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Using the Navarro-Frenk-White dark matter density profile we reconstruct an effective field theory
model for gravity at large distances from a central object by demanding that the vacuum solution has the
same gravitational properties as the Navarro-Frenk-White density profile has in the context of General
Relativity. The dimensionally reduced reconstructed action for gravity leads to a vacuum metric that
includes a modified Rindler acceleration term in addition to the Schwarzschild and cosmological constant
terms. The new term is free from infrared curvature singularities and leads to a much better fit of observed
galaxy velocity rotation curves than the corresponding simple Rindler term of the Grumiller metric [Phys
Rev. Lett. 106, 039901 (2011); Int. J. Mod. Phys. D 20, 2761 (2011)], at the expense of one additional
parameter. When the new parameter is set to zero, the new metric term reduces to a Rindler constant
acceleration term. We use galactic velocity rotation data to find the best-fit values of the parameters of the
reconstructed geometric potential and discuss possible cosmological implications.

DOI: 10.1103/PhysRevD.99.124006

I. INTRODUCTION

General Relativity (GR) is the simplest successful theory
for gravity. It is consistent with the vast majority of
experiments and observations from submillimeter scales
up to cosmological horizon scales [1,2]. Alternative the-
ories of gravity include more degrees of freedom and
parameters which are strongly constrained by a wide range
of experiments and astrophysical/cosmological observa-
tions to be very close to the values predicted by GR (see,
e.g., Refs. [3–6]).
Despite its successes and simplicity, GR requires addi-

tional undetected matter/energy components to explain
observations on galactic scales or larger. In particular,
the existence of dark matter [7–13] is required for the
description of observed dynamics and structure formation
on galactic scales or larger, while dark energy with negative
pressure or a fine-tuned cosmological constant (see
Ref. [14] for a review) is required for the consistency of
GR with the observed accelerating cosmic expansion
[15–17]. Even on solar system scales or submillimeter
scales, there have been hints of possible inconsistency of
the theory with particular observations (e.g., the Pioneer
anomaly [18–22]) or short-range gravity experiments
(peculiar oscillating signals in some datasets [23,24]). In
addition, the theory predicts the existence of unphysical
singularities in a wide range of its solutions which should
describe physical phenomena.

Any observed inconsistency between the geometric lhs
of the Einstein equation and the matter-energy rhs is thus
usually addressed by modifying the rhs through the
conservative assumption of some yet undetected form of
matter energy chosen in such a way as to restore the
equality of the geometric and matter parts of the Einstein
equation. A more fundamental approach is to modify the
geometric lhs of the Einstein, which is equivalent to
modifying the fundamental action of the gravitational
theory. There is a wide range of modified gravity models
aiming at the explanation of the accelerating expansion of
the Universe [25–28]. Such theories include scalar-tensor
theories [29–32], including the most general class of
Horndeski models [33,34]; fðRÞ theories [35–40], which
generalize the Ricci scalar R of the action to a general
function fðRÞ; generalized teleparallel gravity fðTÞ theo-
ries [41–44], which generalize the torsion scalar T of the
action to a general function of it; nonlocal gravity theories
[45–47], which introduce nonlocal operators in the gravi-
tational action, which involve effectively an infinite sum
of derivatives; etc. On the other hand, modified gravity
models aiming at the explanation of the dynamics of matter
at galactic and cluster scales without dark matter are much
more limited [48,49]. This is due to the very diverse nature
of matter dynamical behaviors that need to be explained,
which appears to require a large number of parameters for
the fundamental theory that would attempt to explain it
without dark matter. The main representative of this class
of theories is the modified Newtonian dynamics theory
[50–52] based on the existence of a fundamental accel-
eration scale, which has been recently shown, however, to
be highly unlikely to exist [53].
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An alternative approach towards a geometric fundamen-
tal description of the dynamics of matter on galactic and
cluster scales without dark matter has been proposed by
Grumiller [54,55]. Assuming spherical symmetry of the
metric and implementing dimensional reduction of the
Einstein-Hilbert action to two space-time dimensions
(t − r), it was shown that the emerging two-dimensional
scalar-tensor effective field theory action with a constant
potential can be generalized to include a nontrivial poten-
tial. The simplest form of this potential with no infrared
curvature singularities leads to a generic Rindler constant
acceleration term in the vacuum spherically symmetric
metric of the new theory [54]. It has been shown recently
[56] that such a term in the background metric can give rise
to a new type of metastable topological defects (spherical
domain walls). It was also argued that such a term can give
rise to the observed velocity rotation curves of galaxies
without incorporating dark matter [57]. It was later shown
[58,59], however, that the Rindler term is only able to
provide acceptable fits to a relatively small number of
observed velocity rotation curves, which is limited to those
rotation curves where the velocity continues to increase
with distance through the halo. Such behavior is not typical
for most rotation curves, which are either flat [10–12] or in
fact tend to decrease with distance at large distances from
the galactic core [60]. Thus, the Rindler acceleration even
though it is appealing due to its possible fundamental
geometric origin, does not provide enough degrees of
freedom to describe the data in contrast to the commonly
used dark matter density profiles (Navarro-Frenk-White
[61,62] and Burkert [63]), which provide excellent fits to
the rotation curve data. Thus, the following questions arise:

(i) Is it possible to generalize the fundamental two-
dimensional geometric effective action (and its
scalar field potential emerging from dimensional
reduction) such that the corresponding vacuum
spherically symmetric metric reproduces the ob-
served velocity rotation curves equally well as the
standard dark matter density profiles?

(ii) If yes, what is the form of the required geometric
scalar field potential, and how is it related to the
simple Rindler potential of Refs. [54,55]?

(iii) Can an arbitrary vacuum spherically symmetric
metric be reproduced by a properly selected geo-
metric scalar field potential?

The goal of the present analysis is to address these
questions using both theoretical reconstruction of the
fundamental action and direct comparison with specific
velocity rotation data.
The structure of this paper is as follows. In the next

section, we consider a class of simple spherically sym-
metric metrics in 3þ 1 dimensions and identify the profiles
and properties of the perfect fluids that can give rise to
such metrics. In Sec. III, we assume spherical symmetry
and use it to dimensionally reduce the 3þ 1-dimensional

Einstein-Hilbert action to an effective two-dimensional
scalar-tensor action with a constant potential. We
generalize this geometric potential, thus modifying the
gravitational action to an arbitrary form, and derive the
corresponding generalized vacuum spherically symmetric
metric in terms of the geometric potential. In Sec. IV, we
consider special forms of the geometric potential and of the
background fluid and derive the corresponding metric.
Thus, in the case of a constant potential (GR), we derive the
Schwarzschild vacuummetric, while for a simple quadratic
potential, we obtain the Rindler acceleration and cosmo-
logical constant terms in agreement with Ref. [54].We also
reconstruct the geometric potential that leads to a vacuum
metric that is identical to the metric derived assuming a
given dark matter fluid density profile in the context of GR.
In the context of a particular example, we assume a
Navarro-Frenk-White (NFW) [61,62] density profile and
derive the corresponding geometric potential and vacuum
metric. We show that this metric generalizes the Rindler
term of the Grumiller metric and show fits of the
velocity profiles it generates on typical galactic velocity
rotation data. In what follows, we assume a metric
signature þ − −−.

II. SPHERICALLY SYMMETRIC METRICS IN
GR AND PERFECT FLUIDS

Consider the spherically symmetric metric in four
dimensions of the form

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2ðdθ2 þ sin2θdϕ2Þ: ð2:1Þ

What is the most general form of the perfect fluid energy
momentum tensor that is consistent with this metric in the
context of GR?
To address this question, we set

fðrÞ ¼ 1 − gðrÞ ð2:2Þ

and obtain the Einstein tensor corresponding to this
metric as

Gν
μ ¼

2
6664
e1ðrÞ 0 0 0

0 e1ðrÞ 0 0

0 0 e2ðrÞ 0

0 0 0 e2ðrÞ

3
7775 ð2:3Þ

with

e1ðrÞ ¼
gðrÞ
r2

þ g0ðrÞ
r

ð2:4Þ

e2ðrÞ ¼
g0ðrÞ
r

þ g00ðrÞ
2

: ð2:5Þ
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Using Eqs. (2.4) and (2.5) and the Einstein equations
Gμ

ν ¼ κTμ
ν , we find

ρðrÞ ¼ −prðrÞ ¼
1

κr

�
gðrÞ
r

þ g0ðrÞ
�

ð2:6Þ

pθðrÞ ¼ pϕðrÞ ¼ −
1

2κr
½2g0ðrÞ þ rg00ðrÞ�; ð2:7Þ

where κ ¼ 8πG and the energy-momentum tensor of the
perfect fluid is

Tν
μ ¼ diag½ρðrÞ;−prðrÞ;−pθðrÞ;−pϕðrÞ�: ð2:8Þ

Expanding gðrÞ as a power series,

fðrÞ ¼ 1 −
XN
n¼−N

anrn; ð2:9Þ

the Einstein tensor may be expressed as [56]

Gμ
ν ¼

XN
n¼−N

2
666664

anðnþ 1Þrn−2 0 0 0

0 anðnþ 1Þrn−2 0 0

0 0 1
2
annðnþ 1Þrn−2 0

0 0 0 1
2
annðnþ 1Þrn−2

3
777775
: ð2:10Þ

Therefore, the energy-momentum tensor supporting the
metric function (2.9) is

T0
0 ¼

1

κ

XN
n¼−N

anð1þ nÞrn−2 ¼ ρ ð2:11Þ

Tr
r ¼ T0

0 ¼ −pr ð2:12Þ

Tθ
θ ¼

1

2κ

XN
n¼−N

annð1þ nÞrn−2 ¼ −pθ ð2:13Þ

Tϕ
ϕ ¼ Tθ

θ ¼ −pϕ: ð2:14Þ

As expected, the term n ¼ −1 (Schwarzschild metric)
corresponds to the vacuum solution (ρ ¼ p ¼ 0), while for
n ¼ 2, we have the cosmological constant term (constant
energy density pressure). The Rindler constant acceleration
term n ¼ 1 is generated by a perfect fluid with

ρ ¼ 2a1
κr

¼ −pr ¼ −2pθ ¼ −2pϕ: ð2:15Þ

For n ¼ 0 (constant term in the metric function), we have
the case of a global monopole (zero angular pressure
components and energy density approximately r−2

[64–68]). Thus, any power-law term of the spherically
symmetric metric function gðrÞ can be generated by a
corresponding power-law term of the energy-momentum
tensor of a perfect fluid provided that its radial pressure
equation-of-state parameter wr is −1 and there is equality
between the angular pressure components.
The question we address in the next section is the

following: can the spherically symmetric metric (2.1) also
emerge as a vacuum solution in a modified gravity theory?

In other words, given a spherically symmetric fluid and its
corresponding metric in the context of GR, what is the
spherically symmetric modified gravity theory that leads to
the same metric as its vacuum solution?

III. MODIFYING SPHERICALLY SYMMETRIC GR
THROUGH DIMENSIONAL REDUCTION

Consider the generalization of the spherically symmetric
metric (2.1) to a d-dimensional form,

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 −ΦðrÞ2dΩ; ð3:1Þ

where ΦðrÞ denotes the surface radius and dΩ is the solid
angle in d − 2 dimensions. The Einstein-Hilbert gravita-
tional action describing the dynamics of the metric (3.1) in
the context of GR is of the form

S ¼ 1

2κd

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffi
−gðdÞ

q
RðdÞ þ

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffi
−gðdÞ

q
LðdÞ
M ; ð3:2Þ

where RðdÞ is the Ricci scalar in d dimensions and LðdÞ
M is

the matter Lagrangian density assumed to describe a
spherically symmetric perfect fluid. It is straightforward
to show using the metric (3.1) that the d-dimensional Ricci
scalar can be expressed in terms of the corresponding two-
dimensional (t − r) scalar as [69]

RðdÞ ¼ Rð2Þ −
ðd − 2Þðd − 3Þ

Φ2
½1þ ð∂ΦÞ2�

−
2ðd − 2Þ

Φ
∇b∂bΦ; ð3:3Þ

while for the d-dimensional spherically symmetric metric
determinant, we have

RECONSTRUCTING A MODEL FOR GRAVITY AT LARGE … PHYS. REV. D 99, 124006 (2019)

124006-3



ffiffiffiffiffiffiffiffiffiffiffi
−gðdÞ

q
¼ Φd−2

ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q
: ð3:4Þ

Using Eqs. (3.3) and (3.4) in (3.2), we may integrate
trivially over the angular coordinates and dimensionally
reduce this action to a two-dimensional (t − r) scalar-tensor
action of the form

S ¼ Vd−2

2κd

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q
½Φd−2Rð2Þ þ ðd − 2Þðd − 3Þ

×Φd−4ð∂ΦÞ2 − ðd − 2Þðd − 3ÞΦd−4�

þ Vd−2

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q
Lð2Þ
M ; ð3:5Þ

where Vd−2 is the d − 2-dimensional angular volume,
which is equal to 4π for d ¼ 4. For d ¼ 4, the two-
dimensional action takes the form

S ¼ 1

4G

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q
½Φ2Rð2Þ þ 2ð∂ΦÞ2 − 2� þ Sð2ÞM :

ð3:6Þ

A modification of spherically symmetric GR can be
implemented at this stage by generalizing the effective
dimensionally reduced GR action (3.6) to a general scalar-
tensor action [70,71] of the form

S ¼ 1

4G

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q
½FðΦÞRð2Þ − ZðΦÞð∂ΦÞ2 − 2VðΦÞ�

þ Sð2ÞM ; ð3:7Þ

where FðΦÞ, ZðΦÞ, and VðΦÞ are arbitrary functions of the
field Φ.1

The origin of this generalized scalar-tensor action (3.7)
could either come from physics at the effective two-
dimensional (t − r) level or could emerge through dimen-
sional reduction of a spherically symmetric scalar-tensor
theory.
In particular, consider the d-dimensional scalar-tensor

action

S ¼ 1

2κd

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffi
−gðdÞ

q
½χðΦÞRðdÞ − ζðΦÞð∂ΦÞ2 −UðΦÞ�

þ SðdÞM ; ð3:8Þ

which for χðΦÞ ¼ 1, ζðΦÞ ¼ 0, and UðΦÞ ¼ 0 reduces to
the Einstein-Hilbert action (3.2). It is straightforward to

show that the action (3.8) can be dimensionally reduced
using spherical symmetry and the metric (3.1) of the
two-dimensional action

S ¼ Vd−2

2κd

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q
fχðΦÞΦd−2Rð2Þ

þ ½ðd − 2Þðd − 3ÞχðΦÞΦd−4 þ 2ðd − 2Þχ0ðΦÞΦd−3

− ζðΦÞΦd−2�ð∂ΦÞ2 − ðd − 2Þðd − 3ÞχðΦÞΦd−4

−Φd−2UðΦÞg þ Sð2ÞM ; ð3:9Þ

where the prime ( 0) denotes a derivative with respect to the
surface radius field Φ. Clearly, for d ¼ 4, the action (3.9)
reduces to (3.7) by setting

FðΦÞ ¼ χðΦÞΦ2 ð3:10Þ

ZðΦÞ ¼ −2χðΦÞ − 4χ0ðΦÞΦþ ζðΦÞΦ2 ð3:11Þ

VðΦÞ ¼ χðΦÞ þΦ2

2
UðΦÞ: ð3:12Þ

In what follows, we set d ¼ 4. Variation of the action (3.7)
with respect to Φ leads to the equation of motion (EOM)

F0ðΦÞRð2Þ þ Z0ðΦÞð∂ΦÞ2 þ 2ZðΦÞ∇b∂bΦ − 2V 0ðΦÞ

¼ −2G
δLð2Þ

M

δΦ
; ð3:13Þ

and variation with respect to gμν leads to the EOM

½∇μ∂ν − gμν∇a∂a�FðΦÞ þ ZðΦÞ
�
∂μΦ∂νΦ −

1

2
gμνð∂ΦÞ2

�

¼ gμνVðΦÞ − 2GTð2Þ
μν : ð3:14Þ

Using the two-dimensional metric

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2; ð3:15Þ

it is straightforward to show that the two-dimensional Ricci
scalar is of the form

Rð2Þ ¼ d2f
dr2

: ð3:16Þ

Using Lð2Þ
M ¼ T ¼ ρð2Þ − pð2Þ

r [73], Eq. (3.16), and the
ansatz Φ ¼ r in Eq. (3.13), we obtain the EOM

f00F0 − 2Zf0 − Z0f − 2V 0 ¼ −2Gðρ0ð2Þ − p0
r
ð2ÞÞ; ð3:17Þ

where ρð2Þ and pð2Þ
r are the two-dimensional density and

pressure, respectively, and the prime ( 0) denotes a deriva-
tive with respect to r.

1Note that for the dimensionally reduced metric ΦðrÞ can be
considered a scalar field (up to a dimensionful parameter) in
correspondence with, e.g., the radion field, which is an effective
scalar field in four dimensions, describing the dynamics of extra
dimensions in a cosmological setup [72] in the context of an
effective scalar-tensor theory in four dimensions.
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Also, for μ ¼ ν ¼ 0 in Eq. (3.14), we obtain (with the
same ansatz for Φ)

f0F0 þ 2fF00 þ Zf − 2V ¼ −4Gρð2Þ: ð3:18Þ

Similarly, for μ ¼ ν ¼ 1, Eq. (3.14) gives

f0F0 − Zf − 2V ¼ 4Gpð2Þ
r : ð3:19Þ

The system of equations (3.17)–(3.19) is overdetermined
since there is only one unknown function fðrÞ. Thus, for a
solution to exist, Eqs. (3.17)–(3.19) must be equivalent to
each other (up to a constant of integration). It may be shown
that this consistency requires that

Z ¼ −F00 ρð2Þ ¼ −pð2Þ
r : ð3:20Þ

Indeed using Eqs. (3.20), the system equations (3.17)–
(3.19) is equivalent to a single equation,

f0F0 þ fF00 − 2V ¼ −4Gρð2Þ ¼ 4Gpð2Þ
r : ð3:21Þ

The general equation (3.21) connects the metric func-
tion f with the geometric potential V emerging from
dimensional reduction and the nonminimal coupling F in
the presence of a static spherically symmetric perfect
fluid of which the equation-of-state parameter is −1.
Thus, any spherically symmetric metric of the form (2.1)
can emerge either due to an appropriate perfect fluid or as
a vacuum solution of dimensionally reduced modified
gravity with properly selected nonminimal coupling F
and/or potential V.
In what follows, we focus on modifications of GR due to

the geometric potential V and fix F to the GR form
F ¼ Φ2, implying Z ¼ −2 [from Eq. (3.20)]. Then
Eq. (3.21) becomes

rf0 þ f − V ¼ −2Gρð2Þ ¼ 2Gpð2Þ
r : ð3:22Þ

To quantify deviations from GR, we set

fðrÞ ¼ 1 − gðrÞ ð3:23Þ

VðΦÞ ¼ 1þ V1ðΦÞ; ð3:24Þ

and expressing the dimensionally reduced density ρð2Þ in
terms of its four-dimensional counterpart ρ as

ρð2ÞðrÞ ¼ 4πΦ2ρðrÞ ð3:25Þ

in Eq. (3.22), we obtain

ρtotðrÞ ¼ ρmðrÞ þ ρVðrÞ ¼
1

κr

�
gðrÞ
r

þ g0ðrÞ
�
; ð3:26Þ

where the geometric effective energy density is defined as

ρVðrÞ≡ −
V1ðΦÞ
κr2

: ð3:27Þ

Therefore, the generalization of the scalar-tensor potential
leads to an effective energy density of geometric origin,
which generates the same spherically symmetric metric as
a corresponding spherically symmetric perfect fluid with
equation-of-state parameter w ¼ −1 and energy density
ρmðrÞ ¼ ρVðrÞ. This derived equivalence between geo-
metric and matter-energy density allows the reconstruction
of the geometric potential by demanding that its gravita-
tional effects in the vacuum should be identical with the
gravitational effects of a given matter fluid in the context of
GR. This reconstruction from a realistic dark matter profile
will be the main focus of the next section.

IV. SPECIAL CASES: RECONSTRUCTION OF
GRAVITATIONAL ACTION

A. Vacuum GR and Grumiller’s gravity model

A special case of the geometric potential introduced in
the previous section has been considered by Grumiller
[54,55]. In particular, the following dimensionally reduced
action was investigated:

S¼ 1

4G

Z
d2x

ffiffiffiffiffiffiffiffiffiffi
−gð2Þ

q
½Φ2Rð2Þþ2ð∂ΦÞ2þ6ΛΦ2−8αΦ−2�:

ð4:1Þ

This is a special case of the general action (3.7) with the GR
coupling F ¼ Φ2, Z ¼ −2, and a geometric potential of the
form

VðΦÞ ¼ 1þ 4αΦ − 3ΛΦ2: ð4:2Þ

The ansatz Φ ¼ r and our general reconstruction equa-
tion (3.26) lead to the Schwarzschild-Rindler-de Sitter
metric function as a vacuum solution (ρm ¼ 0),

fðrÞ ¼ 1 − 2GM=rþ 2αr − Λr2; ð4:3Þ

in agreement with Grumiller’s metric [54].
The main advantages of the Grumiller potential (4.2)

include its simplicity and its generic nature as it involves
terms that dominate at large distances while, at the same
time, it does not lead to any curvature singularities at
infinity where the Ricci scalar (3.16) remains finite. On the
other hand, the metric function (4.3) has been used to
reconstruct the velocity profiles of galaxies without dark
matter with mixed results [57–59]. Even though it was
found that the constant acceleration Rindler term can
provide satisfactory fits to the observed velocity rotation
curves of some galaxies in regions where these curves are
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rising with distance, it became clear that for universal fits
more parameters are needed in the potential. Such para-
meters, however, should be introduced in a way that is most
efficient phenomenologically, i.e., inspired from observed
dark matter density profiles, while at the same time, they
preserve the advantages of the Grumiller potential (sim-
plicity and lack of large-scale singularities). Using these
principles in the next subsection,wegeneralize theGrumiller
geometric potential by demanding that the new potential
reproduces in the vacuum the gravitational effects of a
well-known dark matter density profile parametrization:
the Navarro-Frenk-White density profile [61,62].

B. Reconstruction of geometric potential

The NFW profile [61,62] can give good fits to a wide
range of observed rotation curves of galaxies in the context
of GR. It is of the form

ρNFWðrÞ ¼
ρo

r
Rs
ð1þ r

Rs
Þ2 ; ð4:4Þ

where the scale radius Rs and ρo are parameters which vary
from halo to halo.
The GR gravitational effects of this profile can be

reproduced in the vacuum of a modified gravity model
with a geometric potential reconstructed using Eq. (3.27) as

ρVðrÞ≡ −
V1ðΦÞ
κr2

¼ ρNFWðrÞ; ð4:5Þ

which leads to a potential of the form

VðΦÞ ¼ 1þ 4αΦ
ð1þ βΦÞ2 ð4:6Þ

with β ¼ 1
Rs

and α ¼ 2πGρoRs. This potential reduces to
the Rindler-Grumiller potential [54] for β ¼ 0. The new
parameter β introduces no large-scale curvature singular-
ities, while it is designed to maximize the efficiency of fits
to the observed rotation curves to the extent that such a fit is
obtained by the NFW density profile in the context of GR.
Also, the above potential reconstruction method can be
easily generalized for any other density profile.
Solving Eq. (3.26) in the vacuum (ρm ¼ 0) with the

geometric density ρV obtained from the reconstructed
potential (4.6), we obtain the term gðrÞ of the metric
function

gðrÞ ¼ C
r
−
4α½ 1

1þβr þ lnð1þ βrÞ�
β2r

; ð4:7Þ

where C is a constant of integration. Expansion of gðrÞ of
Eq. (4.7) as a power series demonstrates that this metric
function is a generalization of the Rindler-Grumiller metric
function (4.3) for Λ ¼ 0,

gðrÞ¼
C− 4α

β2

r
−2αrþ8

3
αβr2þOðrÞ3; ð4:8Þ

which, after a redefinition of the integration constant C,
clearly reduces to the Rindler-Grumiller metric function
for βr ≪ 1. Setting C ¼ 2GM þ 4α

β2
and using (3.23), the

metric function fðrÞ becomes

fðrÞ ¼ 1 −
2GM
r

− 4α
1 − 1

1þβr − lnð1þ βrÞ
β2r

; ð4:9Þ

which generalizes the Grumiller metric (4.3) with one
additional parameter (β) and is based on the geometric
potential reconstructed from the NFW density profile. In
the next subsection, we check the efficiency of this metric
in fitting two representative observed velocity rotation
curves. The quality of fit will also be compared with the
corresponding fit of the Rindler-Grumiller metric [54].

C. Fitting velocity rotation curves

It is straightforward to show that the radial timelike
geodesics in a background metric of the form (2.1) may be
written as

1

2

�
dr
dτ

�
2

þ Veff ¼ k2

2
; ð4:10Þ

where k is a constant,

Veff ¼ fðrÞ
2

�
1þ l2

r2

�
ð4:11Þ

is the effective potential, and l is the constant angular
momentum per unit mass.
In the special case of the vacuum Schwarzschild-Rindler-

de Sitter metric function (4.3), the effective potential reads

Veff ¼−
GM
r

þ l2

2r2
−
GMl2

r3
−
Λr2

2
þαr

�
1þ l2

r2

�
: ð4:12Þ

In what follows, we set Λ ¼ 0 since the effects of the
cosmological constant can be ignored on galactic scales.
For the metric function (4.9) emerging from the NFW
reconstructed potential (4.6), we have

Veff ¼ −
GM
r

þ l2

2r2
−
GMl2

r3

−
2α

β2r

�
1 −

1

1þ βr
− lnð1þ βrÞ

��
1þ l2

r2

�
;

ð4:13Þ
where we have dropped the constant terms on the rhs of
Eqs. (4.12) and (4.13). A plot of this effective potential for
various values of parameters is shown inFig. 1. The predicted
rotation velocities of test particles may be approximated as
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υ2ðrÞ ≃ r

���� ∂V
eff

∂r
����
l¼0

; ð4:14Þ

where we have set l ¼ 0 to avoid double-counting of the
angular momentum [59]. Thus, for the Schwarzschild-
Rindler metric in the dark matter halo, we have [54,74]2

υ2ðrÞ ¼ GM
r

þ αr; ð4:15Þ

where M is the luminous mass in the galactic core. For the
velocity profile corresponding to the NFW reconstructed
potential (4.13), we have

υ2ðrÞ¼GM
r

þ 2α

β2r

�
1þ βr−1

1þβr
−

βr
ð1þβrÞ2− lnð1þβrÞ

�
:

ð4:16Þ
The predicted rotation velocities (4.15) and (4.16) can

also be derived from the effective potentials (4.12) and
(4.13) assuming circular motion. In particular, setting

dVeff

dr
¼ 0 ð4:17Þ

(α ,β)=(0.001,0)

(α ,β)=(0.001,0.03)

(α,β)=(0,0)
(α,β)=(– 0.001,0.03)

(α ,β)=(– 0.001,0)
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FIG. 1. The effective potential (4.13) that determines the velocity rotation curves for parameter values l ¼ 10,M ¼ 2. The GR prediction
(continuous blue line) is obtained for α ¼ 0, while the upper and lower red short-dashed lines correspond to the Rindler metric (β ¼ 0) with
α > 0 and α < 0, respectively. The upper and lower pink long-dashed lines correspond to the metric of the reconstructed potential (β > 0)
for α > 0 and α < 0, respectively. In the latter cases, the GR prediction is obtained for large enough values of r.
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FIG. 2. The best-fit forms of the velocity profiles (4.15) (red dashed curve) and (4.16) (green continuous curve) on the observed halo
profiles (thick dots) of two typical galaxies (S:610359, left panel, and S:702916, right panel). The blue continuous curve shows the fit of
GR without dark matter, which is clearly poor.

2For further developments of this velocity profile, see
Refs. [75,76].
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solving (4.17) for the angular momentum l ¼ υr and
ignoring higher-order terms, we obtain the rotation veloc-
ities (4.15) and (4.16). For example, for the Grumiller
effective potential (4.12), we obtain

υ2ðrÞ ≃ GM
r

þ αrþ 2GMαþ 3G2M2

r2
− α2r2; ð4:18Þ

which reduces to (4.15) if we ignore higher-order terms in
M and α.
The rotation curve is the sum of the following three terms

expressed by

υ2ðrÞ ¼ υ2GðrÞ þ υ2SðrÞ þ υ2GMðrÞ; ð4:19Þ

where υ2GðrÞ, υ2SðrÞ, and υ2GMðrÞ are the different contri-
butions in velocity of gas, stars, and gravitational model
(Rindler-Grumiller or reconstructed potential), respec-
tively. The term υ2GMðrÞ gives rise to the velocity rotation
curves of galaxies without incorporating the dark matter
halo. We assume that the density (of gas and stars) drops to
zero at rmin. Thus, in our analysis, we use data in the range
rmin < r < rmax, and for a total massM, we obtain the best-
fit forms of the velocity profiles corresponding the Rindler-
Grumiller and reconstructed geometric potential.
In Fig. 2, we show the best-fit forms of the velocity

profiles (4.15) (red dashed curve) and (4.16) (green
continuous curve) on the observed halo profiles (thick
dots) of two typical galaxies (S:610359, left panel, and
S:702916, right panel). Velocity rotation data were
obtained from the S-sample of Ref. [77]. The S:610359
[78] (also known as UGC 10359) has a typical rising
velocity profile and is a SB(s)cdpec3 galaxy from Gassendi
Halpha Survey of Spirals [80]. The spiral galaxy S:702916
[78] (also known as UGS 2916) has a flat and slowly
dropping velocity profile and is a Sab4 galaxy from early-
type galaxy surveys [81].
Clearly, the velocity profile corresponding to the recon-

structed geometric potential provides a much better fit
to the data for both observed velocity profiles and

especially for the flat velocity profile. This is demonstrated
quantitatively by the adjusted R2 statistic [82–84], which
measures the quality of fit of a parametrization to a given
set of data, penalizing also for an increased number of
parameters. As shown in Table I, the value of the adjusted
R2 is much closer to its optimal value 1 in the case of the
velocity profile corresponding the reconstructed geometric
potential than the Grumiller-Rindler potential or the simple
Newtonian potential without dark matter. In Table I, we
also show the best-fit values of parameters for each fitted
velocity profile, which in the case of the Rindler potential
agrees with previous studies [55,59,85,86]. Notice that
the best-fit value of α for the reconstructed potential is
α < 0, which is consistent with Eq. (4.5) and the fact that
ρNFW > 0.

V. CONCLUSIONS

We have used dimensional reduction of spherically
symmetric gravity to construct a modified gravity model
of which the vacuum spherically symmetric metric has the
same gravitational effects as the NFW dark matter density
profile in GR. The model is a generalization of the
Grumiller model of which the vacuum spherically sym-
metric metric includes a Rindler term in addition to the
standard Schwarzschild and cosmological constant terms.
We have also shown that for any spherically symmetric
perfect fluid with proper equation of state (w ¼ −1) there is
a modified gravity model, defined by a geometric potential,
the spherically symmetric vacuum metric of which is the
same as the GR metric in the presence of the given fluid.
In particular, we have shown that in order to reproduce

the GR gravitational effects of the NFW density profile
in the vacuum, the reconstructed dimensionally reduced
geometric potential is of the form VðΦÞ ¼ 1þ 4αΦ=
ð1þ βΦÞ2 − 3ΛΦ2, where α and β are parameters and
ΦðrÞ is a field emerging from dimensional reduction. In the
limit β → 0, this geometric potential reduces to the
Grumiller potential (4.2) [54,55].
The reconstructed potential has the following interesting

features:
(i) It leads to a vacuum metric that provides signifi-

cantly better fits to the velocity rotation profiles than
the Grumiller linear potential term that leads to the
Rindler term in the vacuum metric.

(ii) It leads to a vacuum metric that reduces to the GR
vacuum on scales much larger than the β−1 or the

TABLE I. The best-fit values of parameters and the corresponding value of the adjusted R2 of the velocity profiles (4.15) and (4.16) on
the observed halo profiles of two typical galaxies S:610359 and S:702916 (rotation curve data obtained from Ref. [77]).

Grumiller-Rindler potential Reconstructed potential

Galaxy α (×10−11 m
s2) M (×1010 M⊙) R2 α (×10−9 m

s2) β (×10−20m−1) M (×1010 M⊙) R2

S∶610359 7.90� 0.36 0.01� 0.02 0.959 −4.10� 0.16 3.17� 0.13 0.32� 0.02 0.983
S∶702916 4.64� 0.55 4.11� 0.47 0.923 −4.78� 0.38 1.79� 0.12 3.72� 0.27 0.998

3A late-type barred peculiar spiral galaxy. It has well-
developed, open, and knotty spiral arms with little or no bulge
and without rings structures (see Ref. [79] for morphology
types of galaxies).

4An intermediate-type unbarred spiral galaxy with tightly
wrapped spiral arms and a significant bulge (see Ref. [79]).
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galactic scales. Thus, on cosmological scales, it is
consistent with ΛCDM. In contrast, the Grumiller-
Rindler term is comparable to the cosmological
constant on cosmological scales, thus spoiling
homogeneity and diverging from the standard
ΛCDM cosmic accelerating expansion.

(iii) Because of its nonpolynomial form, it involves no
IR curvature singularities while being distinct from
the Grumiller potential, thus demonstrating that
this potential is not the only potential free from
IR singularities.

The cosmological effects of the model considered could
be examined under the assumption of the existence of a
large number of homogeneously distributed isotropic
centers leading to large-scale homogeneity in addition to
isotropy around a single center (spherical symmetry). In
such a physical setup, the geometric fluid density ρV
defined in Eq. (4.5) could be extended on cosmological
scales as a homogeneous and isotropic fluid by replacing r
with the scale factor a over the Hubble parameterH0. Thus,
on dimensional grounds, the corresponding homogeneous
geometric fluid would have an energy density scaling as

ρVðaÞ ¼ −
4αH0

κað1þ βa=H0Þ2
; ð5:1Þ

where the Hubble parameter H0 has been introduced on
dimensional grounds. The derivation of Eq. (5.1) has been
heuristic and based mainly on dimensional analysis. A
proper derivation would involve the detailed superposition
of homogeneously distributed centers of isotropy and is
beyond the goals of the present analysis. Nevertheless, the
following comments on this predicted geometric homo-
geneous dark matter can be made:

(i) For β ¼ 0, the geometric fluid energy density
reduces to the Rindler fluid of which the energy
density scales like 1=r or 1=a in a cosmological
setup. This scaling is distinct from the matter density
(approximately 1=a3), the effects of spatial curvature
(approximately 1=a2), and the cosmological con-
stant (constant effective density). Such a physically
motivated and simple term can be efficiently con-
strained using cosmological data probing the evo-
lution of the Hubble parameter HðaÞ even though a
homogeneous component of ordinary dark matter
would be required for a proper fit in addition to the
cosmological constant.

(ii) For β ≫ H0, which is expected for a value of β
reconstructed from galactic rotation curves, the
geometric fluid density (5.1) scales as 1=a3, i.e.,
as ordinary homogeneous dark matter. Thus, such a
geometric fluid would not only provide better fits of
galactic rotation curves but could also provide the
homogeneous dark matter on cosmological scales.
Such a geometric dark matter would have a pre-
dicted scaling signature of the form (5.1), leading to
constraints on β from both galactic rotation curve
data and cosmological data probing the cosmic
expansion rate. The consistency of these constraints
could provide an efficient test for this class of
models.

Other interesting extensions of our analysis include the
following:

(i) The reconstruction of the geometric potential
obtained from other special cases of spherically
symmetric vacua. Such metrics could have oscillat-
ing components, leading to oscillating terms in
Newton’s law at submillimeter scales, which appear
to be mildly favored by some short-range gravity
experiment data [23,24].

(ii) The use of solar system data, short-range gravity
experiments data, or other velocity profile data to
impose constraints on the parameters α and β of the
reconstructed potential (4.6).

(iii) The generalization of the dimensionally reduced
modified gravity model (3.7) in different directions
including a more general form of the nonminimal
coupling [beyond FðΦÞ ¼ Φ2], the consideration of
fðRð2ÞÞ extensions of the dimensionally reduced
model, or the generalization of the ansatz Φ ¼ r
used for the derivation of the spherically symmetric
vacuum metric.

In conclusion, dimensional reduction in the context of
spherical symmetry offers an interesting point of view for
the modification of GR and can lead to a wide range of
testable physically motivated models for gravity. The
Mathematica files used for the numerical analysis and
for construction of the figures can be found in
Supplemental Material [87].
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