plane θ ¼ π=2, without loss of generality.
Working only with null paths allows us to further reduce
the number of dimensions by considering another manifold
with the spacelike coordinate t defined as the new interval.
From the metric gμν (6), we consider the conformal trans-
formation g̃μν ¼ gμν=g00. With this metric, we set ds2 ¼ 0,
and define t as the new interval,

dt2 ¼ goptab dx
adxb ¼ e2ðBðrÞ−AðrÞÞdr2 þ e−2AðrÞr2dϕ2: ð7Þ

This is the optical metric goptab ¼ gab=ð−g00Þ. While geo-
desics in general are not preserved under conformal trans-
formations, it does hold for null curves (e.g., [46], p. 446).
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So, light paths are still faithfully represented by geodesic
curves.
For the perfect fluid case, the energy-momentum tensor

is Tμν ¼ diagðρ; p; p; pÞ in the rest frame of the fluid,
where ρ is the energy density and p is the isotropic rest-
frame pressure. Plugging this into Einstein’s field equa-
tions, the metric components are to be determined from the
energy-momentum tensor components as

dA
dr

¼
�
1 −

2mðrÞ
r

�−1�mðrÞ
r2

þ 4πGrp

�
; ð8Þ

e−2BðrÞ ¼ 1 −
2mðrÞ

r
; ð9Þ

where mðrÞ is the mass function

mðrÞ ≔
Z

r

0

ρðr0Þ4πr02dr0 ð10Þ

(e.g., [47], pp. 261 and 262). With the specification of an
equation of state or, in our case, a density function, the
pressure can be calculated from the Tolman-Oppenheimer-
Volkoff equation

dp
dr

¼ −
ðρþ pÞðmþ 4πr3pÞ

r2ð1 − 2ðm=rÞÞ ; ð11Þ

derived from the Einstein field equations and the con-
servation of energy-momentum tensor, which is also a
consequence of the former [[47] p. 264]. These equations,
plus boundary conditions, completely define the metric due
to the perfect fluid.
In terms of the physical parameters of the density

function in Eq. (2), the nonrelativistic limit is taken to
be the low-density case μ ≔ ρ0r20 ≪ 1, keeping terms only
linear in μ. Pressure contributions may be neglected in this
limit. To see this, we nondimensionalize the quantities in
Eq. (11). Let ρ̃ ≔ ρr20, p̃ ≔ pr20, m̃ ≔ m=r0, and again
R ¼ r=r0. We then have

dp̃
dR

¼ −
ðρ̃þ p̃Þðm̃=Rþ 4πR2p̃Þ

Rð1 − 2ðm̃=RÞÞ : ð12Þ

Note that both ρ̃ and m̃ are proportional to μ. Next, we
assume an expansion of p̃ in powers of μ, that is, we write
p̃ ¼ a0 þ a1μþOðμ2Þ. But since the pressure of a vacuum
is zero, a0 ¼ 0. Thus up to first order, we find that p̃ is also
proportional to μ. Now, the right-hand side of Eq. (12) is at
least of Oðμ2Þ, so dp̃=dR ¼ 0 at first order, implying that
the pressure is constant at this limit. The pressure is
expected to vanish at spatial infinity, and so it must vanish
everywhere.

IV. SURFACE CONSTRUCTION

Here we give a short review of the surface designed by
Gibbons and Werner [35] for calculating deflection angles
through the Gauss-Bonnet theorem. Note, however, that
such surface constructions are not unique (e.g., [48,49]).
On the optical manifold, let the origin of the coordinate

system ðr;ϕÞ be at the centerC of the mass distribution (see
Fig. 1). The geodesic curve Γ is the trajectory of the photon
emitted at the source S with impact parameter b and
received by an observer at O. Further, let S and O be at
an equal distance d from C. The angle δ between the
tangent of Γ at O and the line ϕ ¼ π is the deflection angle
δ. We take the limit d → ∞ so that S and O are at spatial
infinity, and ϕðSÞ ¼ 0 and ϕðOÞ ¼ π þ δ. Now, we con-
struct a surface from Γ by considering an additional circular
arc γ centered at C, intersecting Γ at points S and O. Let D
be this surface bounded by Γ and γ.
The Gauss-Bonnet theorem on surface D readsZ

πþδ

0

Z
∞

ðr∘ΓÞðϕÞ
K

ffiffiffiffiffiffiffiffiffiffi
jgoptj

p
dr dϕ

þ
Z

πþδ

0

�
κ
dt
dϕ

�
dϕþ

�
π

2
þ π

2

�
¼ 2π; ð13Þ

noting that the differential element dS in coordinate form is

dS ¼
ffiffiffiffiffiffiffiffiffiffi
jgoptj

p
dr dϕ; ð14Þ

and the external angles at S and O are π=2. The surface D
does not contain the possibly singular point C, so the
surface is simply connected and has an Euler characteristic
χ ¼ 1. The Gaussian curvature can be computed from
Eq. (5) given the metric gopt,

− K
ffiffiffiffiffiffiffiffiffiffi
jgoptj

p
¼ 2m

r2

�
1 −

2m
r

�
−3=2

×

�
1 −

3m
2r

−
4πρr3

m

�
1 −

2m
r

��
: ð15Þ

FIG. 1. Surface on the optical manifold used for computing the
deflection angle.
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In the nonrelativistic limit, Eq. (15) is calculated only up to
first order in μ. It then suffices to take only the zeroth order
of the geodesic curve ðr∘ΓÞðϕÞ ¼ b= sinϕ (the undeflected
light curve in Minkowski space), and the zeroth order of the
angular bound: π þ δ ≈ π [we know that δ ¼ 0 in vacuum,
so δmust be at least of orderOðμÞ]. With this, we obtain the
central equation for calculating deflection angles

Z
πþδ

0

�
κ
dt
dϕ

�
dϕ − π ¼

Z
π

0

Z
∞

B= sinϕ
K dRdϕ; ð16Þ

where B ¼ b=r0 and K is the first order in μ of
−Kr0

ffiffiffiffiffiffiffiffiffiffijgoptjp
in Eq. (15),

K ≔
2

R2

m
r0

− 8πRr20ρ: ð17Þ

It is this formK, rather thanK, that is directly useful for our
calculations. We will call K the Gaussian curvature term.
This method offers a number of advantages in calculating

deflection angles from spherical matter distributions com-
pared to canonical methods. Integration from gðpμ; pμÞ ¼ 0
(e.g., [47], pp. 283 and 284), wherepμ is the four-momentum
of the photon, requires the analytic form of the spacetime
metric components. While grr (of the four-dimensional
metric) is readily obtained from the mass function, gtt will
have to be computed fromEq. (8), for which an analytic form
may not exist. The method of thin-lens approximation
partially resolves this problem, since it only requires the
energy density function (e.g., [50], p. 25). The difficulty,
however, is translated to computing the surfacemass density,
which is the projection of the mass distribution on a plane
orthogonal to the light ray direction Σ ¼ R

ρdz (with the
photon traveling parallel to the z axis). Because the spherical
energy density is a function of r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, the

integrand ρ∘r can easily have a complicated form in z, even
for fairly simple functions ρðrÞ. In the Gauss-Bonnet
method, the central equations (16) and (17) only require
the explicit forms of the density and mass function, and the
integration is carried out in the r-θ space. For some space-
times, gttmust still be calculated.But, only the r → ∞ limit is
needed, so Eq. (8) further simplifies.
Aside from advantages in calculation, the method also

gives insight to the role of the topology in gravitational
deflection, as we will see later.

V. CALCULATION OF DEFLECTION ANGLES

As a concrete demonstration of the usefulness of the
Gauss-Bonnet method, we now apply this to the two-power
density function of Eq. (2). We present the deflection
angles in decreasing order of α, and then in decreasing
values of β. A general expression of the deflection angle
that covers all values of α, β was not obtained due to the
discontinuity of the function fðx; aÞ ¼ R

x yady at a ¼ −1.

The calculation splits into separate cases whenever aR
x y−1dy integration occurs. Most of the calculations are

similar and involve only the same family of integrals. The
only significant difference is between the cases β > 2 and
β ¼ 2. Densities with β > 2 are asymptotically Euclidean,
while β ¼ 2 approaches the singular isothermal distribution
at infinity. Before proceeding, we first present three
integrals that repeatedly appear in our calculations:

Iq1 ≔
Z

π

0

sinϕdϕ
ð1þ B cscϕÞq

¼ 1

Bq

ð−1Þq−1
ðq − 1Þ!

� ∂
∂a

�
q−1

a¼1=B

×

�
2

a
−

π

a2

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
�
−

2 arcsin a

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
�
; ð18Þ

Iq2 ≔
Z

π

0

dϕ
ð1þ B cscϕÞq

¼ 1

Bq

ð−1Þq−1
ðq − 1Þ!

� ∂
∂a

�
q−1

a¼1=B

×

�
π

a

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
�
þ 2 arcsin a

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
�
; ð19Þ

I3 ≔
Z

π

0

sinϕ lnð1þ B cscϕÞdϕ

¼ πBþ 2 ln
B
2
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 1

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 1

p
: ð20Þ

We will derive these in Appendix B.

A. Case (2, β ≥ 4)

For an asymptotically Euclidean metric, the deflection
angle is solely due to the area integral in Eq. (16),

δ ¼
Z

π

0

Z
∞

B= sinϕ
KdRdϕ; ð21Þ

since in flat space the geodesic curvature κ of a circular arc
is the usual inverse of the radius κ ¼ 1=d, and dt=dϕ ¼ d.
The energy density and mass function are

ρðRÞ ¼ ρ0
R2ðRþ 1Þβ−2 ; ð22Þ

mðRÞ ¼ 4πρ0r30
β − 3

�
1 −

1

ðRþ 1Þβ−3
�
: ð23Þ

Therefore, the Gaussian curvature term gives

K¼8πρ0r20

�
1

β−3

1

R2
−

1

β−3

1

R2ðRþ1Þβ−3−
1

RðRþ1Þβ−2
�
:

ð24Þ
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However, this form ofK is not fit for the R-integration. Our
workaround is to perform partial fraction decomposition. In
the Appendix, we present a general decomposition of the
fraction ðR − aÞ−pðR − bÞ−q. The following identities are
used to decompose fractions in Eq. (24):

1

RðRþ 1Þj ¼
1

R
−
Xj

i¼1

1

ðRþ 1Þi ; ð25Þ

1

R2ðRþ 1Þj ¼ −
j
R
þ 1

R2
þ
Xj

i¼1

jþ 1 − i
ðRþ 1Þi : ð26Þ

With these, we proceed with the integration and find the
deflection angle to be

δðBÞ ¼ 8πρ0r20
β − 3

Z
π

0

�Xβ−3
i¼1

1

ð1þ B cscϕÞi
�
dϕ

¼ 8πρ0r20
β − 3

�
2

B
−
Iβ−31

B

�
: ð27Þ

The summation in Eq. (27) is just a finite geometric sum. It
is apparent from this form that δð0Þ ¼ 8π2ρ0r20 and
δð∞Þ ¼ 0. This curious nonvanishing deflection at B ¼
0 (i.e., zero impact parameter) is discussed in Sec. VI. For
the Jaffe model (2,4), the deflection angle is simply

δJaffeðBÞ ¼ 8πρ0r20

�
π −

2Bffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 1

p arcsecB

�
: ð28Þ

Deflection angles for a fairly general subset of ðα; β; 1Þ
densities written in terms of analytic functions, such as
Eq. (27), do not exist elsewhere in other literature, as far as
we can know. In checking the validity of our expressions,
we inspect the limiting values at B → 0 and B → ∞ and
analyze their corresponding implications.

B. Case (2,3)

The mass functions of these distributions diverge at
spatial infinity, but the deflection angle is still well-behaved.
These densities are still asymptotically Euclidean, and the
deflection angle is calculated again from Eq. (21). The
procedure is similar to the previous case, so we only present
the results here:

ρðRÞ ¼ ρ0
R2ðRþ 1Þ ; ð29Þ

mðRÞ ¼ 4πρ0r30 ln ðRþ 1Þ; ð30Þ

δðBÞ ¼ 8πρr20
I3
B
: ð31Þ

Similar to the previous case, δð0Þ ¼ 8π2ρ0r20 and δð∞Þ ¼ 0.

C. Case (1, β ≥ 4)

We start from Eq. (21) with the following density and
mass function:

ρðRÞ ¼ ρ0
RðRþ 1Þβ−1 ; ð32Þ

mðRÞ ¼ 4πρ0r30

�
1

ðβ − 2Þðβ − 3Þ −
1

β − 3

1

ðRþ 1Þβ−3

þ 1

β − 2

1

ðRþ 1Þβ−2
�
: ð33Þ

The Gaussian curvature term can be written as

K¼ 8πρ0r20

�
−

1

ðRþ 1Þβ−1þ
1

ðβ− 3Þðβ− 2Þ
Xβ−2
i¼2

i− 1

ðRþ 1Þi
�
;

ð34Þ

again using the relations (25) and (26). Proceeding further,
the deflection angle is

δðBÞ ¼ 8πρ0r20
ðβ − 2Þðβ − 3Þ

�
2

B
−
Iβ−21

B
− ðβ − 2ÞIβ−22

�
; ð35Þ

where δð0Þ ¼ δð∞Þ ¼ 0. Thus, the deflection angle of the
Hernquist model (1,4) is

δHernðBÞ ¼
8πρ0r20B
B2 − 1

�
1 −

arcsecbffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 1

p
�
: ð36Þ

This is consistent with the result presented in the catalog of
Keeton [32]. The author used the scaled deflection angle so
there is a difference in the overall factor of the expression
(e.g., [51], p. 158).

D. Case (1,3) (NFW)

Similar to the density (2,3), the mass function of NFW
diverges at infinity. The deflection angle can still be
calculated, however. The density and mass function of
NFW are given by

ρðRÞ ¼ ρ0
RðRþ 1Þ2 ; ð37Þ

mðRÞ ¼ 4πρ0r30

�
ln ðRþ 1Þ − R

Rþ 1

�
: ð38Þ

Evaluating Eq. (21) yields
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δNFWðBÞ ¼ 8πρ0r20

�
I3
B
− I12

�

¼ 16πρ0r20
B

�
ln
B
2
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 − 1
p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 1

p �
:

ð39Þ

The deflection angle is defined for all B and has the same
limits as the previous case: δð0Þ ¼ δð∞Þ ¼ 0. This expres-
sion is equivalent to that of Bartelmann, again up to a factor
since the author used the scaled deflection angle [33].

E. Case (1,2)

Densities with β ¼ 2 have divergent mass functions at
infinity and are not asymptotically Euclidean. Unlike the
previous cases where the deflection angle is only due to the
area integral, here we have a contribution from the circular
arc γ. We return to Eq. (16) dealing first with the area
integration, then the line integral part.
Evaluating the area integral proceeds similarly:

ρ ¼ ρ0
RðRþ 1Þ ; ð40Þ

mðRÞ ¼ 4πρ0r30ðR − ln ðRþ 1ÞÞ; ð41Þ

δareaðBÞ ¼ −8πρr20
I3
B
: ð42Þ

Now, we compute the metric coefficients to evaluate the
line integral. With the given density and mass function,
Eqs. (40) and (41), Eqs. (8) and (9) are calculated up to first
order in μ giving

e2A ≈ C−2ðRþ 1Þ8πρ0r20ð1þR−1Þ; ð43Þ

e2B ≈ ð1þ 8πρ0r20Þ − 8πρ0r20
ln ðRþ 1Þ

R
; ð44Þ

for some constant C.
The definition of the geodesic curvature (4) involves the

covariant derivative operator ∇. For the circular arc, it turns
out we do not need all the connection coefficients Γi

jk to
calculate the geodesic curvature. The unit tangent and unit
acceleration vector of the circular arc γ are

_γ ¼ ðgoptϕϕÞ−1=2∂ϕ; ð45Þ

γ̈ ¼ ðgoptrr Þ−1=2∂r; ð46Þ

respectively. So, the geodesic curvature is simply

κ ¼ goptrr ð∇_γ _γÞrγ̈r; ð47Þ

where

ð∇_γ _γÞr ¼ Γr
ϕϕ _γ

ϕ _γϕ; ð48Þ

and

goptϕϕ;r ¼
2goptϕϕ

r

�
1 − 4πρ0r20

�
1 −

ln ðRþ 1Þ
R

��
: ð49Þ

With the additional factor dt=dϕ ¼
ffiffiffiffiffiffiffi
goptϕϕ

q
, the integrand of

the line integral in Eq. (16) is

κ
dt
dϕ

¼ 1

r

ffiffiffiffiffiffiffi
goptϕϕ

goptrr

s �
1 − 4πρ0r20

�
1 −

ln ðRþ 1Þ
R

��
: ð50Þ

And taking the limit r → ∞, we find

lim
r→∞

κ
dt
dϕ

¼ 1 − 8πρ0r20: ð51Þ

Finally from Eqs. (42) and (51), the deflection angle is

δðBÞ¼ 8πρ0r20

�
π−

I3
B

�

¼ 16πρr20
B

�
− ln

B
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
B2−1

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
B2−1

p �
: ð52Þ

Here, δð0Þ ¼ 0 and δð∞Þ ¼ 8π2ρ0r20. Note that the deflec-
tion at B ¼ ∞ is nonvanishing. We will discuss this
in Sec. VI.

F. Case (0, β ≥ 4)

All the remaining cases are calculated in the same
manner as the previous ones, so we will only present
results from here on.
For this case, we have

ρðRÞ ¼ ρ0
ðRþ 1Þβ ; ð53Þ

mðRÞ ¼ 4πρ0r30

��
1

β − 3
−

2

β − 2
þ 1

β − 1

�

−
1

β − 3

1

ðRþ 1Þβ−3 þ
2

β − 2

1

ðRþ 1Þβ−2

−
1

β − 1

1

ðRþ 1Þβ−1
�
; ð54Þ

K ¼ 8πρ0r20

�
−

R
ðRþ 1Þβ −

1

β − 3

1

ðRþ 1Þβ−1

þ 2

ðβ − 3Þðβ − 2Þðβ − 1Þ
Xβ−1
i¼2

i − 1

ðRþ 1Þi
�
; ð55Þ
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δðBÞ¼ 8πρ0r20
ðβ−1Þðβ−2Þðβ−3Þ

�
4

B
−2

Iβ−11

B
þðβ−4Þðβ−1ÞIβ−12

−ðβ−2Þðβ−1ÞIβ−22

�
: ð56Þ

One can check that δð0Þ ¼ δð∞Þ ¼ 0.

G. Case (0,3)

Here,

ρðRÞ ¼ ρ0
ðRþ 1Þ3 ; ð57Þ

mðRÞ ¼ 4πρ0r30

�
lnðRþ 1Þ þ 2

Rþ 1
−
1

2

1

ðRþ 1Þ2 −
3

2

�
;

ð58Þ

δðBÞ ¼ 8πρ0r20

�
1

2
I22 −

3

2
I12 þ

I3
B

�
: ð59Þ

Similarly, δð0Þ ¼ δð∞Þ ¼ 0.

H. Case (0,2)

This density is of the type β ¼ 2, so the calculation is
similar to the case (1,2). With the density and mass
functions

ρðRÞ ¼ ρ0
ðRþ 1Þ2 ; ð60Þ

mðRÞ ¼ 4πρ0r30

�
−2 ln ðRþ 1Þ − 1

Rþ 1

−
1

2

1

ðRþ 1Þ2 þ Rþ 1

�
; ð61Þ

the area integral in Eq. (16) gives

δareaðBÞ ¼ 8πρ0r20

�
I12 − 2

I3
B

�
: ð62Þ

For the line integral part, we calculate first the metric
coefficients

e2A ≈ C−2ðRþ 1Þ8πρ0r20ð1−2R−1Þ; ð63Þ

e2B≈ ð1þ8πρ0r20Þ−8πρ0r20

�
1

Rþ1
−
2 lnðRþ1Þ

R

�
: ð64Þ

Evaluating Eq. (4), we get

κ
dt
dϕ

¼1

r

ffiffiffiffiffiffiffi
goptϕϕ

goptrr

s �
1−4πρ0r20

�
R−2

Rþ1
þ2lnðRþ1Þ

R

��
: ð65Þ

This shares the same limit in Eq. (51). Finally, we get the
deflection angle from Eqs. (62) and (51),

δðBÞ ¼ 8πρ0r20

�
π − 2

I3
B
þ I12

�
: ð66Þ

Just as the previous case (1,2), we have δð0Þ ¼ 0 and
δð∞Þ ¼ 8π2ρ0r20.

VI. DISCUSSION

The deflection angles computed from the energy density
sequence ðα; βÞ are well characterized by their b → 0 and
b → ∞ limits. These limiting behaviors reflect the geom-
etry of the optical manifold at the center and the asymptotic
regions, respectively. The only two limiting behaviors are
(1) a vanishing deflection angle corresponding to a locally
flat (Euclidean) region, and (2) a nonzero deflection angle
limit determined by a conical structure at the region. Table I
gives a summary of the deflection angle limits.
Vanishing deflection at zero impact parameter in an

asymptotically Euclidean spacetime is guaranteed when
there are no singularities anywhere. By the angular sym-
metry of the metric, the geodesic light trajectory at b ¼ 0
(in the optical manifold) must be the straight line in flat
space coincident with the x axis. Thus, the surface D in the
central Eq. (16) is just the upper half-disk centered at C
where S and O are at the vertices. With this surface, it is no
surprise from the left-hand side of Eq. (16) that δð0Þ ¼ 0.
While this argument may appear trivial at first, it is
instructive to state it here because its conclusion is not
obvious from the Gaussian curvature integral in Eq. (21).
Moreover, the reasoning will not apply when there is a
singularity at C.

TABLE I. Summary of deflection angle limits at zero and infinite impact parameter.

β ¼ 2 m∞ undefined,
asymptotically conical,

δð∞Þ ¼ 8π2ρ0r20

β ¼ 3 m∞ undefined,
asymptotically Euclidean,

δð∞Þ ¼ 0

β ≥ 4 m∞ defined,
asymptotically Euclidean,

δð∞Þ ¼ 0

α ¼ 0, flat center, δð0Þ ¼ 0 Dehnen-type (β ¼ 4),
Plummer-like (β ¼ 5)

α ¼ 1, flat center, δð0Þ ¼ 0 NFW Hernquist (β ¼ 4)
α ¼ 2, conical center, δð0Þ ¼ 8π2ρ0r20 Singular isothermal sphere Jaffe (β ¼ 4)
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The central geometry of densities with α ¼ 2 approaches
the singular isothermal sphere (SIS) geometry. The singular
center prohibits the direct use of the upper-half disk when
calculating the deflection angle at the zero impact param-
eter. The Gauss-Bonnet theorem cannot be applied to this
surface because the boundary touches the singularity at the
origin. One can only use a surface, like D, that approaches
the half-disk. In fact, the Gaussian curvature integral
approaches a nonzero value as b → 0. This value is related
to the central geometry of the optical manifold. We see here
how the Gauss-Bonnet method highlights the role of
topology in the contrasting central behavior of α ¼ 0, 1
and α ¼ 2 densities.
Gibbons and Werner [35] showed that the embedding of

the low-density SIS optical manifold, with isotropic veloc-
ity dispersion σ2, in flat R3 charted by ðS;ϕ; zÞ is the cone

z ¼
ffiffiffiffiffiffiffi
8σ2

p ð1 − 9σ2

2
Þ1=2

1 − 6σ2
S: ð67Þ

In terms of ρ0 and r0, σ2 ¼ 2πρ0r20. A cone z ¼ kS has a
deficit angle Δ of

Δ ¼ 2π

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2 þ 1

r �
ð68Þ

(derived in the Appendix). Up to first order in μ, the SIS
deflection angle is

δSIS ¼ Δ=2 ¼ 8π2ρ0r20: ð69Þ

That is, the constant SIS deflection angle is half the deficit
angle of its conical optical manifold. From this point of
view, deflection by SIS is entirely topological, i.e., due to
the deficit angle of the conical manifold. We notice that this
is the same value of the zero impact parameter limit of
deflection by α ¼ 2 densities. This suggests that such
deflections are also due to the conical center of the α¼2
optical manifolds.
The infinite impact parameter behavior of deflection is

more apparent to see. For asymptotically Euclidean
spacetimes, it is clear from Eq. (21) that the integral must
vanish as the lower bound of R approaches the upper
bound. Meanwhile, β ¼ 2 densities approach SIS distribu-
tion at large radial distances; thus the embedding in flat R3

of this region of the optical manifold is also approximately
conical. As expected, we get a deflection angle of
δð∞Þ ¼ Δ=2 ¼ 8π2ρ0r20, similar to the case of α ¼ 2 when
b ¼ 0.
Plots of deflection angles are shown in Fig. 2. The

deflection by β ¼ 2 densities always approach the angle
Δ=2 as the impact parameter grows large. Meanwhile, the
deflection for β ¼ 3 falls off considerably slower than
β ≥ 4 due to logarithmic terms plaguing the decay. We also
note that since the density function of (0,5,1) behaves

comparable to the Plummer sphere ð0; 5; 1=2Þ, the
Plummer deflection (e.g., [35]) follows roughly the deflec-
tion curve of (0,5,1) given a suitable scale factor. Evans and
Wilkinson [34] also proposed a mass distribution similar to
Eq. (2) where it is the projected surface mass density that
follows a two-power law. The corresponding actual (three-
dimensional) density function of their surface density
surely has a different form from Eq. (2), so similarities
in deflection are only qualitative. For example, there seems

FIG. 2. Plots of deflection angles in factors of 8πρ0r20 as a
function of the scaled impact parameter B ¼ b=r0. The Plummer
curve is scaled down by 1=5 to emphasize its resemblance to the
(0,5,1) curve. All β ¼ 2 deflections approach the angle Δ=2 as
b → ∞, although these are not covered by the span of the plots.
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to be a similarity in the trend between the α of three-
dimensional two-power densities and its two-dimensional
α − 1 counterpart. This “one power less in α” similarity
makes sense from the difference of the mass function in
Eq. (10), for three-dimensional densities, from the total
enclosed surface mass inside the circle s ¼ s0∶ Mðs0Þ ¼R
s0
0 ΣðsÞ2πsds, for surface mass densities. The former has
r2 in the integrand while the latter only has s—one power
less than r2.
Finally, we note that with other methods the calculations

would have been more complicated with integrals appear-
ing in impractical forms.

VII. CONCLUSIONS AND RECOMMENDATIONS

To summarize, using the Gauss-Bonnet technique, we
have obtained new analytic expressions for the first-order
deflection angle due to spherical two-power-law densities
ðα; β; 1Þ in Eq. (2) for α ¼ 0, 1, 2 and β ¼ 2; 3; 4;….
These expressions are valid in the weak-field regime,
μ ¼ ρ0r20 ≪ 1, as well as arising from nonrelativistic
matter. Our main results are presented in Eq. (27) for
the case ð2; β ≥ 4Þ, Eq. (31) for (2,3), Eq. (35) for
ð1; β ≥ 4Þ, Eq. (39) for (1,3) or the NFW, Eq. (52)
for (1,2), Eq. (56) for ð0; β ≥ 4Þ, Eq. (59) for (0,3), and
Eq. (66) for (0,2). Explicit forms are determined for the
named densities: Hernquist in Eq. (36), NFW, and Jaffe in
Eq. (28). Our calculated Hernquist and NFW deflections
are consistent with the result of Keeton [32] and
Bartelmann [33], respectively. Comparing our deflection
with that of Evans and Wilkinson we also find good
qualitative agreement. Our calculations demonstrate how
the Gauss-Bonnet method can be more convenient for
weakly deflecting spherical distributions compared to
canonical methods, such as integration from gðpμ; pμÞ
and the method of the thin lens approximation.
We have demonstrated that the Gibbons-Werner insight

into the role played by topology in gravitational deflection
extends to mass distributions beyond those that the authors
initially considered, as is explicitly demonstrated in the
α ¼ 0, 1 and α ¼ 2 densities. We have shown how the
topological properties of the corresponding optical mani-
fold immediately imply vanishing deflection for the former
cases and finite deflection for the latter case in the limit of
zero impact parameter. The central region of α ¼ 0, 1
densities is flat (Euclidean), while that of α ¼ 2 densities is
conical. The topology-controlled behavior of the deflection
also obtains in the b → ∞ limit. At this limit, there is a
finite deflection for β ¼ 2 densities and vanishing deflec-
tion for β > 2 densities. This is due to the asymptotically
conical optical manifold of the former and the asymptoti-
cally Euclidean optical manifold of the latter. At these
conical regions, two-power densities are well approximated
by the singular isothermal sphere distribution. Gibbons and
Werner [35] previously noted that the constant deflection

angle of the low-density singular isothermal sphere takes
the value of half the deficit angle of its conical optical
manifold, suggesting that the deflection is due to the
conical angle defect. Here, we find the same to be true
for the limiting cases of α ¼ 2 and β ¼ 2. Outside the
limiting behaviors of the deflection, however, we empha-
size that geometrical details of the optical manifold do play
the dominant role.
An immediate extension of this study is to find a general

expression that includes noninteger values of α and β,
which may provide a better fit with certain galactic
densities. Such values complicate the form of the integrals
and render invalid the analytic techniques used here. We
seek to address these and related questions in future work.
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APPENDIX A: PARTIAL FRACTION
DECOMPOSITION: DENOMINATOR

WITH TWO DISTINCT ROOTS

We wish to find the coefficients Ai and Bj that satisfy

1

ðx − aÞpðx − bÞq ¼
Xp
i¼1

Ai

ðx − aÞi þ
Xq
j¼1

Bj

ðx − bÞj ; ðA1Þ

where p and q are positive integers. The partial fraction
decomposition looks somehow similar to Laurent expan-
sions. This suggests that the coefficients might be extracted
from relevant Laurent series expansions. We start by
appealing to this well-known Kronecker delta expression
as an isolation tool,

1

2πi

I
Ca

dz
ðz − aÞn ¼ δ1n; ðA2Þ

where Ca is a closed contour enclosing the singular point
z ¼ a. Suppose we want to find the coefficient Ak. To
utilize Eq. (A2), we multiply both sides of Eq. (A1) with
ðx − aÞk−1, so that

1

ðx − aÞp−kþ1ðx − bÞq

¼
Xp−kþ1

i¼−kþ2

Aiþk−1

ðx − aÞi þ ðx − aÞkþ1
Xq
j¼1

Bj

ðx − bÞj : ðA3Þ

Integrating both sides of Eq. (A3) on the complex plane
along the closed contour Ca, we find that on the right-hand
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side only the i ¼ 1 term survives on the first summation, as
per relation (A2), while the second summation vanishes
altogether because it is an analytic function on the domain
enclosed by the contour. Thus,

Ak ¼
1

2πi

I
Ca

1

ðx − aÞp−kþ1ðx − bÞq dx: ðA4Þ

This is easily evaluated with the calculus of residues:

Ak ¼
1

ðp − kÞ!
� ∂
∂a

�
p−k

x¼a

1

ðx − bÞq ; ðA5Þ

Ak ¼
�
pþ q − 1 − k

q − 1

� ð−1Þp−k
ða − bÞpþq−k : ðA6Þ

The coefficients Bj are obtained in the same manner:

Bk ¼
�
pþ q − 1 − k

p − 1

� ð−1Þq−k
ðb − aÞpþq−k : ðA7Þ

APPENDIX B: EVALUATING
THE Ii INTEGRALS

Only the integrals I1 and I3 are sketched here. I2 is
evaluated in the same manner as I1 with some slight
modifications.

1. I1 and I2
We use complex integration to evaluate the integral I1.

First, note that

Iq1 ¼
Z

π

0

sinϕdϕ
ð1þ B cscϕÞq ¼ ℑ

�Z
π

0

eiϕdϕ
ð1þ B cscϕÞq

�
≕ℑ½I �:

ðB1Þ
We instead deal with the integral I . However, the exponent
of the denominator still complicates the evaluation. As a
way out, we proceed as follows:

I ¼ 1

Bq

Z
π

0

eiϕdϕ
ðB−1 þ cscϕÞq

¼ 1

Bq

�Z
π

0

eiϕdϕ
ðaþ cscϕÞq

�
a¼1=B

¼ 1

Bq

ð−1Þq−1
ðq − 1Þ!

� ∂
∂a

�
q−1

a¼1=B

�Z
π

0

eiϕdϕ
aþ cscϕ

�
: ðB2Þ

Let the integral in the last line of Eq. (B2) be J . The overall
form of J suggests that the contour of the integral in the
complex plane is a semicircular arc centered at z ¼ 0 of
unit modulus. Hence, we consider the integral

K ¼ 1

i

I
C

z2 − 1

az2 þ 2iz − a
dz; ðB3Þ

where C ¼ C1 þ C2 is the contour traversed in the positive
sense given by

C1∶ zðxÞ ¼ x; x ∈ ½−1; 1�; ðB4Þ

C2∶ zðϕÞ ¼ eiϕ;ϕ ∈ ½0; π�: ðB5Þ

The simple poles are at

z� ¼ i

�
−
1

a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2
− 1

r �
: ðB6Þ

Notice that the poles are never inside the domain enclosed
by the contour C, so K ¼ 0, and

K ¼
I
C1

ð� � �Þ þ
I
C2

ð� � �Þ ¼ 0: ðB7Þ

The C2-integral is already J , so

J ¼ −
1

i

Z
1

−1

x2 − 1

ax2 þ 2ix − a
dx: ðB8Þ

We consider first the case 0 < a < 1 where the poles are
purely imaginary. Later on, we will argue that the answer
we get here is the same as when a > 1 by invoking the
uniqueness of analytic continuation of functions (we expect
J to be a well-behaved function of a). Evaluating J will
finally give Iq1 .

2. I3
Here, we evaluate the integral I3

I3 ¼
Z

π

0

sinϕ ln ð1þ B cscϕÞdϕ: ðB9Þ

Integrating by parts once, we proceed as

I3 ¼ ð− cosϕ lnð1þ B cscϕÞÞjπ0 −
Z

π

0

Bcot2ϕ
B cscϕþ 1

dϕ

¼ ð� � �Þjπ0 −
1

B

Z
π

0

B2ðcsc2ϕ − 1Þ
B cscϕþ 1

dϕ

¼ ð� � �Þjπ0 −
1

B

Z
π

0

ðB2csc2ϕ − 1Þ þ ð1 − B2Þ
B cscϕþ 1

dϕ

¼ ð� � �Þjπ0 −
1

B

Z
π

0

ðB cscϕ − 1Þdϕ −
�
1 − B2

B

�
I12

¼ ð� � �Þjπ0 þ lnðcscϕþ cotϕÞjπ0 þ
π

B
−
�
1 − B2

B

�
I12

¼ ln

�
cscϕþ cotϕ

ðB cscϕþ 1Þcosϕ
�����π

0

þ π

B
−
�
1 − B2

B

�
I12

¼ πBþ 2 ln
B
2
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 1

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 1

p
: ðB10Þ
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It should be noted that the logarithmic terms on the sixth
line are undefined individually; only their difference has a
finite limit.

APPENDIX C: DEFICIT ANGLE OF A CONE

The deficit angle of a cone is defined by its slope k.
Consider the cone z − kS ¼ 0 in flat R charted by cylin-
drical coordinates ðS;ϕ; zÞ. The induced metric on the
cone is

ds2cone ¼ dS2 þ S2dϕ2 þ dðkSÞ2 ðC1Þ

¼ ðk2 þ 1ÞðdS2 þ S2dϕ̃2Þ; ðC2Þ

where

ϕ̃ ¼ ϕffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p : ðC3Þ

We see that the metric on the conical surface is conformal to
the Euclidean metric, but with a reduced angular range:
ϕ̃ ∈ ½0; 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p
Þ. Thus, the deficit angle is

Δ ¼ 2π

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2 þ 1

r �
¼ πk2 þOðk4Þ: ðC4Þ
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Hanslmeier, Astrophys. J. 869, 132 (2018).

[15] B. Salmon, D. Coe, L. Bradley, M. Bradač, V. Strait, R.
Paterno-Mahler, K.-H. Huang, P. A. Oesch, A. Zitrin, A.
Acebron et al., Astrophys. J. Lett. 864, L22 (2018).

[16] A. Acebron, N. Cibirka, A. Zitrin, D. Coe, I. Agulli, K.
Sharon, M. Bradač, B. Frye, R. C. Livermore, G. Mahler
et al., Astrophys. J. 858, 42 (2018).

[17] C. Lamarche, A. Verma, A. Vishwas, G. Stacey, D. Brisbin,
C. Ferkinhoff, T. Nikola, S. Higdon, J. Higdon, and M.
Tecza, Astrophys. J. 867, 140 (2018).

[18] J. A. Zavala, A. Montaña, D. H. Hughes, M. S. Yun, R.
Ivison, E. Valiante, D. Wilner, J. Spilker, I. Aretxaga, S.
Eales et al., Nat. Astron. 2, 56 (2018).

[19] R. Kayser and T. Schramm, Astron. Astrophys. 191, 39
(1988).

[20] S. Warren and S. Dye, Astrophys. J. 590, 673 (2003).
[21] L. Hernquist, Astrophys. J. 356, 359 (1990).
[22] W. Dehnen, Mon. Not. R. Astron. Soc. 265, 250 (1993).
[23] S. Tremaine, D. O. Richstone, Y.-I. Byun, A. Dressler, S.

Faber, C. Grillmair, J. Kormendy, and T. R. Lauer, Astron. J.
107, 634 (1994).

[24] H. Zhao, Mon. Not. R. Astron. Soc. 278, 488 (1996).
[25] T. R. Lauer, S. Faber, C. R. Lynds, W. A. Baum, S. Ewald,

E. J. Groth, J. J. Hester, J. A. Holtzman, J. Kristian, R. M.
Light et al., Astron. J. 103, 703 (1992).

[26] T. R. Lauer, S. Faber, E. J. Groth, E. J. Shaya, B. Campbell,
A. Code, D. G. Currie, W. A. Baum, S. Ewald, J. J. Hester
et al., Astron. J. 106, 1436 (1993).

[27] S. Faber, S. Tremaine, E. A. Ajhar, Y.-I. Byun, A. Dressler,
K. Gebhardt, C. Grillmair, J. Kormendy, T. R. Lauer, and D.
Richstone, Astron. J. 114, 1771 (1997).

[28] J. F. Navarro, C. S. Frenk, and S. D. M. White, Mon. Not. R.
Astron. Soc. 275, 720 (1995).

[29] W. Jaffe, Mon. Not. R. Astron. Soc. 202, 995 (1983).
[30] K.-H. Chae, V. K. Khersonsky, and D. A. Turnshek, As-

trophys. J. 506, 80 (1998).
[31] K.-H. Chae, Astrophys. J. 568, 500 (2002).
[32] C. R. Keeton, arXiv:astro-ph/0102341.
[33] M. Bartelmann, Astron. Astrophys. 313, 697 (1996).

WEAK GRAVITATIONAL DEFLECTION BY TWO-POWER-LAW … PHYS. REV. D 99, 124007 (2019)

124007-11

https://doi.org/10.1103/PhysRevLett.75.1439
https://doi.org/10.1038/nature08857
https://doi.org/10.1038/nature08857
https://doi.org/10.1086/185636
https://doi.org/10.1086/185636
https://doi.org/10.1086/323695
https://doi.org/10.1103/PhysRevD.98.103517
https://doi.org/10.1093/mnras/stz200
https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1103/PhysRevD.98.043526
http://dx.doi.org/10.1117/12.2056982
http://dx.doi.org/10.1117/12.2056982
http://dx.doi.org/10.1117/12.2056982
http://dx.doi.org/10.1117/12.2056982
http://dx.doi.org/10.1117/12.2056982
https://doi.org/10.1086/341110
https://doi.org/10.1038/s41550-018-0430-3
https://doi.org/10.3847/1538-4357/aaeed5
https://doi.org/10.3847/2041-8213/aadc10
https://doi.org/10.3847/1538-4357/aabe29
https://doi.org/10.3847/1538-4357/aae394
https://doi.org/10.1038/s41550-017-0297-8
https://doi.org/10.1086/375132
https://doi.org/10.1086/168845
https://doi.org/10.1093/mnras/265.1.250
https://doi.org/10.1086/116883
https://doi.org/10.1086/116883
https://doi.org/10.1093/mnras/278.2.488
https://doi.org/10.1086/116095
https://doi.org/10.1086/116737
https://doi.org/10.1086/118606
https://doi.org/10.1093/mnras/275.3.720
https://doi.org/10.1093/mnras/275.3.720
https://doi.org/10.1093/mnras/202.4.995
https://doi.org/10.1086/306217
https://doi.org/10.1086/306217
https://doi.org/10.1086/339164
http://arXiv.org/abs/astro-ph/0102341


[34] N. Evans and M. Wilkinson, Mon. Not. R. Astron. Soc. 296,
800 (1998).

[35] G.W. Gibbons and M. C. Werner, Classical Quantum
Gravity 25, 235009 (2008).

[36] K. Jusufi, Int. J. Geom. Methods Mod. Phys. 14, 1750179
(2017).

[37] K. Jusufi and A. Övgün, Phys. Rev. D 97, 024042
(2018).

[38] G. Crisnejo and E. Gallo, Phys. Rev. D 97, 124016
(2018).

[39] Y. Rosenfeld, Mol. Phys. 86, 637 (1995).
[40] L. H. Ryder, Eur. J. Phys. 12, 15 (1991).
[41] L. Yang, Y.-Q. Ma, and X.-G. Li, Physica (Amsterdam)

456B, 359 (2015).
[42] M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.

72, 957 (1994).

[43] C. van de Bruck and C. Longden, Galaxies 7, 39 (2019).
[44] A. Övgün, Universe 5, 115 (2019).
[45] W.Klingenberg,ACourse inDifferentialGeometry (Springer

Science & Business Media, New York, 2013), Vol. 51.
[46] R. Wald, General Relativity (University of Chicago Press,

Chicago, 2010).
[47] B. Schutz, A First Course in General Relativity (Cambridge

University Press, Cambridge, England, 2009).
[48] A. Ishihara, Y. Suzuki, T. Ono, T. Kitamura, and H. Asada,

Phys. Rev. D 94, 084015 (2016).
[49] H. Arakida, Gen. Relativ. Gravit. 50, 48 (2018).
[50] S. Mollerach and E. Roulet, Gravitational Lensing and

Microlensing (World Scientific, Singapore, 2002).
[51] P. Schneider, J. Ehlers, and E. Falco, Gravitational

Lenses, Astronomy and Astrophysics Library (Springer,
Berlin Heidelberg, 2013).

KARLO DE LEON and IAN VEGA PHYS. REV. D 99, 124007 (2019)

124007-12

https://doi.org/10.1046/j.1365-8711.1998.01380.x
https://doi.org/10.1046/j.1365-8711.1998.01380.x
https://doi.org/10.1088/0264-9381/25/23/235009
https://doi.org/10.1088/0264-9381/25/23/235009
https://doi.org/10.1142/S0219887817501791
https://doi.org/10.1142/S0219887817501791
https://doi.org/10.1103/PhysRevD.97.024042
https://doi.org/10.1103/PhysRevD.97.024042
https://doi.org/10.1103/PhysRevD.97.124016
https://doi.org/10.1103/PhysRevD.97.124016
https://doi.org/10.1080/00268979500102241
https://doi.org/10.1088/0143-0807/12/1/003
https://doi.org/10.1016/j.physb.2014.09.022
https://doi.org/10.1016/j.physb.2014.09.022
https://doi.org/10.1103/PhysRevLett.72.957
https://doi.org/10.1103/PhysRevLett.72.957
https://doi.org/10.3390/galaxies7010039
https://doi.org/10.3390/universe5050115
https://doi.org/10.1103/PhysRevD.94.084015
https://doi.org/10.1007/s10714-018-2368-2

