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The aim of the present work is twofold: first, we present general remarks about the application of recent
procedures to compute the deflection angle in spherically symmetric and asymptotically flat spacetimes,
taking into account finite distance corrections based on the Gauss-Bonnet theorem. Second, and as the main
part of our work, we apply this powerful technique to compute corrections to the deflection angle produced
by astrophysical configurations in the weak gravitational regime when a plasma medium is taken into
account. For applications, we use these methods to introduce new general formulas for the bending angle of
light rays in plasma environments in different astrophysical scenarios, generalizing previously known
results. We also present new and useful formulas for the separation angle between the images of two
sources when they are lensed by an astrophysical object surrounded by plasma. In particular, for the case of
a homogeneous plasma we study these corrections for the case of light rays propagating near astrophysical
objects described in the weak gravitational regime by a parametrized-post-Newtonian metric which takes
into account the mass of the objects and a possible quadrupole moment. Even when our work concentrates
on finite distance corrections to the deflection angle, we also obtain as particular cases of our expressions
new formulas which are valid for the more common assumption of infinite distance between receiver, lens
and source. We also consider the presence of an inhomogeneous plasma media introducing as particular
cases of our general results explicit expressions for particular charge number density profiles.
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I. INTRODUCTION

Gravitational lensing is a crucial tool to study the
dynamics, evolution and distribution of matter in the
Universe [1–4]. The response of electromagnetic radiation
to gravitational fields occurs at all size scales in the
Universe, ranging from the size of individual black holes
[5] to clusters containing many individual galaxies [6].
In fact, recently the first observational test of Einstein’s
general relativity confirmed the theory to high precision on
extragalactic scales [7]. At all scales, the study of the strong
gravitational lensing regime gives us information about the
response of electromagnetic radiation to gravitational fields
and will be crucial in providing tests of gravitational theory
under strong field conditions.
Typically, gravitational lens effects are considered in the

vacuum. However, many compact objects are surrounded
by dense, plasma-rich magnetospheres [8,9], and even
galaxies and galaxy clusters [10] are in general immersed
in a plasma fluid. In the visible spectrum, the modification

of gravitational lensing quantities due to the presence of the
plasma is negligible. The same cannot be said of obser-
vations in the radio frequency spectrum where the index of
refraction of the plasma causes strong frequency-dependent
modifications of the usual gravitational lensing behavior.
The effect of plasma on light propagation has been

studied since the 1960s. In 1966, Muhleman and Johnston
studied the influence on the time delay by the solar corona
electron plasma at radio frequencies in the gravitational
field of the Sun [11]. In 1970, Muhleman, Ekers and
Fomalont calculated for the first time the light deflection in
the presence of a plasma in the weak-field approximation
[12]. A variety of studies focusing on the solar wind and
the electron density profile in the outer corona were also
performed, using analysis of light propagation in different
spatial missions such as Viking, Mariner 6 and 7 and the
Cassini mission [13,14]. In navigating interplanetary space-
craft, the plasma contribution to light propagation is also
routinely considered (see for example the review article
of Turyshev and Toth [15]. A rigorous derivation of a
Hamiltonian for light rays including a magnetized plasma
and curved background was performed by Breuer and
Ehlers in 1980 [16–18]. The light deflection in a plasma
was calculated for the first time in the Schwarzschild
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spacetime (and in the equatorial plane of the Kerr space-
time) without the weak-field approximation by Perlick in
2000 [19].
Presently there exist some radio-telescope projects which

operate in frequency bands where such plasma effects must
be taken into account [20–24]. For that reason, in the last
years the study of the influence of plasma media on the
trajectory of light rays in external gravitational fields
associated with compact bodies has continued and become
a very active research area [25–45].
One of the main quantities in the study of gravitational

lensing is the deflection angle. In general, expressions for the
deflection angle are written in terms of derivatives of the
various metric components. However, in Ref. [46], we
introduced an expression for the deflection angle in the
weak-lensing regime which is written in terms of the
curvature scalars. It was generalized to the cosmological
context by Boero and Moreschi [47] and recently by us to
take into account second-order corrections in perturbations
of a flat metric [48]. On the other hand, Gibbons andWerner
have also established a new geometrical (and topological)
way of studying gravitational lensing using the Gauss-
Bonnet theorem and an associated optical metric [49]. It
is worthwhile to mention that the concept of the optical
metric and the related Fermat principle for light rays in
general relativity was introduced first byWeyl in 1917 [50].
More precisely, Gibbons and Werner obtained an elegant
relation between the deflection angle, the Gaussian curva-
ture of the associated optical metric and the topology of
the manifold. In this approach the deflection angle can be
obtained by integrating the Gaussian curvature of the metric
in an appropriate two-dimensional integration region D.
Since the seminal work of Gibbons and Werner [49],

many applications of this method for purely gravitational
lensing in astrophysical situations have emerged. In par-
ticular, this new technique is being used to compute
gravitational lensing quantities in a variety of spacetimes
including vacuum, electrovacuum, and with a vast array of
scalar fields or effective fluids at both finite and infinite
distances [51–78]. More recently, in Ref. [44], we have
shown for the first time how the Gibbons-Werner method
can also be applied to the study of light rays simultaneously
interacting with gravitational fields and a plasma medium.
It is worth noting that in this case the light rays do not
propagate along null geodesics of the underlying physical
spacetime. Despite this apparent difficulty we have shown
how the Gauss-Bonnet method, originally designed to
study null geodesics in pure gravitational fields, can also
be applied through a judicious choice of optical metric to
the study of timelike curves followed by light rays in a
plasma environment. In fact, these results also apply to
timelike geodesics followed by massive particles in pure
gravitational fields. Thus, our results highlight the elegance
and power of the Gibbons-Werner method by demonstrat-
ing the beautiful relationship that exists between the

deflection angle, geometric and topological quantities
associated with spacetime, and the implications of these
relationships for both optics and mechanics.
Due to the deep connections between geometry and

topology exposed by the Gibbons-Werner method, several
authors have proposed alternative extensions to the Gauss-
Bonnet theorem in situations where the source or the
observer cannot be considered to be at infinite distance
to the lens. The first alternative was presented in
Refs. [63,64,71,78] and the second in Ref. [62]. Some
remarks are in order with respect to these alternative
formulations. First, even when these proposals are based
in the Gauss-Bonnet theorem, they do not agree in their
predictions. In particular for asymptotically flat spacetimes,
the proposal given in Ref. [62] is different and not generally
compatible with the proposal given and used in the others
[63,64,71,78]. It can be easily checked by comparison of
the expressions for the deflection angle in a Schwarzschild
spacetime that these authors obtained using their respective
definitions. More precisely, even when different authors
used the same coordinate system (the usual Schwarzschild
coordinates), in Ref. [62] Arakida obtained an expression
for the deflection angle (at linear order in the mass) with
some extra terms that are missing in the Ishihara et al.
definition [63] [see Eq. (54) of Ref. [62] and the particular
case of Eq. (A.3) with a ¼ 0 of Ref. [78]].1

Before continuing, it is important to note the following
caveat. The two separate groups of authors mentioned
above have both considered the interesting effect of the
cosmological constant on the bending angle. When a
cosmological constant is included, these groups also
obtained different expressions for the deflection angle.
An interesting question is whether this difference introdu-
ces new predictions for the related observable quantities.
However, we do not address this case in the present work,
and restrict all discussion to asymptotically flat spacetimes.
Therefore, it remains an open question if the two alternative
definitions give incompatible results for that situation.
Returning to the discussion for asymptotically flat

spacetimes, since these two alternative definitions use
two different integration regions D and D0 for the integra-
tion of the Gaussian curvature, it is difficult to see the

1Note that Eq. (A.3) of Ref. [78] refers to the deflection angle
computed for a Kerr metric as expressed in Boyer-Lindquist
coordinates. However, by taking a ¼ 0 this metric agrees with the
Schwarzschild metric in the standard Schwarzschild coordinates
and in that situation the comparison is explicit. At linear order in
the mass these extra terms are given by

δα ¼ −
m
b
ðsin2ðφ̂RÞ cosðφ̂RÞ − sin2ðφ̂SÞ cosðφ̂SÞÞ ð1Þ

where φ̂S, and φ̂R represent the angular coordinate of the position
of the source and the receiver, respectively, and δα is the
difference between the expressions given by Arakida and Ishihara
et al. For more details, see Sec. II.
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reason for that difference in the original presentations. In
particular, even when both of these authors use quadrilateral
regions, in the case of Arakida it is a finite region and in the
case of Ishihara et al. it is an unbounded one. We will show
below how the difference in the results of these expressions
for asymptotically flat spacetimes can be easily understood
by presenting an alternative integration region in the Ishihara
et al. definition. Second, even when finite-distance correc-
tions to the deflection angle are derived by these two
alternative definitions, the authors of Refs. [62–64,71,78]
or Ref. [62] did not attempt to make a comparison with
known (and compatible) expressions from the literature that
were obtained using different techniques [79–87]. These
expressions have been tested in observations for several
decades [88–95].Moreover, they are also routinely used and
needed for high-precision relativistic astrometry [96–100].
Due to the existence of these two incompatible definitions
(as previously mentioned, they do not agree even at linear
order in a Schwarzschild spacetime), the comparison
between their predictions and the known quantities can
be used as a good test of their validity. We will carry out
this comparison and we will show that the Ishihara
et al. definition is in complete agreement with known
expressions.
In addition to dealing with the technical issues around

the calculation, our main motivation for the present work is
to study how the consideration of finite distances between
the source, lens and observer can affect the expression for
the deflection angle in astrophysical situations where a
plasma medium is present. The usual way to study lensing
due to plasma is through the Hamiltonian equations for
the timelike curves followed by light rays in the plasma
environment. On the other hand, recently we presented
a geometrical formulation of the problem using the
Gibbons-Werner method [44]. Therefore it is natural to
use this powerful technique to study the corrections in
the known expressions for the deflection angle in these
situations.
Motivated by these issues, we propose a number of

points to contribute to the discussion of this subject. First,
we present an alternative formulation of the definition
given in Ref. [63] for the bending angle at finite distances
for static and spherically symmetric asymptotically flat
spacetimes.2 We remark that it is not a new definition, but
an equivalent formulation. Our approach is based on a finite
region and allows us to compare with the expression given
by Arakida in Ref. [62] in that situation. Furthermore, this
work fills the existent gap in the comparison with known
expressions for the bending angle at finite distance and the
results obtained using the definition given in Ref. [63]. This
comparison provides confidence in the veracity of the

region definitions in that work. Finally, as the focus of
our work, we apply this powerful technique to compute
corrections to the deflection angle produced by astrophysi-
cal configurations in the weak gravitational field regime
when a plasma medium is taken into account. In particular,
for the case of a homogeneous plasma we study finite
distance corrections for the case of light rays propagating
through astrophysical objects described in the weak gravi-
tational region by a parametrized-post-Newtonian (PPN)
expansion which takes into account the mass of the objects
and a possible quadrupole moment. Even when our work
concentrates on finite distance corrections to the deflection
angle, we also obtain as particular cases of our expressions
new formulas which are valid for the more common
assumption of infinite distance between the receiver, lens
and source, which generalize previous results.
This work is organized as follows. In Sec. II we review

the definition of bending angle given by Ishihara et al. in
Ref. [63] and we propose an alternative presentation by
using a finite quadrilateral region which allows us to make
a comparison and remark on the difference with the
Arakida definition [62]. We also present a review of known
finite distance expressions for the bending angle in order to
prepare for later comparison with what is obtained by the
use of the Gauss-Bonnet method. In Sec. III we review
the theory of light rays in cold nonmagnetized plasma and
the associated optical metric. We also present a simple
formula which relates the separation angle between the
images of two sources when they are lensed by a gravi-
tational field surrounded by a plasma medium. In Sec. IV
we study finite distance corrections to the deflection angle
in astrophysical situation where the gravitational field can
be represented by a PPN metric and where a homogeneous
plasma medium is present. We also carry out detailed
comparisons between known expressions for the bending
angle and results obtained using the Ishihara et al. defi-
nition. As a by-product, we obtain several new formulas for
the bending angle which generalize previous known results
in several ways. Finally in Sec. V we briefly discuss the
situation where the plasma is nonhomogeneous by pre-
senting the study of a Schwarzschild spacetime surrounded
by some particular cases of inhomogeneous plasma media.
In particular, we study the relevance of finite distance
corrections in a model for the plasma density of the solar
corona. We conclude with final remarks. For completeness,
in the Appendix Awe show how three different versions of
the deflection angle calculation give the same result using
the finite quadrilateral region (as defined in Sec. II). In the
Appendix B we study the relationship between different
angular coordinates and the elongation angle. In the
Appendix C we give explicit finite distance expressions
for the contribution to the deflection angle in a
Schwarzschild spacetime produced by a model for the
electronic charge distribution of the extended solar
corona.

2As we will see, the definition can also be applied to the
equatorial plane of more general static metrics with SOð2Þ
symmetry.
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II. FINITE DISTANCE CORRECTIONS
TO THE DEFLECTION ANGLE USING

THE GAUSS-BONNET THEOREM

A. General remarks

The Gauss-Bonnet theorem provides a powerful frame-
work to describe finite distance corrections to the gravi-
tational lens deflection angle. A thorough discussion of this
topic first requires some general discussion of definitions
recently used in the literature [62–64,78].
Let us recall the application of the Gauss-Bonnet

theorem to a two-dimensional Riemannian manifold. Let
D ⊂ S be a regular domain of an oriented two-dimensional
surface S with Riemannian metric ĝij, whose boundary is
formed by a closed, simple, piecewise, regular and positive-
oriented curve ∂D∶R ⊃ I → D. Then, the Gauss-Bonnet
theorem statesZZ

D
KdSþ

Z
∂D

κgdσþ
X
i

Θi ¼ 2πχðDÞ; σ ∈ I; ð2Þ

where χðDÞ andK are the Euler characteristic and Gaussian
curvature of D, respectively, κg is the geodesic curvature of
∂D and Θi is the exterior angle defined in the ith vertex, in
the positive sense. Given a smooth curve γ with tangent
vector _γ such that

ĝð_γ; _γÞ ¼ 1; ð3Þ

and acceleration vector ̈γ, the geodesic curvature κg of γ
can be computed as

κg ¼ ĝð∇_γ _γ; ̈γÞ; ð4Þ

which is equal to zero if and only if γ is a geodesic, because
_γ and ̈γ are orthogonal.
Let us consider a static spherically symmetric and

asymptotically flat spacetime,3

ds2¼−AðrÞdt2þBðrÞdr2þCðrÞðdθ2þsin2ðϑÞdφ2Þ; ð5Þ

and a light ray propagating from a source S to a receiver
R on a null geodesic, which can be taken as lying in the
plane defined by θ ¼ π=2 without loss of generality. This
null geodesic can be put in one-to-one correspondence
with a spatial geodesic of the associated optical metric
given by [49,50,101]

dσ2 ¼ BðrÞ
AðrÞ dr

2 þ CðrÞ
AðrÞ dφ

2: ð6Þ

Ishihara et al. [63] proposed a new definition for the
deflection angle at finite distance using the Gauss-Bonnet
theorem, which can be written as

α ¼ −
Z Z

∞
R □

∞
S

KdS: ð7Þ

In order to define the integration region ∞
R □

∞
S one starts

with a region Dr, bounded by the geodesic γl with its
origin at a point S and its end at R. Let us consider two
radial geodesics γS and γR, defined by respective con-
stants φS and φR, which pass through the points S and R
respectively. Then, let a circular arc segment defined by
r ¼ rC ¼ const close the region. The arc segment is
chosen to be orthogonal to the radial geodesics γR and
γS. The region ∞

R □
∞
S is then obtained as the limit of the

region Dr as rC goes to infinity. For a motivation of
the choice of this region see the original referen-
ces [63,64,71,78]. Since we are interested in the com-
parison of this formula with the Arakida proposal which
is based in a different quadrilateral (and finite) region
[62], we will give an alternative presentation of Eq. (7)
which also makes use of a finite quadrilateral region. Of
course, when we talk about the bending angle, we are
referring to how the paths of light rays are curved with
respect to a flat spacetime. Therefore, it is natural that
we relate the behavior of null geodesics in the two
spacetimes.
Consider a two-dimensional space with a Euclidean

metric written in a standard polar coordinate system
fr;φg. In this space let Dr be a region with boundaries
formed by two straight line segments defined by φ ¼ φS ¼
const and φ ¼ φR ¼ const and such that their ends farthest
from the origin are connected by a circular arc segment γC
defined by r ¼ rC ¼ const and the two ends nearest the
origin are connected by a straight line segment γl (see
Fig. 1). For all of the following discussions, the azimuthal
angular coordinate φ is measured from a given polar axis.
But the choice of this axis is arbitrary for the moment, and
this is the reason that we have not plotted any axis or
azimuthal angular coordinate in Fig. 1. We have only
plotted geometrical quantities adapted to the rotational
azimuthal Killing symmetry of the metric. Later we will
introduce particular azimuthal angular coordinates (see also
the Appendix B). If we apply the Gauss-Bonnet theorem in
this region, we obtain the following relation for the sum of
the interior angles ϵi of the region Dr (which are related to
the exterior angles Θi by Θi ¼ π − ϵi):

X
i

ϵi ¼
Z
γC

κdσ þ 2π; σ ∈ I: ð8Þ

Of course,

3As we have mentioned, the restriction to spherical symmetry
is not at all necessary: the following discussion can also be
applied to the equatorial plane of static spacetimes with SOð2Þ
symmetry.
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Z
γC

κdσ ¼ φR − φS; ð9Þ

but it will not be relevant for us.
In a similar way, let us consider a Riemannian two-

dimensional space defined in a region R2=B where B is a
compact set, such that it allows a SO(2) symmetry group
and it is also asymptotically Euclidean. The metric asso-
ciated with this Riemannian manifold can be written as
dσ̃2 ¼ aðr̃Þdr̃2 þ r02bðr̃Þdφ̃2, with aðr̃Þ and bðr̃Þ going to 1
as r̃ goes to infinity. As this metric is asymptotically
Euclidean and therefore tends to the Euclidean metric
dr̃2 þ r̃2dφ̃2 as r goes to infinity, we can make an
identification between the coordinates fr;φg used in the
polar coordinates system of the Euclidean space where
the region Dr was defined and the new coordinates r̃; φ̃ of
the Riemannian manifold.
Now let D̃r be a slightly modified region in this

Riemannian manifold chosen such that three of its sides
are defined in a similar way as were γR, γS and γC and with
the remaining boundary chosen as the geodesic γ̃l which
coincides with the spatial geodesic associated with the
spatial orbit of the null geodesic followed by a light ray
connecting S with R in the physical curved spacetime. See
Fig. 2. Therefore, for this region we obtain

X
i

ϵ̃i ¼
Z Z

D̃r

KdSþ
Z
γ̃C

κ̃dσ̃ þ 2π; σ̃ ∈ I: ð10Þ

Note that by construction the following crucial property is
satisfied ϵ3 ¼ ϵ̃3 ¼ ϵ4 ¼ ϵ̃4 ¼ π=2, and therefore the differ-
ence between the sum of inner angles for the regionsDr and

D̃r is only related to the difference in the angles that the
geodesic γl and γ̃l make with the radial geodesics γR and
γS. Motivated by the last fact, we propose the following
expression as the definition of the deflection angle α:

α ¼
X
i

ðϵi − ϵ̃iÞ: ð11Þ

Therefore, taking into account the equations (8) and (10)
we obtain the alternative expression:

α ¼ −
Z Z

D̃r

KdS −
Z
γ̃CðS→RÞ

κ̃dσ̃ þ
Z
γCðS→RÞ

κdσ; ð12Þ

where the notation γ̃CðS→RÞ is to recall that the integration
must be done on the circular arc segment γC in the direction
from S to R. Alternatively, as the other three curves in
the quadrilateral region are geodesics, Eq. (12) can be
written as

α ¼ −
Z Z

D̃r

KdS −
I
∂D̃r

κ̃dσ̃ þ
I
∂Dr

κdσ; ð13Þ

with the line integrals made on the respective boundaries
∂D̃r an ∂D̃r of the regions D̃r andDr in a counterclockwise
direction. By construction the right-hand side of Eq. (12)
gives the same result for any curve γC defined by
rC ¼ const. This definition is an alternative presentation
of the proposed definition of Ishihara et al. [63].

FIG. 1. The regionDr in a Euclidean two-dimensional space as
described in the text. It is bounded by four curves: a straight line
geodesic connecting the points R and S, two radial geodesics γR
and γS and a circular curve γC which intersects γR and γS
orthogonally.

FIG. 2. The region D̃r in a Riemannian two-dimensional space
as described in the text. It is bounded by four curves: a spatial
geodesic γ̃l connecting the points R and S, and three curves γ̃R, γ̃S
and a circular curve γ̃C identified with the respective curves in the
Euclidean space. By construction the curve γ̃C also intersects γ̃R
and γ̃S orthogonally. The circular area plotted with reticulated
lines in the interior represents the region where an astrophysical
object that acts as a lens is contained. This region is not
necessarily covered by the polar coordinate system described
in the text.
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In particular, as the metric is assumed to be asymptotically
Euclidean, we can take the limit of rC going to infinity, in
which case

R
γ̃C
κ̃dσ̃ →

R
γC
κdσ, resulting in an expression

for the angle αwhich reduces to the formula (7) as given by
Ishihara et al. [63].
In fact, we can repeat the same procedure but without the

assumption that the curve γ̃l is geodesic. In this case, even
when the region Dr remains unchanged, we obtain a new
region D̃�

r and Eq. (12) is modified to

α¼ −
ZZ

D̃�
r

KdS−
Z
γ̃lðR→SÞ

κ̃dσ̃ −
Z
γ̃CðS→RÞ

κ̃dσ̃þ
Z
γCðS→RÞ

κdσ

¼ −
ZZ

D̃�
r

KdS−
I
∂D̃�

r

κ̃dσ̃þ
I
∂Dr

κdσ: ð14Þ

If we assume a region D̃≡ ∞
R □

∞
S obtained from D̃�

r in the
limit of rC going to infinity, it is easy to see that the relation
(14) reduces formally to the expression found in Ref. [78]
for the deflection angle at finite distances valid for a general
stationary and axially symmetric spacetime. (Note that in
such cases, as explained in detail in Ref. [78] a modification
of the form of the optical metric is needed.)
With the expression (12), we are ready to compare with

the Arakida definition [62]. In that reference the author also
took a finite quadrilateral region but instead of using the
circular curve γC, a new curve γΓ was chosen which is
identified with the spatial geodesic associated to a light ray
connecting R and S if the spacetime were flat, that is, in the
Euclidean space it is in fact a straight line.
Keeping the definition (11) for the deflection angle

with these new regions, and noting that for a quadrilateral
trapezoid in Euclidean space, the sum of interior angles is
always equal to 2π, we obtain a new deflection angle,

α̃ ¼ 2π −
X
i

ϵ̃i; ð15Þ

which exactly agrees with the definition of Arakida [62]
(in that reference the interior angles were denoted as βi.)
Equivalently, for this new choice of regions, the integration
around the curve γΓ (which replaces the curve γC) in the last
term in Eq. (12) is exactly zero, because it is computed in
the Euclidean background spacetime and γΓ is a geodesic of
the Euclidean space by construction, and therefore only the
first two terms in Eq. (12) survive, and we arrive at an
expression with exactly the same form as found in Ref. [62]
[Eq. (35) of that reference]. Therefore, it should appear at
first sight that the definition (11) also contains as particular
a case the definition for the deflection angle given by
Arakida. However, note that in the motivation for Eq. (11)
the equality between the interior angles ϵ3 and ϵ̃3 and
between ϵ4 and ϵ̃4 was crucial. Note, that we could have
written the expression for the deflection angle as the
difference between the sum of ϵ1 and ϵ2 and their tilde

versions, emphasizing in this way that it only depends on
the angles that the null geodesic connecting Swith Rmakes
with the radial curves in the curved space as compared to
the similar angles defined in the background. More
precisely, we could also have written the deflection angle
without any reference to closed regions as

α ¼ ðϵ1 − ϵ̃1Þ þ ðϵ2 − ϵ̃2Þ: ð16Þ

For the use of the Gauss-Bonnet theorem we need a closed
region. Since the deflection angle only depends on the
difference of angles formed by the actual null geodesic and
the radial geodesics in both spaces, the new curve used to
close the region must be chosen such that the angles
between the new curve and the radial directions are the
same in both curved and flat space. This can only be the
case if the new curve is chosen as the circular arc segment
as γC whose tangent vectors are the rotational Killing
vectors ∂

∂φ, and therefore are always orthogonal to the radial
geodesics in both spaces. However, this will not be the case
if instead of the curve γC we choose as the new curve γΓ (as
used by Arakida). In such a situation, the curve γΓ forms
different inner angles with the radial directions in both
spaces, and therefore the new deflection angle as given by
Eq. (15) has information concerning not only the bending
of the light ray which connects the source with the receiver
but also the newly introduced curve γΓ. Therefore, the use
of the equation (15) seems not to be well motivated. In fact,
as we mentioned in the Introduction, the expressions found
in Refs. [63] and [62] for the deflection angle at finite
distances in a Schwarzschild background do not agree even
at first order in the mass. For this example, it is easy to
check that the origin of the difference between the Ishihara
et al. expression for the deflection angle and the Arakida
expression does indeed originate in the difference between
the values of the inner angles that the curve γΓ makes with
the radial curves in both the Euclidean and the curved
spaces. More precisely, as follows from Eq. (44) of
Ref. [62] at linear order in the mass the difference between
ϵ3 and ϵ̃3

4 is

ϵ3 − ϵ̃3 ¼
m
b
sin2ðφ̂SÞ cosðφ̂SÞ: ð17Þ

The hat symbol above the angular coordinate (φ̂) is to
differentiate it from the azimuthal angular coordinate
associated to a different polar axis that we will choose
later. They are chosen such that the point of closest
approach of the light ray to the central lens is at an
azimuthal angle of φ̂ ¼ π=2. It was the choice used by
Ishihara et al. and Arakida in their respective works. A
similar expression follows for the difference of the angles

4In the Arakida notation our inner angle ϵ3 is denoted as β2,
and in particular β2 ¼ E in his notation. See Eq. (44) of Ref. [62].
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ϵ4 and the tilde version. This difference will contribute to
the deflection angle (even at linear order inm). Hence, from
the two definitions, we arrive at a difference between the
formulas for the deflection. In particular, using the defi-
nition of Ref. [63], the deflection angle at linear order in the
mass, denoted as α½63� reads [see Eq. (A.3) of Ref. [78] in
terms of the angular coordinates with a ¼ 0, or Eq. (37) of
Ref. [63] with Λ ¼ 0]

α½63� ¼
2m
b

ðcosðφ̂SÞ − cosðφ̂RÞÞ: ð18Þ

In comparison, the expression αArakida given by Arakida
[Eq. (54) of Ref. [62]] reads

αArakida ¼ α½63� þ δα; ð19Þ

with

δα ¼ −
m
b
ðsin2ðφ̂RÞ cosðφ̂RÞ − sin2ðφ̂SÞ cosðφ̂SÞÞ: ð20Þ

As anticipated, these extra terms are originated by the
relations like Eq. (17) and a similar formula for ϵ4 − ϵ̃4.
With respect to the expressions (18) and (19) some

remarks are in order. First, let us note that these differences
are more than relevant with respect to the actual observ-
ability of the finite distance corrections. Let us consider, for
example, the deflection produced by our Sun when the light
rays of a far-away source graze the surface and reach us on
Earth. For such a situation we can make the following
approximations: φ̂S ¼ 0þOðmÞ,5 φ̂R ¼ π − δφ̂, with
δφ̂ ¼ arcsinðb=roÞ ≈ b=ro ≈ 4 × 10−3, where ro is the
distance from the Sun to the Earth, and b is equal to
the radius of the Sun. Then, as proved by Ishihara et al., the
difference between the infinite distance expression and α½63�
is of the order of 10−5 arcseconds. More precisely, by doing
a Taylor expansion of Eq. (18) we obtain

α½63� ≈
4m
b

−
mδφ2

b
−
mδφ4

4b
þOðδφ5Þ: ð21Þ

Hence, the first correction to the infinite distance expression is

approximately given by mδφ2

b ≈ 10−5 arcsec, which is within
the capabilities of actual observations. Even when Arakida
did not compute the numerical correction for this example,
we can do the same exercise. The new terms contribute as

δα ≈
mδφ2

b
−
mδφ4

2b
þOðδφ5Þ: ð22Þ

Surprisingly, as the Arakida expression is obtained by the
addition of Eq. (21) and (22), we note that there exists a
cancellation between the quadratic terms in δφ, resulting in
a final expression given by

αArakida ≈
4m
b

−
3mδφ4

4b
: ð23Þ

Hence, the correction to the usual Schwarzschild expres-
sion is of the order of 10−5 μ sec, a value undetectable with
the actual technology. Let us recall that the deflection angle
is routinely measured by using the Eddington procedure on
observations of the same source at two different times:
when the Sun is present between the source and observer
and when it is not. More generally, the changes in the
angular positions of the images are usually compared with
respect to some reference objects using differential astrom-
etry [84,100]. Alternatively, observations in only one
session are made by observing the passing of the Sun
around the line of sight of radio sources [102]. A similar
procedure is used to study the deflection of light by planets
when they pass over the background star field [103].
Moreover, as we will see below, even considering rays
coming from far-away sources whose images form an
elongation angle (that is, the angle between the Sun, the
Earth and the image) of θI ¼ 45° (φ̂R ¼ 3π=4þOðmÞ), the
expression of Arakida differs with the Ishihara et al.
alternative up to as much as 1 mas (one milliarcsecond).
Therefore, the ramifications of these two formulas are not
only of academic interest, but also practical.
Second, as we will show below (Secs. II B and IV C),

Eq. (7) or its equivalent Eq. (12) yield the same results
when they are compared with other well-known expres-
sions obtained using standard post-Newtonian techniques,
even in more general situations such as the inclusion of a
possible quadrupole moment of the lens and second-order
corrections in the mass. In fact, even when Ishihara et al.
[64] studied the bending of light rays from far-away sources
[φ̂S ¼ 0þOðmÞ] due to the Sun, the expression obtained
is a particular case of a well-known result found by Shapiro
in 1967 [80] (see also Ward [104]), namely

α ¼ ð1þ γÞm
b

ð1þ cosðθIÞÞ; ð24Þ

where θI is again the elongation angle between the lens,
observer and source related to φ̂R by θI ¼ π − φ̂R þOðmÞ.6
In this expression γ is the Eddington post-Newtonian
parameter (see Fig. 4; more details will be discussed in
the following Sec. II B). The usual infinite distance expres-
sion is recovered by taking θI → 0. The expression (24) is

5More precisely as the source goes to infinity, φ̂S → −α∞=2
where α∞ should be the total deflection angle if both the source
and the receiver were at a great distance from the lens. See
Appendix B for more details between different azimuthalal
angular coordinate systems.

6See Sec. II B and Appendix B. In terms of φ̂R and the
radial coordinate of the receiver ro [related to b by b ¼
ro sinðφ̂RÞ þOðmÞ] the expression (24) reads α ¼ ð1þγÞm

ro
tanðφ̂R

2
Þ.

FINITE DISTANCE CORRECTIONS TO THE LIGHT … PHYS. REV. D 99, 124001 (2019)

124001-7



not onlywell discussed in several textbooks [83,84,105], but
it also has been continuously tested experimentally using
distant sources whose images form different elongation
angles with the Sun. These elongation angles vary from
arcsinðR⊙=roÞ (where R⊙ is the solar radius) to 180°. Even
more, these observations are used to constrain the value of
the γ factor [89,91–95], to test the equivalence principle by
observing the apparent shifts of active galactic nuclei core
positions by using our own galaxy as a lens [106], to detect
the deflection of light produced by the Earth using data from
Hipparcos [107] or to reduce geodetic very-long-baseline
interferometry data [108].
In comparison with Eq. (24), the Arakida expression

has an extra term obtained from Eq. (20) by taking
φ̂S ¼ 0þOðmÞ and φ̂R ¼ π − θI þOðmÞ given by (see
Appendix B)

δα ¼ m
b
sin2ðθIÞ cosðθIÞ ¼

m
2ro

sinð2θIÞ; ð25Þ

where in the last term we have made the replacement
b ¼ ro sinðθIÞ, where ro is the radial distance between the
observer and the lens. In Fig. 3 we plot both the Shapiro
expression (with γ ¼ 1) and the Arakida expression for
ro ¼ 1 AU, and also their difference δα as given by
Eq. (25). At elongation angles θI equal to 45° or 135°
the difference is as big as 1 mas. Let us remember that
instruments like GAIA can measure variations in angular
position of the stars with a resolution as small as 1 μas at
elongation angles which vary between θI ≈ 45° to 180°.
Even for planets like Jupiter, this 1 μas light deflection
is reached at elongation angles of 90° or at 17° for
Saturn [103,109].

We will show below how the expression (24) and also
other more general results can be successfully recovered
from the Ishihara et al. definition.
All of these issues give us confidence in the expression

defined by Ishihara et al. in Ref. [63] and given by Eq. (7)
or its equivalent versions (12) and (13).
Note that even though Eqs. (11) and (12) are equivalent

to the original result found by Ishihara et al. [Eq. (7)], they
have never been explicitly presented in the literature. In
particular, Eq. (11) has a clear geometrical meaning.7 As a
useful test, in the Appendix A we show using an explicit
example how the original version (7), or its equivalent new
finite-region versions (11) and (12) give the same result. Of
course, Eq. (7) is more easy to use, because one does not
need to compute the geodesic curvatures. Therefore, from
now on we will continue using this last expression.

B. Relation between the Ishihara et al. definition
of deflection angle at finite distance and some
known expressions in the literature using

a post-Newtonian approach

The deflection angle for a Schwarzschild metric and for a
Kottler spacetime were calculated using Eq. (7) in Ref. [63]
and using the version (15) in Ref. [62]. In particular, the
possibility of observing these finite corrections for the
bending angle for a Schwarzschild spacetime was discussed
[64,78]. As previously mentioned, the computation of
corrections at finite distances for the deflection angle has
been done by different authors under more general situations
and well discussed in textbooks for many years [Eq. (18) can
be found for example in Ref. [84]]. Recently these calcu-
lations have been performed using post-Newtonianmethods,
solving explicitly the geodesic equation in particular
spacetimes [79–87,110]. In fact, such expressions are needed
in high-precision astrometry [96–98]. Unfortunately, the
authors of Ref. [64] or Ref. [62] did not try to make a
comparison with these different results.
In this work, we show that the deflection angle which

follows from Eq. (7) is in complete agreement with known
finite distance expressions even considering second-order
effects and more general metrics than the Schwarzschild
solution. In particular, we are interested in the comparison
of the finite distance expression for the deflection angle as
computed by Richter and Matzner for a PPN metric [81].
Of course, the equivalence between the Ishihara et al.

FIG. 3. Comparison between the Shapiro and Arakida expres-
sions for the deflection angle in terms of the elongation angle
θI for an observer placed 1 AU from the Sun (γ ¼ 1). Around
θI ¼ 45° and 135° the difference can be as big as 1 mas.

7In Refs. [63,64,71,78] there is an alternative presentation for
the deflection angle α as a particular sum of three angles, which is
written in terms of two geometrical angles that γl forms with the
radial curves and a coordinate angle φRS, but as the authors
claimed, this definition seems to rely on a choice of the angular
coordinate φRS; however they showed that this definition is
equivalent to the geometrical invariant version (7). More details
about the comparison between Eq. (11) and the angular definition
in terms of the sum of three angles [63] are presented in the last
part of the Appendix A.
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definition and the well-known expressions also implies that
the Arakida definition cannot reproduce these results.
A detailed discussion of the PPN metric first requires

some review of basic facts and assumptions. Let us recall
the form of the general PPN metric that represents the
exterior of a static and axially symmetric compact body
with mass m and multipole moments Jn. For this case the
metric is described by an expression similar to the
expression given by Eq. (5) but now with the associated
metric functions Ã, B̃ and C̃ depending on the coordinates
r and ϑ:

Ãðr;ϑÞ ¼ 1þ 2Ũðr; ϑÞ þ 2βU2ðr; ϑÞ;

B̃ðr;ϑÞ ¼ 1 − 2γŨðr;ϑÞ þ 3

2
νŨ2ðr; ϑÞ;

C̃ðr;ϑÞ ¼ Bðr; ϑÞr2; ð26Þ

where the potential Ũ reads

Ũðr;ϑÞ ¼ −
m
r

�
1 −

X∞
n¼2

�
R
r

�
n
JnPnðcosðϑÞÞ

�
; ð27Þ

where PnðxÞ are the Legendre polynomials. Here β, γ and ν
are three parameters which take the value 1 in Einstein’s
general relativity theory. In that case, if Jn ¼ 0, this metric
represents the second-order version of the Schwarzschild
metric. Let us also assume that in addition to the mass m,
the only nonvanishing multipole is the quadrupole
moment, J2.
Of course, this metric is not spherically symmetric.

However if we restrict our study to the propagation of
light rays in the plane defined by ϑ ¼ π=2, the PPN metric
to this plane has an SO(2) symmetry and the metric
functions are given by

AðrÞ ¼ Ãðr; π=2Þ ¼ 1þ 2UðrÞ þ 2βU2ðrÞ; ð28Þ

BðrÞ ¼ B̃ðr; π=2Þ ¼ 1 − 2γUðrÞ þ 3

2
νU2ðrÞ; ð29Þ

CðrÞ ¼ C̃ðr; π=2Þ ¼ BðrÞr2; ð30Þ

with

UðrÞ ¼ −
m
r

�
1þ R2J2

2r2

�
: ð31Þ

Let a gravitational compact object be represented in the
weak gravitational field region outside the object by the
previous metric, and let us assume a lens L, receiver R and a
source S configuration as shown in Fig. 4. For the moment,
we also assume that the source is far away from the lens
and we choose a new azimuthal angular coordinate φ such
that φS ¼ 0, referring to Fig. 4. More details about the

relationship between this angular coordinate and the
previously defined φ̂ will be given in Sec. IV B 2 (see
also Appendix B). However, the receiver is assumed to be
at a finite distance from the lens. In this case, the standard
operational way to define the deflection angle is through
the quantity

δθ ¼ θI − θ0; ð32Þ

where θI is the angle between the image of the source as
seen by the receiver and the receiver-lens axis, and θ0 is
the value that this angle should take if the lens were absent
[81–84]. If we were to assume that the receiver R is at
infinite distance from the lens, then δθ should agree with
the asymptotic deflection angle α∞. However, due to the
finite distance location of the receiver there exists a
disagreement between these two angles in general. Of
course, δθ is not by itself directly observable if one uses
a single observation; it must be measured using the
Eddington procedure as explained above through two
different observations at different times. We will use this
quantity later to introduce another formula which takes into
account the angular separation of the image of the source
with respect to a reference object which is not necessarily
the lens. Other observable quantities that can be computed
from the deflection angle are the optical scalars known as
shear and convergence (see for example Refs. [44,46,48]
and references therein). However, in this discussion we
will concentrate on the Eddington procedure and the
associated differential astrometry technique (see for exam-
ple Refs. [84,100,105,111] and references therein for more
details). Different authors using different methods have
computed the deflection angle δθ in terms of the parameters
of the compact object (lens) and the observable angle θI .
These expressions can be found in two separate ways: in

FIG. 4. A light ray travels from a distant source S to the receiver
R through a region where a lens L is present. The angle θI is
defined by the angle between the lens, the receiver and the
angular position of the image S0. The angle θ0 is the angular
position of the source in the absence of the lens as it would be
seen by the receiver if the source were considered to be far away.
The difference between these two angles is defined to be δθ.
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terms of the impact parameter (which at finite distance is
not an observable) or in terms of the radial coordinate ro
between the receiver and the lens. If we consider only the
computation of δθ at first order in m and in J2, the relation
between the impact parameter and the radial coordinate ro
is simply b ¼ ro sinðφRÞ which of course, must be cor-
rected at second order.
Before continuing, let us remark on the notation: even

when δθ is a commonly used notation for the deflection
angle at finite distances, we will continue denoting δθ as
αS∞ (we use the suffix S∞ in α as a reminder that the source
is assumed to be placed at infinite distance from the lens).
On the other hand in the case of infinite distances (for both,
the receiver and the source) the deflection angle will be
denoted as α∞.
More than three decades ago it was shown by Richter

and Matzner in Ref. [81] that the deflection angle for the
previous configuration of receiver, lens and source in a
gravitational field represented by a PPN metric given by
Eqs. (28), (29), and (30), can be written in terms of the
observable angle θI and the (nonobservable) impact param-
eter b as

δθ≡ αS∞ ¼ αð1ÞS∞
þ αð2ÞS∞

; ð33Þ

where αð1ÞS∞
and αð2ÞS∞

are the linear and quadratic terms in the
mass of the deflection angle:

αð1ÞS∞
ðb;ϑIÞ¼

m
b
ð1þ γÞð1þ cosðθIÞÞ

×

�
1þJ2R2

2b2
ð2þ cosðθIÞ− cos2ðθIÞÞ

�
; ð34Þ

αð2ÞS∞
ðb;ϑIÞ¼

m2

b2

�
2−βþ2γþ3

4
ν

�
ðπ−θIþsinðθIÞcosðθIÞÞ:

ð35Þ

In fact, a more general metric which admits rotation
of the gravitational object and more general energy-
momentum distributions has been studied [81], but for
our purposes it is sufficient to restrict the study to the
considered case.
Equations (34) and (35) can also be rewritten in terms of

the radial coordinate ro of the receiver which is related to b
(see Ref. [81]) by

1

b
¼ 1

ro sinðϑIÞ
− ð1þ γÞ m

r2o sinðϑIÞ
þOðm2; mJ2Þ: ð36Þ

In terms of ro, the relations (34) and (35) read [81]

αð1ÞS∞
ðro; ϑIÞ ¼

m
ro

ð1þ γÞ
�ð1þ cosðθIÞÞ

sinðϑIÞ

þ J2R2

2r2osin3ðϑIÞ
ð2þ 3 cosðθIÞ − cos3ðθIÞÞ

�
;

ð37Þ

αð2ÞS∞
ðro;ϑIÞ¼

m2

r2o

��
2−βþ2γþ3

4
ν

�
π−θIþsinðθIÞcosðθIÞ

sin2ðϑIÞ

−ð1þγÞ21þcosðϑIÞ
sinðϑIÞ

�
: ð38Þ

A natural question arises: can these finite distance
relations for the bending angle, (34) and (35) or their
equivalents (37) and (38), be recovered from the proposal
given by the formula (7) of Ref. [63] or the other
nonequivalent alternative given by Eq. (15) of Ref. [62]?
Wewill show in Sec. IV C that the answer to this question is
affirmative for the version given by the Ishihara et al.
definition, giving us much more confidence in this geo-
metrical way of computing the deflection angle at finite
distances. Moreover, this nontrivial result will follow as a
particular case of the study of more general astrophysical
situations, where the gravitational objects described by
the PPN metric given by Eqs. (28), (29) and (30) are now
surrounded by a plasma medium. That is, we will obtain
expressions which can be used for a variety of spacetimes
into the framework of gravitational metric theories which
contains as a particular case the Einstein general relativity
theory. Moreover, the considered PPN metric not only
represent the gravitational field of a central spherical body
but also it allows a body with a nontrivial quadrupole
moment that can be immersed in a plasma environment.
Of course, in that case, the light rays do not follow null
geodesics of the PPN metric; however their dynamics is
such that there exists an associated two-dimensional optical
metric goptij where the spatial orbits of the light rays in
the physical metric can also be considered to be spatial
geodesics of goptij allowing us to use the Gibbons-Werner
techniques.
In particular, we will show for the first time that the

relations (34) and (35) or (37) and (38) can be recovered
and successfully derived from the simple and geometrical
relation (7) and, more importantly, they can be generalized
to more general scenarios taking into account the presence
of a homogeneous plasma environment. As a by-product
we will also introduce for the first time new useful formulas
for the separation angle between two sources. However,
let us first review the behavior of light rays in the presence
of plasma and how they can be studied using the Gauss-
Bonnet theorem.
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III. THE OPTICAL METRIC AND THE
GAUSS-BONNET THEOREM

IN A PLASMA ENVIRONMENT

A. The optical metric associated to a plasma medium
in an external gravitational field

Let us consider a static spacetime ðM; gαβÞ filled with a
cold nonmagnetized plasma described by the refractive
index n [30,31],

n2ðx;ωðxÞÞ ¼ 1 −
ω2
eðxÞ

ω2ðxÞ ; ð39Þ

where ωðxÞ is the photon frequency measured by a static
observer while ωeðxÞ is the electron plasma frequency,

ω2
eðxÞ ¼

4πe2

me
NðxÞ ¼ KeNðxÞ; ð40Þ

where e and me are the charge of the electron and its mass,
respectively, and NðxÞ is the number density of electrons in
the plasma.
We are interested in the deflection of the light path when

rays travel through a gravitational field in a plasma-filled
environment. The dynamics of the light rays are usually
described through the Hamiltonian [19,30],

Hðx; pÞ ¼ 1

2
ðgαβðxÞpαpβ þ ω2

eðxÞÞ; ð41Þ

where light rays are solutions of Hamilton’s equation

lα ¼ dxα

ds̃
¼ ∂H

∂pα
;

dpα

ds̃
¼ −

∂H
∂xα ; ð42Þ

with the constraint

Hðx; pÞ ¼ 0; ð43Þ

and s̃ is a curve parameter along the light curves.
From Eq. (43) it can be shown that in general light rays

do not follow timelike or null geodesics with respect to gαβ.
Instead, they describe timelike curves with the exception of
a homogeneous plasma medium where light rays follow
timelike geodesics of gαβ. Note that only light rays with
ωðxÞ > ωeðxÞ propagate through the plasma.
On the other hand, for the case of static spacetimes, even

considering dispersive media one can use a Fermat-like
principle [101], where the spatial projections of the light
rays on the slices t ¼ const which solve Hamilton’s
equations are also spacelike geodesics of the following
Riemannian optical metric:

goptij ¼ −
n2

g00
gij: ð44Þ

It was precisely this last fact that recently allowed us to
study the deflection of light in plasma environments using
the Gauss-Bonnet theorem [44].
From now on, we will restrict our attention to static and

axially symmetric metrics surrounded by a cold nonmag-
netized plasma, that is, the physical spacetime is assumed
to be described by a metric of the form

ds2 ¼ −Ãðr; ϑÞdt2 þ B̃ðr; ϑÞdr2
þ C̃ðr; ϑÞðΘðr; θÞdϑ2 þ sin2ϑdφ2Þ; ð45Þ

and with a dependence of the plasma frequency on the
coordinates r and ϑ, ωe ¼ ωeðr; ϑÞ. Note that we are
neglecting the self-gravitation of the plasma. We also
assume asymptotic flatness and that the plasma medium
is static with respect to observers following integral curves
of the timelike Killing vector field ξα ¼ ð ∂∂tÞα. Due to the
gravitational redshift, the frequency of a photon at a given
radial position r is given by

ωðr; ϑÞ ¼ ω∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ãðr;ϑÞ

q ; ð46Þ

where ω∞ is the photon frequency measured by an observer
at infinity. Now we will restrict to the study of light
propagation in the plane defined by ϑ ¼ π=2. If the
spacetime under consideration is spherically symmetric
this restriction does not constitute any loss of generality.
However, for the axially symmetric case we should keep in
mind that our results will only be valid for light propagation
in this plane. Restricted to ϑ ¼ π=2, all variables only have
a radial dependence and the metric functions will be
written without a tilde in a similar way as was done in
Eqs. (28), (29), (30).
As we are interested in the application of the Gauss-

Bonnet theorem to the determination of the bending
angle, following our previous work [44], we will make
use of the associated two-dimensional Riemannian mani-
fold ðMopt; goptij Þ with the SOð2Þ optical metric (44)
(restricted to the plane ϑ ¼ π=2),

dσ2 ¼ goptij dx
idxj ¼ n2ðrÞ

AðrÞ ðBðrÞdr
2 þ CðrÞdφ2Þ: ð47Þ

This metric is conformally related to the induced metric
on the spatial section t ¼ const, ϑ ¼ π=2, of the physical
spacetime, and therefore it preserves the angles formed
between two curves at a given point.
The geodesic motion follows from the Lagrangian,

L ¼ 1

2

�
n2ðrÞ
AðrÞ

�
BðrÞ

�
dr
dσ

�
2

þ CðrÞ
�
dφ
dσ

�
2
��

; ð48Þ

with the constraint
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n2ðrÞ
AðrÞ

�
BðrÞ

�
dr
dσ

�
2

þ CðrÞ
�
dφ
dσ

�
2
�
¼ 1: ð49Þ

In the case of a homogeneous plasma (ωe ¼ const; see
below), it follows from Eqs. (48) and (49), that the orbital
equation is given by [44],

�
dr
dφ

�
2

¼ CðrÞ
BðrÞ

�
CðrÞn2ðrÞ
AðrÞn20b2

− 1

�
; ð50Þ

where n20 ¼ 1 − ω2
e

ω2
oAðroÞ, and ωo is the frequency of the

light ray measured by the receiver at ro [related to ω∞

by ω∞ ¼ ωo

ffiffiffiffiffiffiffiffiffiffiffi
AðroÞ

p
].

Defining u ¼ 1
r, the above equation reduces to,

�
du
dφ

�
2

¼ u4CðuÞ
BðuÞ

�
CðuÞn2ðuÞ

n20ðu0Þb2AðuÞ
− 1

�
: ð51Þ

In terms of the curvature tensor associated with the
optical metric, the Gaussian curvature K can be computed
from

K ¼ RrφrφðgoptÞ
detðgoptÞ : ð52Þ

B. About the measurement of light deflection
propagating into a plasma medium

A standard procedure to measure the bending in light
rays which propagate in a region with a lens present
consists in observing how the relative angle Θ between
two far-away sources (one of them chosen as a reference
Sr) changes when our Sun (or a different star or a planet)
pass near the line of sight of the source S [111]. Therefore,
in order to study how these relative angular positions
depend on the locations of the observer, lens, source and the
plasma, a general formula for this angle is needed. As the
light rays in plasma media follow in general timelike curves
we need an expression for the relative angle for these kind
of curves. The general expression for causal curves was
recently derived by Lebedev and Lake in Refs. [112,113].
Their result is the following. Let Ua be the 4-velocity of an
observer and K, W be two arbitrary future causal vectors
with K̄, W̄ being their spatial projections into the local
frame of the observer. Then, the angle between K̄, W̄ at
the position of the observer, which is a measurable quantity,
is given by

cosðΘÞ¼ KαWαþðUαKαÞðUβWβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KαKαþðUαKαÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WαWαþðUαWαÞ2

p : ð53Þ

It is important to note that Eq. (53) is an explicitly gauge-
invariant quantity.

As a corollary of the above expression we now prove the
following useful result.
Theorem 1 Let γ and γ0 be two light rays with

4-momenta pα and p0α propagating not necessarily at the
same frequency into a cold plasma medium in a static
and asymptotically flat spherically symmetric spacetime
of the form (5). Then, at the position of an observer with
4-velocity Ua the angle (53) between the two rays takes
the form,

cosðΘÞ ¼ 1

nðpÞnðp0Þ
�
1þ pαp0α

ðpβUβÞðp0
βU

βÞ
�
; ð54Þ

where nðpÞ and nðp0Þ are the respective refractive indices
which can be written in terms of the associated frequencies
as observed at the position of the observer as n2ðpðωÞÞ ¼
1 − ω2

eðrÞ=ω2ðrÞ and n2ðp0ðω0ÞÞ ¼ 1 − ω2
eðrÞ=ω02ðrÞ.

Even though this is a very simple formula, we have no
knowledge of a previous presentation of it. We note that this
expression reduces to the well-known pure gravity expres-
sion when nðpÞ ¼ nðp0Þ ¼ 1. (See for example Ref. [84]).
Note also that this expression can be used to compute the
change in the relative position angle between the two
images due to pure gravitational and plasma lensing effects,
and additionally to aberration effects depending on the
relative velocity between the observer and the lens (codified
in the factors pβUβ and p0

βU
β which depend on Ua).

However, even when the last effects can be easily intro-
duced in the general formulas, for simplicity we will restrict
here to the case that the observer is considered to be static
with respect to the lens.
Proof: From theHamiltonian given byEq. (41) it follows

that the tangent vectors to the light rays are parallel to the
4-momenta and therefore we can compute their relative
angle using Eq. (53) with the vectors K and W identified
with pα and p0α. On the other hand, for two photons with
4-momenta pα and p0α propagating into a plasma medium
the respective refractive indices read [26,101],

n2ðpÞ ¼ 1þ pαpα

ðpβUβÞ2 ; n2ðp0Þ ¼ 1þ p0
αp0α

ðp0
βU

βÞ2 ; ð55Þ

which can be reexpressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pαpα þ ðpαUαÞ2

q
¼ nðpÞðpαUαÞ; ð56Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
βp

0β þ ðp0
βU

βÞ2
q

¼ nðp0Þðp0
βU

βÞ: ð57Þ

By replacing the last expressions into Eq. (53) the result
follows.
For a static plasma medium one can see from the

Hamilton equations that,
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pα ¼ ωðxiÞðUα þ nðxiÞêαÞ ð58Þ

where ωðxjÞ ¼ −pαUα, n2ðxiÞ ¼ 1 − w2
eðxiÞ

w2ðxiÞ and êα is a

spacelike vector orthogonal to Uα and tangent to the
three-dimensional hypersurfaces Σt defined by t ¼ const.
They are normalized to 1 with respect to the metric (5). Uα

is the 4-velocity of the observers orthogonal to the slices Σt,
that is Uα ¼ tαffiffiffiffiffiffiffiffiffiffiffiffiffi

−gðtα;tαÞ
p , with tα ¼ ð1; 0; 0; 0Þ. We have a

similar expression for p0α, with respective frequency ω0ðxiÞ.
In order to construct from Eq. (54) a relationship that can

be easily tested by observations and also that takes into
account the presence of the plasma we will follow the
procedure given by Poisson and Will in Ref. [105] (see also
Ref. [84]). As we are interested in the first-order change
of the relative angle Θ between two given sources (one of
them used as a reference source Sref ) in the presence of a
lens as compared with the relative angle Θ0 without its
presence, we must take into account that the spatial
direction of the photon 4-momentum of each light ray will
change compared with its unperturbed flat value.
Let us consider a photon with 4-momentum pα starting

at the position of a source S, and another photon with
4-momentum p0α starting from a reference source Sref , both
of them reaching the observer at R (see Fig. 5). We consider
that both sources are far away from the lens, which is in
general the more common situation. We also assume that at
linear order the metric is written in a Cartesian and isotropic
coordinate system as gαβ ¼ ηαβ þ ϵhαβ with the only non-
vanishing components of hαβ given by hαβ ¼ ðh00; hrrδijÞ,
where ϵ is a bookkeeping parameter which measures the
deviation of the Minkowski spacetime. The unperturbed
spatial directions of the light rays are given by k̂i for the
source S and by k̂ir for the reference source (which are unit
vectors with respect to the Euclidean metric). Under these

assumptions, at first order in ϵ the spatial vector êα ¼
ð0; êiÞ associated to the 4-momentum pα of the light ray
coming from S and the spatial vector ê0α ¼ ð0; ê0iÞ asso-
ciated to the 4-momentum p0 of the ray coming from Sref
will be given by,

êi ¼
�
1 −

ϵ

2
hrr

�
k̂i − αSb̂

i
S þOðϵ2Þ; ð59Þ

ê0i ¼
�
1 −

ϵ

2
hrr

�
k̂ir − αrb̂

i
r þOðϵ2Þ; ð60Þ

where we have taken into account that αS and αr are OðϵÞ
quantities representing the deviation angles associated to S

and Sr respectively and b̂iS ¼ b⃗iS
bS

and b̂ir ¼ b⃗ir
br

are the unit
vectors (with respect to the Euclidean metric) in the
directions of the respective impact parameters vectors.
Now we compute the angle Θ using the formula (54) at

first order in the perturbation of the flat background. After a
simple computation we arrive at the following expression:

cosðΘÞ ¼ k̂ · k̂r − αSðk̂r · b̂SÞ − αrðk̂ · b̂rÞ þOðϵ2Þ; ð61Þ

where a “·” represents the scalar product with respect to the
background Euclidean metric. Note that this expression has
formally the same form as Eq. 10.74 in Ref. [105] even
though in that reference it was deduced from the particular
case of Eq. (54) when nðpÞ ¼ nðp0Þ ¼ 1. In contrast, in our
more general setting the light rays can follow timelike
curves and the deflection angles are allowed to take into
account the presence of the plasma.
Following Ref. [105], it is straightforward to see that one

can rewrite Eq. (61) as

cosðΘÞ ¼ cosðΘ0Þ − αS

�
cosΦ0

r − cosΦ0
S cosΘ0

sinΦ0
S

�

− αr

�
cosΦ0

S − cosΦ0
r cosΘ0

sinΦ0
r

�
; ð62Þ

where the angles Φ0
S and Φ0

r are the unperturbed values of
the angles between the observer, lens and source, and
between the observer, lens and reference source respec-
tively. Note that, despite the scenario shown in Fig. 5, the
receiver, source, lens and reference source are not assumed
to be necessarily in the same plane. For small departures
from the background path we define ΔΘ ¼ Θ − Θ0 ≪ 1,
and expand the left-hand side of Eq. (62) as,

cosΘ ≈ cosΘ0 − sinΘ0ΔΘ: ð63Þ

Therefore, by replacing it in Eq. (62), we obtain

FIG. 5. R, L, S and Sref denote the observer, lens, source and
reference source positions. Solid lines indicate the real paths of
photons while the dotted ones indicate the photon trajectory in the
background. All angular quantities as well as the lens-observer
position ro are observable quantities.
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ΔΘ ¼ αS

�
cosΦ0

r − cosΦ0
S cosΘ0

sinΦ0
S sinΘ0

�

þ αr

�
cosΦ0

S − cosΦ0
r cosΘ0

sinΦ0
r sinΘ0

�
: ð64Þ

Even more, as we are considering first-order corrections,
we can replace the angles Φ0

S, Φ0
r, and Θ0 by the respective

observable angular positions θIS and θIr, andΘ (see Fig. 6),
namely

ΔΘ ¼ αS

�
cos θIr − cos θIS cosΘ

sin θIS sinΘ

�

þ αr

�
cos θIS − cos θIr cosΘ

sin θIr sinΘ

�
; ð65Þ

obtaining in this way a relationship between observable
quantities that allows us to test our expressions for the
deflection angle of different plasma density profiles and
gravitational fields.
It is worthwhile to note that if the reference source is

chosen as the lens, that is, if the direction of the reference
source and the lens coincide (θIr ¼ 0 and Θ ¼ θIS),
Eq. (65) reduces to

ΔΘ ¼ αS: ð66Þ

As astronomical angular measurements are performed on
the celestial sphere, it is convenient to express Eq. (65) in
terms of angles projected on the plane of the sky. Then,
Eq. (65) can be expressed in term of the projected angles
A and B as,

ΔΘ ¼ αS cosðBÞ þ αr cosðAÞ; ð67Þ

where A is the angle between Sref − S and Sref − L, and B is
the one between the Sref − S and S − L directions projected
on the celestial sphere. The relation (67) follows from the
well-known spherical trigonometric identities [105]:

cosðθIrÞ¼ cosðθISÞcosðΘÞþ sinðθISÞsinðΘÞcosðBÞ; ð68Þ

cosðθISÞ¼ cosðθIrÞcosðΘÞþ sinðθIrÞsinðΘÞcosðAÞ: ð69Þ

In particular, if the lens, observer, and the two sources are in
the same plane, with both sources on the same side of the
lens as seen by the observer, then B ¼ 0 and A ¼ π, and the
variation in the separation angle reduces to

ΔΘ ¼ αS − αr; ð70Þ

a result that also follows from a simple inspection of Fig. 6.
Relations like Eq. (67) with αS and αr given by the Shapiro
formula [Eq. (24)], or the more general case given by the
Richter and Matzner expression (34) are of common use in
astronomical observations of the deflection angle, not only
produced by the Sun but also by big planets like Jupiter
[109]. The most simple situation follows from the use of
Eq. (70) for a pure monopole gravitational field in which
the deflection angles αS and αr are given by the Shapiro
formula, Eq. (24). In such a situation, Eq. (70) gives

ΔΘ ¼ ð1þ γÞ 2m
ro

sinðθIS−θIr
2

Þ
sin θIS

2
sin θIr

2

: ð71Þ

This expression was also recently used by Turyshev [100]
to estimate the deflection angles caused by the monopole
aspect of the gravitational fields of different celestial bodies
in the Solar System and their observability in future space
interferometry missions by using absolute and differential
astrometry measurements. In that reference, a similar
analysis was made by the author by using the Richter
and Matzner formula and a generalization of it in order to
also estimate the observability of the quadrupole and
octupole gravitational-field contributions to the shift in
the angular positions of far-away objects.
As we have shown here, the formal expressions (67),

(65) and (70) can also be used for a more general situation
where light rays are propagating in a plasma medium, with
of course a corresponding expression for αS and αr that
generalizes the Shapiro expression in those environments.
In the following sections we will give expressions for the
deflection angles derived from the use of the Gauss-Bonnet
theorem that not only allow to recover the Shapiro or
Richter and Matzner formulas as particular cases, but also
generalize them to more general astrophysical situations
where a plasma medium is present.

FIG. 6. From the position of the receiver different observable
angles can be measured. Θ is the angle between Sref and S, θIS is
the angle between S, R and L, and θIr is the angle between Sref ,
R and L.
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IV. FINITE DISTANCE CORRECTIONS FOR THE
LIGHT DEFLECTION IN A HOMOGENEOUS

PLASMA MEDIUM: PPN METRIC

Let us consider a gravitational lens surrounded by a
homogeneous plasma whose electron number density
reads,

Nðr; ϑÞ ¼ N0 ¼ const: ð72Þ

A. PPN metric

As an initial example, we study the light propagation in
the equatorial plane of an astrophysical object surrounded
by a homogeneous plasma medium and whose gravitational
field is described by Eqs. (28), (29) and (30). In the
following we assume that J2 ≪ 1 such that we will also
neglect terms of order OðJ2 ×m2Þ.
Due to the gravitational redshift and considering that

both the source and the observer are at a finite distance from
the lens, the refractive index reads

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
eAðrÞ

ω2
oAðroÞ

s
; ð73Þ

where ro is the radial position of the observer from the lens.
The associated optical metric at the considered order
follows from using the relation (47) and reads,

dσ2 ¼ Ω2ðdr2 þ r2dφ2Þ; ð74Þ

with

Ω2 ¼ ω2
o − ω2

e

ω2
o

þ m
ω2
or3r3o

½ðγ þ 1Þω2
or3oðJ2R2 þ 2r2Þ

− ω2
eðJ2R2ðγr3o þ r3Þ þ 2r2r2oðγro þ rÞÞ�

þ m2

2ω2
or2r2o

½ω2
or2oð8γ − 4β þ 3νþ 8Þ

þ ω2
eð4ðβ − 2Þr2 − 8γrro − 3νr2oÞ�

þOðm3; m2 × J2Þ: ð75Þ

In order to implement the method described in Sec. II for
calculating the bending angle at finite distances, first we
need to solve the equation (51). As we are interested in the
second-order correction inm for the bending angle we only
need to solve Eq. (51) at first order, which explicitly reads,�
du
dφ

�
2

¼ 1

b2
− u2 þmu

b2
ð2þ J2R2u2Þ

�
γ þ 1

1 − ω2
e=ω2

o

�
;

ð76Þ

with the asymptotic condition,

lim
φ→0

uðφÞ ¼ 0: ð77Þ

Then, assuming a solution of the form,

uðφÞ ¼ 1

b
½sinðφÞ þmu1ðφÞ�; ð78Þ

we obtain at first order in m,

uðφÞ ¼ sinðφÞ
b

þmð1 − cosðφÞÞ
2b4

�
γ þ 1

1 − ω2
e=ω2

o

�
× ð2b2 þ J2R2ð1 − cosðφÞÞÞ þOðm2Þ: ð79Þ

For completeness, in Eq. (79) we have written explicitly
terms of order Oðm × J2Þ. From this expression it is
worthwhile to emphasize that since the Gaussian curvature
is order OðmÞ [see Eq. (80) below], it follows that terms of
the form Oðm × J2Þ in u will contribute to the deflection
angle with corrections of order Oðm2 × J2Þ which are of
higher order than what we consider here. Therefore, they
are not necessary in the computation of the bending angle.
In order to compute the bending angle using Eq. (7) we

must integrate the Gaussian curvature K over ∞
R □

∞
S . For

this, we need to compute K using the relation (52) for the
optical metric (74) at second order inm neglecting terms of
order Oðm2 × J2Þ. The result reads

K¼mð2r2 þ 9J2R2Þ
2r5

ω2
oðγω2

e − ðγþ 1Þω2
oÞ

ðω2
o −ω2

eÞ2

þ m2ω2
o

ror4ðω2
o −ω2

eÞ3
froω4

o½4β− 2þ 4γþ 6γ2 − 3ν�

− 2ω2
oω

2
e½ð2þ γÞrþ 2roðβ− 2þ γþ 3γ2Þ− 3roν�

þω4
e½2γrþ 6γ2ro − 3νro�g þOðm3;m2 × J2Þ: ð80Þ

The 2-form KdS reads

KdS¼
�
−
mð9J2R2þ2r2Þðω2

oðγþ1Þ− γω2
eÞ

2r4ðω2
o−ω2

oÞ

þ m2

r3roðω2
o−ω2

eÞ2
½ω4

oroð4ðβþ γ2−1Þ−3νÞ

−2ω2
oω

2
eðroð2βþ4γ2−3ν−4Þþ rÞ

þ roω4
eð4γ2−3νÞ�

�
drdφþOðm3;m2×J2Þ: ð81Þ

Finally, after doing the corresponding integral (7), the
deflection angle is

α ¼ −
Z

φR

φS

Z
∞

rγl

KdS ¼ αð1Þ þ αð2Þ; ð82Þ

where
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rγl ¼
1

uðφÞ

¼ b
sinðφÞ −

1 − cosðφÞ
sin2ðφÞ

�
γ þ 1

1 − ω2
e=ω2

o

�
m

þOðm2; m × J2Þ; ð83Þ

and where

αð1Þ ¼ m
b
ðcosðφSÞ − cosðφRÞÞ

�
γ þ 1

1 − ω2
e=ω2

o

�

×

�
1þ J2R2

4b2
ð4 − cosð2φSÞ − cosðφR − φSÞ

− cosð2φRÞ − cosðφS þ φRÞÞ
�
; ð84Þ

is the linear term in m and the second-order correction is

αð2Þ ¼ m2

4b2ðω2
o − ω2

eÞ2
�
ðφS − φRÞðω2

o − ω2
eÞðω2

oð4β − 8 − 8γ − 3νÞ þ 3νω2
eÞ þ 4ðω2

oð1þ γÞ − ω2
eγÞ2ðsinðφSÞ − sinðφRÞÞ

þ 1

2
½ω4

oð4ðβ − 1þ γ2Þ − 3νÞ þ ω4
eð4γ2 − 3νÞ − 2ω2

oω
2
eð2β þ 4γ2 − 3νÞ�ðsinð2φRÞ − sinð2φSÞÞ

þ 8ω2
oω

2
e cosðφSÞðsinðφRÞ − sinðφSÞÞ

�
: ð85Þ

In Eq. (85) we have used the approximation ro ≈
b= sinðφRÞ which can be safely used at the considered
order.
Expressions (84) and (85) generalize previous known

results in several ways. For the bending angle in a plasma
environment these expressions take into account finite
distance corrections, as well as second-order effects in
the mass and linear effects in the quadrupole moment. We
are not aware of any previous derivations of these general
expressions.
Now, we will study some special cases of the above

expressions which help to test their validity and to give new
relevant formulas for describing the lensing effects of the
astrophysical objects under consideration.

B. Special cases of Eqs. (84) and (85)

1. Infinite distance case

Let us consider the limit where the source and the
observer are far away from the lens. In such a situation we
may take

φR → π þ αð1Þ∞ and φS → 0: ð86Þ

In principle, we should proceed as follows: first, as αð1Þ∞ is
already OðmÞ we could compute it from Eq. (84) by taking
φR ¼ π and φS ¼ 0. After that, as a second step, we should

replace this obtained value for αð1Þ∞ in Eq. (86) in order to use
again Eq. (84) to obtain extraOðm2Þ corrections that should
be added to αð2Þ∞ . However in practice it is not necessary,
because we have the following expansion in powers ofm for
the kind of trigonometric functions that appear in αð1Þ

[Eq. (84)]: cosðnðxþ αð1Þ∞ ÞÞ ¼ cosðnxÞ − n sinðnxÞαð1Þ∞ þ
Oðm2Þ where n is an integer number. In particular in our

case we have cosðφRÞ ¼ cosðπ þ αð1Þ∞ Þ ¼ −1þOðm2Þ.
Therefore, the produced corrections will be Oðm3Þ, which
are not taken into account in our approximation. From the
previous considerations, we see that we can replace φR ¼ π
and φS ¼ 0 in Eqs. (84) and (85), such that the deflection
angle for an astrophysical object described in the weak
gravitational field for the PPN metric which takes into
account the monopole and quadrupole gravitational
moments is given by Eqs. (28), (29) and (30) reduces to

α ¼ 2mðb2 þ J2R2Þ
b3

�
γ þ 1

1 − ω2
e=ω2

o

�

þ πm2

b2

�
2 − β þ 2γ

1 − ω2
e=ω2

o
þ 3

4
ν

�
: ð87Þ

Despite the simplicity of this expression, it generalizes
many recent results. We have no knowledge of a previous
presentation of this general formula.
In particular, in the absence of plasma (ωe ¼ 0 or

equivalently ωe=ωo ≪ 1) the previous equation reduces to,

α ¼ 2ðγ þ 1Þm
b
þ π

�
2 − β þ 2γ þ 3

4
ν

�
m2

b2
; ð88Þ

which coincides with the expression found in Refs. [48,114].
On the other hand, even considering the presence of

the plasma, if the object under study is a spherical mass
(J2 ¼ 0) and the gravitational field is described by
Einstein’s general relativity theory (γ ¼ ν ¼ β ¼ 1), then
Eq. (87) reduces to

α ¼ 2m
b

�
1þ 1

1 − ω2
e=ω2

o

�
þ 3π

4

�
1þ 4

1 − ω2
e=ω2

o

�
m2

b2
:

ð89Þ
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The first term of the previous expression agrees with the
formula obtained for the first time by Bisnovatyi-Kogan
and Tsupko in Refs. [25,26] and including the second term
coincides with the result recently found by us in Ref. [44].

2. Schwarzschild metric at finite distances

The finite distance contributions for the bending angle in
the presence of a homogeneous plasma in a Schwarzschild
background follows by setting γ ¼ β ¼ ν ¼ 1 and J2 ¼ 0
in Eqs. (84) and (85):

αð1Þ ¼ m
b

�
1þ 1

1 − ω2
e=ω2

o

�
ðcosðφSÞ − cosðφRÞÞ; ð90Þ

αð2Þ ¼ m2

8b2ðω2
o − ω2

eÞ2
½6ðφR − φSÞð5ω4

o − 6ω2
oω

2
e þ ω4

eÞ

þ 16ω2
oω

2
e cosðφSÞ sinðφRÞ − ðω2

o þ ω2
eÞ2 sinð2φSÞ

þ 8ðω2
e − 2ω2

oÞ2ðsinðφSÞ − sinðφRÞÞ
þ ðω4

o − 6ω2
oω

2
e þ ω4

eÞ sinð2φRÞ�: ð91Þ

These expressions generalize the relations describing
light deflection in a vacuum Schwarzschild spacetime
recently found by Ishihara et al. in Ref. [63] at first order
in the mass and extended to second order by Ono et al.
in Ref. [78]. In particular, in the absence of plasma or
where the effect of the plasma environment is negligible
(ωe=ωo ≪ 1) these expressions reduce to the following
vacuum values:

αð1Þvac ¼ 2m
b

ðcosðφSÞ − cosðφRÞÞ; ð92Þ

αð2Þvac ¼ m2

8b2
½30ðφR − φSÞ þ sinð2φRÞ − sinð2φSÞ

þ 32ðsinðφSÞ − sinðφRÞÞ�: ð93Þ

The expression (92) is in complete agreement with the
first-order computation of the deflection angle derived in
Ref. [63]. The analogous expression of Eq. (93) has been
computed in the Appendix of Ref. [78]. However, note that
even when there is perfect agreement between our first-
order expression (92) and the corresponding formula given
by the authors in Ref. [63], it seems at first sight that there is
an inconsistency between our second-order correction as
given by Eq. (93) and the expression from the Appendix of
Ref. [78] which for the convenience of the reader and in
order to differentiate from our expression (93) we repro-

duce here under the alternative name of α̂ð2Þvac and also with
a ^ on their angular variable φ:

α̂ð2Þvac ¼ m2

8b2
½30ðφ̂R − φ̂SÞ þ sinð2φ̂RÞ − sinð2φ̂SÞ�: ð94Þ

It seems that an apparent discrepancy between Eqs. (94)
and (93) appears, because of the missing terms in
Eq. (94),

δ ¼ 32ðsinðφSÞ − sinðφRÞÞ; ð95Þ

which are however present in Eq. (93). The difference is
only apparent because the angular coordinate φ̂ used by the
authors of Ref. [78] is related to our φ by

φ̂ ¼ φ −
α∞
2

≈ φ −
2m
b

þOðm2Þ: ð96Þ

The transformation (96) follows from the fact that we have
chosen the polar axis such that the orbit followed by a light
ray which reaches the asymptotic region r → ∞ (or,
equivalently u → 0) has the following angular coordinate
behavior in this limit: φ → 0 or φ → π þ α∞ [as can be
seen from Eq. (79) with γ ¼ 1 and ωe ¼ 0]. On the other
hand, the authors of Ref. [78] chose the polar axis such that
the closest approach of the light ray to the lens occurs when
their angular coordinate φ̂ takes the value φ̂ ¼ π=2,
resulting in a corresponding orbit that is symmetric with
respect to the radial direction defined by φ̂ ¼ π=2. As the
total deflection angle at infinite distance is α∞, the
asymptotic points of the orbit occur when φ̂ → −α∞=2
(the position of an asymptotic source) or when
φ̂ → π þ α∞=2 (the position of an asymptotic receiver).
Note that the difference between φ and φ̂ is OðmÞ, and
therefore αð2Þ as given by Eq. (93) preserves its form in
terms of φ̂. However, it also follows from the relation (96)
that at first order in m we have

cosðφÞ ≈ cosðφ̂Þ − 2m
b

sin φ̂þOðm2Þ: ð97Þ

Hence, if we insert Eq. (97) into Eq. (92), it can be seen that
new quadratic terms inm appear as functions of the variable
φ̂ which exactly cancel the apparent discrepant terms δ

present in αð2Þvac. Therefore, when our expressions for the
deflection angle are written in terms of the angular
coordinate φ̂ of Ono et al. [78] the relation (94) is
recovered.

C. Deflection angle in terms of the observable
θI and comparison with previous particular

known expressions

Let us now compare our finite distance results and the
well-known expressions from the literature [81,82]. In
order to do that we will assume that the source is at infinite
distance from the lens. In this case the deflection angles αð1Þ

and αð2Þ take the following limits:
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αð1ÞS∞
ðb;φRÞ ≔ lim

φS→0
αð1Þ

¼ m
b
ð1 − cosðφRÞÞ

�
γ þ 1

1 − ω2
e=ω2

o

��
1þ J2R2

4b2
ð3 − 2 cosðφRÞ − cosð2φRÞÞ

�
; ð98Þ

αð2ÞS∞
ðb;φRÞ ≔ lim

φS→0
αð2Þ

¼ m2

4b2ðω2
o − ω2

eÞ2
�
φRðω2

e − ω2
oÞðω2

oð4β − 8 − 8γ − 3νÞ þ 3νω2
eÞ − 4 sinðφRÞðω2

oð1þ γÞ − ω2
eγÞ2

þ 1

2
½ω4

oð4ðβ − 1þ γ2Þ − 3νÞ þ ω4
eð4γ2 − 3νÞ − 2ω2

oω
2
eð2β þ 4γ2 − 3νÞ� sinð2φRÞ þ 8ω2

oω
2
e sinðφRÞ

�
: ð99Þ

As seen from Fig. 4, the following relation holds
between the angular position of the receiver φR and the
angles θI and δθ:

φR ¼ π − θI þ δθ

¼ π − θI þ αð1ÞS∞
þOðm2Þ: ð100Þ

Finally, by inserting this relation into Eqs. (98) and (99) we
obtain

αð1ÞS∞
ðb;θIÞ¼

m
b
ð1þ cosðθIÞÞ

�
γþ 1

1−ω2
e=ω2

o

�

×

�
1þJ2R2

2b2
ð2þ cosðθIÞ−cos2ðθIÞÞ

�
; ð101Þ

αð2ÞS∞
ðb; θIÞ ¼

m2

8b2ðω2
o − ω2

eÞ2
½16ω2

oω
2
e sinðθIÞ

þ ðω2
o − ω2

eÞð2ðπ − θIÞ þ sinð2θIÞÞ
× ðω2

oð−4β þ 8γ þ 3νþ 8Þ
− 3νω2

e þ 8 sinð2θIÞω2
oω

2
eÞ�: ð102Þ

Equations (101) and (102) are the generalization of the
relations (34) and (35) to the case of a PPN spacetime
surrounded by a homogeneous plasma.
Alternatively, if we take into account the relation

between the impact parameter b and the coordinate ro
[which follows from Eqs. (79) and (100) and generalizes
the relation (36)],

1

b
¼ 1

ro sinðθIÞ
−

m
r2o sinðθIÞ

�
γ þ 1

1 − ω2
e=ω2

o

�
þOðm × J2; m2Þ; ð103Þ

then Eqs. (101) and (102) can be rewritten as

αð1ÞS∞
ðro;θIÞ¼

m
ro

1þ cosðθIÞ
sinðθIÞ

�
γþ 1

1−ω2
e=ω2

o

�

×

�
1þJ2R2

2r2o

2þ cosðθIÞ− cos2ðθIÞ
sin2ðϑIÞ

�
; ð104Þ

αð2ÞS∞
ðro;θIÞ¼

m2

r2o

�
1

8ðω2
o−ω2

eÞ2sin2ðθIÞ
½16ω2

oω
2
e sinðθIÞ

þðω2
o−ω2

eÞð2ðπ−θIÞþ sinð2θIÞÞ
× ðω2

oð−4βþ8γþ3νþ8Þ−3νω2
e

þ8sinð2θIÞω2
oω

2
eÞ�

−
1þ cosðθIÞ
sinðθIÞ

�
γþ 1

1−ω2
e=ω2

o

�
2
�
: ð105Þ

In particular, it is easy to check that if ωe ¼ 0, or
alternatively ωe=ω0 ≪ 1 then Eqs. (101) and (102) or their
alternative versions (104) and (105) reduce to the known
expressions (34) and (35) by Richter and Matzner [81]. The
advantage of Eqs. (104) and (105) is that they are written in
terms of physical observables.
It is very nice to see by starting with an elegant,

geometrical and compact expression for the deflection
angle as given by Eq. (7) well-known formulas like
Eqs. (34) and (35) can be recovered. Moreover, we have
not only confirmed for the first time the success of the
Gauss-Bonnet formula (7) to recover known results of the
deflection angle at finite distances (giving us confidence in
that definition), but also we have been able to generalize
these results to more general astrophysical environments.
In particular, from Eq. (104) we see that the correction
produced by a homogeneous plasma in the deflection
angle even considering finite distances, is given by a global
factor γ þ 1

1−ω2
e=ω2

o
. This peculiar characteristic however

does not remain if we consider the second-order terms,
in which case the plasma contribution is much more
complicated. In particular, neglecting the quadrupole
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moment, and considering the validity of the Einstein
equations we obtain that at linear order in the mass, the
deflection angle reduces to

αð1ÞS∞
ðro; θIÞ ¼

m
ro

1þ cosðθIÞ
sinðθIÞ

�
1þ 1

1 − ω2
e=ω2

o

�
: ð106Þ

This expression can be compared with a similar relation
obtained for the first time by Bisnovatyi-Kogan and Tsupko
[25,26] which reads

αð1Þ ¼ 2m
b

�
1þ 1

1 − ω2
e=ω2

o

�
: ð107Þ

The formula (107) was obtained under the more common
assumption of infinite distances. The advantage of
Eq. (106), is that it is written in terms of the observable
quantity θI and the coordinate distance ro.

V. INHOMOGENEOUS PLASMA MEDIUM

In this section, we focus on finite distance corrections
to the deflection angle for light rays propagating in a
nonuniform plasma. In this case, the steps that lead to the
final expression for the deflection angle are basically the
same as those that we applied in our previous article [44],
and therefore we skip the intermediate computations and
only present the essential steps.
Let us consider an asymptotically flat and spherically

symmetric gravitational lens surrounded by an inhomo-
geneous plasma whose electron number density NðrÞ is a
decreasing function of the radial coordinate r, and such that
its radial derivative N0ðrÞ is also decreasing and smaller
than NðrÞ. In isotropic coordinates, the components of the
metric in the physical spacetime are codified in the
following expressions:

AðrÞ ¼ 1 − μh00ðrÞ; BðrÞ ¼ 1þ ϵhrrðrÞ;
CðrÞ ¼ r2BðrÞ: ð108Þ

The refractive index reads,

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
eð1 − μh00ðrÞÞ

ω2
∞

s
; ð109Þ

where as before, ω∞ is related to the frequency detected by
a receiver by ω∞ ¼ ωo

ffiffiffiffiffiffiffiffiffiffiffi
AðroÞ

p
.

The associated optical metric is given by,

dσ2 ¼
�ð1þ ϵhrrÞðω2

∞ − ω2
e þ μω2

eh00Þ
ω2
∞ð1 − μh00Þ

�
ðdr2 þ r2dφ2Þ:

ð110Þ

In general, the change in the deflection angle due to the
presence of the refractive index is smaller than the main

part due to the purely gravitational effect. We will assume
as in Refs. [26,44] that the deflection angle is small and
therefore as a first approximation the path followed by the
light ray can be taken as the straight line geodesic of the flat
Euclidean space. We also neglect all higher-order terms of
the form OðN02; μN0; μN00; ϵN02; ϵN00Þ.
Working at linear order in μ and ϵ, and following the

same steps explained in detail in Ref. [44], we obtain for
KdS (expressed in terms of the frequency ωo detected by
the receiver)

KdS ¼ 1

2

�
KeðrN0Þ0
ω2
o − ω2

e
−
ω2
oðrh000Þ0
ω2
o − ω2

e
μ − ðrhrr0Þ0ϵ

�
drdφ:

ð111Þ

By inserting this expression into Eq. (7), we find that the
deflection angle in this approximation is given by

α ≈ − lim
R→∞

Z Z
Dr

KdS

¼ −
Z

φR

φS

Z
∞

b= sinφ

1

2

�
KeðrN0Þ0
ω2
o − ω2

e
−
ω2
oðrh000Þ0
ω2
o − ω2

e
μ − ðrhrr0Þ0ϵ

�
× drdφ: ð112Þ

Using integration by parts in the first two terms of the
radial integral and neglecting terms of orderOðN02; h00N0Þ,
we obtain the final expression:

α ≈
Z

φR

φS

1

2

�
KeðrN0Þ
ω2
o −ω2

e
−
ω2
oðrh000Þ
ω2
o −ω2

e
μ− ðrhrr0Þϵ

�				
r¼b= sinφ

dφ:

ð113Þ

This equation gives us a general formula to compute the
deflection angle in a spherically symmetric spacetime when
an inhomogeneous plasma medium is present taking into
account finite distance corrections. Note that this expression
can also be derived with the technique used by Bisnovatyi-
Kogan and Tsupko in Ref. [26], where they found the
deflection angle considering infinite distances by solving
the Hamilton equations perturbatively for a not-necessarily
spherically symmetric metric of the form gαβ ¼ ηαβ þ hαβ.
By assuming the condition ωe=ωo ≪ 1 and motivated

by the decomposition presented by Bisnovatyi-Kogan and
Tsupko in Ref. [26] for the deflection angle, Eq. (113) can
be decomposed into terms of the form

α ¼ α1 þ α2 þ α3 þ α4; ð114Þ

where,

α1 ¼ −
1

2

Z
φR

φS

rφðh0rrðrφÞϵþ h000ðrφÞμÞdφ; ð115Þ

FINITE DISTANCE CORRECTIONS TO THE LIGHT … PHYS. REV. D 99, 124001 (2019)

124001-19



α2 ¼ −
μ

2ω2
o

Z
φR

φS

rφh000ðrφÞω2
eðrφÞdφ; ð116Þ

α3 ¼
Ke

2ω2
o

Z
φR

φS

rφN0ðrφÞdφ; ð117Þ

α4 ¼
Ke

2ω4
o

Z
φR

φS

rφN0ðrφÞω2
eðrφÞdφ; ð118Þ

and rφ ¼ b= sinðφÞ. These expressions are the finite dis-
tance counterparts of the expressions found in Ref. [26].
In particular the first term α1 is the pure gravitational
deflection angle, the second term α2 is a correction to the
first due to the presence of the plasma, the third term is the
pure refractive angle (present even without a gravitational
field), and the last term is a correction to the third term. As
explained by Bisnovatyi-Kogan and Tsupko in Ref. [26] in
general astrophysical situations the first and the third terms
in Eq. (114) make the main contribution to the deflection
angle, where in general α3 < α1.

A. Diverging lensing due solely to
an inhomogeneous plasma medium

An interesting example arises when we consider the limit
in which gravity does not affect the deflection at all,
m → 0. In this case, spacetime is Minkowski and the
perturbed components of the metric hij vanish, which
causes Eqs. (115) and (116) to vanish. This leaves only
α3 and α4 to contribute to the deflection angle. These
contributions are in the opposite sense to the gravitational
deflection from α1 and α2, and therefore the lensing effect
due to inhomogeneous plasma in the absence of gravitation
is diverging, rather than the usual converging behavior of a
gravitational lens [43].
Lensing due to plasma is relevant to the observation of

radio sources through the intervening interstellar medium
(ISM), which can contain inhomogeneities in the electron
density. These density perturbations can act as diverging
lenses, causing frequency-dependent dimming of radio
sources observed through the ISM. A number of astro-
physical phenomena are associated with this type of
lensing, including extreme scattering events [115–118]
as well as pulsar scintillation [119,120]. Furthermore, it
has recently been suggested that plasma lensing may play a
role in the mechanism responsible for generating fast radio
bursts [121].
In terms of the derivation presented here, the inhomo-

geneous plasma case is particularly interesting due to the
fact that it depends only on the Minkowski metric. In this
case, the effect of gravitation is totally removed from the
problem, which ultimately illustrates the elegant utility of
the Gauss-Bonnet method when coupled with a Riemann
optical metric representation.

B. Schwarzschild spacetime with plasma density
profile of the form N(r)=Nor−h

Now we will apply this general result to the case of
Schwarzschild spacetime with the density profile

NðrÞ ¼ Nor−h; h > 0: ð119Þ
For this, we make the following identification:

ϵ ¼ μ ¼ m; h00 ¼ hrr ¼
2

r
: ð120Þ

For completeness we write the expression for each indi-
vidual term [Eqs. (115), (116), (117), and (118)] but, as
discussed, the main contribution to the deflection angle is
given by α1 and α3. Explicitly, these terms read

α1 ¼
2m
b

ðcosðφSÞ − cosðφRÞÞ; ð121Þ

α2 ¼
mKeNo

ω2
obhþ1

�
cosðφSÞ2F1

�
1

2
;−

h
2
;
3

2
; cos2ðφSÞ

�

− cosðφRÞ2F1

�
1

2
;−

h
2
;
3

2
; cos2ðφRÞ

��
; ð122Þ

α3 ¼ −
KeNoh
2ω2

obh

�
cosðφSÞ2F1

�
1

2
;
1 − h
2

;
3

2
; cos2ðφSÞ

�

− cosðφRÞ2F1

�
1

2
;
1 − h
2

;
3

2
; cos2ðφRÞ

��
; ð123Þ

α4 ¼ −
K2

eN2
oh

2ω4
ob2h

�
cosðφSÞ2F1

�
1

2
;
1 − 2h

2
;
3

2
; cos2ðφSÞ

�

− cosðφRÞ2F1

�
1

2
;
1 − 2h

2
;
3

2
; cos2ðφRÞ

��
; ð124Þ

where 2F1ða; b; c; xÞ is the ordinary hypergeometric
function [122].
These analytic and closed expressions generalize the

known equivalent formulas for the infinite distance case.
In particular we can also recover the expressions for the
infinite distance case by taking the limits of the previous
expressions in the limit of φS → 0 and φR → π þOðmÞ. In
this case, they reduce to

a∞1 ¼ 4m
b

; ð125Þ

α∞2 ¼
ffiffiffi
π

p
mKeNoΓðh2 þ 1Þ
bhþ1ω2

oΓðhþ3
2
Þ ; ð126Þ

α∞3 ¼ −
ffiffiffi
π

p
KeNoΓðhþ1

2
Þ

bhω2
oΓðh2Þ

; ð127Þ

α∞4 ¼ −
ffiffiffi
π

p
K2

eN2
ob−2hΓðhþ 1

2
Þ

2ω4
oΓðhÞ

; ð128Þ
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where ΓðxÞ is the gamma function. Equation (127) was
found for the first time by Giampieri [123] and rederived by
Bisnovatyi-Kogan and Tsupko in Ref. [26]. As an appli-
cation, we will study in the next subsection a particular
charge density profile which describes the plasma in our
Solar System.

1. A particular plasma model for solar corona

Let us consider the following electronic density profile
particular model for the solar plasma neglecting latitude
variations [14,123–125]:

NðrÞ ¼
�
C2

�
R⊙

r

�
2

þ C6

�
R⊙

r

�
6

þ C16

�
R⊙

r

�
16
�
cm−3;

ð129Þ

with

C2 ¼ 3.44 × 105; ð130Þ

C6 ¼ 1.55 × 108; ð131Þ

C16 ¼ 2.99 × 108; ð132Þ

and r ≥ R⊙. The value of the coefficients Ci have been
empirically determined in the past. We will only take into
account the main contribution of the plasma, that is, α3.
Considering the case in which the source is far away from
the lens and taking φR ¼ π − θI , the main contribution of
the plasma is given by (see also Appendix C),

α3 ¼ −
1

ð2πÞ2
�
1 Hz
f

�
2
�
C̃2

2

�
R⊙

ro

�
2 π − θI þ cosðθIÞ sinðθIÞ

sin2ðθIÞ
þ C̃6

64

�
R⊙

ro

�
6

ð60ðπ − θIÞ þ 45 sinð2θIÞ − 9 sinð4θIÞ

þ sinð6θIÞÞ ×
1

sin6ðθIÞ
þ C̃16

458752

�
R⊙

ro

�
16

ð720720ðπ − θIÞ þ 640640 sinð2θIÞ − 224224 sinð4θIÞ þ 81536 sinð6θIÞ

− 25480 sinð8θIÞ þ 6272 sinð10θIÞ − 1120 sinð12θIÞ þ 128 sinð14θIÞ − 7 sinð16θIÞÞ ×
1

sin16ðθIÞ
�
; ð133Þ

where

C̃2 ¼ ð5.64 × 104Þ2 C2 ¼ 1.09 × 1015; ð134Þ

C̃6 ¼ ð5.64 × 104Þ2 C6 ¼ 4.93 × 1017; ð135Þ

C̃16 ¼ ð5.64 × 104Þ2 C16 ¼ 9.51 × 1017: ð136Þ

In this way, the main plasma contribution given by
Eq. (133) is only expressed in terms of observable
quantities: the elongation angle θI and the Sun-Earth
distance ro. It is easy to check that if we consider
observations from the Earth at small impact parameters
of the order of a few solar radii (which implies that ΘI ≈ 0
and the infinite distance expression is a good approxima-
tion), the formula (133) reduces to the expression given
by Giampieri [123] (see also Ref. [124]) and recently

rederived by Turyshev and Toth in Ref. [125] using the full
Maxwell equations. More precisely, in such an approxi-
mation, Eq. (133) reduces to the following expression
which agrees with Eq. (185) of Ref. [125]. (See also
Eq. (123) of Ref. [126] which is the published version of
Ref. [125] and also Refs. [127,128] by the same authors
where the same expression appears but with a factor of 2
difference due to their treatment of the plasma as two one-
way contributions—on the way into the Solar System and
on the way out of the Solar System—and therefore they
considered a one-way deflection angle. In particular in
Ref. [127] the authors also described the phase evolution
of a plane wave propagating in the vicinity of a massive
body in the presence of plasma.) In order to make the
comparison more simple we have rewritten α3 in terms
of the wavelength λ ¼ c=f and the impact parameter
b ¼ ro sin θI,

α3∞ ¼ −
�
1 Hz
f

�
2
�
C̃2

8π

�
R⊙

b

�
2

þ 15C̃6

64π

�
R⊙

b

�
6

þ 6435C̃16

16384π

�
R⊙

b

�
16
�

¼ −
�

λ

1 μm

�
2 1

ð2.99792458 × 1014Þ2
�
C̃2

8π

�
R⊙

b

�
2

þ 15C̃6

64π

�
R⊙

b

�
6

þ 6435C̃16

16384π

�
R⊙

b

�
16
�

¼ −
�

λ

1 μm

�
2
�
4.82 × 10−16

�
R⊙

b

�
2

þ 4.09 × 10−13
�
R⊙

b

�
6

þ 1.32 × 10−12
�
R⊙

b

�
16
�
; ð137Þ
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Coming back to the expression (133), in Fig. 7 we plot its
contribution (with opposite sign) as well as the deflection
angle purely due to gravity α1 for a range of different
frequencies. Depending on the frequency band, the plasma
contribution can be of the order of 1 μas even for large
elongation angles, and of the order of 1 mas for frequencies
in the S-band up to elongation angles as large as 25°. Of
course, at smaller frequencies the contribution is more
significant. Finally, let us remark that we can also use the
same expression (133) to compute the deflection angle of a
reference source different to our Sun if it is contained in the
ecliptic plane (in order that the electronic charge density be
a good model), and therefore to use the relations discussed
in Sec. III B [in particular Eq. (70)] to compute the
separation angle between the sources and its variation at
different times depending on the relative position between
these sources and our Sun as seen from the Earth in their
orbit around it.

VI. FINAL REMARKS

In conclusion, our calculations have achieved three main
goals. First, by carefully constructing a finite quadrilateral
region to apply the Gibbons-Werner method, we have
resolved an apparent contradiction in the literature when it
is applied to static and spherically symmetric asymptoti-
cally flat spacetimes. Second, our results were derived in
terms of observable quantities that facilitate comparison
with previous, well-studied cases in the literature. Third, by
making use of the Gibbons-Werner approach of coupling a
Riemann optical metric to the Gauss-Bonnet method, we
have expanded on well-known cases in the literature, for

example, by including the effects of the PPN expansion and
a possible quadrupole moment into the case of a homo-
geneous plasma in a gravitational field, as well as including
the corrections arising from the consideration of the finite
distance between the source, lens and observer. This work
demonstrates the utility and elegance of the Gauss-Bonnet
theorem and the Gibbons-Werner method and their rel-
evance for all forms of lensing, both gravitational (con-
verging) and plasma (diverging).
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APPENDIX A: EXPLICIT COMPARISON
BETWEEN EQS. (7), (11) AND (12)

In this appendix we will use a particular example to
illustrate how the alternative expressions for the deflection
angle given by Eqs. (7), (11) and (12) give the same results.
Let us focus on a Schwarzschild metric written in isotropic
coordinates:

ds2 ¼ −
�
1 − m

2r

1þ m
2r

�
2

dt2 þ
�
1þ m

2r

�
4

× ½dr2 þ r2ðdϑ2 þ sin2ðϑÞdφ2Þ�: ðA1Þ

Let us focus on the plane defined by ϑ ¼ π=2. We shall
calculate the deflection angle to second-order precision in
the mass m. However, for the moment we will write the
exact relationships. The associated optical metric is
given by

dσ2 ¼ ð1þ m
2rÞ6

ð1 − m
2rÞ2

ðdr2 þ r2dφ2Þ; ðA2Þ

and the associated Gaussian curvature reads

K ¼ −
128mr3ð4r2 − 2rmþm2Þ

ð2rþmÞ8 : ðA3Þ

The surface element is

dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgoptij Þ

q
drdφ ¼ ð2rþmÞ6

16r3ð2r −mÞ2 drdφ: ðA4Þ

Therefore at second order in the mass we obtain

KdS ¼
�
−
2m
r2

þm2

r3

�
drdφþOðm3Þ; ðA5Þ

FIG. 7. Plasma contribution to the deflection angle (with
opposite sign) as a function of the elongation angle ΘI for three
different frequencies in different bands. For completeness the
pure gravity contribution given by the Shapiro expression with
the Eddington parameter γ ¼ 1 is also shown. The zoomed-in
region shows the values of the deflection angles in the neighbor-
hood of the Sun’s surface.
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which can be rewritten in terms of the variable u ¼ 1=r as

KdS ¼ ð2m −m2uÞdudφþOðm3Þ: ðA6Þ

Now, we will use Eq. (12) to compute the deflection angle.
To do that, we must integrate over a region D̃r bounded by
the radial curves γR, γS, the geodesic γ̃l and the circular arc
segment γC. γR and γS are given by φ ¼ φR and φ ¼ φS,
respectively. In terms of the coordinate u, γC is defined by
u ¼ 1=rC ¼ const, and finally the spatial geodesic γ̃l
describing the orbit of a light ray between S and R is
given by

ul ¼ sinðφÞ
b

þ 2mð1 − cosðφÞÞ
b2

þ 15m2 cosðφÞðtanðφÞ − φÞ
4b3

þOðm3Þ: ðA7Þ

This expression for ul follows by solving Eq. (51) at
second order in the mass,

�
dul
dφ

�
2

¼ 1

b2
− u2l þ

4mul
b2

þ 15m2u2l
2b2

; ðA8Þ

with the asymptotic condition,

lim
φ→0

ulðφÞ ¼ 0: ðA9Þ

Note however, that in order to compute the integral of the
Gaussian curvature we only need to consider the first two
terms in Eq. (A7) because KdS is already order m. Hence
we obtain for the first term of Eq. (12)

−
ZZ

D̃r

KdS¼
Z

φR

φS

Z sinðφÞ
b þ2mð1−cosðφÞÞ

b2

1=rC

ð2m−m2uÞdudφþOðm3Þ

¼ 2m
b

�
cosðφSÞ− cosðφRÞþ

b
rC

ðφS−φRÞ
�

þ m2

8b2

�
30ðφR−φSÞþ sinð2φRÞ− sinð2φSÞþ32ðsinðφSÞ− sinðφRÞÞþ

4b2

r2C
ðφR−φSÞ

�
þOðm3Þ: ðA10Þ

We must also compute the other two terms of Eq. (12).
The last term is computed in the Euclidean metric and it is
simply given by Eq. (9). In order to compute the second
term we first need to compute the geodesic curvature of γ̃C
defined by r ¼ rC ¼ const. The exact value of this curva-
ture in the optical metric (A2) is given by

κ̃γ̃C ¼ 4rC½4rCðrC − 2mÞ þm2�
ð2rC þmÞ4 ðA11Þ

and therefore we obtain for the second term of Eq. (12)

−
Z
γ̃CðS→RÞ

κ̃dσ̃ ¼
Z

φS

φR

κ̃γ̃C

ffiffiffiffiffiffiffi
goptφφ

q
dφ

¼
Z

φS

φR

�
1 −

2

rC
þ m2

2r2C

�
dφþOðm3Þ

¼ φS − φR þ 2m
rC

ðφR − φSÞ

þ m2

2r2C
ðφR − φSÞ þOðm3Þ: ðA12Þ

Taking cognizance of Eqs. (9), (A10) and (A12), and
inserting these expressions into the formula (12) we obtain

α ¼ 2m
b

½cosðφSÞ − cosðφRÞ�

þ m2

8b2
½30ðφR − φSÞ þ sinð2φRÞ − sinð2φSÞ

þ 32ðsinðφSÞ − sinðφRÞÞ� þOðm3Þ; ðA13Þ

which agrees with our previous expression given by
Eqs. (92) and (93) obtained directly using Eq. (7).
Now we will repeat the computation, but using the

expression given by Eq. (11). To do that we must compute
the sum of angles in the region Dr of the Euclidean space,
and also in the region D̃r of the optical space.
In the Euclidean space, it is easy to see that the sum of

the interior angles isX
i

ϵi ¼ 2π þ φR − φS: ðA14Þ

Instead, for the region D̃r in the optical metric, we haveX
i

ϵ̃i ¼ π þ ϵ̃1 þ ϵ̃2; ðA15Þ

where ϵ̃1 and ϵ̃2 are the angles formed by the curve γ̃l and
the radial curves γ̃R and γ̃S respectively. As we wish to
compute the deflection angle to second order in the mass,
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we need to use the expression for the orbital equation which
describes γ̃l with all of the terms that appear in Eq. (A7).
The angle ϵ̃1 can be computed from the relation (see

Fig. 2)

tan ϵ̃1 ¼ −

" ffiffiffiffiffiffiffi
goptφφ

q
ffiffiffiffiffiffiffi
goptrr

p dφ
dr

#					
γ̃lðφRÞ

¼ −
�
r
dφ
dr

�				
γ̃lðφRÞ

¼ uðφRÞ
dφ
du

				
φ¼φR

; ðA16Þ

and similarly, ϵ̃2 ¼ π − χ̃2 where χ̃2 is the supplementary
angle to ϵ̃2 which satisfies

tan χ̃2 ¼ −

" ffiffiffiffiffiffiffi
goptφφ

q
ffiffiffiffiffiffiffi
goptrr

p dφ
dr

#					
γ̃lðφSÞ

¼ −
�
r
dφ
dr

�				
γ̃lðφSÞ

¼ uðφSÞ
dφ
du

				
φ¼φS

: ðA17Þ

Using Eq. (A7), we obtain that

tan ϵ̃1 ¼ uðφRÞ
dφ
du

				
φ¼φR

¼ tanðφRÞ −
2m
b

1 − cosðφRÞ
cos2ðφRÞ

þ m2

8b2
15ðsinð2φRÞ − 2φRÞ cosðφRÞ − 16 sinð2φRÞ þ 32 sinðφRÞ

cos3ðφRÞ
:

ðA18Þ

Hence, to the considered order we obtain

ϵ̃1 ¼ φR −
2m
b

ð1 − cosðφRÞÞ

−
m2

8b2
ð30ϕR þ sinð2φRÞ − 32 sinðφRÞÞ þOðm3Þ:

ðA19Þ

Repeating for χ̃2, which is obtained from Eq. (A17) we find

χ̃2 ¼ φS −
2m
b

ð1 − cosðφSÞÞ −
m2

8b2
ð30ϕS þ sinð2φSÞ

− 32 sinðφSÞÞ þOðm3Þ: ðA20Þ

Therefore, we arrive at

X
i

ϵ̃i ¼ 2π þ ϵ̃1 − χ̃2

¼ 2π þ φR − φS þ
2m
b

ðcosðφRÞ − cosðφSÞÞ

þ m2

8b2
½30ðφS − φRÞ þ sinð2φSÞ − sinð2φRÞ

þ 32ðsinðφRÞ − sinðφSÞÞ�: ðA21Þ

Finally, by inserting Eqs. (A14) and (A21) into the angular
definition for the deflection angle [given by Eq. (11)], we
recover the expression (A13).
As a final comment let us note that Ishihara et al. also

expressed the deflection angle in terms of two angles ΨS
and ΨR and the coordinate angle φRS ¼ φR − φS. Their
expression reads [63]

α ¼ ΨR −ΨS þ φRS: ðA22Þ

On the other hand, the inner angles ϵ̃1 and ϵ̃2 used in this
work are related to the angles ΨS and ΨR by

ϵ̃1 ¼ π −ΨR; ðA23Þ

ϵ̃2 ¼ ΨS: ðA24Þ

Then, taking into account the relations (A14) and (A15), it
is easy to see that the definition (11) which was based on
the sum of the inner angles of finite quadrilateral regions
agrees with the expression Eq. (A22) (which does not refer
to any closed region).

APPENDIX B: RELATIONSHIP BETWEEN
DIFFERENT ANGULAR COORDINATES

AND THE ELONGATION ANGLE

In this appendix we give a general discussion of the
expressions for the deflection angle, the orbit equation and
the relation with the elongation angle θI when one uses
different azimuthal angular coordinates systems (with the
restriction that all of them define the same rotational Killing
vector and therefore they can only differ by a constant δ).
Consider Fig. 8, which is basically the same figure as

Fig. 2 but with the difference that now we have introduced
two different angular coordinates systems with respective
polar axes Aaxis and δaxis. These coordinates are named φ
and φδ respectively. As it can be seen from Fig. 8, they are
related by

φ ¼ φδ þ δ: ðB1Þ

Let us assume that the source is far away from the lens
and the observer. Then, each of these azimuthal angular
coordinates can be identified by the angle φS that the light
ray connecting S with R takes in this limit. We will denote
this angle by Δ, that is limS→∞φδS ¼ Δ, where the limit is
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taken along the light curve connecting the source with the
receiver. For example, the azimuthal angular coordinate
φ̂ used by Ishihara et al. and also by Arakida is such that
the closest approach of the light ray to the lens is at
φ̂min ¼ π=2, or equivalently, because of the symmetry of
the light ray trajectory along the radial direction defined
by φ̂min we can codify the same information by taking
Δ ¼ −α∞=2. Another natural possibility is considered in
the main body of the text where we take a new angular
variable such that for a far-away source limS→∞φS ¼ 0.
We wish to write expressions for the deflection and

elongation angles that remain valid in any of the azimuthal
angular coordinates defined by different Δ. A very easy
way to do that is to start by choosing a particular Aaxis polar
axis where the corresponding angular coordinate φ is such
that limS→∞φS ¼ 0. Therefore, as we said before, any other
polar axis δaxis can be identified by the angle Δ (see Fig. 9
which is basically the same graphic as in Fig. 8 but
“rotated” in such a way that now the polar axis Aaxis is
plotted as “horizontal”). Note also that, by construction the
δ shift between these azimuthal angular coordinates is
simply given by δ ¼ −Δ, and as we know the expressions
for the orbit (in isotropic coordinates), for the deflection
angle and for the elongation angle in the coordinates
associated to the polar axis Aaxis, we can directly write
expressions for the same quantities in the other coordinate
systems related by Eq. (B1).
Let us start with the elongation angle θI. It is given

in the φ coordinates of Fig. 9 (see also Fig. 4) by
θI ¼ π − φR þ δθ, and therefore in terms of the azimuthal
coordinate φδ it is given by

θI ¼ π − ðφδR − ΔÞ þ δθ: ðB2Þ

In particular, if the polar axis δaxis is chosen such that
Δ ¼ −α∞=2 (the Ishihara et al. and Arakida choice) we
have the following result:

ΘI ¼ π − φ̂R −
α∞
2

þ δθ

zfflfflfflffl}|fflfflfflffl{OðmÞ

¼ π − φ̂R þOðmÞ; ðB3Þ

a relation that is used by us in Sec. II in order to relate the
expression for the deflection angle computed by these
authors with the elongation angle. In a similar way, we can
proceed with the orbit equation and the deflection angle. In
particular, for a Schwarzschild spacetime written in iso-
tropic coordinates the orbit equation at linear order in the
mass is given by the first two terms of Eq. (A7), and
therefore in any other choice for the azimuthal coordinate
we have that u is given by (keeping all of the other
coordinates the same)

ulðφδÞ ¼
sinðφδ − ΔÞ

b
þ 2mð1 − cosðφδ − ΔÞÞ

b2
þOðm2Þ:

ðB4Þ

Similarly, as we know the expression for the deflection
angle in the coordinates associated to Aaxis [Eq. (A13)], we
can compute the deflection angle in any other associated
angular coordinate system (for simplicity we continue
writing our expressions for far-away sources, namely
φS ¼ 0 and φδS ¼ Δ):

α ¼ 2m
b

½1 − cosðφδR − ΔÞ�

þ m2

8b2
½30ðφδR − ΔÞ þ sinð2ðφδR − ΔÞÞ

− 32ðsinðφδR − ΔÞÞ� þOðm3Þ: ðB5Þ

FIG. 8. Relation between two arbitrary azimuthal angular
coordinates in terms of the angular separation δ between the
respective polar axis.

FIG. 9. A particular choice for the φ coordinate such that for a
far-away source S, φS → 0. Any other azimuthal angular coor-
dinate ϕδ such that φδS → Δ for a far-away source is related to φ
by δ ¼ −Δ.
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This expression is valid for any Δ, but in the case of
Ishihara et al. the φ̂ coordinate was chosen such that
Δ ¼ −α∞=2, a quantity alreadyOðmÞ and therefore, in that
situation the previous expression for the deflection angle
must be reexpanded as we explained in Sec. IV B 2.
Of course, even though we obtained all of these

expressions in a very easy way from the known expressions
in the Aaxis related coordinates, they can also be explicitly
obtained from the orbit equation in isotropic coordinates
and the definition of the deflection angle. Namely, we
directly solve Eq. (A8) with the asymptotic condition

lim
φδ→Δ

uðφδÞ ¼ 0: ðB6Þ

To do that, we choose the ansatz

uðφδÞ ¼
sinðφδ − ΔÞ

b
þ 2mu1ðφδÞ

b
þOðm2Þ; ðB7Þ

where the first term described the unperturbed flat orbit in
this coordinate system. From Eq. (A8) we obtain that at first
order in m, u1ðφδÞ must satisfy the following differential
equation:

b cosðϕδ − ΔÞ du1
dϕδ

þ sinðϕδ − ΔÞðbu1 − 1Þ ¼ 0: ðB8Þ

The general solution of this equation is given by

u1ðφδÞ ¼
1

b
þ C cosðφδ − ΔÞ; ðB9Þ

where C is an integration constant that is fixed by requiring
the asymptotic condition (B6) (resulting in C ¼ −1=b).
Therefore at linear order in m the orbit equation reads

uðφδÞ ¼
sinðφδ − ΔÞ

b
þ 2mð1 − cosðφδ − ΔÞÞ

b2
þOðm2Þ;

ðB10Þ

which agrees with the expression obtained before. Using
this expression for the orbit and repeating the same
procedure as in Eq. (A10) of Appendix A we obtain the
following expression for the deflection angle:

α¼2m
b
½cosðφδS−ΔÞ−cosðφδR−ΔÞ�

þ m2

8b2
½30ðφδR−φδSÞþsinð2ðφδR−ΔÞÞ−sinð2ðφδS−ΔÞÞ

þ32ðsinðφδS−ΔÞ−sinðφδR−ΔÞÞ�þOðm3Þ; ðB11Þ

which for a far-away source ϕδS ¼ Δ agrees with the
expression (B16).
Finally, let us write the deflection angle in terms of θI .

From Eqs. (B5) and (B2) it follows that at linear order inm,
α is given as expected by the Shapiro-Ward formula (24)
(with γ ¼ 1). In order to compute the deflection angle from
Eq. (B5) at second order in θI we must take into account
that

δθ ¼ αð1ÞS∞
þOðm2Þ ¼ 2m

b
½1þ cosðθIÞ� þOðm2Þ: ðB12Þ

Therefore by making the replacement

φδR − Δ ¼ π − θI þ δθ; ðB13Þ

in Eq. (B5) and taking into account that

cosðφδR − ΔÞ ¼ cosðπ − θI þ δθÞ
¼ − cosðθIÞ −

m
b
½2 sinðθIÞ þ sinð2θIÞ�

þOðm2Þ; ðB14Þ

and that the second term in Eq. (B5) expressed in terms
of θI reads

m2

8b2
½30ðπ − θIÞ − sinð2θIÞ − 32 sinðθIÞ�; ðB15Þ

we can write the deflection angle in terms of θI as

α ¼ 2m
b

½1þ cosðθIÞ� þ
15m2

4b2
½π − θI þ sinðθiÞ cosðθIÞ�

þOðm3Þ; ðB16Þ

which agrees with the more general relation given by the
expressions (34) and (35) for the particular case of all of the
PPN parameters set to 1 and J2 ¼ 0.

APPENDIX C: SCHWARZSCHILD SPACETIME
WITH PLASMA DENSITY PROFILE OF THE
FORM N(r)=Nohr− h: PARTICULAR CASES

In order to compute the main contribution to the
deflection angle produced by the plasma surrounding our
Sun, we need to calculate the explicit form of α3 for the
particular cases h ¼ 2, 6, 16, and with respective numerical
constants No2, No6 and No16. In terms of standard trigo-
nometric functions they read,
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h ¼ 2∶ α3 ¼
KeNo2

2b2ω2
o
½φS − φR þ cosðφRÞ sinðφRÞ − cosðφSÞ sinðφSÞ�;

h ¼ 6∶ α3 ¼
KeNo6

64b6ω2
o
½60ðφS − φRÞ þ 45ðsinð2φRÞ − sinð2φSÞÞ þ 9ðsinð4φSÞ − sinð4φRÞÞ þ sinð6φRÞ − sinð6φSÞ�;

h ¼ 16∶ α3 ¼
KeNo16

458752b16ω2
o
½720720ðφS − φRÞ þ 640640ðsinð2φRÞ − sinð2φSÞÞ þ 224224ðsinð4φSÞ − sinð4φRÞÞ

þ 81536ðsinð6φRÞ − sinð6φSÞÞ þ 25480ðsinð8φSÞ − sinð8φRÞÞ þ 6272ðsinð10φRÞ − sinð10φSÞÞ
þ 1120ðsinð12φSÞ − sinð12φRÞÞ þ 128ðsinð14φRÞ − sinð14φSÞÞ þ 7ðsinð16φSÞ − sinð16φRÞÞ�: ðC1Þ

[1] H. Hoekstra, M. Bartelmann, H. Dahle, H. Israel, M.
Limousin, and M. Meneghetti, Masses of galaxy clusters
from gravitational lensing, Space Sci. Rev. 177, 75 (2013).

[2] R. Mandelbaum, Galaxy halo masses from weak gravita-
tional lensing, in Galaxy Masses as Constraints of For-
mation Models, volume 311 of IAU Symposium, edited by
M. Cappellari and S. Courteau (Proceedings of the
International Astronomical Union, Cambridge, England,
2015), pp. 86–95.

[3] C. Giocoli, M. Meneghetti, R. Benton Metcalf, S. Ettori,
and L. Moscardini, Mass and concentration estimates from
weak and strong gravitational lensing: A systematic study,
Mon. Not. R. Astron. Soc. 440, 1899 (2014).

[4] A. Lewis and A. Challinor, Weak gravitational lensing of
the CMB, Phys. Rep. 429, 1 (2006).

[5] A. E. Broderick, V. L. Fish, M. D. Johnson, K. Rosenfeld,
C. Wang, S. S. Doeleman, K. Akiyama, T. Johannsen, and
A. L. Roy, Modeling seven years of event horizon tele-
scope observations with radiatively inefficient accretion
flow models, Astrophys. J. 820, 137 (2016).

[6] A. Cava, D. Schaerer, J. Richard, P. G. Pérez-González, M.
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