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The exact amplitudes of six polarization modes of gravitational waves are constructed in terms of both
the small metric perturbations and the Newman-Penrose scalars. The obtained formulas are applicable to
any metric-compatible gravity theories whose gravitational waves propagate along either the null or non-
null geodesics. Once a gravity theory (specifically, its linearized wave equation) is written, comparison to
the observed data of the laser interferometer experiments is direct.
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I. INTRODUCTION

To date, Einstein’s general relativity (GR) has passed all
experimental tests, and thus it is important to ensure that
extensions of gravity also pass these same tests. Such
longevity is not only related to its absolute correctness,
but can also motivate more accurate tests to probe the
corrections to Einstein’s GR. New precession searches for
small deviations from GR are intriguing in the context
of astrophysics and cosmology. The first candidate experi-
ment for identifying violations of GR is to look for the
possible polarization modes of gravitational waves (GWs),
and its formulation was first constructed in Refs. [1,2] (see
also the reviews [3,4]).
Einstein’s GR predicted the existence of gravitational

waves [5], and the long-awaited signal of gravitational
waves was picked up by the Advanced Laser Interferometer
Gravitational-wave Observatory (aLIGO) and Virgo col-
laborations [6–9]. This milestone in gravitational-wave
research opens a window to probe the highly dynamical
and strong-field regimes of gravity [10,11]. In addition,
aLIGO and Virgo also allow for the precision study of the
polarization modes of gravitational waves, particularly the
bound of the nontensorial modes [12,13]. Analyses of
known galactic pulsars have constrained the strain of the
scalar and vector modes to be below 1.5 × 10−26 at 95%
credibility [12], which is the first direct upper limit for a
nontensorial strain. This upper bound provides a guideline
to modify the beyond-GR theories of gravity.

In the context of metric-compatible theories, there are six
polarization modes: the breathing (b), longitudinal (l),
vector-x (x), vector-y (y), plus (þ), and cross (×) modes.
Einstein’s GR predicts transverse and traceless waves
whose quantization leads to massless spin-2 gravitons,
and thus the detection of only the two tensor modes (plus
and cross polarization modes) will fulfill GR’s prediction.
The six polarization modes of gravitational waves have
been studied under the assumption of weak, plane, and null
propagation and analyzed in terms of the Newman-Penrose
(NP) formalism [1]. Most of the subsequent research on
various extended models of gravity has employed this
formalism with the E(2) classification to calculate the NP
scalars corresponding to each polarization mode [10,
14–16], even for theories involving massive modes
[10,17–24]. In the case of the bimetric theory, NP scalars
have been used to show how massive degrees of freedom
(d.o.f.) contribute to the amplitude of nontensorial modes
[20,25]. This is because the NP scalars provide the simplest
way to look at a specific propagation of gravitational waves
even in extended gravity theories; however, the NP analysis
in Ref. [1] is no longer exact for the massive gravity
theories. Therefore, it is necessary to construct the exact
formalism for the six polarization modes of the non-null
propagating gravitational waves. Recently, this point was
indicated in Ref. [26]. There have also been developments
in numerical simulations for the modification of Newtonian
gravity by including a Yukawa-type potential [27–29].
It is timely to reconstruct the formalism to give a correct

interpretation of the non-null propagation seen in the
observed gravitational-wave data. In this work, we obtain
the formulas for the six polarization amplitudes connecting
the observed data from the laser interferometers and the
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GWs of the proposed gravity theory. These are also
applicable to the non-null propagation of GWs. Let us
begin by introducing the assumptions of our formalism:
(1) The gravity theories we consider are metric

compatible.
(2) The amplitude of the perturbation is small and the

characteristic length scale is much smaller than that
of the background curvature. This is the so-called
short-wavelength approximation.

The aforementioned assumptions dictate the following
guidelines:
(1) Since any metric-compatible theory is allowed, the

geodesic equation and the Bianchi identity can be
used. On the other hand, the specific form of the
action (e.g., the Einstein-Hilbert action for GR) or,
equivalently, the corresponding dynamical equations
(e.g., the Einstein equations) need not be assumed in
a derivation of the formalism. In practice, this means
that any metric-compatible gravity action [which can
involve not only GR but also many other candidate
theories, e.g., higher-derivative, fðRÞ, or massive
gravity theories] can utilize our formalism without
restriction.

(2) The linear wave equations for the weak gravitation
field hμν allow us to determine the physical contents
of the GWs through the dispersion relation
ω ¼ ωðkÞ and their six polarization modes.

The six polarization modes are formulated in terms of
both the NP scalars and the six physical degrees of freedom
among the ten components of hμν by appropriate gauge
fixing. Since the formalism is written in terms of the
detector response function, a comparison between the
theory (say, the action) and the observed data can directly
be performed.
This work is organized as follows. In Sec. II, we review

the formalism of Ref. [1]. In Sec. III A, we describe the six
polarization modes based on the usual NP formalism. We
express the exact driving-force matrix for the plane-wave
weak propagations of gravitational waves based on the
NP formalism in Sec. III B and in terms of the metric
perturbations in Sec. III C. A discussion on the difference
between the usual and exact results is also included. In
Sec. III D, we obtain the response functions. Some known
gravity models are analyzed in Sec. IV and the Appendix.
We conclude in Sec. V with a few research directions.

II. SIX OBSERVABLES OF
GRAVITATIONAL WAVES

When a freely falling observer is at a fiducial point
in an approximately Lorentz normal coordinate system
ðt; xiÞ ¼ ðt; x; y; zÞ, where xi are the spatial coordinates
of the test particle at rest, the acceleration relative to the
location of the observer is depicted by the geodesic
deviation equation [1],

ai ¼ −R0i0jxj; ð1Þ

where the electric components of the Riemann tensor
R0i0j (the so-called Riemann field) are the only measurable
quantities in gravitational-wave detection. Suppose that
a propagating gravitational wave is weak and a plane
wave. When the z direction is chosen parallel to the
propagation of gravitational waves, every component
of the Riemann field R0i0jðtrÞ becomes a function of a
retarded time, tr ¼ t − z=v.
The six electric components of the Riemann tensor are

set by the symmetric driving-force matrix SijðtÞ [1,30],
SijðtrÞ≡ R0i0jðtrÞ: ð2Þ

Since this driving-force matrix possesses six independent
d.o.f., the six basis polarization matrices are introduced as

E1ðẑÞ ¼

0
B@

0 0 0

0 0 0

0 0 1

1
CA; E2ðẑÞ ¼

0
B@

0 0 1

0 0 0

1 0 0

1
CA;

E3ðẑÞ ¼

0
B@

0 0 0

0 0 1

0 1 0

1
CA; E4ðẑÞ ¼

1

2

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

E5ðẑÞ ¼

0
B@

0 1 0

1 0 0

0 0 0

1
CA; E6ðẑÞ ¼

1

2

0
B@

1 0 0

0 1 0

0 0 0

1
CA: ð3Þ

Note that the coefficients in front of the matrices were set
differently in Ref. [1] to read the polarization amplitudes in
the NP formalism. In the basis of polarization matrices, the
driving-force matrix is expanded in terms of the polariza-
tion amplitudes pn,

SðtÞ ¼
X6
A¼1

pAðẑ; tÞEAðẑÞ; ð4Þ

and a comparison of Eqs. (2) and (4) gives

S ¼

0
B@

Rtxtx Rtxty Rtxtz

Rtytx Rtyty Rtytz

Rtztx Rtzty Rtztz

1
CA

¼

0
B@

1
2
ðp4 þ p6Þ p5 p2

p5
1
2
ð−p4 þ p6Þ p3

p2 p3 p1

1
CA: ð5Þ

Each polarization amplitude of the six electric components
p1;…; p6 corresponds to a specific geometrical distortion
of the test-particle distribution, whose shapes are displayed
in Fig. 1 (see Ref. [1]). The modes p1;…; p6 are the
longitudinal, vector-x, vector-y, plus, cross, and breathing
polarization modes, respectively. Thus, in our basis (3), the
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exact polarization amplitudes are written in terms of the
driving-force matrix element in its simplest form,

pðlÞ
1 ≡ Rtztz; pðxÞ

2 ≡ Rtztx; pðyÞ
3 ≡ Rtzty;

pðþÞ
4 ≡ Rtxtx − Rtyty; pð×Þ

5 ≡ Rtxty;

pðbÞ
6 ≡ Rtxtx þ Rtyty; ð6Þ

where we add the description of the mode in the superscript
for a clear distinction.

III. POLARIZATION MODES

A. Null propagation of gravitational waves

In this subsection, we briefly recapitulate the previous
conventional method on the six polarization modes of
the massless gravitons in which the null propagation
assumption is adopted [1]. We will examine the amplitude
expressions in the traditional NP method to find necessary

corrections to extend the exact formalism to the massive
gravitational waves following the non-null geodesic.
For the description of the polarization modes under the

null propagation assumption, it is convenient to introduce
the NP quantities for simplicity. For a local null tetrad basis
k and two null spin tetradsm and m̄, we have the four tetrad
basis vectors,

k ¼ 1ffiffiffi
2

p ð∂t þ ∂zÞ; l ¼ 1ffiffiffi
2

p ð∂t − ∂zÞ;

m ¼ 1ffiffiffi
2

p ð∂x þ i∂yÞ; m̄ ¼ 1ffiffiffi
2

p ð∂x − i∂yÞ; ð7Þ

which satisfy the normalization conditions

kμlμ ¼ −1; mμm̄μ ¼ 1: ð8Þ
In four dimensions, the Riemann tensor is split into three
irreducible parts—Cμνρσ , Rμν − 1

4
gμνR, and R—where the

Weyl tensor in the four-dimensional spacetime is defined by

Cμνρσ ¼ Rμνρσ − ðgμ½ρRσ�ν − gν½ρRσ�μÞ þ
1

3
gμ½ρgσ�νR

≡ Rμνρσ − 2g½μj½ρRσ�jν� þ
1

3
gμ½ρgσ�νR: ð9Þ

In the NP formalism, the five complex Weyl-NP scalars are
defined and classified with spin weights from the Weyl
tensor,

s¼þ2∶Ψ0≡Ckmkm;

s¼þ1∶Ψ1≡Cklkm¼Cm̄mkm;

s¼0∶Ψ2≡Ckmm̄l¼
1

2
ðCklklþCklm̄mÞ¼

1

2
ðCm̄mm̄mþCklm̄mÞ;

s¼−1∶Ψ3≡Cklm̄l¼Cm̄mm̄l;

s¼−2∶Ψ4≡Cm̄lm̄l: ð10Þ
The ten Ricci-NP scalars are defined from the traceless and
trace parts of the Ricci tensor Rμν as

s ¼ þ2∶ Φ02 ≡ 1

2
Rmm;

s ¼ þ1∶

(
Φ01 ≡ 1

2
Rkm;

Φ12 ≡ 1
2
Rlm;

s ¼ 0∶

8>><
>>:

Φ00 ≡ 1
2
Rkk;

Φ11 ≡ 1
4
ðRkl þ Rmm̄Þ;

Φ22 ≡ 1
2
Rll;

s ¼ −1∶

(
Φ10 ≡ 1

2
Rkm̄ ¼ Φ�

01;

Φ21 ≡ 1
2
Rlm̄ ¼ Φ�

12;

s ¼ −2∶ Φ20 ≡ 1

2
Rm̄ m̄ ¼ Φ�

02;

Λ≡ R
24

¼ 1

12
ðRmm̄ − RklÞ: ð11Þ

FIG. 1. The six polarization modes: (a) breathing mode pðbÞ
1 ,

(b) longitudinal mode pðlÞ
6 , (c) vector-x mode pðxÞ

2 , (d) vector-y

mode pðyÞ
3 , (e) plus mode pðþÞ

4 , and (f) cross mode pð×Þ
5 . Here we

added the superscript of every corresponding polarization mode
to pn to clearly show its geometrical description. The red, green,
and blue curves indicate scalar, vector, and tensor modes,
respectively. The circled dot in panels (b), (e), and (f) indicates
that the wave is propagating out of the page, and the right-
pointing arrow in panels (a), (c), and (d) indicates that the wave is
propagating in the z direction.
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Under the null condition the measurable field becomes a
function of the retarded time tr ¼ t − zwith v ¼ 1, and thus
the Riemann tensor satisfies

Rabcd;p ¼ 0; ð12Þ
where ða; b; c; dÞ range over ðk; l; m; m̄Þ and ðp; q; � � �Þ only
range over ðk;m; m̄Þ. With the help of the Bianchi identity,

Rab½pq;l� ¼
1

3
ðRabpq;l þ Rabql;p þ Rablp;qÞ ¼

1

3
Rabpq;l ¼ 0;

ð13Þ

Eq. (12) leads to a constant curvature solution. Since any
nonvanishing constant curvature solution is irrelevant for
wave phenomena, only the solution of our interest should
have a vanishing Riemann tensor component,

Rabpq ¼ 0 ¼ Rpqab: ð14Þ

Therefore, all nonvanishing components of the Riemann
tensor should take the form Rplql. Accordingly, under the
null condition, all of the NP scalars in Eqs. (10) and (11) are
given by

Ψ0¼Ckmkm¼Rkmkm!null0;

Ψ1¼Cklkm ¼Rklkm−
1

2
Rkm!null0;

Ψ2¼Ckmm̄l ¼Rkmm̄l−
1

12
R!null1

6
Rklkl;

Ψ3¼Cklm̄l ¼Rklm̄l−
1

2
Rlm̄!null

1

2
Rklm̄l;

Ψ4¼Cm̄lm̄l ¼Rm̄lm̄l!nullRm̄lm̄l; Φ00¼
1

2
Rkk!null0;

Φ01¼Φ�
10¼

1

2
Rkm!null0;

Φ02¼Φ�
20¼

1

2
Rmm!null0;

Φ11¼
1

4
ðRklþRmm̄Þ!null

1

4
Rklkl ¼

3

2
Ψ2ð¼Ψ2−ΛÞ;

Φ12¼Φ�
21¼

1

2
Rlm!null

1

2
Rklml ¼Ψ�

3;

Φ22¼
1

2
Rll ¼Rmlm̄l!nullRmlm̄l;

Λ¼ R
24

¼−
1

12
ðRkl−Rmm̄Þ!null−

1

12
Rklkl ¼−

1

2
Ψ2; ð15Þ

whereR ¼ −2Rkl ¼ −2Rklkl is used in the last formula. Eight of the 15NP scalars do not vanish, but only four NP scalars,Ψ2,
Ψ3, Ψ4, Φ22, correspond to independent components of the Riemann tensor. We shall call these four NP scalars “NP-null
scalars.” SinceΨ2,Φ22 are real andΨ3,Ψ4 are complex in Eq. (15) by applying the null condition, the NP-null scalars have six
real d.o.f. as shown in the table below:

NP scalars NP-null scalars

Ψ0; Ψ1; Ψ2; Ψ3; Ψ4

!null conditionΦ02; Φ12; Φ01; Φ00; Φ11; Φ22; Φ10; Φ21; Φ20 Ψ2; Ψ3; Ψ4; Φ22

Λ

These six real d.o.f. of the NP-null scalars correspond to the polarization amplitudes pn via Eq. (6),

Ψ2!null
1

6
Rlklk ¼

1

6
Rtztz ≡ 1

6
pðlÞ
1 ðk⃗; tÞ;

ReðΨ3Þ!null
1

2
ReðRlklm̄Þ!null

1

2
Rtztx ≡ 1

2
pðxÞ
2 ðk⃗; tÞ;

ImðΨ3Þ!null
1

2
ImðRlklm̄Þ!null −

1

2
Rtzty ≡ −

1

2
pðyÞ
3 ðk⃗; tÞ;

ReðΨ4Þ!nullReðRlm̄lm̄Þ!nullRtxtx − Rtyty ≡ pðþÞ
4 ðk⃗; tÞ;

ImðΨ4Þ!nullImðRlm̄lm̄Þ!null − 2Rtxty ≡ −2pð×Þ
5 ðk⃗; tÞ;

Φ22!nullRlmlm̄!nullRtxtx þ Rtyty ≡ pðbÞ
6 ðk⃗; tÞ; ð16Þ

and the driving-force matrix (5) is written under the null-propagation condition in terms of the NP-null scalars as

Snull ¼

0
BB@

1
2
½ReðΨ4Þ þΦ22Þ� − 1

2
ImðΨ4Þ 2ReðΨ3Þ

− 1
2
ImðΨ4Þ − 1

2
½ReðΨ4Þ −Φ22� −2ImðΨ3Þ

2ReðΨ3Þ −2ImðΨ3Þ 6Ψ2

1
CCA: ð17Þ
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The polarization amplitudes pn in Eq. (16) are different
from those in Ref. [1]. First, the overall sign in Eq. (16)
is opposite to that in Ref. [1] since we used the
definition of the NP scalars in Ref. [31]. Second, each
pn in Eq. (16) has a different coefficient since the basis
polarization matrices in Eq. (3) chose different normali-
zation coefficients. The six normalization coefficients an
are introduced as

E1ðẑÞ ¼ a1

0
B@
0 0 0

0 0 0

0 0 1

1
CA; E2ðẑÞ ¼ a2

0
B@
0 0 1

0 0 0

1 0 0

1
CA;

E3ðẑÞ ¼ a3

0
B@
0 0 0

0 0 1

0 1 0

1
CA; E4ðẑÞ ¼ a4

0
B@
1 0 0

0 −1 0

0 0 0

1
CA;

E5ðẑÞ ¼ a5

0
B@
0 1 0

1 0 0

0 0 0

1
CA; E6ðẑÞ ¼ a6

0
B@
1 0 0

0 1 0

0 0 0

1
CA; ð18Þ

and their values are given in the table below:

a1 a2 a3 a4 a5 a6

(3) 1 1 1 1
2

1 1
2

Ref. [1] −6 −2 2 − 1
2

1
2

− 1
2

Subsequently, the polarization amplitudes pn in
Eq. (16) are related to the corresponding amplitudes
p̄n in Ref. [1],

pðlÞ
1 ¼−6p̄ðlÞ

1 ; pðxÞ
2 ¼−2p̄ðxÞ

2 ; pðyÞ
3 ¼ 2p̄ðyÞ

3 ;

pðþÞ
4 ¼−p̄ðþÞ

4 ; pð×Þ
5 ¼ 1

2
p̄ð×Þ
5 ; pðbÞ

6 ¼−p̄ðbÞ
6 : ð19Þ

The driving-force matrix Snull for the null condition in
Eq. (17), which is a physical quantity, coincides exactly
irrespective of the choice of the normalization constants
in Eq. (18).

B. Non-null propagation of gravitational
waves in terms of NP scalars

The gravitational waves generated by some
gravitational theories may propagate along non-null
geodesics. Since the NP formalism (16) obtained under
the null condition (14) can no longer be applied to
those, it is necessary to find the six polarization
amplitudes pnðp ¼ 1; 2;…; 6Þ before assigning the
null condition. The exact polarization amplitudes
expressed in terms of the electric components of the
Riemann tensor are easily obtained by inverting the five
complex Weyl-NP scalars (10) and the ten Ricci-NP
scalars (11),

pðlÞ
1 ¼Rtztz¼ 2½ReðΨ2ÞþΦ11−Λ�;

pðxÞ
2 ¼Rtztx ¼−ReðΨ1ÞþReðΨ3Þ−ReðΦ01ÞþReðΦ12Þ;

pðyÞ
3 ¼Rtzty ¼−ImðΨ1Þ− ImðΨ3Þ− ImðΦ01Þþ ImðΦ12Þ;

pðþÞ
4 ¼Rtxtx−Rtyty ¼ReðΨ0ÞþReðΨ4Þ−2ReðΦ02Þ;

pð×Þ
5 ¼Rtxty ¼

1

2
½ImðΨ0Þ− ImðΨ4Þ−2ImðΦ02Þ�;

pðbÞ
6 ¼RtxtxþRtyty ¼−2ReðΨ2ÞþΦ00þΦ22−4Λ: ð20Þ

The exact NP expressions valid for plane-wave
amplitudes of gravitational waves are obtained by
assigning the condition of the plane-wave propagation
along the z direction to the components of the Riemann
tensor. Specifically, every component of the Riemann
tensor for the plane wave is a function of time t
and propagation coordinate z including the retarded
time with v, tr ¼ t − z=v, Rμνρσ ¼ Rμνρσðt; zÞ, which
satisfies

Rμνρσ;p ¼ 0; ð21Þ

where v is the speed of the gravitational wave, and
ðμ; ν; ρ; σÞ range over ðt; x; y; zÞ and ðp; q; r; � � �Þ only
range over ðx; yÞ. Except for trivial non-wave-like
constant solutions that are of no interest here, the
Bianchi identity Rμν½pq;t� ¼ 0 ¼ 1

3
Rμνpq;t supports some

null curvature solutions for gravitational waves,

Rμνpq ¼ 0: ð22Þ

Since the Ricci and Einstein tensors are related to the
polarization amplitudes as

pðlÞ
1 ¼ 1

2
ðGtt þ Gxx þ Gyy −GzzÞ − Rxyxy

!plane
wave

1

2
ðGtt þ Gxx þ Gyy −GzzÞ;

pðxÞ
2 ¼ −Gxz þ Rzyxy !plane

wave
−Gxz;

pðyÞ
3 ¼ −Gyz − Rzxxy !plane

wave
−Gyz;

pðþÞ
4 ¼ −ðGxx − GyyÞ þ Rzxzx − Rzyzy

!plane
wave

−ðGxx − GyyÞ þ Rzxzx − Rzyzy;

pð×Þ
5 ¼ −Gxy þ Rzxzy !plane

wave
−Gxy þ Rzxzy;

pðbÞ
6 ¼ Gzz þ Rxyxy !plane

wave
Gzz; ð23Þ
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the plane-wave condition (22) enables us to easily read
vanishing nontensorial polarization modes in the Ricci-
flat spacetime. This is consistent with the well-known
fact that Einstein gravity only supports two tensorial
modes for plane-wave gravitational waves on a flat
background because of the Ricci-flat condition. The
plane-wave condition (22) allows us to write these six
conditions for the z propagation in terms of the NP
scalars,

Ψ1 ¼ Φ01; Ψ2 ¼ Φ11 þ Λ; Ψ3 ¼ Φ21: ð24Þ

SinceΦ11 andΛ are real, the second condition implies that
Ψ2 is real. Substituting these relations into the polarization
amplitudes in Eq. (20) expresses them in terms of the nine
NP scalars, Ψ0;Ψ1;Ψ2;Ψ3;Ψ4;Φ00;Φ02;Φ22;Λ. Since
Ψ0;Ψ1;Ψ3;Ψ4;Φ02 are complex, the nine NP scalars
represent the fourteen components of the Riemann curva-
ture tensor, which says that the NP scalars are inconvenient
to describe the polarization amplitudes pn for the non-null
geodesic. In each pn, there are two contributions: the term
which survives under the null condition and the terms in the
square brackets, which vanish for null propagation,

pðlÞ
1 ¼ 6Ψ2 − ½2ðΨ2 þ 2ΛÞ�;

pðxÞ
2 ¼ 2ReðΨ3Þ − ½2ReðΨ1Þ�;

pðyÞ
3 ¼ −2ImðΨ3Þ − ½2ImðΨ1Þ�;

pðþÞ
4 ¼ ReðΨ4Þ þ ½ReðΨ0Þ − 2ReðΦ02Þ�;

pð×Þ
5 ¼ −

1

2
ImðΨ4Þ þ

�
1

2
ImðΨ0Þ − ImðΦ02Þ

�
;

pðbÞ
6 ¼ Φ22 − ½2ðΨ2 þ 2ΛÞ −Φ00�: ð25Þ

It is easily checked that the null condition in Eq. (15)makes
the deviation factors in the square brackets vanish. In the
scalar longitudinal (pðlÞ

1 ) and breathing (pðbÞ
6 ) modes, the

common factor Ψ2 þ 2Λ contributes to the deviation and
pðbÞ
6 has an additional deviation from the NP scalar Φ00 of

spin weight 0. The Weyl-NP scalars Ψ1 and Ψ3 of spin
weight �1 are mixed in the vector-x ðpðxÞ

2 Þ and -y ðpðyÞ
3 Þ

modes. The tensor component Ψ4 is also mixed with the
other scalars of spin weight�2 [Ψ0,Φ02, andΦ20ð¼ Φ�

02Þ]
in the plus ðpðþÞ

4 Þ and cross ðpð×Þ
5 Þ polarization modes.

Consequently, the driving-force matrix (5) for plane-wave
propagation becomes

Splane ¼

0
BBBBBBBBBB@

1
2
fReðΨ4Þ þΦ22 þ ½ReðΨ0Þ − 2ReðΦ02Þ − 1

2
fImðΨ4Þ 2fReðΨ3Þ

−2ðΨ2 þ 2ΛÞ þΦ00�g −½ImðΨ0Þ − 2ImðΦ02Þ�g −½ReðΨ1Þ�g
− 1

2
fImðΨ4Þ − 1

2
fReðΨ4Þ −Φ22 −2fImðΨ3Þ

−½ImðΨ0Þ − 2ImðΦ02Þ�g þ½ReðΨ0Þ − 2ReðΦ02Þ þ½ImðΨ1Þ�g
þ2ðΨ2 þ 2ΛÞ −Φ00�g

2fReðΨ3Þ − ½ReðΨ1Þ�g −2fImðΨ3Þ þ ½ImðΨ1Þ�g 6fΨ2 − ½1
3
ðΨ2 þ 2ΛÞ�g

1
CCCCCCCCCCA

ð26Þ

Note that the terms in the square brackets in Eq. (25) are
generally nonvanishing, which means that there are two
sources of deviation factors for non-null propagation of
gravitational waves: the NP-null scalars in the first terms
of Eq. (25), and the other NP scalars in the square brackets
of Eq. (25). Therefore, the computation and analysis of the
polarization amplitudes for the non-null geodesic using
the NP-null scalars (16) [10,17–20] are incorrect as long as
the terms in the square brackets are nonvanishing. Thus, the
correction factors of deviation in the square brackets of
Eq. (25) and/or Eq. (26) should be taken into account in
order to achieve the correct exact polarization amplitude for
the non-null propagation of gravitational waves. Further-
more, for the non-null propagation of gravitational waves,

Ψ2 is mixed in the breathing mode pðbÞ
6 in the last line of

Eq. (25), which implies that a vanishingΦ22 does not imply

a vanishing breathing mode, pðbÞ
6 ¼ −2Ψ2, even when

Λ ¼ 0 ¼ Φ00.

C. Non-null propagation of gravitational waves
in terms of metric perturbations

In this subsection, we read the exact polarization
amplitudes pn from the driving-force matrix without
relying on NP scalars. By taking into account the weak
field assumption, the Riemann tensor is linearized as

Rð1Þ
μνρσ ¼ −2∂ ½μ∂ j½ρhσ�jν�; ð27Þ

where the superscript ð1Þ denotes the order in h. Then, the
polarization amplitudes pn are described in terms of the
metric perturbation,

pðlÞ
1 ≈ Rð1Þ

tztz ¼ −
1

2
ð∂2

t hzz − 2∂t∂zhtz þ ∂2
zhttÞ;

pðxÞ
2 ≈ Rð1Þ

tztx ¼ −
1

2
ð∂2

t hxz − ∂t∂zhtxÞ;
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pðyÞ
3 ≈ Rð1Þ

tzty ¼ −
1

2
ð∂2

t hyz − ∂t∂zhtyÞ;

pðþÞ
4 ≈ Rð1Þ

txtx − Rð1Þ
tyty ¼ −

1

2
ð∂2

t hxx − ∂2
t hyyÞ;

pð×Þ
5 ≈ Rð1Þ

txty ¼ −
1

2
∂2
t hxy;

pðbÞ
6 ≈ Rð1Þ

txtx þ Rð1Þ
tyty ¼ −

1

2
ð∂2

t hxx þ ∂2
t hyyÞ: ð28Þ

Since all ten components of the metric perturbation hμν
appear on the right-hand sides of Eq. (28), four redundant
d.o.f. should be removed by the gauge fixing. In the
following two subsubsections, we discuss the Lorentz
and Newtonian gauge conditions.

1. Lorentz gauge condition

The production and propagation of gravitational waves
from various massive dynamical systems are calculated
under the Lorentz gauge condition ∂μh̄μν ≡ ∂μðhμν −
1
2
ημνhλλÞ ¼ 0 in Einstein gravity. This gauge is also often

used to describe wave-like solutions. The four components
of the Lorentz gauge condition are

∂thtz − ∂zhxz ¼ 0;

∂thty − ∂zhyz ¼ 0;

ð∂2
t − ∂2

zÞhtz ¼ −∂t∂zðhxx þ hyyÞ;
ð∂2

t − ∂2
zÞðhtt þ hzzÞ ¼ −ð∂2

t þ ∂2
zÞðhxx þ hyyÞ: ð29Þ

By removing the four time components htt, htx, hty, htz
by applying the gauge-fixing condition in Eq. (29), we
obtain a set of nonlocal expressions for the polarization
amplitudes,

pðlÞ
1 ¼ −

1

2
½∂2

zðhxx þ hyyÞ þ ð∂2
t − ∂2

zÞhzz�;

pðxÞ
2 ¼ −

1

2
ð∂2

t − ∂2
zÞhxz;

pðyÞ
3 ¼ −

1

2
ð∂2

t − ∂2
zÞhyz;

pðþÞ
4 ¼ −

1

2
∂2
t ðhxx − hyyÞ;

pð×Þ
5 ¼ −

1

2
∂2
t hxy;

pðbÞ
6 ¼ −

1

2
∂2
t ðhxx þ hyyÞ: ð30Þ

So far, all of the expressions in Eq. (30) are still linear in the
metric perturbation, and the would-be dynamical equation
for hμν approximated in the weak-gravity limit is naturally
expected to be a linear wave equation which supports the
monochromatic wave solution of the form

hμν ¼ Cμνe−iωtþikz; ð31Þ

where ω is the frequency and k is the wave number.
The linearity of the assumed wave equation guarantees
that the spacetime-independent coefficients Cij are also
independent of the frequency ω and wave number k.
Substituting the monochromatic wave solution (31) into
the gauge-fixing condition (30) leads to

htx ¼ −
k
ω
hxz; hty ¼ −

k
ω
hyz;

htz ¼
ωk

ω2 − k2
ðhxx þ hyyÞ;

htt ¼ −hzz −
ω2 þ k2

ω2 − k2
ðhxx þ hyyÞ; ð32Þ

which tells us that the other four coefficients Ctt, Ctx, Cty,
Ctz depend on the frequency ω and the wave number k.
Then the six polarization amplitudes pn are expressed
in terms of the six spatial components of the metric
fluctuation:

pðlÞ
1 ¼ 1

2
½k2ðhxx þ hyyÞ þ ðω2 − k2Þhzz�;

pðxÞ
2 ¼ 1

2
ðω2 − k2Þhxz;

pðyÞ
3 ¼ 1

2
ðω2 − k2Þhyz;

pðþÞ
4 ¼ 1

2
ω2ðhxx − hyyÞ;

pð×Þ
5 ¼ 1

2
ω2hxy;

pðbÞ
6 ¼ 1

2
ω2ðhxx þ hyyÞ: ð33Þ

If the limit of Einstein gravity is naively taken, the
dispersion relation becomes ω2 ¼ k2 and the four modes

pðlÞ
1 ; pðþÞ

4 ; pð×Þ
5 ; pðbÞ

6 seem to be nonvanishing in Eq. (33),
which is inconsistent with the fact that only the two tensor

modes pðþÞ
4 and pð×Þ

5 should survive. To correctly reproduce
these physical modes, the transverse-traceless condition,
∂μh

μ
ν ¼ 0 and hμμ ¼ 0, should also be imposed.

It would be convenient to avoid this cumbersome addi-
tional condition and obtain the two tensor modes in the
limit of Einstein gravity. A specific way is to remove hxx
from the physical components and to include htt as a
physical mode. The corresponding monochromatic wave
solution (31) allows for a new assumption on Cμν, i.e., that

Ctt; Cyy; Czz; Cxy; Cyz; Czx ð34Þ

are independent of the frequency ω and the wave number k.
On the other hand, the four gauge conditions in Eq. (32)
force the remaining four (Cxx; Ctx; Cty; Ctz) to be functions
of ω and k,
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htx ¼ −
k
ω
hxz; hty ¼ −

k
ω
hyz;

htz ¼ −
ωk

ω2 þ k2
ðhtt þ hzzÞ;

hxx ¼ −hyy −
ω2 − k2

ω2 þ k2
ðhtt þ hzzÞ: ð35Þ

Thus, the gauge-fixing condition (32) reexpresses the
polarization amplitudes pn as

pðlÞ
1 ¼ 1

2

�
ω2 − k2

ω2 þ k2

�
ω2ðhtt þ hzzÞ −

1

2
ðω2 − k2Þhtt;

pðxÞ
2 ¼ 1

2
ðω2 − k2Þhxz;

pðyÞ
3 ¼ 1

2
ðω2 − k2Þhyz;

pðþÞ
4 ¼ −

1

2

�
ω2 − k2

ω2 þ k2

�
ω2ðhtt þ hzzÞ − ω2hyy;

pð×Þ
5 ¼ 1

2
ω2hxy;

pðbÞ
6 ¼ −

1

2

�
ω2 − k2

ω2 þ k2

�
ω2ðhtt þ hzzÞ: ð36Þ

The deviation from the null geodesic appears through the
separate term in every mode controlled by the nonvanishing
common factor ω2 − k2 in the five polarization amplitudes

pðlÞ
1 , pðxÞ

2 , pðyÞ
3 , pðþÞ

4 , and pðbÞ
6 . Thus, the survival of only the

two tensor modes in the limit of the null geodesic is
automatically reproduced without any further condition
by applying the dispersion relation ω ¼ k which makes
the common factor vanish, ω2 − k2 ¼ 0. The magnitude of
this additional effect is quantitatively determined by the

specific form of the dispersion relation, ω ¼ ωðkÞ.
Accordingly, the NP-null scalars under the same gauge-
fixing condition (32) are

Ψ2 ¼ −
1

24

�
ω2 − k2

ω2 þ k2

�
½ð3k2 − ω2Þhtt þ ðk2 − 3ω2Þhzz�;

Ψ3 ¼
1

8

ðω − kÞðωþ kÞ2
ω

ðhxz − ihyzÞ;

Ψ4 ¼ −
1

8

ðω − kÞðωþ kÞ3
ω2 þ k2

ðhtt þ hzzÞ

−
1

4
ðωþ kÞ2ðhyy þ ihxyÞ;

Φ22 ¼ −
1

8

ðω − kÞðωþ kÞ3
ω2 þ k2

ðhtt þ hzzÞ: ð37Þ

2. Newtonian gauge condition

When the general metric perturbations are decomposed
in the basis of the representations of the spatial rotation, all
16 components are

δg00 ¼ −2A;

δg0i ¼ −∂iB − Bi;

δgij ¼ −2δijDþ 2

�
∂i∂j −

δij
3
∂k∂k

�
Eþ 2∂ðiEjÞ þ hij;

ð38Þ
where the symmetric property is recovered by the following
six rotations: ∂iBi ¼ 0, ∂iEi ¼ 0, ∂ihij ¼ 0, and hii ¼ 0.
Then, the ten modes are decoupled at the linear level of this
decomposition. In the representation of the spatial rotation
about the specific ẑ axis, the metric perturbation hμν takes
the following matrix form:

hμν ¼

0
BBBBB@

−2A −Bx −By −B;z

−Bx −2D − 2
3
E;zz þ hþ h× Ex;z

−By h× −2D − 2
3
E;zz − hþ Ey;z

−B;z Ex;z Ey;z −2Dþ 4
3
E;zz

1
CCCCCA: ð39Þ

Inserting this into the six polarization amplitudes pn [Eq. (28)] leads to

pðlÞ
1 ¼ ∂2

t D −
2

3
∂2
t ðE;zzÞ − ∂t∂zðB;zÞ þ ∂2

zA;

pðxÞ
2 ¼ −

1

2
½∂2

t ðEx;zÞ þ ∂t∂zBx�;

pðyÞ
3 ¼ −

1

2
½∂2

t ðEy;zÞ þ ∂t∂zBy�;

pðþÞ
4 ¼ −∂2

t hþ;

pð×Þ
5 ¼ −

1

2
∂2
t h×;

pðbÞ
6 ¼ 2∂2

t Dþ 2

3
∂2
t ðE;zzÞ: ð40Þ
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An appropriate gauge-fixing condition for this decompo-
sition is the conformal Newtonian gauge, Bx ¼ By ¼
B ¼ E ¼ 0, which results in htx ¼ hty ¼ htz ¼ 0 and
hxx þ hyy ¼ 2hzz. Under this gauge-fixing condition, the
above six polarization amplitudes pn become

pðlÞ
1 ¼ ∂2

t Dþ ∂2
zA;

pðxÞ
2 ¼ −

1

2
∂2
t ðEx;zÞ;

pðyÞ
3 ¼ −

1

2
∂2
t ðEy;zÞ;

pðþÞ
4 ¼ −∂2

t hþ;

pð×Þ
5 ¼ −

1

2
∂2
t h×;

pðbÞ
6 ¼ 2∂2

t D: ð41Þ

For the monochromatic waves, Eq. (41) gives

pðlÞ
1 ¼ −ω2D − k2A;

pðxÞ
2 ¼ 1

2
ω2ðEx;zÞ;

pðyÞ
3 ¼ 1

2
ω2ðEy;zÞ;

pðþÞ
4 ¼ ω2hþ;

pð×Þ
5 ¼ 1

2
ω2h×;

pðbÞ
6 ¼ −2ω2D: ð42Þ

D. Response function

In gravitational-wave detectors, the phase difference
between the light signals traveling in both arms of the
interferometer is given by

ΔΦ ¼ 2πνð2L1 − 2L2Þ≡ 2πνL0SðtÞ; ð43Þ

where ν is the frequency of the laser light, L0 is the length
of the unperturbed interferometer arm, L1 and L2 are the
perturbed lengths of the two arms, and SðtÞ is the detector’s
response function [4,32]. The response function SðtÞ is
written in terms of the theoretically obtained polarization
amplitudes pn multiplied by the normalization coefficients
an of the basis polarization matrices in Eq. (3) and the
angular pattern function Fn,

SðtÞ ¼
X6
n¼1

2p̃nanFn; ð44Þ

where pn ≡ − ̈p̃n. The angular pattern functions Fn have
five different components as in Refs. [4,32],

Fb ¼ −
1

2
sin2θ cos 2ϕ ¼ −Fl; ð45Þ

Fx ¼ − sin θðcos θ cos 2ϕ cosψ − sin 2ϕ sinψÞ; ð46Þ

Fy ¼ − sin θðcos θ cos 2ϕ sinψ þ sin 2ϕ cosψÞ; ð47Þ

Fþ ¼ 1

2
ð1þ cos2θÞ cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ ;

ð48Þ

F× ¼ 1

2
ð1þ cos2θÞ cos 2ϕ sin 2ψ − cos θ sin 2ϕ cos 2ψ :

ð49Þ

As long as the gravitational wave along the light trajectory
is weak, the response function is generally given by a
superposition of the contributions of monochromatic gravi-
tational waves. For each monochromatic wave of frequency
ω, it satisfies p̃n ¼ 1

ω2 pn, and thus the response function
(44) becomes

SðtÞ≡X6
n¼1

SnðtÞ ¼
X6
n¼1

2
pn

ω2
anFn: ð50Þ

Note that the value of each pnan is independent of
the choice of the basis matrix (18) and each response
function Sn,

Sn ¼ 2p̃nanFn ¼ −
2

∂2
t
pnanFn; ð51Þ

is gauge invariant. We read six response functions in terms
of the metric components in the nonlocal expression,

SðlÞ ¼ 1

∂2
t
ð∂2

t hzz − 2∂t∂zhtz þ ∂2
zhttÞFl;

SðxÞ ¼ 1

∂2
t
ð∂2

t hxz − ∂t∂zhtxÞFx;

SðyÞ ¼ 1

∂2
t
ð∂2

t hyz − ∂t∂zhtyÞFy;

SðþÞ ¼ 1

2∂2
t
∂2
t ðhxx − hyyÞFþ;

Sð×Þ ¼ 1

∂2
t
∂2
t hxyF×;

SðbÞ ¼ 1

2∂2
t
∂2
t ðhxx þ hyyÞFb: ð52Þ

As in Eq. (45), the angular pattern functions of the
longitudinal mode and the breathing mode are the same,
Fb ¼ −Fl, and the breathing and longitudinal pattern
functions are degenerated. Thus, no array of laser
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interferometers can measure their two modes separately [4].
In addition to the four pattern functions SðxÞ; SðyÞ; SðþÞ; Sð×Þ,
the single response function given by the sum of the
longitudinal and breathing modes,

SðlþbÞ ¼ 1

∂2
t

�
∂2
t

�
hzz −

1

2
ðhxx þ hyyÞ

�

− 2∂t∂zhtz þ ∂2
zhtt

�
Fl; ð53Þ

is taken into account. When a monochromatic wave
[Eq. (31)] is assumed, the five response functions become

SðxÞ ¼
�
hxz þ

k
ω
htx

�
Fx;

SðyÞ ¼
�
hyz þ

k
ω
hty

�
Fy;

SðþÞ ¼ 1

2
ðhxx − hyyÞFþ;

Sð×Þ ¼ hxyF×;

and

SðlþbÞ ¼
��

hzz −
1

2
ðhxx þ hyyÞ

�
þ 2

k
ω
htz þ

k2

ω2
htt

�
Fl:

ð54Þ

1. Lorentz gauge condition

When the Lorentz gauge condition (29) is chosen, the
polarization amplitudes pn were already obtained for a
monochromatic wave in Eq. (33) and thus the five
components of the response function are obtained. From
Eq. (54), the response function for the breathing and
longitudinal modes becomes

SðbþlÞ ¼
�ðω2− k2Þ

ω2
½hzz− ðhxxþhyyÞ�þ

1

2
ðhxxþhyyÞ

�
Fl;

and those for the other four modes are

SðxÞ ¼ ω2 − k2

ω2
hxzFx;

SðyÞ ¼ ω2 − k2

ω2
hyzFy;

SðþÞ ¼ 1

2
ðhxx − hyyÞFþ;

Sð×Þ ¼ hxyF×: ð55Þ

As we already discussed, the response function for the
breathing and longitudinal modes (57) does not vanish even
in the null limit of ω2 ¼ k2 under the consideration of

constant hij. Thus, in the Lorentz gauge, a convenient
choice is to set Ctt constant as in Eq. (35) instead of Cxx.
Note again that the six amplitudes of the gravitational wave
Ctt, Cyy, Czz, Cxy, Cyz, and Cyx do not depend on the
frequency ω and the wave number k, which makes the
detection of the polarization tractable. By using Eq. (36),
the response function for the breathing and longitudinal
modes becomes

SðbþlÞ ¼ ðω2 − k2Þ
2ω2ðω2 þ k2Þ ½ðω

2 − 2k2Þhtt þ 3ω2hzz�Fl;

and those for the other four modes are

SðxÞ ¼ ω2 − k2

ω2
hxzFx;

SðyÞ ¼ ω2 − k2

ω2
hyzFy;

SðþÞ ¼
�
−hyy −

1

2

ω2 − k2

ω2 þ k2
ðhtt þ hzzÞ

�
Fþ;

Sð×Þ ¼ hxyF×: ð56Þ

As expected, there is an overall ðω2 − k2Þ factor in SðbþlÞ,
SðxÞ, and SðyÞ, which allows them to vanish continuously in
the null limit.

2. Newtonian gauge condition

Similar to the Lorentz gauge condition, the response
function for the breathing and longitudinal modes is given
under the Newtonian gauge condition (38) as

SðbþlÞ ¼ k2

ω2
httFl; ð57Þ

and those of the other four amplitudes are

SðxÞ ¼ hxzFx;

SðyÞ ¼ hyzFy;

SðþÞ ¼ hþFþ;

Sð×Þ ¼ hxyF×: ð58Þ

Since all five amplitudes of the monochromatic gravita-
tional wave are constants, the four response functions
SðxÞ; SðyÞ; SðþÞ, and Sð×Þ involve no dependence on the
frequency ω and wave number k; however, SðbþlÞ does
depend on the frequency and wave number.

IV. MODEL CALCULATION

The discussion up to Sec. III has been made without
assuming a specific form of the wave equation; equiva-
lently, the form of the action for gravity (and thus the
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polarization amplitudes pn [Eq. (33)]) can be applicable to
any null or non-null propagation of gravitational waves
from arbitrary metric-compatible gravity theories. In this
section, we consider an alternative model of gravity as an
example and examine the polarization modes of the
massive graviton. General dispersion relations shown in
the literature will be discussed in the Appendix.
To investigate the behavior of the six polarization

amplitudes, we already constructed the formalism and thus
only need to specify the dispersion relation ω ¼ ωðkÞ
according to the model of interest. Even when the wave
equation does not involve higher-derivative terms, the
relativistic relation between energy and momentum does
not prohibit the mass term,

E2 ¼ p2 þm2
g; ð59Þ

whose dispersion relation is ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

g þ k2
q

. Since the

general covariance protects the introduction of a mass term

in metric-compatible gravity theories and the Pauli-Fierz-
type mass term for a spin-2 field is ruled out, a possible way
to introduce the mass term with gμν is to employ the
bimetric theory in which both the background metric g0μν
and the metric for the gravitational field ðg − g0Þμν are
tensor quantities [33].
The dispersion relation ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

g þ k2
q

can be used in
the weak-gravity limit as far as the bimetric theory is

considered. In pðþÞ
4 [Eq. (36)], the second term −ω2hyy is

the plus-mode amplitude for the null geodesic and the first
term − 1

2
ðω2−k2
ω2þk2Þω2ðhtt þ hzzÞ appears for the time-like

geodesic, which also coincides with the breathing mode

amplitude pðbÞ
6 . These two exact amplitudes in pðþÞ

4

[Eq. (6)] are compared to the corresponding approximate
amplitudes of ReðΨ4Þ [Eq. (37)], and the result is given in
Fig. 2. The blue and black solid lines denote ω2 and
1
2
ω2−k2
ω2þk2 ω

2 in the exact amplitude, and the blue and black

dashed lines denote 1
4
ðωþ kÞ2 and 1

8

ðω−kÞðωþkÞ3
ω2þk2 in the

approximate result. The graphs show that the behavior
of the exact polarization amplitudes is different from that of
the approximate polarization amplitudes obtained using
NP-null scalars.
A comparison of the two solid lines in Fig. 2 shows the

following. As easily expected, the effect due to the time-
like geodesic becomes negligible in the high-frequency
region. In the low-frequency region, the mode amplitude
appearing for the time-like geodesic is magnified and
becomes comparable to the mode amplitude for the null
geodesic. The analogous conclusion was pointed out in
the context of the approximate amplitudes obtained with
the NP-null scalars [20], shown by the dashed lines in
Fig. 2. The weakest bound of the graviton mass mg ¼
7.6 × 10−20eV=c2 is chosen in Fig. 2 from the various
model-independent mass bounds of the graviton, which are
listed in Table I. The mode amplitude appearing for the
time-like geodesic is significantly enhanced in the fre-
quency region around 2 × 10−5 Hz. The frequency regions

FIG. 2. The behavior of the exact (solid lines) and approximate
(dashed lines) polarization amplitudes are compared by choosing
a mass parameter mg ¼ 7.6 × 10−20 eV=c2 of the dispersion

relation ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

g þ k2
q

. The mode amplitude appearing for

the time-like geodesic and that for the null geodesic are also
compared by the black and blue curves.

TABLE I. The lower bounds of the Compton wavelength of the massive graviton λg and its corresponding upper
bounds for the graviton mass mg ¼ h=λgc from different observations. MD and MID mean model-dependent and
model-independent, respectively. For details on the bounds, see Refs. [36,37].

λg (km) mg (eV=c2) Observation Properties References

2.8 × 1012 4.4 × 10−22 Solar system Static, MID [38,39]
1.7 × 1014 8.0 × 10−24 Solar system Static, MID [40]
2.5 × 1013 5.0 × 10−23 Supermassive black hole Static, MID [41]
6.2 × 1019 2.0 × 10−29 Galactic clusters Static, MD [42]
9.1 × 1019 1.37 × 10−29 Galaxy cluster Abell 1689 Static, MD [43]
1.8 × 1022 6.9 × 10−29 Weak lensing Static, MD [44]
1.63 × 1010 7.6 × 10−20 Binary pulsars Dynamical, MID [45]
1.0 × 1013 1.2 × 10−22 Binary black holes Dynamical, MID [46]
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of maximum enhancement are summarized in Table II,
which overlap with the frequency domain of future
detectors, such as the pulsar timing arrays with ranges
of 10−9–10−7 Hz [34,35]. As far as the amplitudes for the
model-dependent mass bounds of the graviton are con-
cerned, the maximum enhancement region occurs at
ultralow frequencies, which have been dealt with in
various inflation models but are too low to be detected
by future planned detectors. As the detection level is
increased with more accurate values, the suggested
enhanced effect of the polarization modes due to the
time-like geodesic may have a greater chance of being
detected. In the very low-frequency region with the
maximum enhancement, the deviation of the approximate
result from the exact result also increases significantly,
which is shown clearly in Fig. 3. Therefore, the exact
formalism based on the time-like geodesic will play an
important role in comparing the theoretical results with
future observed data.

V. CONCLUSION

We first extended the NP formalism to describe not only
the null geodesic but also the time-like geodesic, which is
necessary for massive gravity theories. The exact ampli-
tudes of the six polarization modes were obtained in terms
of the metric perturbation via the driving-force matrix (26)
under a few gauge-fixing conditions: Eqs. (30) and (33) for
the Lorentz gauge, Eq. (36) for our gauge choice, and
Eqs. (41) and (42) for the Newtonian gauge. For a given
frequency, the five corresponding distinctive response
functions were constructed in Eqs. (56), (57), and (58),
respectively. The formulas throughout this work are appli-
cable to all metric-compatible gravity theories. Various
theories have already been examined by using the formal-
ism valid for the null geodesic, which is a good approxi-
mation for ω ≫ mg. In the case of theories that include the
non-null geodesic, it is definitely intriguing to reexamine
the exact amplitudes of the six polarization modes, par-
ticularly for ω≳mg. As gravitational-wave detectors begin
searching for signals coming from a theory beyond
Einstein’s GR, our construction of the general formalism
will become more important.
Our final comment is about the classification of extended

gravity theories. In Ref. [1], the null condition was used to
classify the extended gravity theories [the E(2) classifica-
tion] by using the little group of the polarization NP-null
scalars. As explained in Ref. [1], the little group of the
general Lorentz transformation for massless particles is
given by the two-dimensional Euclidean group. In the case
of time-like propagation, the little group of the Lorentz
transformations corresponds to O(3), and therefore the
classification should be made by considering this little
group with the exact polarization expressions.
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APPENDIX: GENERALIZED DISPERSION
RELATION

In this Appendix, we consider modified gravity theories
with a generalized dispersion relation and show how the
degenerate scalar response function described in terms of
exact polarization amplitudes is used to read model
parameters. As discussed in Refs. [47,48], the generalized
dispersion relation that covers almost all theories of
interest is

TABLE II. The frequency regions where the massive effect on
the polarization amplitudes becomes comparable to the massless
one.

mg (eV=c2) Observation
Frequency of massive

effects (Hz)

4.4 × 10−22 Solar system 1.06 × 10−7

5.0 × 10−23 Supermassive black holes 1.21 × 10−8

2.0 × 10−29 Galactic clusters 4.84 × 10−15

6.9 × 10−29 Weak lensing 1.67 × 10−14

7.6 × 10−20 Binary pulsars 1.84 × 10−5

1.2 × 10−22 Binary black holes 2.90 × 10−8

FIG. 3. The ratio between the approximate and exact mode
amplitudes in the low-frequency region is shown for the weakest
model-independent graviton mass bound. The more that the mode
amplitude appearing for the time-like geodesic is enhanced, the
greater the deviation of the approximate amplitude from the exact
one grows.
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E2 ¼ p2c2 þm2
gc4 þ Apαcα; ðA1Þ

where the two parameters A and α express the violation of
Lorentz symmetry. The speed of the graviton satisfying
E ¼ ℏω and p ¼ ℏk is

v2g
c2

≡ 1

c2

�
dω
dk

�
2

¼ 1

−
4m2

gc4 − 4Apαcαðα − 1Þ − A2α2p2ðα−1Þc2ðα−1Þ

4E2
;

ðA2Þ

where causality requires the numerator of the second term to

be non-negative, mgc2≥pα−1cα−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðα−1Þp2c2þðAα

2
Þ2

q
.

An interesting case is α ¼ 1, which is a nonlocal theory

including p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y þ p2
z

q
. When α ¼ 1, the numer-

ator of the second term in Eq. (A2) becomes a constant and

thus comparison with the usual mass case, v2g
c2 ¼ 1 − m2

gc4

E2 ,

leads to the effective mass meff
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

g − A2=ð4c4Þ
q

. An

example of this effective mass meff
g has appeared in fðRÞ-

gravity theories [37]. A few higher-power cases of higher
derivatives, e.g., α ¼ 3; 4, were already discussed in
Refs. [47,48].
From now on, let us consider extra dimensions. In the

model of an extra dimension with A ¼ − ηED
E2
p
and α ¼ 4, the

generalized dispersion relation at low energy is given by
k2 ¼ ω2 þ ðηED=E2

pÞω4 −m2
g [49]. Under the Newtonian

gauge, the response function for the breathing and longi-
tudinal modes (57) at a frequency ω1 is

SðbþlÞ½ω1�≡ SðbþlÞ
1 ¼ Fl

�
1þ ηED

E2
p
ω2
1 −

m2
g

ω2
1

�
htt: ðA3Þ

Similarly, for the second frequency ω2ðω2 ≠ ω1Þ, the
difference of the response functions is

SðbþlÞ
1 − SðbþlÞ

2 ¼ Fl

�
ηED
E2
p
þ m2

g

ω2
1ω

2
2

�
ðω2

1 − ω2
2Þhtt: ðA4Þ

Since the right-hand side of Eq. (A4) involves the three
unknown quantities ηED=E2

p, m2
g, and htt, we consider the

third frequency ω3 as different from ω1 and ω2 and then the
expressions for ηED=E2

p and m2
g are given only in terms of

the measured quantities, SðbþlÞ
i and ωi (i ¼ 1; 2; 3),

ηED
E2
p
¼ ω2

1ω
2
2ω

3
2

ðω−2
3 − ω−2

2 ÞSðbþlÞ
1 þ ðω−2

2 − ω−2
1 ÞSðbþlÞ

3 þ ðω−2
1 − ω−2

3 ÞSðbþlÞ
2

ω2
1ðω4

3 − ω4
2ÞSðbþlÞ

1 þ ω2
3ðω4

2 − ω4
1ÞSðbþlÞ

3 þ ω2
2ðω4

1 − ω4
3ÞSðbþlÞ

2

;

m2
g ¼ ω2

1ω
2
2ω

2
3

ðω2
3 − ω2

2ÞSðbþlÞ
1 þ ðω2

2 − ω2
1ÞSðbþlÞ

3 þ ðω2
1 − ω2

3ÞSðbþlÞ
2

ω2
1ðω4

3 − ω4
2ÞSðbþlÞ

1 þ ω2
3ðω4

2 − ω4
1ÞSðbþlÞ

3 þ ω2
2ðω4

1 − ω4
3ÞSðbþlÞ

2

: ðA5Þ

The results of other modified gravity models are also
summarized in Table III [47], with their corresponding
generalized dispersion relations and references.
When extended gravity theories involving propagating

massive d.o.f. are considered, the exact amplitude expres-
sions (25), (28), and (40) can always be used to obtain
the six mode polarizations of gravitational waves (two

scalars, two vectors, and two tensors), irrespective of
the form of their actions. Under the Newtonian gauge
condition, the nonvanishing components in scalar-tensor
gravity are δϕ ¼ A ¼ −D and hþ; h× [26]. The ampli-
tudes have also been obtained for other models, e.g.,
Einstein-æ ther theory, tensor-vector-scalar models, etc.,
[61–63].

TABLE III. The generalized dispersion relations for various
gravity models. Here, Ep is the Planck energy scale, ηDSR is
a dimensionless parameter given by the Lorentz-invariance-
violating theories, ηED is a positive dimensionless parameter,
κHL and μHL are constants of Hořava-Lifshitz theory, and ηNCG is
a constant in the theory of noncommutative geometries.

Models A α mg References

Doubly Special Relativity ηDSR 3 [50–53]
Broken-Symmetry
Extra Dimension −ηED 4 [49]
Hořava-Lifshitz κ4HLμ

2
HL

16
4 0 [54–58]

Noncommutative Geometries 2 ηNCG
E2
p

4 [59,60]

EXACT AMPLITUDES OF SIX POLARIZATION MODES FOR … PHYS. REV. D 99, 124002 (2019)

124002-13



[1] D. M. Eardley, D. L. Lee, and A. P. Lightman, Gravitational-
wave observations as a tool for testing relativistic gravity,
Phys. Rev. D 8, 3308 (1973).

[2] D. M. Eardley, D. L. Lee, A. P. Lightman, R. V. Wagoner,
and C. M. Will, Gravitational-Wave Observations as a Tool
for Testing Relativistic Gravity, Phys. Rev. Lett. 30, 884
(1973).

[3] C. M.Will, Theory and Experiment in Gravitational Physics
(University Press, Cambridge, England, 1993), p. 380.

[4] C. M.Will, The confrontation between general relativity and
experiment, Living Rev. Relativity 17, 4 (2014).

[5] A. Einstein, Approximative integration of the field equa-
tions of gravitation, Sitzungsber. Preuss. Akad. Wiss. Berlin
(Math. Phys.) 1916, 688 (1916); Über Gravitationswellen,
Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1918,
154 (1918).

[6] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[7] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW151226: Observation of Gravitational Waves
from a 22-Solar-Mass Binary Black Hole Coalescence,
Phys. Rev. Lett. 116, 241103 (2016).

[8] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Binary Black Hole Mergers in the first Advanced
LIGO Observing Run, Phys. Rev. X 6, 041015 (2016).

[9] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170104: Observation of a 50-Solar-Mass Binary
Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.
118, 221101 (2017).

[10] H. R. Kausar, L. Philippoz, and P. Jetzer, Gravitational Wave
Polarization Modes in fðRÞ Theories, Phys. Rev. D 93,
124071 (2016).

[11] E. Berti et al., Testing General Relativity with Present and
Future Astrophysical Observations, Classical Quantum
Gravity 32, 243001 (2015).

[12] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), First Search for Nontensorial Gravitational Waves
from Known Pulsars, Phys. Rev. Lett. 120, 031104 (2018).

[13] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Search for Tensor, Vector, and Scalar Polarizations in
the Stochastic Gravitational-Wave Background, Phys. Rev.
Lett. 120, 201102 (2018).

[14] A. Nishizawa, A. Taruya, K. Hayama, S. Kawamura, and
M. a. Sakagami, Probing non-tensorial polarizations of
stochastic gravitational-wave backgrounds with ground-
based laser interferometers, Phys. Rev. D 79, 082002
(2009).

[15] M. E. S. Alves, O. D. Miranda, and J. C. N. de Araujo,
Probing the f(R) formalism through gravitational wave
polarizations, Phys. Lett. B 679, 401 (2009).

[16] Y. S. Myung, Propagating degrees of freedom in fðRÞ
gravity, Adv. High Energy Phys. 2016, 3901734 (2016).

[17] D. Bessada and O. D. Miranda, CMB polarization and
theories of gravitation with massive gravitons, Classical
Quantum Gravity 26, 045005 (2009).

[18] M. E. S. Alves, O. D. Miranda, and J. C. N. de Araujo, Extra
polarization states of cosmological gravitational waves in
alternative theories of gravity, Classical Quantum Gravity
27, 145010 (2010).

[19] H. Abedi and S. Capozziello, Gravitational waves in
modified teleparallel theories of gravity, Eur. Phys. J. C
78, 474 (2018).

[20] W. L. S. de Paula, O. D. Miranda, and R. M. Marinho,
Polarization states of gravitational waves with a massive
graviton, Classical Quantum Gravity 21, 4595 (2004).

[21] L. Yang, C. C. Lee, and C. Q. Geng, Gravitational waves in
viable fðRÞ models, J. Cosmol. Astropart. Phys. 08 (2011)
029.

[22] A. E. Gumrukcuoglu, S. Kuroyanagi, C. Lin, S.
Mukohyama, and N. Tanahashi, Gravitational wave signal
from massive gravity, Classical Quantum Gravity 29,
235026 (2012).

[23] A. Nishizawa and K. Hayama, Probing for massive
stochastic gravitational-wave background with a detector
network, Phys. Rev. D 88, 064005 (2013).

[24] U. Sperhake, C. J. Moore, R. Rosca, M. Agathos, D. Gerosa,
and C. D. Ott, Long-Lived Inverse Chirp Signals from Core-
Collapse in Massive Scalar-Tensor Gravity, Phys. Rev. Lett.
119, 201103 (2017).

[25] C. Corda, A Longitudinal component in massive gravita-
tional waves arising from a biometric theory of gravity,
Astropart. Phys. 28, 247 (2007).

[26] D. Liang, Y. Gong, S. Hou, and Y. Liu, Polarizations of
gravitational waves in fðRÞ gravity, Phys. Rev. D 95,
104034 (2017).

[27] J. C. N. de Araujo and O. D. Miranda, A Solution for
galactic disks with Yukawian gravitational potential, Gen.
Relativ. Gravit. 39, 777 (2007).

[28] C. S. S. Brandao and J. C. N. Araujo, Probing Yukawian
gravitational potential by numerical simulations. I. Chang-
ing N-body codes, Gen. Relativ. Gravit. 42, 777 (2010).

[29] C. S. S. Brandao and J. C. N. de Araujo, Probing Brown-
stein-Moffat Gravity via Numerical Simulations, Astrophys.
J. 717, 849 (2010).

[30] C. M. Will, The Confrontation between general relativity
and experiment, Living Rev. Relativity 9, 3 (2006).

[31] V. P. Frolov and I. D. Novikov, Black Hole Physics: Basic
Concepts and New Developments, Fundamental Theories of
Physics, Vol. 96 (Springer, Switzerland, 1998).

[32] M. Isi, A. J. Weinstein, C. Mead, and M. Pitkin, Detecting
Beyond-Einstein Polarizations of Continuous Gravitational
Waves, Phys. Rev. D 91, 082002 (2015).

[33] M. Visser, Mass for the graviton, Gen. Relativ. Gravit. 30,
1717 (1998).

[34] M. E. da Silva Alves and M. Tinto, Pulsar timing sensitiv-
ities to gravitational waves from relativistic metric theories
of gravity, Phys. Rev. D 83, 123529 (2011).

[35] S. J. Chamberlin and X. Siemens, Stochastic backgrounds
in alternative theories of gravity: Overlap reduction func-
tions for pulsar timing arrays, Phys. Rev. D 85, 082001
(2012).

[36] C. de Rham, J. T. Deskins, A. J. Tolley, and S. Y. Zhou,
Graviton mass bounds, Rev. Mod. Phys. 89, 025004 (2017).

[37] S. Lee, Constraint on reconstructed fðRÞ gravity models
from gravitational waves, Eur. Phys. J. C 78, 449 (2018).

[38] C. Talmadge, J. P. Berthias, R. W. Hellings, and E. M.
Standish, Model Independent Constraints on Possible
Modifications of Newtonian Gravity, Phys. Rev. Lett. 61,
1159 (1988).

HYUN, KIM, and LEE PHYS. REV. D 99, 124002 (2019)

124002-14

https://doi.org/10.1103/PhysRevD.8.3308
https://doi.org/10.1103/PhysRevLett.30.884
https://doi.org/10.1103/PhysRevLett.30.884
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevD.93.124071
https://doi.org/10.1103/PhysRevD.93.124071
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1103/PhysRevLett.120.031104
https://doi.org/10.1103/PhysRevLett.120.201102
https://doi.org/10.1103/PhysRevLett.120.201102
https://doi.org/10.1103/PhysRevD.79.082002
https://doi.org/10.1103/PhysRevD.79.082002
https://doi.org/10.1016/j.physletb.2009.08.005
https://doi.org/10.1155/2016/3901734
https://doi.org/10.1088/0264-9381/26/4/045005
https://doi.org/10.1088/0264-9381/26/4/045005
https://doi.org/10.1088/0264-9381/27/14/145010
https://doi.org/10.1088/0264-9381/27/14/145010
https://doi.org/10.1140/epjc/s10052-018-5967-x
https://doi.org/10.1140/epjc/s10052-018-5967-x
https://doi.org/10.1088/0264-9381/21/19/008
https://doi.org/10.1088/1475-7516/2011/08/029
https://doi.org/10.1088/1475-7516/2011/08/029
https://doi.org/10.1088/0264-9381/29/23/235026
https://doi.org/10.1088/0264-9381/29/23/235026
https://doi.org/10.1103/PhysRevD.88.064005
https://doi.org/10.1103/PhysRevLett.119.201103
https://doi.org/10.1103/PhysRevLett.119.201103
https://doi.org/10.1016/j.astropartphys.2007.05.009
https://doi.org/10.1103/PhysRevD.95.104034
https://doi.org/10.1103/PhysRevD.95.104034
https://doi.org/10.1007/s10714-007-0420-8
https://doi.org/10.1007/s10714-007-0420-8
https://doi.org/10.1007/s10714-009-0879-6
https://doi.org/10.1088/0004-637X/717/2/849
https://doi.org/10.1088/0004-637X/717/2/849
https://doi.org/10.12942/lrr-2006-3
https://doi.org/10.1103/PhysRevD.91.082002
https://doi.org/10.1023/A:1026611026766
https://doi.org/10.1023/A:1026611026766
https://doi.org/10.1103/PhysRevD.83.123529
https://doi.org/10.1103/PhysRevD.85.082001
https://doi.org/10.1103/PhysRevD.85.082001
https://doi.org/10.1103/RevModPhys.89.025004
https://doi.org/10.1140/epjc/s10052-018-5938-2
https://doi.org/10.1103/PhysRevLett.61.1159
https://doi.org/10.1103/PhysRevLett.61.1159


[39] C. M. Will, Bounding the mass of the graviton using
gravitational wave observations of inspiralling compact
binaries, Phys. Rev. D 57, 2061 (1998).

[40] C. M. Will, Solar system versus gravitational-wave bounds
on the graviton mass, Classical Quantum Gravity 35,
17LT01 (2018).

[41] R. Brito, V. Cardoso, and P. Pani, Massive spin-2 fields on
black hole spacetimes: Instability of the Schwarzschild and
Kerr solutions and bounds on the graviton mass, Phys. Rev.
D 88, 023514 (2013).

[42] A. S. Goldhaber and M.M. Nieto, Mass of the graviton,
Phys. Rev. D 9, 1119 (1974).

[43] S. Desai, Limit on graviton mass from galaxy cluster Abell
1689, Phys. Lett. B 778, 325 (2018).

[44] S. R. Choudhury, G. C. Joshi, S. Mahajan, and B. H. J.
McKellar, Probing large distance higher dimensional
gravity from lensing data, Astropart. Phys. 21, 559
(2004).

[45] L. S. Finn and P. J. Sutton, Bounding the mass of the
graviton using binary pulsar observations, Phys. Rev. D
65, 044022 (2002).

[46] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Tests of General Relativity with GW150914, Phys.
Rev. Lett. 116, 221101 (2016).

[47] S. Mirshekari, N. Yunes, and C. M. Will, Constraining
Lorentz-violating, modified dispersion relations with gravi-
tational waves, Phys. Rev. D 85, 024041 (2012).

[48] S. Kiyota and K. Yamamoto, Constraint on modified
dispersion relations for gravitational waves from gravita-
tional Cherenkov radiation, Phys. Rev. D 92, 104036
(2015).

[49] A. S. Sefiedgar, K. Nozari, and H. R. Sepangi, Modified
dispersion relations in extra dimensions, Phys. Lett. B 696,
119 (2011).

[50] G. Amelino-Camelia, Testable scenario for relativity with
minimum length, Phys. Lett. B 510, 255 (2001).

[51] J. Magueijo and L. Smolin, Lorentz Invariance with an
Invariant Energy Scale, Phys. Rev. Lett. 88, 190403 (2002).

[52] G. Amelino-Camelia, Doubly special relativity, Nature
(London) 418, 34 (2002).

[53] G. Amelino-Camelia, Doubly-special relativity: Facts,
myths and some key open issues, Symmetry 2, 230 (2010).

[54] P. Horava, Membranes at quantum criticality, J. High
Energy Phys. 03 (2009) 020.

[55] P. Horava, Quantum gravity at a Lifshitz point, Phys. Rev. D
79, 084008 (2009).

[56] C. Bogdanos and E. N. Saridakis, Perturbative instabilities
in Horava gravity, Classical Quantum Gravity 27, 075005
(2010).

[57] S. I. Vacaru, Modified dispersion relations in Horava-
Lifshitz gravity and Finsler Brane models, Gen. Relativ.
Gravit. 44, 1015 (2012).

[58] D. Blas and H. Sanctuary, Gravitational radiation in Horava
gravity, Phys. Rev. D 84, 064004 (2011).

[59] R. Garattini and G. Mandanici, Modified dispersion rela-
tions lead to a finite zero point gravitational energy, Phys.
Rev. D 83, 084021 (2011).

[60] R. Garattini and G. Mandanici, Particle propagation and
effective space-time in Gravity’s rainbow, Phys. Rev. D 85,
023507 (2012).

[61] Y. Gong, S. Hou, D. Liang, and E. Papantonopoulos,
Gravitational waves in Einstein-æther and generalized
TeVeS theory after GW170817, Phys. Rev. D 97, 084040
(2018).

[62] J. Oost, M. Bhattacharjee, and A. Wang, Gravitational plane
waves in Einstein-aether theory, Gen. Relativ. Gravit. 50,
124 (2018).

[63] K. Lin, X. Zhao, C. Zhang, T. Liu, B. Wang, S. Zhang, X.
Zhang, W. Zhao, T. Zhu, and A. Wang, Gravitational wave
forms, polarizations, response functions and energy losses
of triple systems in Einstein-aether theory, Phys. Rev. D 99,
023010 (2019).

EXACT AMPLITUDES OF SIX POLARIZATION MODES FOR … PHYS. REV. D 99, 124002 (2019)

124002-15

https://doi.org/10.1103/PhysRevD.57.2061
https://doi.org/10.1088/1361-6382/aad13c
https://doi.org/10.1088/1361-6382/aad13c
https://doi.org/10.1103/PhysRevD.88.023514
https://doi.org/10.1103/PhysRevD.88.023514
https://doi.org/10.1103/PhysRevD.9.1119
https://doi.org/10.1016/j.physletb.2018.01.052
https://doi.org/10.1016/j.astropartphys.2004.04.001
https://doi.org/10.1016/j.astropartphys.2004.04.001
https://doi.org/10.1103/PhysRevD.65.044022
https://doi.org/10.1103/PhysRevD.65.044022
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevD.85.024041
https://doi.org/10.1103/PhysRevD.92.104036
https://doi.org/10.1103/PhysRevD.92.104036
https://doi.org/10.1016/j.physletb.2010.11.067
https://doi.org/10.1016/j.physletb.2010.11.067
https://doi.org/10.1016/S0370-2693(01)00506-8
https://doi.org/10.1103/PhysRevLett.88.190403
https://doi.org/10.1038/418034a
https://doi.org/10.1038/418034a
https://doi.org/10.3390/sym2010230
https://doi.org/10.1088/1126-6708/2009/03/020
https://doi.org/10.1088/1126-6708/2009/03/020
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1088/0264-9381/27/7/075005
https://doi.org/10.1088/0264-9381/27/7/075005
https://doi.org/10.1007/s10714-011-1324-1
https://doi.org/10.1007/s10714-011-1324-1
https://doi.org/10.1103/PhysRevD.84.064004
https://doi.org/10.1103/PhysRevD.83.084021
https://doi.org/10.1103/PhysRevD.83.084021
https://doi.org/10.1103/PhysRevD.85.023507
https://doi.org/10.1103/PhysRevD.85.023507
https://doi.org/10.1103/PhysRevD.97.084040
https://doi.org/10.1103/PhysRevD.97.084040
https://doi.org/10.1007/s10714-018-2453-6
https://doi.org/10.1007/s10714-018-2453-6
https://doi.org/10.1103/PhysRevD.99.023010
https://doi.org/10.1103/PhysRevD.99.023010

