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Pulsar-timing has become a celebrated tool for probing modifications to general relativity in the strong-
field surroundings of neutron stars. Here we investigate whether scalar-tensor theories that incorporate a
nonminimally coupled scalar degree of freedom may pass pulsar-timing tests, by computing the scalar
charges entering such observables. In particular we show that for positive values of the nonminimal
coupling ξ, pulsar-timing constraints may be evaded even in the presence of spontaneous scalarization.
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I. INTRODUCTION

Perhaps the simplest way in which general relativity
(GR) can be modified is through the coupling to a new
scalar degree of freedomΦ, as accomplished by the general
scalar-tensor action

Sg ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½FðΦÞR − ZðΦÞ∇μΦ∇μΦ − VðΦÞ�:

ð1Þ

This class of theories naturally implements Dirac’s idea of
varying fundamental “constants” [1,2], as Geff ≡G=FðΦÞ
can be interpreted as a time- and space-dependent effective
gravitational coupling. A well-motivated form for FðΦÞ is
the standard nonminimal coupling (SNMC),

FðΦÞ ¼ 1 − 8πξΦ2; ð2Þ

where ξ ∈ R. Its motivation ranges from fundamental
considerations—such as those arising from the quantization
of the classical theory in a curved spacetime [3]—to its
usefulness in cosmological model-building, specially in
inflationary scenarios [4,5].
In the class of scalar-tensor theories (STTs) defined

by Eq. (1), post-Newtonian (PN) deviations from GR are
proportional to ðdF=dΦÞjΦ0

, where Φ0 is the scalar field
value at the current cosmological epoch [6]. For the SNMC,
ðdF=dΦÞjΦ0

∝ Φ0, and so the observed agreement [7]
between solar system observations and GR’s predictions
implies thatΦ0 must be close to zero—but does not limit the
viable range of ξ. Interestingly, however, even if Φ0 ¼ 0,
STTs may still differ considerably from GR in their
predictions for neutron stars (NS), due to a nonperturbative,

strong-field effect known as spontaneous scalarization [8].
This effect, which has long been known to happen for
sufficiently negative values of the nonminimal coupling ξ,
is characterized by the formation of a scalar cloud that
modifies the star’s equilibrium and perturbative properties
[9–13], and has dramatic implications, most notably for
pulsar-timing observables [14–16]. Indeed, the inconsis-
tency between pulsar-timing data and certain aspects of NS
phenomenology in STTs, such as the existence of scalar
dipole radiation, of scalar-field induced variations in the NS
moment of inertia, and so on, can be used to rule out almost
the entire range ξ≲ −2.2 of field couplings allowing for
spontaneous scalarization (in the case where VðΦÞ ¼ 0,
which we will refer to as “massless” for simplicity).
More recently, it has been shown that positive values of

the nonminimal coupling ξ can give rise to a similar
spontaneous scalarization effect around sufficiently com-
pact neutron stars, i.e., stars with GM=ðRc2Þ≳ 0.26, where
G is Newton’s constant, c is the speed of light, andM and R
denote the NS mass and radius [17–19]. Massless STTs
with ξ > 0 (which include the conformal coupling ξ ¼ 1=6
as a particular case) are known to provide consistent
cosmological scenarios [20–23], but remain largely uncon-
strained by astrophysical observations.
The purpose of the present work is to explore how the

main post-Keplerian pulsar-timing observables—the
Einstein time delay γ, the rate of periastron advance _ω,
and the rate of decay of the orbital period _Pb—are modified
around scalarized NSs in STTs, and investigate whether
pulsar-timing data cou7ld also be used to constrain mass-
less STTs with ξ > 0. Interestingly, we find some crucial
differences between the nature of spontaneous scalarization
in the ξ < 0 and ξ > 0 cases, which reduces the effective-
ness of pulsar timing observations in placing new con-
straints, even in the presence of spontaneous scalarization.
In particular, the main scalar charge, αA, entering these
observables is typically suppressed in the ξ > 0 case, and
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becomes progressively smaller as ξ increases. As a con-
sequence, even though the presence of dipolar scalar
radiation in STTs gives a contribution to _Pb which is
enhanced by a factor of ðc=vÞ2 (where v is the relative
orbital velocity) with respect to GR, this term is suppressed
by the smallness of the scalar charge, and _Pb becomes
dominated by the usual quadrupolar contribution. By
exploring the dependence of αA on the local scalar field
environment, we also argue that the feedback mechanism
responsible for the effect of dynamical scalarization found
in some STTs [24–28] will likely be absent when ξ > 0.
This work is organized as follows. In Sec. II we discuss

in more detail the framework we consider, including our
choices of NS equations of state. In Sec. III we discuss how
the pulsar-timing observables fγ; _ω; _Pbg are modified in
STTs and briefly review how to compute the scalar charges
fαA; βA; kAg that enter such observables. Our main results
are presented in Sec. IV and final considerations are made
in Sec. V. A toy model presented in the Appendix A aims to
elucidate in a simpler setting some of the features described
in Sec. IV. We adopt natural units in which c ¼ G ¼ 1
unless specified.

II. FRAMEWORK

A. Field equations

Neutron stars can be studied in STTs by adding the
contribution from the stellar fluid to the gravitational
action (1):

S ¼ Sg þ Sm½Ξm; gμν�: ð3Þ

We assume that the energy-momentum tensor of the matter
fields Ξm, Tμν ≡ ð2= ffiffiffiffiffiffi−gp ÞδSm=δgμν, has the form of a
perfect fluid:

Tμν ¼ ðϵþ pÞuμuν þ pgμν; ð4Þ

where p and ϵ denote the pressure and energy density in
the fluid’s rest frame and uμ is the four-velocity of fluid
elements.
For definiteness, in this work we will focus on massless

scalar fields with no self-coupling, setting VðΦÞ ¼ 0 in
Eq. (1). A mass term, for instance, would have the effect of
delaying the onset of spontaneous scalarization to larger
values of jξj [29], while other choices of VðΦÞ could lead to
a different phenomenology, including screening mecha-
nisms [30] (see also Refs. [31,32] in the context of pulsar-
timing). An additional simplification to Eq. (1) results from
exploiting its invariance under a scalar field redefinition,
Φ → φðΦÞ, to set ZðΦÞ to a constant. Then, the only free
parameter is the nonminimal coupling constant ξ, once
FðΦÞ is chosen as in Eq. (2).
For numerical calculations, it is often convenient to

define the conformally rescaled (Einstein-frame) metric

g�μν ≡ FðΦÞgμν ð5Þ

and redefine the scalar field, Φ → φðΦÞ, so that

�
dφ
dΦ

�
2

¼ 3

4FðΦÞ2
�
dFðΦÞ
dΦ

�
2

þ ZðΦÞ
2FðΦÞ : ð6Þ

These transformations turn Eq. (3) into

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffiffiffi
−g�

p
ðR� − 2gμν� ∂μφ∂νφÞ

þ Sm½Ξm; g�μν=FðΦðφÞÞ�; ð7Þ

and therefore re-express the coupling between scalar field
and geometry as a coupling to matter. The field equations in
the Einstein frame take a simpler form,

G�
μν − 2∂μφ∂νφþ g�μνg

σρ
� ∂σφ∂ρφ ¼ 8πTμνFðφÞ−1; ð8Þ

∇μ
�∇�

μφ ¼ −4πFðφÞ−2αðφÞT; ð9Þ

where T ≡ gμνTμν ¼ 3p − ϵ is the trace of the energy-
momentum tensor (4),

αðφÞ≡ −
1

2

d lnFðΦðφÞÞ
dφ

; ð10Þ

and all quantities marked with an asterisk are computed
from the metric (5). We emphasize that although we restore
to practical computations in the Einstein frame, our results
can be easily translated to the Jordan frame and our
physical conclusions are frame-independent.
For FðΦÞ given by Eq. (2), and adopting a canonical

normalization, ZðΦÞ ¼ 8π, the field redefinition (6) gives

dφ
dΦ

¼ 2
ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8πξð1 − 6ξÞΦ2

p
1 − 8πξΦ2

; ð11Þ

from which we can see that for ξ > 0 the finite domain
Φ ∈ ð−Φcr;ΦcrÞ, with Φcr ≡ 1=

ffiffiffiffiffiffiffiffi
8πξ

p
, is mapped into

φ ∈ ð−∞;∞Þ. No such restriction arises for ξ < 0. If
one interprets Geff ¼ G=FðΦÞ as an effective gravitational
coupling, gravity becomes weaker in the presence of the
scalar field when ξ < 0, and stronger if ξ > 0, becoming
infinitely attractive as Φ → �Φcr.
Although Eq. (11) can be integrated in terms of elemen-

tary functions, the inverse transformation ΦðφÞ must be
obtained numerically. Therefore, we will find it useful in
this work to consider not only FðΦÞ as given by Eq. (2) but
also the following hyperbolic coupling (HC) model,
already expressed in terms of the Einstein-frame field:

FðφÞ ¼ ½cosh ð2
ffiffiffi
3

p
ξφÞ�−1=ð3ξÞ; ð12Þ

so that
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αðφÞ ¼ 1ffiffiffi
3

p tanh ð2
ffiffiffi
3

p
ξφÞ: ð13Þ

This coupling function was suggested in Ref. [18] (with
β ¼ 2ξ) as a useful analytical approximation to a standard
nonminimally coupled scalar field (see Fig. 1), and has
been considered in Refs. [33,34] in the context of pulsar-
timing observations. Note that the SNMC and HC agree up
to a cubic term in an expansion around φ ¼ 0: In both
cases FðφÞ ¼ 1 − 2ξφ2 þOðφ4Þ.
As mentioned in the introduction, solar system obser-

vations constrain the scalar field value at the current
cosmological epoch, which we denote as Φ0 (with φ0 ≡
φðΦ0Þ in the Einstein frame), to be very small. For instance,
the parametrized post-Newtonian parameter γPPN [7],
which takes the form

1 − γPPN ¼ ðdF=dΦÞ2
ZF þ 2ðdF=dΦÞ2 ð14Þ

for the theories described by Eq. (1), is subject to the
Cassini bound j1 − γPPNj≲ 2.1 × 10−5 [35]. The bound
translates into jΦ0j≲ 4.6 × 10−4=jξj, which becomes more
stringent as jξj increases. In what follows we will typically
fix the asymptotic, cosmological value of the scalar field to
be Φ0 ¼ 0 (or φ0 ¼ 0), but will also discuss some features
of the Φ0 ≠ 0 case.

B. Equation of state

In this work we will adopt three theoretical equations of
state (EoS) for nuclear matter, the SLy [36], ENG [37], and
MPA1 [38] models. In GR, the sequence of equilibrium
configurations generated by these EoS is causal (in the
sense that the speed of sound does not exceed the speed
of light inside any stable star) and has a large enough

maximum mass to accommodate the observation of a
∼2M⊙ NS [39]. Additionally, these EoS allow for stable
NSs that are compact enough to trigger a spontaneous
scalarization effect for both positive and negative values of
the coupling constant ξ (see Sec. II C below).
Instead of implementing these EoS through the inter-

polation of tabulated points, we shall approximate them by
piecewise polytropes, adopting the parametrization devel-
oped in Ref. [40]. This parametrization was shown to
accurately reproduce the main NS properties predicted
by theoretical EoS [40], as well as NS scalar charges in
STTs [33].

C. Spontaneous scalarization windows

One of the most interesting phenomenological aspects of
STTs in astrophysical scenarios is the spontaneous scala-
rization effect [8]. In this section we briefly review the basic
ideas behind this effect, and present the regions in param-
eter space where it takes place for the EoS employed in
this work.
A careful inspection of the field equations (8) and (9)

readily shows that a trivial scalar field profile, φ ¼ 0,
together with general-relativistic metric and matter con-
figurations, form a solution of the field equations. However,
for some relativistic stars, this trivial, GR-like solution may
not be stable under scalar field perturbations [41]. This can
be seen by expanding Eqs. (8) and (9) around φ ¼ 0. To
linear order in the perturbed quantities, the metric and fluid
variables are not modified, while for the scalar field
perturbation one obtains

□
ð0Þδφ ¼ −8πξTð0Þδφ; ð15Þ

where the index (0) labels background quantities. In the
right-hand side of Eq. (15), the combination m2

eff ≡
−8πξTð0Þ can be loosely interpreted as an effective mass
squared, and the fact that this can be negative signals the
possible appearance of (tachyonic-like) instabilities (see
Refs. [42–44] for a quantum analogue). The nonlinear
development of this instability is the scalarization phe-
nomenon: the spontaneous development of a cloud of
scalar field around the star [18,45,46].
Since the trace of the energy-momentum tensor,

T ¼ 3p − ϵ, is typically negative (as energy density domi-
nates over pressure), the scalarization effect would occur
for ξ < 0 (so that m2

eff < 0). Here, however, we will be
mostly interested in studying pulsar-timing observables in
the presence of positive values of the nonminimal coupling,
since these are still unconstrained by astrophysical obser-
vations. In this case, in order to display the nontrivial
phenomenology related to spontaneous scalarization,
NSs must be sufficiently massive and compact that the
trace of the energy-momentum tensor becomes positive in a
region of their interior (so that m2

eff < 0 in a sufficiently
large region inside the star). In Ref. [19] the minimum

SNMC
HC

FIG. 1. Effective coupling αðφÞ in terms of the Einstein-frame
scalar field for the SNMC (solid blue) and the HC model of
Eq. (13) (dashed orange), both for ξ ¼ 25. The HC model
qualitatively reproduces the overall features of the SNMC, with
the quantitative agreement improving as jξj increases.
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compactness required for this property to hold was esti-
mated to be C≡M=R ¼ 0.262þ0.011

−0.017 (90% confidence
interval), with the error bars accounting for our ignorance
on the nuclear EoS. All the EoS considered in this work
allow for stars more compact than this threshold value.
In Fig. 2 we show the regions of coupling parameters

(ξ > 0) and NS masses for which spontaneous scalarization
takes place, for the three EoS considered in this work. To
find these regions, we first solve the Tolman-Oppenheimer-
Volkoff equations to construct a sequence of equilibrium
configurations in GR and then determine whether unstable
modes (δφ ∝ eΩt, Ω > 0) of Eq. (15) can be found in that
background. The lines delimiting the onset of instability
coincide with the onset of spontaneous scalarization (as
long as φ0 ¼ 0) [17,47]. Notice that, although the realistic
EoS considered in this work do not allow configurations
that are compact enough to trigger this effect for the
conformal coupling ξ ¼ 1=6, more exotic structures could
do so (see Fig. 3 of Ref. [48] for the case of a thin shell).

III. PULSAR-TIMING OBSERVABLES

Since the discovery of the first binary pulsar by Hulse
and Taylor [49], pulsar timing has become a major tool for
testing GR (see [16,50] and references therein). The
essence of pulsar timing lies in connecting the observed
arrival time of the radio pulses to the proper time of
emission. The resulting timing formula is obtained from a
succession of steps, as follows [51–53]. First, by relating
proper time in the pulsar’s rest frame to a coordinate system
attached to the binary center of mass (CM), one ends up
with contributions coming from the pulsar motion around
the CM (the transverse Doppler shift), as well as from a
varying gravitational redshift that depends on the relative
distance between the pulsar and its companion. These

effects are combined in the “Einstein time delay,” usually
expressed in terms of the measurable parameter γ. The next
step consists in relating the coordinate time of emission to
the coordinate time of arrival of a given pulse, by
integrating along the null geodesics covered by the radi-
ation. This picks up effects coming from dispersion in the
interstellar medium, a geometrical contribution known as
Roemer time delay, as well as from the Shapiro time delay
due to the companion’s gravitational well. Additional
corrections are also accounted for, ranging from aberration
effects due to the pulsar’s rotation to corrections due to the
motion of the Earth.
At any instant, the orbit of each member of the binary

system is tangent to a Keplerian ellipse (“osculating” orbit),
characterized by six orbital parameters—say, the semilatus
rectum p, eccentricity e, longitude of pericenter ω, time of
pericenter passage T0, inclination i, and angle of nodes Ω.
In order to account for deviations from Newtonian dynam-
ics, these parameters are allowed to undergo secular
variations: x → xþ _xt. In particular, the rate of periastron
advance _ω and the rate of decay of the binary period _Pb
(derivable from the parameters above) are typically
measurable.
In this work we will focus on the three classical pulsar-

timing observables _ω, γ, and _Pb, although many other post-
Keplerian (PK) parameters can in principle be inferred from
pulsar-timing observations [54]. A given theory of gravity
will predict the value of these observables as a function of
the Keplerian parameters and the masses of the binary
components. If the masses (mp and mc) are unknown, as
often is the case, one can use the measurement of two of
these PK parameters to infer mp and mc, and perform a test
of the gravitational theory with the third. This is typically
portrayed by drawing, for each PK parameter, a level
surface in the mp-mc diagram corresponding to the mea-
sured value of that parameter. The theory is consistent with
observations if the resulting curves all intersect at the same
point, the binary component masses [16].
In STTs, as in GR, the theoretical prediction for pulsar-

timing observables is based on the PN description of the
orbital motion. Explicitly, one has [6,15]:

_ω ¼ 3nb
1 − e2

v2b
c2

�
1 − αpαc=3

1þ αpαc
−
mpβcα

2
p þmcβpα

2
c

6Mð1þ αpαcÞ2
�
; ð16Þ

γ¼ e
nb

mc

Mð1þαcαpÞ
v2b
c2

�
1þαckpþð1þαpαcÞ

mc

M

�
; ð17Þ

_Pb ¼ _Pmonopole
φ þ _Pdipole

φ þ _Pquadrupole
φ þ _Pquadrupole

g� ; ð18Þ

where nb ≡ 2π=Pb, M ≡mp þmc, and vb ≡ ðGMnbÞ1=3,
with G≡Gð1þ αpαcÞ. The quantities αA, βA, and kA, with
the label A ∈ fp; cg denoting the pulsar or its companion,
are functions of the (Einstein-frame) stellar mass mA, and

FIG. 2. Regions of the coupling parameter ξ > 0 and NS
masses where spontaneous scalarization can take place, for the
three EoS considered in this work. Each region is cut at the
maximum mass of a NS allowed, in GR, by that EoS. We
highlight the values ξ ¼ 25, ξ ¼ 50 and ξ ¼ 100 that will be
considered subsequently.
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will be defined in Sec. III A below. Equation (18) includes
contributions related to monopole, dipole, and quadrupole
scalar radiation, as well as the quadrupolar contribution
from tensor waves familiar from GR. All terms are propor-
tional to ðvb=cÞ5, and therefore of 2.5PN order, except from
_Pdipole
φ , that contributes already at 1.5PN. Since this is the

dominant contribution to the energy loss and will be
important for our discussion, we write this term explicitly:

_Pdipole
φ ¼ −

2πmpmc

M2ð1þ αpαcÞ
v3b
c3

1þ e2=2

ð1 − e2Þ5=2 ðαp − αcÞ2: ð19Þ

For comparison,

_Pquad
g� ¼ −

192πmpmc

5M2ð1þ αpαcÞ
ðvb=cÞ5

ð1− e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
:

ð20Þ

The expressions for the other terms can be found, e.g., in
Refs. [6,55].

A. Scalar charges

Crucially, in the pulsar timing observables (16)–(18) we
find the appearance of the “gravitational form factors” (in
the terminology of Ref. [15]) or “scalar charges” (in the
terminology of Ref. [33]) αA ¼ αAðmAÞ, βA ¼ βAðmAÞ, and
kA ¼ kAðmAÞ (with A ∈ fp; cg). In this section we briefly
review their definition, the rationale behind their appear-
ance in pulsar-timing observables, and how to compute
them in practice.
It is well known that, in GR, a body’s orbital dynamics is

governed by integral quantities such as its mass and spin,
with corrections due to shape and internal structure appear-
ing only at high PN orders. For this reason, complex bodies
can often be well approximated by point masses (insofar as
their orbital motion is concerned). In STTs, the value of the
scalar field around the star determines the strength of the
effective gravitational coupling, and therefore influences its
global properties. This feature can be effectively incorpo-
rated into a PN description based on point masses by
allowing the mass of each body to be field dependent:
For an N-body system, the action is taken to be [56]

Sm ¼ −
XN
A¼1

Z
mAðφAÞdτ�A: ð21Þ

It is worthwhile to emphasize the dual role played by the
function mAðφAÞ above. If one assumes that the interbody
distance D between the binary components is much larger
than their typical size R, and allow the ratio R=D to shrink
to zero, then mAðφAÞ expresses the stellar mass in terms of
the scalar field value at the star’s location. This is the
“outer,” PN perspective. However, the function mAðφAÞ is

not determined self-consistently within the PN scheme, but
is assumed to be known from the matching to the “inner”
problem, where the stellar structure is determined. From
this “inner” perspective, the point particle limit corresponds
to the matching sphere becoming infinitely large, and from
this point of view the functionmAðφAÞ denotes the mass the
star has when the asymptotic value of the scalar field is φA.
Once the field is expanded around its (cosmological)

asymptotic value in the PN approximation, the effect of a
field-dependent mass is encoded in the asymptotic value of
its derivatives. In particular, one defines:

αA ≡ d logmA

dφA

����
φ0

; ð22Þ

βA ≡ dαA
dφA

����
φ0

; ð23Þ

and so on. The scalar charges above (closely related to the
“sensitivities” used in the Jordan-frame description [55])
are the ones appearing at the Newtonian and post-
Newtonian levels, relevant for the derivation of the pulsar
timing observables (16)–(18).
The additional scalar charge kA entering the Einstein

time delay (17) is defined as

kA ≡ −
∂ log IA
∂φA

����
φ0

; ð24Þ

where IA is the moment of inertia of star A. It appears in the
computation of the parameter γ when relating the intrinsic
time of the pulsar clock to the proper time in a local inertial
frame around the pulsar, due to the fact that, in STTs, the
moment of inertia of the star depends on the local scalar
field environment—which may fluctuate in a binary sys-
tem, causing the angular velocity to fluctuate as well [15].
In order to explain how the scalar charges αA, βA, and kA

are computed, we now revert attention to the inner problem
of an isolated, slowly rotating star, which is a suitable
approximation for most of the observed pulsars. We
therefore consider the spacetime of a slowly rotating body,
with metric [57]

ds2� ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dθ2 þ r2sin2θdϕ2

− 2ϖðrÞr2sin2θdtdϕ; ð25Þ

where ϖðrÞ accounts for frame-dragging effects and is the
onlyOðΩÞ correction to the static case, withΩ denoting the
star’s angular velocity (see Refs. [58,59] for generaliza-
tions). The differential equations governing the metric
functions νðrÞ, λðrÞ, ϖðrÞ, scalar field φðrÞ, and fluid
variable pðrÞ can be found, e.g., in Refs. [15,60], and are
reproduced in the Appendix B for the sake of completeness.
By imposing regularity conditions at r ¼ 0, asymptotic
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flatness at spatial infinity, as well as the condition

φðrÞ →
r→∞

φA, one can integrate these equations to obtain
a one-parameter family of solutions (labeled, say, by the
central value of the pressure). The scalar charges in
Eqs. (22)–(24) measure the change of the stellar properties
as φA changes, while keeping fixed the baryon mass inside
the star (m̄A ¼ R

ρ
ffiffiffiffiffiffi−gp

u0d3x, where ρ is the rest-mass
density).
Global properties of the NS can be extracted from

the asymptotic behavior of the metric functions. The
total mass mA is obtained from the 1=r behavior of

eνðrÞ →
r→∞

1 − 2mA=rþOð1=r2Þ. The total angular momen-
tum JA is obtained from the 1=r3 behavior of

ϖðrÞ →
r→∞

2JA=r3 þOð1=r4Þ, and enables the computation
of the star’s moment of inertia: IA ¼ JA=Ω. Finally, from
the leading 1=r contribution to the scalar field at spatial

infinity, φ →
r→∞

φA þ ωA=rþOð1=r2Þ, one can directly
obtain the scalar charge αA through αA ¼ −ωA=mA. That
the quantity computed in this way is equivalent to the
definition in Eq. (22) is shown in the Appendix A
of Ref. [6].
Contrary to the computation of αA, which can be done

straightforwardly, computing βA and kA is more involved,
and here we proceed as follows. First, we construct three

sequences of equilibrium solutions, for φð0Þ
A ¼ φ0, φ

ðþÞ
A ¼

φ0 þ Δφ and φð−Þ
A ¼ φ0 − Δφ, storing, for each value of

the central pressure, the total mass mA, baryonic mass m̄A,
and moment of inertia IA of the resulting solution. This data

is then used to define, by interpolation, functionsmðiÞ
A ðm̄AÞ,

αðiÞA ðm̄AÞ, and IðiÞA ðm̄AÞ, with i ∈ f0;þ;−g, from which we
can compute the scalar charges by a finite difference
approximation to the derivative operators in Eqs. (23)
and (24). For our purposes, we find it enough to use a
central stencil for the derivative operator, setting, for
instance,

kAðm̄AÞ ≈
1

Ið0ÞA ðm̄AÞ
IðþÞðm̄AÞ − Ið−Þðm̄AÞ

2Δφ
: ð26Þ

More details on the numerical procedure and the accom-
panying errors can be found in the Appendix B. Note also
that a bank of scalar charges, as well as a thorough account
of the procedure to compute them, was recently provided
in Ref. [33]. The authors did not, however, explore the
possibility of spontaneous scalarization for ξ > 0, which is
our main focus here.

IV. RESULTS

A. Scalar charges

In order to establish a point of comparison between the
cases where ξ is negative and positive, in Fig. 3 we show
the behaviour of the total mass mA, moment of inertia IA,

and scalar charge αA for a sequence of equilibrium
solutions with ξ ¼ −3 and −5 and ξ ¼ 25, 50, and 100.
The asymptotic value of the scalar field is taken to be
φ0 ¼ 0. As anticipated in Sec. II C (see Fig. 2), scalarized
solutions for ξ > 0 only exist for the most massive and
compact stars, while scalarization happens for ξ < 0 in a
much wider range of masses. From the first row of Fig. 3,
we see that as jξj increases the maximummass of scalarized
solutions increases when ξ < 0 and decreases when ξ > 0.
This is consistent with the interpretation ofGeff ¼ G=FðΦÞ
as an effective gravitational coupling. As ξ > 0 increases,
so does Geff : gravity becomes stronger in the presence of
the scalar field and less massive scalarized stars can be
supported without undergoing gravitational collapse. The
opposite happens for ξ < 0. For a given mass, the second
row of Fig. 3 shows that the moment of inertia is larger
(smaller) than in GR when ξ < 0 (>0). This can also be
understood as the effect of gravity becoming weaker
(stronger) in each of these cases, and the stellar size
becoming typically larger (smaller) than in GR when a
nontrivial scalar field profile is present.
Since the field equations (8) and (9) are invariant under

the transformation φ → −φ for the coupling functions we
consider, one always finds two twin scalarized solutions
related by the aforementioned transformation, and with
opposite scalar charges αA. This is true as long as φ0 ¼ 0,
as in Fig. 3, otherwise the boundary condition breaks the
reflection symmetry of the solution. In the third row of
Fig. 3 we show the scalar charge αA for solutions with a
positive scalar field profile.
Two notable differences are found in the ξ > 0 case (right

panel), compared towhen ξ < 0 (left panel), namely that the
magnitude of αA (i) is now much smaller and (ii) typically
decreases as jξj increases. Both have to do with the fact that
the scalar field tends to be amplified in the stellar region
where ξT > 0 and suppressed in the region where ξT < 0.
For any realistic EoS, the trace of the energymomentum can
be positive only in a small region in the stellar interior;
therefore, a scalar field with ξ > 0 is amplified in this inner
region, but is necessarily suppressed in the outer layers of
the star. As a consequence, although the central value of
the scalar field may increase with increasing ξ, the scalar
charge, measured asymptotically, ends up being smaller.
In the Appendix A we present a simple, analytically
solvable, toy model that illustrates these points.
Figure 4 shows the scalar charges αA, βA, and kA for

ξ ¼ 25, 50, and 100, for both the SNMC and the HC
models, and for three nuclear EoS describing the NS fluid.
From the first row we see that the properties of αA described
in the preceding paragraph are not altered by the nuclear
EoS. Indeed, the magnitude of all scalar charges is only
mildly influenced by the EoS, the main effect of which is to
change the range of masses where scalarization takes place.
The second row of Fig. 4 shows the scalar charge βA ¼

ðdαA=dφAÞφ0
as a function of the stellar mass. This is a
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positive, order-of-unity quantity, which increases with
increasing ξ. The fact that βA is positive (and αA negative)
means that αA receives a positive increment when the
asymptotic value of the scalar field φA increases, and
therefore typically diminishes in absolute value (as long as
φA is close to 0). This is opposite to what happens when
ξ < 0, in which case βA < 0 and αA increases in absolute
value with increasing φA. This is shown more explicitly in
Fig. 5, where the scalar charge αA is represented for φA ¼
10−4 and 10−3, for ξ ¼ 50 and ξ ¼ −3.
Interestingly, the features described above can have

implications for scalarization in dynamical situations.
“Dynamical scalarization” was first observed in binary
NS simulations in STTs [24], wherein NSs that were not
compact enough to scalarize in isolation suddenly developed
a large scalar charge once their separation became suffi-
ciently small, making the coalescence proceed in a faster
timescale. It was then understood to be due to a kind of
feedback mechanism [25,28]. Indeed, as discussed before,
from the PNperspective themass and other stellar properties
are functions of the local scalar field value at the star’s
worldline, which is influenced by the presence of the
companion star. In STTs with ξ < 0, if the ambient scalar
field value grows, it induces a growth in ωA ¼ −mAαA (see
Fig. 5). This, in turn, increases the local value of the scalar

field at the companion’s location (given byφB ∼ φ0 þ ωA=r,
where r is the separation distance), and the positive feedback
proceeds until a fixed-point is reached. Although exploring
this in detail is beyond the scope of the present work,
we can anticipate that the opposite behavior is likely to occur
in STTs with ξ > 0: In this case βA > 0 and ωA decreases
with increasing φA; therefore the feedback mechanism
present in the ξ < 0 case will most likely be absent or
reversed.
Finally, let us come back to the last row of Fig. 4, where

kA [cf. Eq. (24)] is shown as a function of the stellar mass.
The typical values of kA are seen to decrease with
increasing ξ, with a large spike close to the maximum
allowed mass. This is a somewhat similar behavior to the
ξ < 0 case (see, e.g., Fig. 4 in Ref. [33]), although the
typical values in Fig. 4 are quite small due to the relatively
large values of ξ we consider. In all cases, the HC
reproduces well the qualitative features of the SNMC.

B. Implications for pulsar-timing observables

Having understood the properties of the scalar charges
αAðmAÞ, βAðmAÞ, and kAðmAÞ, we now turn to the pulsar
timing observables _ω, γ, and _Pb, given in STTs as in
Eqs. (16)–(18).

m
A

I A

mAmA

FIG. 3. Total massmA, moment of inertia IA and scalar charge αA of a sequence of equilibrium solutions describing NSs with the ENG
EoS in the presence of a scalar field with SNMC ξ ¼ −3 and −5 (left column) and ξ ¼ 25, 50, and 100 (right column). The asymptotic
value of the scalar field was fixed to zero. The dashed part of each curve denotes their hydrodynamically unstable piece.
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Pulsar-timing observations can be used to put stringent
bounds on ξ < 0 [15,33,34,61,62]. A crucial feature that
makes this possible is that the scalar charge αA, which
enters in all pulsar-timing observables, increases in mag-
nitude as ξ becomes more negative, making deviations from
GR stronger. As a consequence, one is able to exclude the
entire range of negative couplings up to a certain value.
The situation for ξ > 0 is much more permissive. On the

one hand, since the scalar charge αA typically decreases in
magnitude as ξ > 0 increases (cf. Fig. 4; see also Fig. 8 of

Ref. [23]), deviations of pulsar-timing observables from
GR are suppressed for large values of the nonminimal
coupling. On the other hand, as we decrease the value of ξ
in search of larger scalar charges, the range of NS masses
allowing for spontaneous scalarization gets progressively
smaller (cf. Fig. 2). Thus, STTs with ξ > 0 tend to pass
pulsar-timing tests, with the possible exception of a small
range of couplings and NS masses.
Having described the global picture, let us give a few

more details about each of the observables _ω, γ, and _Pb.

SLy

mA mAmA

ENG

ENG

ENG

SLy

SLy

MPA1

MPA1

MPA1

FIG. 4. Scalar charges αA, βA, and kA as a function of the stellar mass for ξ ¼ 25, 50, and 100, and three nuclear EoS: ENG, SLy, and
MPA1. Solid lines refer to the SNMC, while dashed lines of the same color correspond to the HC model, with the same value of ξ.
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Since βA ¼ Oð1Þ for ξ > 0 (cf. Fig. 4), we can see from
Eq. (16) that corrections to _ω are Oðα2AÞ, and therefore
negligible due to the smallness of the scalar charge αA in
this case. The same is true for the Einstein time delay γ,
except for the term proportional to αckp in Eq. (17). Since
kA seems to diverge in limit of the maximum NS mass
(cf. Fig. 4), this term still could give a non-negligible
contribution as long as the companion’s charge αc is not
vanishingly small. This would be restricted, however, to an
exceptionally thin range of NS masses. As for the rate of
decay of the orbital period, _Pb, it is enough to compare the
contribution in Eq. (19) coming from dipolar scalar
radiation to the usual quadrupolar contribution due to
tensor waves, Eq. (20). Although the first one dominates
the second by a factor of ðc=vbÞ2, it is also suppressed by a
factor of ðαp − αcÞ2. Typical orbital velocities in binary
systems observed through pulsar-timing techniques are of
the order of ðvb=cÞ ∼ 10−3. Interestingly, this is of the same
order of magnitude as the largest values of jαAj shown in
Fig. 3. Therefore, it might still be possible to probe
STTs with ξ≲ 25 with the radiation emitted by the most
massive pulsars. However, as emphasized above, the
range of masses allowing for spontaneous scalarization
gets narrower as ξ decreases, and such effects, if present,
would be restricted to very special systems. For the
largest ranges of NS masses and nonminimal couplings,
STTs with ξ > 0would still evade the sharp knife of pulsar-
timing tests.

V. CONCLUSION

It is well known that general relativity has passed with
flying colors all strong-field tests imposed by pulsar-timing
observations. Moreover, these observations have stripped
many modified theories of gravity of a large portion of their
parameter space, confining their predictions to the close
vicinity of GR [14]. This is the case, in particular, of a class
of scalar-tensor theories of gravity including the case of a
massless scalar field with the standard, ξRΦ2, nonminimal
coupling to gravity. In these theories a tachyoniclike
instability develops for sufficiently compact stars and
ξ≲ −2.2, leading to the development of a scalar cloud
around the star (see Sec. II). If the scalar field is thus
activated around a member of a binary system, it drives
the emission of dipole scalar radiation, contributing to a
steeper decrease of the orbital period in time. Since this
effect—as well as the changes introduced in other
observable quantities (see Sec. III)—is incompatible with
pulsar-timing data, almost the entire range of couplings
allowing for spontaneous scalarization has now been
excluded [34,61].
Recently, it has been advocated that a similar scalariza-

tion effect might occur for positive values of the non-
minimal coupling ξ, around the most massive neutron stars
found in Nature, as long as they are also sufficiently
compact [18,19] (which depends on the still unknown
nuclear equation of state). This seems to open the pos-
sibility of using measurements of the most massive
observed NS, such as the pulsar PSR J0348þ 0432 [39]
or possibly PSR B1957þ 20 [63], in order to also probe
this range of couplings.
In this work we carried out a study of the scalar charges

αA, βA, and kA, which determine the behavior of the main
post-Keplerian pulsar timing observables, _ω, γ, and _Pb, in
STTs with ξ > 0 (see Sec. IV). We find that the scalar
charges differ remarkably in the ξ > 0 and ξ < 0 cases. In
particular, the main scalar charge αA governing Newtonian
and post-Newtonian deviations from GR is suppressed as
ξ > 0 becomes large, while the range of masses allowing
for spontaneous scalarization decreases as ξ > 0 becomes
smaller. As discussed in detail in Sec. IV, this indicates
that STTs with ξ > 0, even in the presence of spontaneous
scalarization, are able to pass pulsar-timing tests, with the
possible exception of an exceedingly narrow range of
couplings and NS masses. Moreover, the contrasting
properties exhibited by the scalar charge βA in the
ξ > 0 case suggest that the feedback mechanism respon-
sible for the effect of dynamical scalarization might
not be present for positive values of the nonminimal
coupling. It remains an interesting research avenue to
determine which NS properties are most sensitive to a
scalar field background in this regime of small scalar
charges (e.g. the NS oscillation spectrum as recently
suggested by Ref. [13]).

FIG. 5. Scalar charge αA as a function of the central rest-mass
density ρc for the HC model with ξ ¼ −3 (upper panel) and ξ ¼
50 (lower panel), and two asymptotic values of the scalar field:
φA ¼ 10−4 and φA ¼ 10−3. The ENG EoS was assumed. All
families of equilibrium solutions are shown, and a change in the
number of solutions is noted at several critical densities (note,
however, that not all the solutions in the ξ > 0 case are stable, as
shown in the Supplemental Material of Ref. [13]).
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APPENDIX A: A SIMPLE TOY MODEL

In order to gain some intuition about the behavior of the
scalar charge αA, we consider a simpler version of Eq. (9)
[8], where we neglect the metric curvature and the details of
the coupling function, keeping only its linear piece:

Δφ ¼ −ϵκ2φ: ðA1Þ

Here Δ≡ d2=dr2 þ ð2=rÞd=dr, κ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πjξTjp

, and
ϵ ¼ signðξTÞ. Moreover we will assume that κ is constant
throughout the star, but that ϵ can change sign, according to

ϵ ¼
�þ1; if 0 ≤ r ≤ rþ

−1; if rþ < r ≤ R
ðA2Þ

where R is the stellar radius and 0 ≤ rþ ≤ R. The case most
often considered in the literature, i.e., ξ < 0 and T < 0
throughout the star, would correspond to rþ ¼ R. On the
other hand, we are most interested here in the case where
ξ > 0 and the trace T changes sign inside the star, as
captured by the general form (A2). Taking κ to be constant,
as we do for simplicity, implies the additional assumption
that the typical strength (say, the mean value) of T > 0 in
the region 0 ≤ r ≤ rþ is comparable with the typical value
of T < 0 in the region rþ < r ≤ R.
The general solution to this problem is

φ ¼

8>><
>>:

φc
sinðκrÞ
κr ; if 0 ≤ r ≤ rþ;

A sinhðκrÞ
κr þ B coshðκrÞ

κr ; if rþ < r ≤ R;

φ0 þ ω=r; if r > R;

ðA3Þ

where φc, A, B, and ω can be explicitly computed in terms
of φ0, κ, rþ, and R by imposing continuity of the field and
its derivative across r ¼ rþ and r ¼ R. In particular,

φc ¼
φ0

sinðκrþÞ sinhðκr−Þ þ cosðκrþÞ coshðκr−Þ ðA4Þ

and

ω ¼ −φ0Rþ φ0

κ

tanðκrþÞ þ tanhðκr−Þ
1þ tanðκrþÞ tanhðκr−Þ ; ðA5Þ

where we defined r− ≡ R − rþ. It is worth writing explic-
itly two particular cases: If rþ ¼ 0, we have

φc ¼
φ0

coshðκRÞ ; ω ¼ −φ0R

�
1 −

tanhðκRÞ
κR

�
; ðA6Þ

while if r− ¼ 0 we get

φc ¼
φ0

cosðκRÞ ; ω ¼ −φ0R

�
1 −

tanðκRÞ
κR

�
: ðA7Þ

In the first case, Eq. (A6), the field is suppressedwith respect
to its asymptotic value and jωj is bounded by jφ0jR, going to
zero as φ0 → 0. This would be the picture if, say, ξ > 0 and
T < 0 throughout the star. In the second case, Eq. (A7), the
field is amplified with respect to its asymptotic value and jωj
is enhanced with respect to jφ0jR. Indeed, these quantities
may have a nonzero limit even when φ0 → 0, as long as
κR ¼ π=2. This gives a heuristic picture of the spontaneous
scalarization effect when ξ < 0 [8].
Take now the full expressions (A4) and (A5), which are

the relevant ones when ξ > 0. We see that there is a
competition between enhancement and suppression effects.
In particular, the onset of scalarization, which was deter-
mined by the condition cotðκRÞ ¼ 0 for Eq. (A7), is
delayed to higher values of κR, with the relevant condition
becoming cotðκrþÞ ¼ − tanhðκr−Þ. Moreover, a number of
features displayed by the scalar charge αA for scalarized
solutions (cf. Sec. IVA) are already exhibited in the
expressions above (outside the scalarization regime). For
instance, the 1=κ dependency in Eq. (A5) indicates that jωj
decreases with increasing κ, except near the resonances
mentioned above. This is in contrast with the case (A7),
where jωj increases with κ.

APPENDIX B: NUMERICAL SETUP

With the metric ansatz (25), the field equations (8)
and (9) yield

m0 ¼ 4πr2F−2ϵþ 1

2
rðr − 2mÞðφ0Þ2; ðB1Þ

ν0 ¼ 8πr2F−2p
r − 2m

þ rðφ0Þ2 þ 2m
rðr − 2mÞ ; ðB2Þ

φ00 ¼ 4πrF−2

r − 2m
½αðϵ − 3pÞ þ rφ0ðϵ − pÞ� − 2ðr −mÞ

rðr − 2mÞφ
0;

ðB3Þ

p0 ¼ −ðϵþ pÞ
�
4πr2F−2p
r − 2m

þ rðφ0Þ2
2

þ m
rðr − 2mÞ þ αφ0

�
;

ðB4Þ

ϖ″ ¼ ϖ0
�
−
4

r
þ rðφ0Þ2 þ 4πr2ðϵþ pÞ

F2ðr − 2mÞ
�

þ 16πrðϵþ pÞ
F2ðr − 2mÞ ðΩ −ϖÞ; ðB5Þ
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where primes denote radial derivatives, Ω≡ uϕ=ut is
the fluid angular velocity, and we have set eλðrÞ≡
1=ð1 − 2mðrÞ=rÞ. When supplemented by a choice of
EoS, the set of differential equations above can be integrated
numerically by standard methods. The relevant boundary
conditions to the problem are regularity at r ¼ 0, which
requires that mð0Þ ¼ 0, ϖ0ð0Þ ¼ 0, and φ0ð0Þ ¼ 0, and
asymptotic flatness, which requires that limr→∞νðrÞ ¼ 0,
limr→∞ϖðrÞ ¼ 0 and limr→∞φðrÞ ¼ φA. The condition
pðRÞ ¼ 0 determines the stellar radius R. As described in
Sec. III A the stellar mass mA and angular momentum JA
are determined by the asymptotic behavior of the metric
functions. Alternatively, Eqs. (B1)-(B5) can be integrated up
to the stellar radius and matched to the known form of the
exterior solution [15], from which global quantities like mA
and JA can be inferred.
As described in Sec. IVA, the computation of the scalar

charges,

αA ¼
d logmA

dφA
; βA ¼

dαA
dφ0

; kA ¼−
d log IA
dφ0

; ðB6Þ

is somewhat involved, since the derivatives must be
evaluated for a fixed value of the baryonic mass. For this
purpose, given an EoS and a value for ξ, we construct three
sequences of equilibrium solutions, with the asymptotic
value of the scalar field given by φ0

A ¼ φ0, φ
þ
A ¼ φ0 þ Δφ,

and φ−
A ¼ φ0 − Δφ. For most of the results presented in this

work we employ φ0 ¼ 0 and Δφ ¼ 0.0005, except for
Fig. 5 where different values of φ0 are used. From the data
thus generated, we construct by interpolation the functions

mðiÞ
A ðm̄AÞ, αðiÞA ðm̄AÞ, and IðiÞA ðm̄AÞ, with i ∈ f0;þ;−g and

estimate the scalar charges (B6) through a simple central
finite difference approximation to the derivative operator:

αapproxA ðm̄AÞ ¼
1

mð0Þ
A ðm̄AÞ

mðþÞ
A ðm̄AÞ −mð−Þ

A ðm̄AÞ
2Δφ

;

βapproxA ðm̄AÞ ¼
αðþÞ
A ðm̄AÞ − αð−ÞA ðm̄AÞ

2Δφ
;

kapproxA ðm̄AÞ ¼
1

Ið0ÞA ðm̄AÞ
IðþÞðm̄AÞ − Ið−Þðm̄AÞ

2Δφ
:

Recall that the scalar charge αA can either be computed
from the expression above, or directly from the asymptotic
behaviour of the scalar field, through αA ¼ −ωA=mA. The
latter procedure yields a much more reliable estimate for

αA, and so the comparison between αð0ÞA and αapproxA enables
us to estimate the error incurred in the finite difference
approximations above. This is shown in Fig. 6. For
Δφ ¼ 5 × 10−4, which is typically used in this work, we
see that the relative error in the scalar charge is of the order
of 0.01%, but may increase near the boundaries of the mass
interval where scalarized solutions exist. Errors of the same
order are obtained for other values of ξ as well.
Notice that, when presenting our results, we restrict

consideration to the range of baryonic masses for which
both ðþÞ and ð−Þ quantities exist. This may exclude from
our consideration a narrow range of masses at the borders
of the mass interval. These boundary values could be taken
care of by a one-sided approximation to the derivative
operator, which would lead, in particular, to a better
resolution of the spikes in Fig. 4. These fine details are
not, however, too relevant for our analysis.
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(1996).

[16] N. Wex, arXiv:1402.5594.
[17] R. F. P. Mendes, Phys. Rev. D 91, 064024 (2015).
[18] R. F. P. Mendes and N. Ortiz, Phys. Rev. D 93, 124035

(2016).
[19] D. M. Podkowka, R. F. P. Mendes, and E. Poisson, Phys.

Rev. D 98, 064057 (2018).
[20] T. Damour and K. Nordtvedt, Phys. Rev. Lett. 70, 2217

(1993).
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