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We implement the no-boundary proposal for the wave function of the Universe in an exactly solvable
Bianchi IX minisuperspace model with two scale factors. We extend our earlier work [Phys. Rev. Lett. 121,
081302 (2018)] to include the contribution from the CP2nB4 topology. The resulting wave function yields
normalizable probabilities and thus fits into a predictive framework for semiclassical quantum cosmology.
We find that the amplitude is low for large anisotropies. In the isotropic limit, the usual Hartle-Hawking
wave function for the de Sitter minisuperspace model is recovered. Inhomogeneous perturbations in an
extended minisuperspace are shown to be initially in their ground state. We also demonstrate that the
precise mathematical implementation of the no-boundary proposal as a functional integral in minisuper-
space depends on detailed aspects of the model, including the choice of gauge fixing. This shows in
particular that the choice of contour cannot be fundamental, adding weight to the recent proposal that the
semiclassical no-boundary wave function should be defined solely in terms of a collection of saddle points.
We adopt this approach in most of this paper. Finally, we show that the semiclassical tunneling wave
function of the Universe is essentially equal to the no-boundary state in this particular minisuperspace
model, at least in the subset of the classical domain where the former is known.
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I. INTRODUCTION

A. Quantum cosmology and the no-boundary proposal

Quantum cosmology is concerned with the search for a
quantum-mechanical theory that describes the origin and
evolution of the Universe. A central element in this is a
wave functionΨ for a closed universe that is a functional of
the 3-metric and matter fields on a spacelike 3-surface Σ.
A wave function of the Universe is held to be a solution to
the Wheeler-DeWitt (WDW) equation,

HΨ ¼ 0; ð1:1Þ
whereH is the Hamiltonian for the gravitational and matter
modes of the system. The WDW equation has an infinite
number of solutions, so boundary conditions or some more
general principle is required to limit the possible solutions,
or even select a solution uniquely. Of the possible proposals
to accomplish this, the most frequently utilized one is the
no-boundary proposal of Hartle and Hawking, which picks
out a solution to the WDW equation that is traditionally
defined by a functional integral over gravitational and
matter fields on compact 4-manifolds of which the only
boundary is the 3-surface Σ [1,2].

Since its inception, the no-boundary proposal has been
through a progression of development to determine exactly
how it is implemented in specific models and to elucidate
its physical predictions. Most of these models have been
simple minisuperspace models, essentially quantum-
mechanical models in which the gravitational and matter
modes are artificially constrained to have a finite number of
degrees of freedom (d.o.f.). In such simple models, it has
been argued that the no-boundary proposal successfully
predicts important features of our observed Universe such
as the existence of classical histories [1–3], an early period
of inflation [3,4], and a nearly-Gaussian spectrum of
primordial density fluctuations [5–8].
The need to refine the definition and implementation of

the no-boundary proposal has acquired some urgency in
light of recent criticisms questioning the solidity of these
successful predictions [9,10]. Motivated by this, we have
recently shown [11] in a minisuperspace model that there
exists a precise mathematical implementation of the no-
boundary proposal, expressed in terms of a gravitational
path integral, that yields a well-defined state in which large
universes behave classically and large perturbations are
damped. This lends support to the viability of the no-
boundary wave function (NBWF) as the state of our
observed Universe, and it refutes the recent claim that
the NBWF is ill defined due to problems with large
perturbations [9,10].
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The biaxial Bianchi IX (BB9) minisuperspace we
considered in Ref. [11] is a homogeneous but anisotropic
minisuperspace approximation to gravity coupled to a
positive cosmological constant and no matter. The classical
histories in this minisuperspace are known as BB9 cos-
mologies. The configuration space on which the wave
function is defined in this model consists of squashed
3-spheres specified by two scale factors: one specifying the
size of the 2-sphere and the other specifying the size of the
circle, when the 3-sphere is viewed as a fibration of a circle
over a 2-sphere. We evaluated the NBWF as a functional
integral in this model on the 4-disk in Ref. [11] and found
that nonzero squashings, i.e., anisotropies, are suppressed.
In the present paper, we refine and extend our analysis of
the BB9 minisuperspace model in a number of ways.

B. Implementation of the no-boundary proposal

Despite the clear geometric and intuitive appeal of the
no-boundary proposal, its implementation in specific min-
isuperspace models requires a certain amount of additional
input. First, it must be specified what exactly is meant by
no-boundary initial conditions. Classically, regularity of the
no-boundary saddle points implies constraints on the metric
and its first derivatives. These enter as variables and
conjugate momenta in the quantum theory. In BB9 min-
isuperspace, we showed that a proper implementation of
the no-boundary idea as a functional integral over geom-
etries on the 4-disk requires the 2-sphere scale factor to be
zero initially together with a carefully chosen regularity
condition on the momentum conjugate to the scale factor of
the circle [11].
Second, the contour of integration must be specified, at

least in the functional integral formulation of the NBWF. It
was clearly stated from the outset in the 1980s that the no-
boundary path integral must be carried out over a suitable
complex contour for physical reasons. The general require-
ments that such a contour must satisfy in order to yield a
physically viable wave function were thoroughly inves-
tigated [12,13], and numerous models were worked out
explicitly (see, e.g., Refs. [14–18]). In the BB9 minisuper-
space model, this concerns the choice of contour for the
lapse integral. In Ref. [11], we took this to be a closed
contour encircling the origin N ¼ 0, which yields a well-
defined state and predictions that agree with observation.1

C. Lorentzian path integral approach

By contrast, Feldbrugge et al. in their recent papers
[9,10,19] revived [20] an alternative approach to path integral
quantum cosmology, based on a purely Lorentzian path
integral construction, which comes with a contour for the

lapse that runs over the positive real axis only. This proposal
bears some resemblance to the tunnelingproposal [21–24]but
differs in some key respects. The positive real line choice
of contour does not yield a solution of theWDWequation but
rather a Green’s function. More significantly, in the semi-
classical limit, it selects a saddle point that is different
from that specifying the NBWF in the BB9 model and that
fails to provide a reasonable physical basis for a predictive
framework for cosmology. Feldbrugge et al. advance their
Lorentzian approach on the grounds that it encodes a
primitive notion of causality. However, this is not the case.
Histories of geometry are curves in the superspace of
3-geometries. There is no physical notion of one 3-geometry
being “before” or “after” another. Furthermore, the lapse
integration is not directly related to the observed arrows of
time such as those defined by the increase in entropy, the
retardation of radiation, and the growth of fluctuations. As
shown in Ref. [5] and as much subsequent work confirmed
[25,26], these physical arrows arise because the NBWF
predicts that fluctuations were small when the Universe
was small. We also note that all physical predictions in
any quantum-mechanical system are derived most directly
from a wave function, for which a well-defined formalism
exists for the computation of probabilities, and not from a
Green’s function. Hence, any claims made on the basis of the
properties ofGreen’s functionsmust include a specification of
the way in which they are used to compute probabilities.

D. No-boundary proposal as a collection
of saddle points

Having said this, the debate over the correct choice of
contour, and over the focus on solutions to the WDW
equation vs Green’s functions, is significantly neutralized
in the semiclassical approximation to the wave function,
since the latter is logically independent of any integral
representation. Given that the minisuperspace functional
integral implementation is only meaningful in the semi-
classical approximation, it is in many ways appealing and
certainly simpler to specify the semiclassical NBWF
directly in terms of a collection of saddle points that
satisfy a minimal set of criteria that encapsulate its physical
principles, without relying on a functional integral of any
kind. This approach was recently advanced in Ref. [27], in
which the NBWF was given as a collection of specific
saddle points of the dynamical theory, and this is the
approach we adopt, for the large part, in the main text of
this paper (although we will address some aspects of path
integral representations, too).

E. This paper

In detail, the analysis of this paper will cover the
following issues. First, we compute a second topological
contribution to the NBWF in the BB9 model, coming from
the CP2nB4 topology. No-boundary initial conditions in
this case amount to setting the scale factor of the circle to

1Closed contours in the context of the NBWF have been
considered before (see e.g., [12,14,16,18]). Together with infinite
contours they provide the only evident ways of generating wave
functions constructed as path integrals.
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zero and fixing the momentum conjugate to the 2-sphere
scale factor. We compare this contribution with the one
coming from the 4-disk topology we considered in
Ref. [11]. We will also show that both of these contribu-
tions are semiclassical approximations to exact solutions to
the WDW equation, which are normalizable, in the sense
that they have normalizable flux across surfaces of interest.
This therefore means that the theory delivers well-defined
probabilities and so fits into a predictive framework of
quantum cosmology. We recover the prediction of the
original Hartle-Hawking state that the amplitude of large
anisotropies is suppressed [28,29]. In particular, we find
there is no contribution from “wrong sign” saddle points
nor any other source that would favor anisotropic configu-
rations. We also extend the probability distribution to
arbitrarily large anisotropies by appropriately adjusting
the prefactor of the wave function—which the semiclassical
analysis leaves largely undetermined.
Second, we analyze the behavior of the wave function in

the isotropic limit. Clearly, one does not expect the wave
function of the two-dimensional BB9 model to agree
exactly with the wave function of a one-dimensional de
Sitter (dS) minisuperspace model in this limit. However,
one does expect agreement between both theories at the
classical level and hence for the exponential behavior of the
wave functions to coincide, which we show is the case
indeed.
Third, we consider an extension of BB9 minisuperspace

that includes inhomogeneous massless scalar fluctuations.
We compute the wave function of such fluctuations and
show we recover quantum field theory in curved spacetime,
with inhomogeneities initially in their ground state.
Fourth, although we have focused on the definition of the

NBWF as a collection of saddle points, we explore various
aspects of its minisuperspace functional integral represen-
tation through some elementary examples. These examples
reinforce the argument that features such as the choice of
lapse contour and the choice of initial conditions at the
south pole of the saddle points can both depend on the
model and even on its specific parametrization (or gauge
fixing). Thus they should not be regarded as universal or
fundamental features of the NBWF functional integral.
General requirements on those facets of functional integrals
cannot therefore be advanced to falsify the NBWF.
The outline of the remainder of this paper is as follows.

We start in Sec. II with a description of the biaxial Bianchi
IX model and its metric. We derive its WDW equation and
exhibit the general exact solution. We also describe the
classical solutions for the model. We then describe, in
Sec. III, the construction of no-boundary wave functions in
the BB9 model for the two different topologies of interest.

A detailed description of the saddle points for the B4

topology is given in Sec. IV, and one for the CP2nB4

topology is given in Sec. V. In Sec. VI, we explain the sense
in which the probabilities constructed from the wave

function are normalizable. We then, in Sec. VII, construct
the wave function arising from contributions from saddle
points with both topologies. We discuss the isotropic limit
in Sec. VIII, and in Sec. IX, we discuss inhomogeneous
perturbations about the two types of saddle points dis-
cussed above. In Sec. X, we compare the NBWF with the
tunneling wave function in the BB9 model, showing that
the two coincide in certain regimes where the latter is
known and making a conjecture about their coincidence in
a larger portion of the minisuperspace. We conclude
in Sec. XI.
Some of the details of our work are relegated to a set

of Appendixes. Appendix A gives a more detailed dis-
cussed of the CP2nB4 saddle points and the phase tran-
sitions between the various saddle points is described in
Appendix B. In Appendixes C and D, we describe how the
BB9 model may be viewed as a nonlinear extension of the
dS minisuperspace model perturbed by a single mode of
either a tensor field or massless minimally coupled scalar.
In Appendix E, we discuss the off-shell structure of
minisuperspace path integrals and show, as promised earlier
on in this Introduction, that they depend sensitively on the
details of the model and its parametrization. Building on
this, we respond to the criticisms of Feldbrugge et al.
[9,10,30] in Appendix F.

II. BIAXIAL BIANCHI IX MINISUPERSPACE

A. Metric

In the BB9 minisuperspace model, the wave function of
the Universe, Ψ, is a function on the superspace of single-
squashed 3-sphere (S3) geometries. It specifies the ampli-
tude that a spatially closed universe, which for simplicity
we will assume has the topology of Rtime × S3, contains a
spacelike section, which is a squashed S3. Such geometries
may be parametrized by two coordinates p and q living in
the quadrant fp; q ≥ 0g, which appear in the metric on the
S3 as

dl2 ¼ p
4
ðσ21 þ σ22Þ þ

q
4
σ23: ð2:1Þ

Thus, Ψ ¼ Ψðp; qÞ. In Eq. (2.1) σ1;2;3 are the left-invariant
1-forms of SU(2) given by

σ1 ¼ − sinψdθ þ cosψ sin θdϕ;

σ2 ¼ cosψdθ þ sinψ sin θdϕ;

σ3 ¼ dψ þ cos θdϕ; ð2:2Þ

with 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π and 0 ≤ ψ < 4π, ψ ≅ ψ þ 4π
the Euler angles on the S3. In these coordinates, the S3 is
represented as the fibration of an S1 over an S2, and the
values p and q determine the sizes of the S2 base and the S1

fibers, respectively. When p ¼ q, the metric is proportional
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to δijσiσj=4, which is the round metric on the unit S3. When
p ≠ q, the metric represents a deformed or “squashed” S3,
and the space is anisotropic. The degree of squashing is
conveniently expressed through the quantity

α≡ p
q
− 1; ð2:3Þ

with α ¼ 0 corresponding to the round S3, α > 0 corre-
sponding to a “prolate symmetric top” or cigar, and α < 0
corresponding to an “oblate symmetric top” or pancake
(here, p ∼ I1 ¼ I2, q ∼ I3 are interpreted as the moments of
inertia of the spheroid about its principal axes of rotation).
Thewave functionmay alternatively be viewed as a function
of the “size” p of the S3 and the squashing α ∈ ð−1;∞Þ,
Ψ ¼ Ψðp; αÞ, or any other combination for that matter.
Since Ψ should assign the same amplitude to the same
configuration, it transforms as a scalar under such coordinate
transformations. (We neglect a possible phase factor.)
Thewave function of the Universe for this model satisfies

the WDW equation, Eq. (1.1). In the BB9 minisuperspace,
this is a second-order (linear) partial differential equation
(PDE), which requires boundary conditions on a line in
superspace to define a unique solution. Its form [given in
Eq. (2.14) below] depends on the underlying dynamical
theory, which we take to be Einstein gravity with a positive
cosmological constant. Later on in Sec. IX, we will extend
this minisuperspace to contain a small, massless, and
minimally coupled scalar field.
As we detail in Appendix C, the BB9 minisuperspace

can be viewed as a nonlinear extension of the dS minisuper-
space model (that is, the model with p ¼ q) perturbed by a
particular (the “n ¼ 2”) transverse and traceless tensor
mode, or as a nonlinear extension of the dS minisuperspace
model containing a specific mode of a massless minimally
coupled scalar (Appendix D). The BB9 model is also a
restricted version of the mixmaster universe [31] in which
two out of the three scale factors are set equal. For earlier
and related work on this model in quantum cosmology,
we refer the reader to Refs. [11,28,29,32–35]. (Ref. [29]
contains errors but arrives at a correct qualitative conclu-
sion.) Reference [32], in particular, discusses the same
object as the one we are mainly interested in here, namely,
the NBWF in the BB9 model with a positive cosmological
constant. While our results are consistent with the ones
presented in that work, we provide more details and also
extend the known results by giving accurate analytic
approximations in a large subset of superspace to various
quantities of interest for any value of the squashing of the
S3 in the argument of the wave function.

B. Wheeler-DeWitt equation and solution

To derive the WDW equation for the BB9 minisuper-
space, we consider homogeneous 4-metrics on the space-
time Rtime × S3 of the form

2π2ds2 ¼ −
NðtÞ2
qðtÞ dt2 þ pðtÞ

4
ðσ21 þ σ22Þ þ

qðtÞ
4

σ23: ð2:4Þ

Here, pðtÞ and qðtÞ are real, positive functions. NðtÞ is
the lapse function, which is arbitrary and represents our
freedom to perform time reparametrizations. (We have
chosen the particular form of the 00 component of the
metric because it simplifies the analysis.) By convention,
we will study transition amplitudes between 3-geometries
at the times t ¼ 0 and t ¼ 1. The bulk part of the
Einstein-Hilbert action evaluated on the metric (2.4),
setting MPl ¼ 1 and including a vacuum energy density
2π2Λ, reads

S½p; q;N� ¼
Z

1

0

dtN

�
1

2N2

�
−

q
2p

_p2 − _p_q

�

−
�
q
p
þ Λp − 4

��
; ð2:5Þ

where we have chosen the branch
ffiffiffiffiffiffi
N2

p
¼ þN.2 Note that

we can absorb Λ into the other variables by the
redefinitions p → Λp, q → Λq, N → ΛN, S → ΛS. We
will do this for now and reinstate Λ at a later stage. The
action (2.5) can then be abbreviated as

S½x;N� ¼
Z

1

0

dtN
�

1

2N2
fαβðxÞ_xα _xβ − UðxÞ

�
; ð2:6Þ

where x≡ ðp; qÞ and we have defined the DeWitt metric
on minisuperspace

f ¼ −1
2

�
q=p 1

1 0

�
; ð2:7Þ

with components ordered as ðp; qÞ, and the potential

Uðp; qÞ ¼ q
p
þ p − 4: ð2:8Þ

This is the action for particle x moving on a curved
background with metric f under the influence of a
potential U. The momenta conjugate to p and q are

Πα ¼
1

N
fαβ _xβ; ð2:9Þ

or

2This choice of sign is inconsequential for this section, i.e., for
the WDWequation and classical paths. However, since the action
and canonical momenta [see Eq. (2.9)] are sensitive to the choice
of sign, the discussion of the NBWF in Secs. IVand V is sensitive
to the choice

ffiffiffiffiffiffi
N2

p
¼ �N. If one were to choose

ffiffiffiffiffiffi
N2

p
¼ −N, one

should replace N with −N everywhere in those sections.
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Πp ¼ −
1

2N

�
q _p
p

þ _q

�
; ð2:10Þ

Πq ¼ −
1

2N
_p: ð2:11Þ

With this, Eq. (2.6) can be rewritten as

S½x;Π;N� ¼
Z

1

0

dtðΠα _xα − NHÞ; ð2:12Þ

where

H ¼ Πq
q
p
Πq − 2ΠqΠp þ

q
p
þ p − 4: ð2:13Þ

In Eq. (2.13), the operator ordering is chosen, which,
upon making the canonical quantization replacements
Πp → −iℏ∂p, Πq → −iℏ∂q, gives rise to a Laplacian
ordering of the derivatives. That is, in position space,

Ĥ ¼ −
ℏ2

2
∇2 þU

¼ −ℏ2

�
q
p
∂2
q þ

1

p
∂q − 2∂p∂q

�
þ q
p
þ p − 4; ð2:14Þ

where ∇2 is the scalar Laplacian with respect to f. This
is the WDW operator for the BB9 minisuperspace. The
particular factor ordering in Eq. (2.14) ensures that any
potential wave function of the Universe transforms as a
scalar under redefinitions of the minisuperspace coordi-
nates p and q in Eq. (2.4), as we have mentioned it
should above. Finally, in two dimensions, the scalar
Laplacian is conformal, so Ψ transforms in a simple
way under redefinitions of the lapse [36,37].3 In fact, in
two-dimensional minisuperspaces like the BB9 model, Ψ
is invariant under redefinitions of the lapse function.
A salient feature of the BB9 minisuperspace model is

that as a two-dimensional quantum system it is essentially
classical [11]. This is because two out of the four phase
space coordinates, namely, q and Πp, appear linearly in the
Hamiltonian (2.13). Thus sums over histories that fix p and
Πq at the boundary of the time interval will only contain a
single path—the classical one corresponding to the boun-
dary data. In other words, the semiclassical “approxima-
tion” to transition amplitudes is exact.
Closely related is that one can solve the WDW equa-

tion (1.1) for the BB9 model in closed form, for arbitrary
boundary conditions. To achieve this, one can go to the
representation in which Ψ is a function of p and Πq, in
terms of which the WDW equation is a first-order PDE,

which can be solved by the method of characteristics. One
then Fourier transforms the result and obtains

ΨWDWðp; qÞ

¼
Z
R
dΠq exp

�
iΠqq

ℏ

�
exp

�
ipΠq

3ℏð1þ Π2
qÞ2

ðpð3þ Π2
qÞ

− 12ð1þ Π2
qÞÞ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Π2
q

q f2

�
1þ Π2

q

p

�
; ð2:15Þ

with f2 a function to be fixed by the boundary conditions.
We will not use this form in what follows [but see
Eq. (6.9)]; however, it could be a useful starting point
for discussing other proposals for the wave function in the
BB9 model. We also note that the quantity p=ð1þ Π2

qÞ is
conserved under classical and quantum evolution.
Finally, we recall the equations that an approximate

WKB solution to Eq. (1.1), Ψ ≈A exp ðiS̄0=ℏÞ, must
satisfy in the semiclassical limit ℏ → 0. These are the
Hamilton-Jacobi equation corresponding to zero energy,

1

2
ð∇S̄0Þ2 þU ¼ 0; ð2:16Þ

and a continuity equation for the prefactor,

∇ · ðA2∇S̄0Þ ¼ 0: ð2:17Þ

They are the leading and next-to-leading order in ℏ
components of the WDW equation, respectively. Inner
products in Eqs. (2.16) and (2.17) are taken with respect
to the metric (2.7).

C. Classical paths

From here on, we will choose a gauge in which the lapse
function NðtÞ is a constant, N. Setting variations of (2.5)
with respect to q and p to zero yields the second-order
classical equations of motion (EOM)

pp̈ −
_p2

2
− 2N2 ¼ 0; ð2:18Þ

pðpq̈þ qp̈Þ þ _p

�
p _q −

q _p
2

�
þ 2N2ðq − p2Þ ¼ 0; ð2:19Þ

while setting variations with respect to the lapse to zero
yields the first-order Hamiltonian constraint

−
1

2N2

�
q
2p

_p2 þ _p _q

�
þ q
p
þ p − 4 ¼ 0: ð2:20Þ

These equations are equivalent to the full Einstein equa-
tions for the metric Ansatz (2.4). Note that the third
derivative of p and the fifth derivative of pq are identically

3This means that if we were to send NðtÞ → ωðxðtÞÞ2NðtÞ for
arbitrary ω,Ψ would transform as Ψ → ωD=2−1Ψ, whereD > 1 is
the dimension of the minisuperspace.

NO-BOUNDARY PROPOSAL IN BIAXIAL BIANCHI IX … PHYS. REV. D 99, 123531 (2019)

123531-5



zero for a classical path. For each N, there are two solutions
to the second-order EOM which interpolate between the
configuration ðp0; q0Þ at t ¼ 0 and ðp1; q1Þ at t ¼ 1, where
one is given by

p̄ðt;NÞ ¼ p0 þ 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

q
− p0

�
t

þ
�
p0 þ p1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

q �
t2; ð2:21Þ

q̄ðt;NÞ ¼ p0q0 þ c1tþ c2t2 þ c3t3 þ c4t4

p̄ðt;NÞ ; ð2:22Þ

with

c1 ¼
p0

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

p h
3p1ðq0 þ q1Þ − N2p1

− 2ð3q0 þ N2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

q i
; ð2:23Þ

c2 ¼
1

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

p n
2N4 þ p1ð3q1 − N2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

q

þ p0

h
ð3q0 þ 5N2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

q
− p1ðN2 þ 3ðq0 þ q1ÞÞ

io
; ð2:24Þ

c3 ¼
4N2

3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

q
− p0

�
; ð2:25Þ

c4 ¼
N2

3

�
p0 þ p1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p1 − N2

q �
; ð2:26Þ

where some choice of branch cut for the square root is
made, and the other solution is obtained from this one for
each N by replacing every square root by its negative. The
solution to the second-order EOM with other boundary
conditions, for example, those that fix p and Πq at t ¼ 0,
can readily be obtained from the solution given above.
At this stage, there remains a single undetermined

parameter, N. Its value is determined by the Hamiltonian
constraint (2.20). This is consistent since the lhs of that
equation is constant in t when evaluated on Eqs. (2.21) and
(2.22), which yields an algebraic equation for N that
depends on the boundary data. We will denote solutions
to this equation by Ns.

III. NO-BOUNDARY WAVE FUNCTION IN
BIAXIAL BIANCHI IX MINISUPERSPACE

A. Topological contributions

In the semiclassical limit, the NBWF for the BB9
minisuperspace model is determined by regular solutions
to the complexified Einstein equations which live on a

compact 4-manifold with the only boundary being an S3.
(In an abuse of terminology, we will sometimes call these
solutions “instantons.”) There are infinitely many such
solutions, and their general classification is unknown. We
will deal with this situation in the usual simplistic manner,
which is to consider only a handful of highly symmetric
solutions (of which one hopes that they give the dominant
contributions to the wave function in the semiclassical
limit [38,39]). The particular ones we will study live on the

4-manifolds B4 (Sec. IV, see also Refs. [32,40]) and
CP2nB4 (Sec. V, see also Ref. [32]), respectively the closed
4-ball or 4-disk and the two-dimensional complex projec-
tive plane with an open 4-ball cutout, and both can be
written in the form

2π2ds2 ¼ −
N2

qðτÞ dτ
2 þ pðτÞ

4
ðσ21 þ σ22Þ þ

qðτÞ
4

σ23: ð3:1Þ

At least one other no-boundary solution of the form (3.1) is
known [33]—it lives on the manifold RP4nB4—but we do
not discuss this contribution here.
In contrast to our discussion in Sec. II, and although the

notation is similar, we emphasize that (3.1) is not ametric on
the Lorentzian spacetime with topologyRtime × S3. Instead,

here, τ is a (real) radial coordinate on either B4 or CP2nB4,
and the metric (3.1) is defined on these manifolds.
Additionally, the functions p and q in Eq. (3.1) will
generally be complex if they contribute to the semiclassical
NBWF. Thus, with the NBWF, we are in general dealing
with complex metrics on real manifolds.

B. Path integral

To construct the NBWF in the BB9 model, in our
previous work [11], we followed the general minisuper-
space functional integral approach detailed, e.g., in
Ref. [16] and briefly reviewed in Appendix E. That is,
we first computed the propagatorKðx1; N; x0; 0Þ, which is a
solution to the Schrödinger equation

ĤK ¼ iℏ∂NK ð3:2Þ

and represents the amplitude for the geometry to evolve
from a state with shape and size ðp0; q0Þ to one specified by
ðp1; q1Þ in a “time” N [41]. To construct a solution relevant
to the no-boundary proposal, we performed a generalized
Laplace transformation on the coordinates ðp0; q0Þ, thereby
transferring to a mixed representation ðp0;Πq;0Þ on the
τ ¼ 0 radial slice. Boundary conditions B on p0 and Πq;0

were then carefully chosen such that (1) they correspond to
the behavior of a regular solution to the Einstein equations
near τ ¼ 0, where by convention the spatial volume of the
ansatz (2.4) shrinks to zero, and (2) they ultimately lead to a
normalizable wave function. Finally, K was integrated over
a certain contour C in the complex lapse plane (the closed
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contour around the origin in this case) to yield a specific
solution to the WDW equation—the NBWF ΨHH.
The algorithm described above gives only a particular

contribution to the NBWF, one coming from a particular
compact 4-manifold. As we mentioned above, in the
no-boundary sum over geometries (i.e., metrics and mani-
folds), one should include contributions from other com-
pact manifolds M. The general program outlined above
can then be expressed schematically as (cf. Eq. (3.1) in
Ref. [11])

ΨHHðyÞ ¼
X
M

Z
C
dN

Z
B

xð1Þ¼y

DxαDΠαeiS½x;Π;N�=ℏ: ð3:3Þ

The choice of lapse contour C and of boundary conditions
B in the minisuperspace functional integral definition (3.3)
depend not only on theminisuperspacemodel but also on the
parametrization (i.e., gauge choice for the lapse) of a specific
model. We clarify this statement and illustrate it via two
elementary examples in Appendix E. Moreover, we do not
expect the off-shell structure of the lapse function integrand
in minisuperspace (such as the precise flow of the steepest
descent contours) to contain factual information about
quantum gravity at all—it is clearly an artifact of the
minisuperspace truncation. In particular, in a semiclassical
evaluation of the path integral in Eq. (3.3), the prefactors
Aðy; IÞ [written in Eq. (3.4) below], depend on the fluctua-
tions of all fields in the full theory and cannot be calculated in
minisuperspace.4 The ingredients ðC;BÞ specifying the
minisuperspace functional integral form (3.3) of the
NBWF—and of any other wave function—should therefore
not be regarded as fundamental.

C. NBWF as a collection of saddle points

For these reasons, we have recently argued that it is in
many ways simpler and cleaner to specify the semiclassical
NBWF of the Universe without relying on a functional
integral of any kind [27]. After all, the semiclassical
approximation to the wave function is logically indepen-
dent of any integral representation. The wave function
would then be given as a sum of specific saddle points of
the dynamical theory that satisfy conditions of regularity on
geometry and field and that together yield a time neutral
state that is normalizable in an appropriate inner product.
This specifies a predictive framework of semiclassical
quantum cosmology that is adequate to make probabilistic
predictions.

In this approach, the wave function can be written as

ΨHHðyÞ ¼
X

I∈fðM;iÞg
ΨHHðy; IÞ

¼
X
I

Aðy; IÞ exp
�
i
ℏ
S̄0ðy; IÞ

�
½1þOðℏÞ�; ð3:4Þ

where the index I runs over the semiclassical contributions
from each compact 4-manifold M, which fills in the S3;
S̄0ðy; IÞ is the action of a regular (generally complex)
solution to the Einstein equations on M, which induces y
on S3; and A is a prefactor. This definition is, of course,
inherently semiclassical, and thus restricted, but since one
does not expect the minisuperspace approximation to
contain information about quantum gravity beyond the
semiclassical limit, this definition is essentially equivalent
to the minisuperspace functional integral approach in its
regime of applicability.5

The choice of which saddle points to include as con-
tributions to the semiclassical NBWF in this restricted
definition replaces the contour choice. One general state-
ment we can make is that the saddle points in Eq. (3.4) will
appear in pairs [12,14]. These pairs have the same
imaginary part of S̄0 but opposite real part; thus, the
exponential factors are each other’s complex conjugate.
We will assume the same applies to the prefactors of the
pairs, so that the semiclassical NBWF is real, in accordance
with Ref. [1].6 Another general statement is that one
expects only a few saddle points to be relevant in the
semiclassical definition (3.4).

IV. NO-BOUNDARY SADDLE POINTS ON B4

In this section, we discuss the contributions to the
semiclassical NBWF arising from instantons that live on

B4, also known as the Taub-Newman-Unti-Tamburino
(NUT)-dS solutions [43]. (These were also discussed in
detail in Ref. [33].) In this case, both scale factors tend to
zero at the origin of the spherical coordinate system, τ ¼ 0,
i.e., p0 ¼ 0 ¼ q0. By definition, we take the slice at τ ¼ 1
to represent the closed 3-surface on which the argument of
the wave function lives (here, an S3). The solutions to the
Einstein equations in the ansatz (3.1) are of the form (2.21)
and (2.22) with t → τ. Judiciously choosing a sign for the

4However, to interpret the wave function as giving a proba-
bility distribution over classical histories in a particular minis-
uperspace model, we must associate to it a conserved current
which does rely on an appropriate prefactor. We will return to this
issue in detail in Sec. VI and see that the constraint of current
conservation leaves considerable freedom for the choice of
prefactor.

5In Refs. [11,40], we went beyond the semiclassical approxi-
mation in minisuperspace to show that the NBWF has a fully
consistent definition in terms of a minisuperspace path integral,
addressing claims to the contrary made in Refs. [9,10].

6One might be inclined to say that saddles will appear in pairs
of pairs, in which in each pair the imaginary part of S̄0 is the same
and the real part is opposite and between pairs the imaginary part
of S̄0 is opposite [12,14,19,40]. However, one of these pairs can
be eliminated by an appropriate choice of boundary conditions B
on the instantons [11].
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square roots appearing in those solutions [11],7 the
Hamiltonian constraint can be expressed as

2i
3
N3

s þ
�
p
3
− 4

�
N2

s − pq ¼ 0; ð4:1Þ

where p and q are the arguments of the wave function (we
have dropped the index 1) and we have included an index s
on the lapse to indicate that Ns is the particular, generally
complex value of the lapse that causes the Einstein equations
to be satisfied. By combining Eqs. (2.21), (2.22), and (4.1),
one can verify that the solution ðp̄ðτ;NsÞ; q̄ðτ;NsÞÞ can be
written in the form

p̄ðρ;LÞ ¼ 4ðρ2 − L2Þ; ð4:2Þ

q̄ðρ;LÞ ¼ 16L2ΔðρÞ
ρ2 − L2

; ð4:3Þ

where

ΔðρÞ ¼ ðρ − LÞ2 − 1

3
ðρþ 3LÞðρ − LÞ3; ð4:4Þ

ρ ¼ iNs

4L
τ þ L; ð4:5Þ

L ¼ Ns

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2iNs − p

p ; ð4:6Þ

which often appears in the literature (e.g., Refs. [44,45]).

The no-boundary instantons on B4 in this minisuperspace
are thus Taub-NUT-dS solutions with complex NUT param-
eter L.

A. Saddles Ns and on-shell action

Defining x≡ iNs, Eq. (4.1) is recast into the form

f3ðxÞ≡ x3 þ ax2 þ b ¼ 0; ð4:7Þ
where

a≡ p
2
− 6; ð4:8Þ

b≡ 3pq
2

: ð4:9Þ

There is always a real solution x, and since f3ð0Þ ¼ b > 0,
it is always negative, corresponding to a solution Ns lying
on the positive imaginary axis. Further, one can show
that there are genuinely complex solutions—a necessary
requirement to predict classical spacetime (e.g., Ref. [12]
and references therein)—if and only if

4a3 þ 27b > 0; ð4:10Þ

or, in terms of p and q,

q >
p2

81

�
12

p
− 1

�
3

: ð4:11Þ

(If this condition is not satisfied, there are three purely
imaginary solutions Ns, one on the positive imaginary axis
and the two others on the negative imaginary axis.) In the
regime (4.11), the three solutions to Eq. (4.1) are given by

NIM ¼ i
3

�
aþ 21=3a2

Δ
þ Δ
21=3

�
; ð4:12Þ

Nþ ¼ 1

22=3
ffiffiffi
3

p
�
a2

Δ
−

Δ
22=3

�
þ i
3

�
a −

1

22=3

�
a2

Δ
þ Δ
22=3

��
;

ð4:13Þ

N− ¼ −N�þ; ð4:14Þ

where

Δ≡ ð2a3 þ 27b −
ffiffiffiffiffi
27

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a3bþ 27b2

p
Þ1=3; ð4:15Þ

and in this last formula, we mean the positive real square
and cubic roots, which are well defined in the regime of
interest (4.10). Note Nþ always has a positive real part, and
N− has a negative real part.
Using the saddle-point equation (4.1), one can show that

the on-shell action8 is equal to

S̄0 ≡ S0ðNsÞ ¼ −iN2
s þ 2

�
4 −

p
3

�
Ns þ iq: ð4:16Þ

Since the saddle NIM in Eq. (4.12) does not give rise to
classical spacetimes when it is used as a saddle-point
contribution to a wave function of the Universe, we do not
include it as a contribution to the NBWF. We do include the
other two saddles N�. Thus, we have [cf. Eq. (3.4)]

ΨHHðp; q;B4Þ ≈Aþðp; q;B4ÞeiS̄þ0 =ℏ þA−ðp; q;B4ÞeiS̄−0 =ℏ;
ð4:17Þ

where S̄�0 ≡ S0ðN�Þ. Note that, indeed, S̄þ0 ¼ S0ð−N�
−Þ ¼

−S0ðN−Þ� ¼ −ðS̄−0 Þ�, as we have discussed in Sec. III.

7The choice of sign can be expressed by the choice
Πq;0 ¼ ðp0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0p − N2

p
Þ=N → −i.

8That is, the action (2.5) evaluated on the complex Taub-NUT-
dS solutions (4.2), (4.3). No additional boundary terms are
needed to make the variational problem [fixing ðp1; q1; p0; q0Þ
or ðp1; q1; p0;Πq;0Þ] well defined. We use notation consistent
with our previous works [11,40]: S0ðNÞ is the action evaluated on
a solution to the second-order EOM, Eqs. (2.18) and (2.19) here,
while S̄0 is the on-shell action, S0ðNsÞ.
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Also, as discussed in that section, we will assume
A− ¼ A�þ, so

ΨHHðp;q;B4Þ≈Aþðp;q;B4ÞeiS̄þ0 =ℏþðcomplex conjugateÞ:
ð4:18Þ

B. Classical histories

In the regime in which the wave function can be
expressed as a rapidly varying phase times a slowly varying
amplitude, it predicts strong correlations between configu-
rations that lie along the same integral curve of the phase’s
argument [46–50]. In the form (4.18), we require the
classicality condition (e.g., Ref. [3])

j∇ReðiS̄þ0 Þj ≪ j∇ImðiS̄þ0 ÞjðDclÞ ð4:19Þ

to hold, and we have dubbed this regime Dcl.
9 (By jvj, we

mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfαβvαvβj

q
, with fαβ ¼ ðf−1Þαβ.) With Eqs. (4.13)

and (4.16), we can evaluate this condition numerically, and
the result is shown in Fig. 1.
Since the exact expressions are cumbersome, we will use

a simplifying approximation to gain insight. The approxi-
mation is inspired by the necessary condition (4.11) to have
complex saddle points, which is surely satisfied if p > 12.
In the approximation, we will assume p ≫ 12. This is not
precise enough, however, since for any p there is a
nonclassical regime for α close enough to −1. A convenient
perturbation parameter that takes this into account is

x≡ 12q
p2

¼ 12

pð1þ αÞ ¼
12

qð1þ αÞ2 ; ð4:20Þ

where we recall the definition of the squashing parameter

α≡ p
q
− 1: ð4:21Þ

Trading ðp; qÞ for ðα; xÞ and expanding in x, we find

j∇ReðiS̄þ0 Þj
j∇ImðiS̄þ0 Þj

¼ αx3=2

2

�
1þ 12α− 15

8
xþOðx2Þ

�
as x→ 0:

ð4:22Þ

First, in order for the correction factor to be close to 1, we
require x ≪ 1 when α is small and αx ≪ 1 when α is
large.10 These conditions can be summarized in ðp; αÞ
coordinates by

p ·
αþ 1

αþ 2
≫ 12 ðDxÞ; ð4:23Þ

and we will call this regime Dx. Then, in Dx, the leading
factor in Eq. (4.22) is indeed small. This conclusion is also
visualized in Fig. 1.

The classical histories predicted by the B4 contributions
to the NBWF are the integral curves of ReðS̄þ0 Þ; i.e., they
satisfy11

Πα

�
dxβ

dλ

�
¼ ∂αReðS̄þ0 Þ; ð4:24Þ

where on the lhs the momenta are expressed in terms of the
first derivatives of the minisuperspace coordinates accord-
ing to Eqs. (2.10) and (2.11). Because S̄þ0 satisfies the
Hamilton-Jacobi equation (2.16) and the classicality con-
dition (4.19) holds in Dcl, ReðS̄þ0 Þ approximately satisfies
the Hamilton-Jacobi equation in Dcl. This, in turn, implies
that the solutions fxðλÞg to Eq. (4.24) approximately
satisfy the Einstein equations in Dcl. These classical
histories, which have the metric

–1 0 1 2

0

100

500

1000

FIG. 1. The regimeDcl, where the classicality conditions (4.19)
hold, is colored blue, and the regimeDx, defined in Eq. (4.23) and
in which simple approximations to the quantities of interest in
BB9 quantum cosmology exist, is colored green. We have
Dx ⊂ Dcl. Numerically, we have taken ≫ 1 × ð…Þ to mean
> 100 × ð…Þ.

9The effects of the prefactor in this expression are usually
neglected since they are subleading in ℏ.

10The higher-order corrections in Eq. (4.22) display the same
qualitative behavior as the first-order correction term—at small α,
the correction behaves as xn, and at large α, the correction
behaves as ðαxÞn.

11Again, the effects of the prefactor are usually neglected
here. Strictly speaking, a nonconstant phase of the prefactor
would add a subleading term in ℏ to the rhs of Eq. (4.24),
ℏ∂α argðAþÞ, providing a quantum correction to the classical
trajectories reminiscent of the de Broglie-Bohm approach to
quantum mechanics.
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2π2ds2 ¼ −
1þ αðλÞ
pðλÞ dλ2 þpðλÞ

4

�
σ21 þ σ22 þ

1

1þ αðλÞσ
2
3

�
;

ð4:25Þ

are shown in the ðp; αÞ plane in Fig. 2. For clarity, we note
again that these histories should not be confused with the
no-boundary instantons (4.2), (4.3), which are complex and

live on B4. The solution (4.25) instead is a real, Lorentzian
signature metric on the manifold Rtime × S3.
In Dx, one can show that approximate solutions to

Eq. (4.24) are given by the rays p=q ¼ constant, which
is suggested in Fig. 2. This makes limp→∞αðpÞ a good label
for the classical trajectories. This observation also follows
from the Hamilton-Jacobi equation since ImðS̄þ0 Þ is con-
stant along the integral curves of ReðS̄þ0 Þ, and it only
depends on α to leading order in Dx [see Eq. (4.27) below].
Using the notation of the previous section, we have

N� ¼ �
ffiffiffiffiffiffi
3q

p �
1þ 4α − 1

8
xþOðx2Þ

�

−
3i

1þ α
½1þ 2αxþOðx2Þ�; ð4:26Þ

S̄�0 ¼∓ 2p3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ αÞp �

1 −
4αþ 3

8
xþOðx2Þ

�

−
6ð1þ 2αÞi
ð1þ αÞ2

�
1þ 2α

2αþ 1
αxþOðx2Þ

�
: ð4:27Þ

So, from Eq. (4.18),

ΨHHðp; α;B4Þ ≈ jAþj exp
�

6

ℏΛ
ð1þ 2αÞ
ð1þ αÞ2

�

× cos

�
2

ℏΛ
ðΛpÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ αÞp þ argðAþÞ

�
;

ð4:28Þ

where we have reinstated Λ and neglected an overall factor
of 2, and the approximation is valid inDx. The argument of
the exponential function in Eq. (4.28), −ImðS̄þ0 Þ, is plotted
to leading order in Dx in Fig. 3. We discuss the prefactor

FIG. 2. The ensemble of classical, Lorentzian histories on Rtime × S3 predicted by the NBWF in the BB9 minisuperspace model, with
the 4-metric given in Eq. (4.25). Each trajectory can be labeled by its asymptotic squashing parameter limp→∞αðpÞ. The gray region is
where the classicality conditions do not hold. In this plot, we took this region to be p=12 < ðαþ 2Þ=ðαþ 1Þ, which is a good
approximation to the complement of the actual regime Dcl defined in Eq. (4.19).

FIG. 3. The imaginary part of the on-shell action (approx-
imately in Dx or at large volume) for the Taub-NUT-dS
contribution to the NBWF as a function of the squashing
parameter α≡ p=q − 1 of the S3. To leading order in ℏ and in
Dx the magnitude of the wave function is determined by this
function via jΨHHðp; αÞj ∼ e−ImðS̄þ

0
Þ=ℏ.
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Aþ, of which the properties at large α in Dx determine
whether the contribution is normalizable, in Sec. VI.

V. NO-BOUNDARY SADDLE POINTS ON CP2nB4

In this section, we discuss the contributions to the
semiclassical NBWF arising from instantons that live
on the compact 4-manifold CP2nB4, also known as the
Taub-Bolt-dS solutions [51]. In this case, the S1 fiber
shrinks to zero size at τ ¼ 0, while the S2 remains at a finite
size there. A regular metric satisfies q0 ¼ 0,Πp;0 ¼ −i.12 In
the general solutions (2.21) and (2.22) to the second-order
EOM, the regularity condition on the momentum conjugate
to p at τ ¼ 0 determines the (off-shell) size of the 2-sphere
at τ ¼ 0 in terms of the lapse parameter,

p0 ¼
4N6 þ 24iN5 þ ðp2 − 36ÞN4 − 6p2qN2 þ 9p2q2

4N2ðN þ 3iÞ2p ;

ð5:1Þ

where again p and q are the arguments of the wave
function. This time, the Hamiltonian constraint reads

3ðNs − iqÞðNs − 3iqÞp
N3

sðNs þ 3iÞ −
9iðNs − iqÞ2p
N3

sðNs þ 3iÞ2 −
4N2

s

p

þ 6pq
N2

s
−
8iNs

p
− pþ 16 ¼ 0; ð5:2Þ

which generally has seven solutions.13 As in the NUT case,
these solutions have the property that if Ns is a solution so,
too, is −N�

s ; i.e., the sign of the real part is flipped.
As we did for the no-boundary NUT-type solutions, we

can also write the no-boundary Bolt-type solutions in a
more conventional form. For this, we can copy Eqs. (4.2)
and (4.3), but now

ΔðρÞ ¼ ð1þ 2L2Þðρ2 − ρ2BÞ − ðρ4 − ρ4BÞ=3 − 2Mðρ − ρBÞ;
ð5:3Þ

2MρB ¼ ð1þ 2L2Þρ2B − ρ4B=3þ L2ð1þ L2Þ; ð5:4Þ

ρB ¼ −1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16L2ð1þ L2Þ

p
4L

; ð5:5Þ

ρ ¼ iNs

4L
τ þ ρB; ð5:6Þ

and L is related to Ns (and thus to the arguments of the
wave function p and q) through the equation

4ðρ2B − L2Þ ¼ p0ðNsÞ; ð5:7Þ
where p0ðNsÞ is given in Eq. (5.1). The no-boundary
instantons onCP2nB4 in this minisuperspace are thus Taub-
Bolt-dS solutions with a complex Bolt parameter L that
depends on the arguments on the wave function.

A. Saddles Ns and on-shell action

Contrary to the NUT case, an analytic expression for the
solutions of Eq. (5.2) is not evident to write down and use.
We can, however, as in Sec. IV B, restrict ourselves to a
certain regime D̃x where convenient approximations exist
also in this case. The regime D̃x is defined by

p ·
αþ 1

ðαþ 2Þ2 ≫ 12ðD̃xÞ; ð5:8Þ

which is more restrictive than the regime Dx [defined in
Eq. (4.23)] at large α. The saddle points of interest can be
determined by plugging the ansatz

NBolt
� ≈�

ffiffiffiffiffiffi
Aq

p
þ if4ðαÞ ð5:9Þ

into Eq. (5.2) (where ≈ means valid up to small corrections
in D̃x) and demanding that the equation be satisfied as well
as it can, i.e., perturbatively in x, by choosing A and f4
appropriately. We find

A ¼ 3; ð5:10Þ

f4ðαÞ
¼f�ðαÞ

¼
(
−1 if α∈ ð5−3

ffiffiffi
3

p
;5þ3

ffiffiffi
3

p Þ
−1−α�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2−10α−2

p
1þα if α∈ ð−1;5−3

ffiffiffi
3

p �∪ ½5þ3
ffiffiffi
3

p
;∞Þ
ð5:11Þ

must be taken. The two possibilities for f4, f� exist for
both saddles NBolt

� independently. (For clarity, by NBolt
� , we

mean, as in the NUT discussion in Sec. IVA, the saddle
points with positive/negative real part, which are further
distinguished in this case by a binary choice of fþ or f−.)
So, by this method, we have found four of the seven
solutions to Eq. (5.2) approximately in D̃x, and they are all
potentially interesting since they are not purely imaginary.
One can show that the other three solutions of Eq. (5.2) are
purely imaginary in D̃x and so, as we have mentioned in
Sec. IVA, are not of interest in quantum cosmology
since they lead to a purely real contribution to the wave
function at a large volume which does not predict classical
spacetime.

12Recall that the NUT instantons were obtained by the
boundary conditions p0 ¼ 0, Πq;0 ¼ −i [52].

13Note that the on-shell size of the 2-sphere at τ ¼ 0, p0ðNsÞ,
is a nonconstant function of the argument of the wave function
ðp; qÞ. This implies it is impossible [16] to obtain the Taub-Bolt-
dS contribution to the NBWF by imposing Dirichlet boundary
conditions on both minisuperspace coordinates at τ ¼ 0.
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The action of the Taub-Bolt-dS solutions is given by
Eq. (2.12), evaluated on the solutions (2.21), (2.22) with
p0 as in Eq. (5.1), plus the boundary term Πp;0p0. This
term is required (and does not vanish, in contrast to the

analogous term Πq;0q0 ¼ 0 in the NUT discussion) to
make the variational problem of fixing Πp and q at τ ¼ 0

and p and q at τ ¼ 1 well defined. In terms of the lapse—
the only remaining parameter at this stage—one obtains

−SBoltðNÞ ¼ 3N½6p2qþ iNð4N2 þ 16iNpþ p2Þ� þ N3ð4N2 þ 3p2Þ þ 9p2ðN−iqÞ2
Nþ3i

12N2p
: ð5:12Þ

For the on-shell action [i.e., Eq. (5.12) evaluated on (5.9)], one obtains

SðNBolt
� ; f�Þ≈ ∓ 2p3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ αÞp þ i ×
27þ f�ðαÞ½9ð1þ 4αÞ þ ð1þ αÞ2f�ðαÞð3þ f�ðαÞÞ�

9ð1þ αÞ : ð5:13Þ

For a detailed discussion of the approximations written
above, we refer the reader to Appendix A. For a plot of the
imaginary part of Eq. (5.13) for both contributions, see
Fig. 15 in Appendix B.

B. Classical histories

To leading order in D̃x (and, in fact, to first subleading
order as well), the real part of the on-shell action for the
contributions to the NBWF from the manifold CP2nB4,

Eq. (5.13), is identical to its analog in theB4 case, Eq. (4.27)
(valid in the regimeDx, and D̃x ⊂ Dx). This implies that the
classical histories on which this branch of the wave function
has support are, at large volume, the same as those discussed
in Sec. IV B. That is, they are curves of constant α. At
smaller volume but still in Dcl, we expect the classical
trajectories in both ensembles to differ [53].

C. Choice of saddles

Above, we have found two types instantons, which we
distinguished by the choice f�. Since near α ¼ −1 (and in
D̃x) Re½iSðNBolt

� ; f−Þ� diverges to negative infinity and
Re½iSðNBolt

� ; fþÞ� diverges to positive infinity, only the
solutions with the f− choice lead to normalizable semi-
classical contributions to the wave function. So, only the
solutions ðNBolt

� ; f−Þ can be included as contributions to the
semiclassical no-boundary state near α ¼ −1. At large α,
Re½iSðNBolt

� ; f−Þ�behaves as−α and thus surely corresponds
to a normalizable contribution, while Re½iSðNBolt

� ; fþÞ�
tends to zero as 1=α. In principle, either solution could be
chosen to contribute to the semiclassical NBWF. The former
would be automatically normalizable, while the normal-
izability of the latter would depend on the details of the
prefactor as does the contribution from the 4-disk (see
Sec. VI where we discuss the normalization of the semi-
classical NBWF in detail). For definiteness, we will assume
only the ðNBolt

� ; f−Þ contribution is relevant at large α. So,
approximately in D̃x and in the semiclassical limit,

ΨHHðp; α;CP2nB4Þ

≈ jÃþj exp
�
−
Im½SðNBoltþ ; f−Þ�

ℏΛ

�

× cos
�

2

ℏΛ
ðΛpÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ αÞp þ argðÃþÞ

�
; ð5:14Þ

with SðNBoltþ ; f−Þ given in Eq. (5.13). The undetermined
prefactor Ãþ is discussed in Sec. VI.
Some readers may have noticed that, based on the

information we have given so far, we, in fact, do not know
if we have the freedom—even in principle—to choose one
type of saddle point near α ¼ −1 and the other type at large
α (both for x ∈ D̃x) as we suggested above. Based on what
we have discussed, the choices could be mutually exclusive
because the imaginary parts of the actions written in
Eq. (5.13) receive corrections at finite x. If the corrections
would be such that at any finite x the imaginary parts of the
on-shell action of the two types of solutions never intersect
each other at any α, the saddles could never exchange
dominance, and the choice of saddle near α ¼ −1 would be
tied to the choice at large α. In other words, a phase
transition would be impossible.
By taking into account the corrections at finite x, we

have verified that such phase transitions between the
solutions on CP2nB4 are possible. We refer the reader to
Appendix B for a detailed discussion. Which choices of
phase are made at particular values of α, or which saddles
are picked up, depends on the contour of integration in a
more detailed definition of the NBWF.14

14In minisuperspace, the choice of dominant saddles we have
made above [i.e., the ðNBolt

� ; f−Þ saddles at all α] can be realized
by integrating the lapse in Eq. (3.3), for the CP2nB4 manifold,
over the contour C ¼ R − ð1þ εÞi with 0 < ε < 2. This can be
shown by a steepest-descent analysis of the integral

R
C dNeiSBolt=ℏ

with SBolt given in Eq. (5.12).
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VI. NORMALIZATION

We come now to the issue of normalization of the wave
functions we have calculated and the closely related issue
of the construction of properly normalized probabilities. As
indicated earlier, we are primarily interested in the saddle-
point version of the no-boundary proposal (SPNB pro-
posal), the strength of which is that there are reasonable
grounds for believing that the wave functions obtained in
this approach are approximations to the wave functions in a
full quantum theory of gravity. However, in the absence of
such a theory, we are unable to say very much about the
form of the wave function beyond the lowest-order saddle-
point approximation, e.g., about the prefactors. This is
significant since normalizability of Wentzel-Kramers-
Brillouin (WKB)-type wave functions typically depends
on the asymptotic falloff of the prefactors. So, from the
perspective of the SPNB proposal, it is not possible to say
much about normalizability, other than imposing some
sensible broad requirements and, in particular, asking that
the semiclassical wave functions do not grow asymptoti-
cally [27]. This sort of heuristic approach is clearly
sufficient to rule out the undesirable saddle points of the
type encountered in Ref. [9]. (In Ref. [10], a growing
contribution from some off-shell structure in the minisuper-
space path integral is identified, but we show in Appendix F
that the calculation of Ref. [10] is inconsistent and that such
a contribution does not exist.)
However, the investigations in this paper are not com-

pletely limited to the SPNB proposal—we are also inter-
ested in exploring some aspects of fully quantized
minisuperspace models. These have the feature that their
normalization can be thoroughly explored, so it is clearly of
interest to do this, if only to get some idea of how it might
fail. Of course, in minisuperspace models, an infinite
number of modes are simply set to zero, and there is no
obvious sense in which such models could be approxima-
tions to a full quantum theory of gravity, except in the
lowest-order semiclassical approximation. Hence, normal-
izability in the minisuperspace context is unlikely to say
anything about normalizability in a full theory. However, it
does seem reasonable to assert that the absence of normal-
izability for a given wave function in a minisuperspace
model indicates that there is no corresponding normalizable
wave function in a full theory. This means that minisuper-
space normalizability could be used as a criterion for ruling
out certain wave functions.
A Hilbert space structure for the solutions to the WDW

equation for minisuperspace models can be defined using
the induced inner product. (See e.g., Ref. [54].) Loosely, one
requires that the usual Schrödinger inner product between a
pair of eigenstates of the WDW operator exists and is
proportional to δðE − E0Þ, where E and E0 denote the
eigenvalues. This will already eliminate certain solutions
to the WDW equation if this inner product does not exist,
e.g., if the wave functions grow exponentially at large

arguments. One can then use the states belonging to the
Hilbert space to construct interesting probabilities by find-
ing operators which commute with H and correspond to
physically relevant questions concerning cosmological
histories.
This general structure has been shown, at length [54], to

boil down to fluxes across surfaces of codimension 1 in
minisuperspace, which is the more commonly employed
heuristic interpretation of minisuperspace wave functions,
in which the fluxΦΣðJÞ across surface Σ is defined in terms
of the conserved current

J ¼ −
iℏ
2
ðΨ�∇Ψ −Ψ∇Ψ�Þ; ð6:1Þ

by

ΦΣðJÞ ¼
Z
Σ
J · dΣ; ð6:2Þ

where dΣ denotes a normal surface element [55,56].
Because the original wave functions are normalizable
in the induced inner product, the flux across a surface
remains well defined even for infinite surfaces, which is an
important property for the normalization of the prob-
abilities.
For a real wave function such as the NBWF, which

consists of a sum of complex conjugate saddle points, the
current (6.1) is identically zero. One usually proceeds by
taking the (semiclassical) current to be constructed out of
“half” of the (semiclassical) wave function, i.e., Ψ ≈
AeiS̄0=ℏ in our case. The argument for doing this is that
the coarse graining involved in computing a flux of interest
causes the interference between two different WKB wave
functions to average out in the flux; hence, it is reasonable
to consider the probability for each WKB wave function
separately [54].
One can also have a more general sum of saddle points,

not necessarily complex conjugates of each other, which is
the case in the BB9 model. In a sufficiently small regime of
configuration space, usually only a single kind of saddle
point exponentially dominates the behavior of the wave
function, however, so to good approximation, we may
restrict our attention to this contribution only and construct
the current from it alone.15 For Ψ ≈AeiS̄0=ℏ, one obtains

JclðΨÞ ≈ jAj2e−2ImðS̄0Þ=ℏ∇½ReðS̄0Þ þ ℏ argðAÞ�; ð6:3Þ

which is conserved to next-to-next-to-leading order in ℏ
due to Eqs. (2.16) and (2.17).16 Relative probabilities are

15Saddle points may exchange dominance as one explores the
superspace; i.e., a phase transition may occur. We return to this
interesting phenomenon in Sec. VII (see also Appendix B).

16We remark a last time that the second term in Eq. (6.3) is
usually neglected. The first term is exactly conserved.
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then defined by ratios of flux of Jcl across certain surfaces,
according to

ProbðσjΣÞ ¼ ΦσðJclÞ
ΦΣðJclÞ

; ð6:4Þ

where σ ⊂ Σ andΦSðJclÞ is the flux of the current Jcl across
the (codimension-1) surface S in minisuperspace. This ratio
is interpreted as the probability that a history in the classical
ensemble passes through σ, given that it passes through Σ.
This is (approximately) well defined for any finite Σ since
Jcl is (approximately) conserved.
An absolute probability that a classical history passes

through a surface σ can be defined via Eq. (6.4) ifΦΣðJclÞ is
finite for a surface Σ that slices through all the classical
trajectories. As indicated above, we expect it to be finite on
general grounds, but it is useful to see how this can be made
to work for a WKB wave function Ψ ≈AeiS̄0=ℏ. For such
states, the total flux will probably be finite if ImðS̄0Þ tends
toþ∞ in all directions on Σ and will probably be infinite if
ImðS̄0Þ tends to −∞ in any direction on Σ. With the
semiclassical contribution to the NBWF in the BB9 model
from the CP2nB4 topology, Eq. (5.14), we are in the former
scenario, and thus this contribution is normalizable over the
set of all classical trajectories essentially independently of
the properties of the prefactor Ãþ. The case in between is
when ImðS̄0Þ tends to zero along some directions on Σ and
to þ∞ in all others. This is the case we are in with the

semiclassical contribution from B4, Eq. (4.28): ImðS̄þ0 Þ →
þ∞ as α → −1 and ImðS̄þ0 Þ → 0 as α → þ∞. In such
cases, the normalization of Ψ across all classical histories
may depend crucially on the asymptotic behavior of the
prefactor, Aþ here.
We now determine the most general prefactor Aþ,

approximately in Dx, that would allow one to define an
absolute probability distribution over all classical histories

via the semiclassical current JclðΨHHðB4ÞÞ. The conserva-
tion equation (2.17) for Aþ reads�

2ffiffiffi
x

p þ iαx

�
∂pAþ þ 1

1þ α

�
2ffiffiffi
x

p − 2iαx

�
∂qAþ

þ 1þ α

8
½ ffiffiffi

x
p þ ið1 − αÞx2�Aþ ¼ 0; ð6:5Þ

where we have kept only the leading terms in Dx in the
coefficient functions. From this equation, it follows that, to
leading order in Dx,

p∂pjAþj þ q∂qjAþj þ
3

4
jAþj ¼ 0; ð6:6Þ

which has the general solution

jAþj ¼ q−3=4f5ðαÞ; ð6:7Þ

with f5 an arbitrary real-valued function. It is then possible

to show that the flux of JclðΨHHðB4ÞÞ across an infinite
surface that intersects all classical histories is finite ifZ

∞

−1
dαf5ðαÞ2 < ∞: ð6:8Þ

An alternative way of deriving the result (6.7) is via the
general solution (2.15) to the WDW equation. One can
evaluate the integral in the semiclassical limit, assuming
p ≫ 1 and jΠs

qj ≫ 1, where the superscript s denotes
saddle-point values, and additionally assuming that the
function f2 is irrelevant to the determination of the leading-
order magnitude of the saddles Πs

q. These assumptions turn
out to be consistent in Dx, and the stationary phase
approximation shows that the leading-order behavior for
the prefactor in Dx is as in Eq. (6.7).
One may wish to go one step further and determine the

function f2 in the general solution (2.15) that would give
rise to a particular known solution to the WDW equation.
Generally speaking, this is a difficult task. For the con-
tribution (4.28) to the NBWF, which is valid in the
semiclassical limit and in Dx, it is possible to determine
an appropriate f2. It is given by

f2ðxÞ ¼
ffiffiffiffiffi
3x

p
f5ð3x − 1Þ exp

�
2

3ℏΛ

�
6x − 1

x2

��
: ð6:9Þ

Here, the magnitude of the prefactor in (4.28) was assumed
to take exactly the form (6.7). For the contribution (5.14), a
similar expression exists.
With the prefactor as in Eqs. (6.7) and (6.8), the

contribution (4.28) to the semiclassical NBWF arising
from geometries on the 4-disk is normalizable in the sense
described above (even though as α → ∞, at constant p, the
exponential part tends to a nonzero constant). The con-
tribution from CP2nB4 is normalizable independently of
the behavior of the prefactor.
At this stage, a comment on our previous work [11], in

which we wrote down an exact solution to the WDW
equation in the BB9 model based on a minisuperspace path
integral over geometries on the 4-disk, is in order. This
solution has f5ðαÞ≡ 1 in the semiclassical limit and so is
not normalizable over all classical trajectories of the model
in the sense explained in this section. This does not
invalidate the main point of Ref. [11], however, which
was to illustrate that no sources of enhanced perturbations
of the type purportedly found in Ref. [10] appear when the
NBWF is carefully defined in terms of a minisuperspace
path integral.
Furthermore, we have stressed in this paper that the

prefactor for a NBWF cannot be fully fixed by a minisuper-
space analysis. This means that we have the freedom to
adjust f5ðαÞ to produce a NBWF which yields properly
normalized probabilities. So, for example, we may take
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f5ðαÞ to be approximately 1 for small α but which decays
sufficiently fast for large α so that Eq. (6.8) is satisfied. In
this way, we confirm explicitly the expected normalization
properties stated both here and in Ref. [11].

VII. BACKGROUND NO-BOUNDARY
WAVE FUNCTION

To summarize,

ΨHHðp; αÞ ¼ ΨHHðp; α;B4Þ þΨHHðp; α;CP2nB4Þ; ð7:1Þ

where expressions for the two terms on the rhs can be found
in Eqs. (4.28) and (5.14) and the one-loop factors were
discussed in Sec. VI. As mentioned in Sec. III A, these are
just two of the contributions to the NBWF in the BB9
model—there may be others, but these two already suffice
to illustrate the behavior of the NBWF when multiple types
of instantons are included. In this section, we will denote
the (complex, Lorentzian) actions of the no-boundary
Taub-NUT-dS and Taub-Bolt-dS solutions by SNUT and
SBolt, respectively. (These each contribute to the wave
function as Ψ ∼ eiS=ℏ.)
The expressions (4.28) and (5.14) are valid in the

parameter regime D̃x, defined in Eq. (5.8), which is a
subset of the minisuperspace where the wave function (7.1)
predicts classical correlations between its arguments.
(The classical histories are shown in Fig. 2.) In this regime,
the functions ReðiSNUTÞ and ReðiSBoltÞ are approximately
only functions of α, which labels the classical histories,
and both reach a maximum somewhere in this regime.
The Taub-Bolt-dS contribution reaches a maximum at a
point very close to (but smaller than) α ¼ 5 − 3

ffiffiffi
3

p
≈ −0.2.

The semiclassical contribution to the NBWF from the Bolt
topology is thus peaked about an anisotropic classical
history. We evaluated the action at this point (or better, line)
and found

max fReðiSBoltÞjðα; xÞ ∈ D̃xg ≈ 3.82: ð7:2Þ

However, the relative weight of this configuration com-
pared to the NUT contribution around the isotropic S3 is
negligible; from Eq. (4.27), we obtain

max fReðiSNUTÞjðα; xÞ ∈ Dxg ¼ 6: ð7:3Þ

Since the NUT contribution is peaked around α ¼ 0 and the
Bolt contribution is irrelevant compared to it in a neighbor-
hood of α ¼ 0, the NBWF gives the highest probability to
the isotropic classical history. This conclusion is visualized
in Fig. 4.
As we move to positive α, we encounter two phase

transitions: the first at α ¼ 2 and the second at α ¼
2ð3þ ffiffiffiffiffi

10
p Þ ≈ 12.32. There is no phase transition for

negative α; the NUT contribution is dominant there.
This is illustrated in Fig. 5. This completes our discussion
of the NBWF, or at least two of its contributions, in the
unperturbed BB9 minisuperspace model.

VIII. ISOTROPIC LIMIT

In this section, we discuss the isotropic limit of the
NBWF ΨHHðp; qÞ, i.e., its behavior on the isotropic slice
p ¼ q (or α ¼ 0), about which concern was raised
recently in Ref. [30]. We argued in Sec. VII that only

the contribution from B4 is relevant at α ¼ 0. At this point,
the no-boundary Taub-NUT-dS solution discussed in
Sec. IV is identical to the homogeneous and isotropic
solution originally considered by Hartle and Hawking in
Ref. [1] (and reviewed in many articles including our recent
work [40]). Thus, the semiclassical wave functions are

FIG. 4. The imaginary parts of the on-shell actions correspond-
ing to two no-boundary instantons in the BB9 minisuperspace
model. The actions are plotted at large volume [more precisely, in
the regime D̃x defined in Eq. (5.8)], where ImðS̄0Þ is only a
function of α, the squashing of the S3 in the argument of the
NBWF. The contribution labeled by “NUT” represents an
instanton on the 4-disk, while the contribution labeled by “Bolt”
lives on CP2nB4.

FIG. 5. The same quantities as in Fig. 4 are shown, focusing on
negative values of α.
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identical to leading order in ℏ; i.e., the exponential parts
of the semiclassical expressions are equal. (The possible
one-loop factors that follow from the one-dimensional and
two-dimensional WDW equations are not equal, but this is
not to be expected.) This completes the relevant part of the
discussion of the isotropic limit.
The criticism in Ref. [30] is directed towards the

different implementation of the NBWF as a minisuper-
space functional integral in the one-dimensional dS
minisuperspace model we used in Ref. [40] vs its
implementation in the two-dimensional BB9 model on
the 4-disk we used in Ref. [11]. More precisely, the claim
is that it is inconsistent to choose a different contour C for
the lapse integral in these models (see Appendix E for a
brief review of the minisuperspace path integral formal-
ism) because, in the isotropic limit, the two models should
coincide. No such consistency condition exists, however.
In fact, our analysis shows that there cannot be such a
consistency condition, precisely because the wave func-
tions we constructed coincide in the isotropic limit even
though a different lapse contour C was chosen in their
respective constructions. The more general reason that
there is no inconsistency is that the off-shell analysis in
minisuperspace models depends sensitively on the details
of the path integral including the choice of lapse gauge
fixing and the choice of boundary conditions at the south
pole of the geometry. We illustrate this point with simple
additional examples in Appendix E.

IX. NO-BOUNDARY WAVE FUNCTION
OF INHOMOGENEOUS SCALAR

FLUCTUATIONS

In this section, we consider inhomogeneous, massless,
and minimally coupled scalar fluctuations around the
anisotropic background solutions we discussed in Secs. IV
and V, i.e., the no-boundary Taub-NUT-dS and Taub-
Bolt-dS solutions. We emphasize that we are holding the
background fixed—the metric is as in Eq. (2.4) with pðτÞ,
qðτÞ and N taking on definite values. This is different from
what the authors of Refs. [9,10] have attempted to do,
which is to consider a dS plus massless scalar minisuper-
space (reviewed in Appendix D) in which the background
is allowed to fluctuate in response to the scalar and thus the
two fields are treated at the same level. We comment on
their calculation, which is inconsistent, in Appendix F.

A. Action

Here, instead, we are doing the quantum-cosmological
analog of quantum field theory in a (fixed) curved back-
ground spacetime [12]. In our case, the background is
complex and lives on a compact 4-manifold. The (bulk,
Lorentzian) action for a massless minimally coupled scalar
ϕðτ;ΩÞ on an anisotropic background specified by
ðpðτÞ; qðτÞ; NsÞ reads

Sϕ¼−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð∂ϕÞ2

¼ 1

2π2

Z
1

0

dτNs
p3=2ffiffiffi
q

p
Z
S3
dΩ

ffiffiffiffiffi
gΩ

p �
q

2N2
s

_ϕ2þ 1

2p
ϕ∇2ϕ

�

¼ 1

2π2

Z
1

0

dτNs

Z
S3
dΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΩðα≡0Þ

p �
pq
2N2

s

_ϕ2þ1

2
ϕ∇2ϕ

�
:

ð9:1Þ

Here, Ω stands for the Euler angles θ ∈ ½0; π�, ϕ ∈ ½0; 2πÞ,
ψ ∈ ½0; 4πÞ on S3 [i.e., the coordinates used in Eq. (2.1) but
not in Eq. (C1)]17 and ðgΩÞij is the rescaled spatial part of
the metric (2.1),

4ðgΩÞijdΩidΩj ¼ σ21 þ σ22 þ
1

1þ αðτÞ σ
2
3; ð9:2Þ

where αðτÞ≡ pðτÞ=qðτÞ − 1 and ðpðτÞ; qðτÞ; NsÞ is one of
the complex, no-boundary background solutions discussed
in Secs. IV and V. For clarity, the Laplacian in Eq. (9.1) is
with respect to the τ-dependent metric gΩ given in Eq. (9.2).
We have

ffiffiffiffiffi
gΩ

p ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½ðgΩÞij�

q
¼ sin θ

8
ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p ¼ sin θ
8

ffiffiffiffi
q
p

r
: ð9:3Þ

B. Fluctuation wave function

Thus, we are considering the NBWF on the extended
BB9 minisuperspace spanned by the S3 scale factors p,
q ≥ 0 and the value of the (small) massless scalar field
φðΩÞ ¼ ϕð1;ΩÞ on the (squashed) S3. The total wave
function can be written as a sum of products of the
background wave functions and corresponding fluctuation
wave functions (e.g., Ref. [12] and references therein),

ΨHH½p; q;φðΩÞ� ¼ ΨHHðp; q;B4Þ ×Ψfluct½φðΩÞjB4�
þΨHHðp; q;CP2nB4Þ
×Ψfluct½φðΩÞjCP2nB4�; ð9:4Þ

where the background wave functions are given in
Eqs. (4.28) and (5.14). The fluctuation wave functions
for the no-boundary proposal are determined by a path
integral of the form

Ψfluct½φðΩÞjbackground� ¼
Z

ϕð1Þ¼φ

Bϕ

DϕeiSϕðbackgroundÞ=ℏ;

ð9:5Þ

where Bϕ are boundary conditions on the scalar at the south
pole of the background geometry which correspond to the

17We apologize for using ϕ twice.
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behavior of a regular solution to the scalar field EOM on the
background in this regime. Here, we will take these to be of
the Dirichlet type Bϕ ¼ fϕð0;ΩÞ≡ 0g for both back-
ground geometries, following Ref. [12], although other
options can be explored (e.g., Ref. [57]). Since the scalar
action (9.1)—which is the one appropriate to the Dirichlet
boundary conditions we consider—is quadratic, the evalu-
ation of the path integral (9.5) reduces to finding the
solution to the EOM that satisfies the appropriate boundary
conditions.

C. Numerical strategy

Our strategy is to expand ϕ and φ into harmonics on
the (single-)squashed S3 with metric (9.2), which are
labeled by three numbers J ∈ f0; 1=2; 1; 3=2;…g and K,
M ∈ f−J;−J þ 1;…; Jg. We will denote these quantum
numbers collectively by L. The harmonics are given
explicitly by [58–62]

YLðΩÞ ¼ CLeiMϕeiKψdLðθÞ; ð9:6Þ

dLðθÞ¼
�
1−cosθ

2

�
λ1
�
1þcosθ

2

�
λ2

2F1

�
α;β;γ;

1−cosθ
2

�
;

λ1¼
jK−Mj

2
; λ2¼

jKþMj
2

;

α¼ λ1þλ2þJþ1; β¼ λ1þλ2−J;

γ¼2λ1þ1; CL¼
1

ΓðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Jþ1ÞΓðαÞΓðγ−βÞ
Γð1−βÞΓð1þα−γÞ

s
:

ð9:7Þ

We stress the S3 coordinate ϕ is periodic with 4π, but that to
cover the S3 once it runs from 0 to 2π. Note that the
hypergeometric series in Eq. (9.7) simplifies to a (Jacobi)
polynomial in ð1 − cos θÞ=2 since β ¼ maxfjKj; jMjg − J
is always a negative integer. These functions satisfy18

∇2YL ¼ −4½JðJ þ 1Þ þ αðτÞK2�YL; ð9:8Þ
Z
S3
dΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΩðα≡ 0Þ

p
Y�
LYL0 ¼ 2π2δLL0 ; ð9:9Þ

YðJ;K;MÞðΩÞ� ¼ YðJ;−K;−MÞðΩÞ ð9:10Þ

and form a basis for the continuous complex functions on
S3. We can define a complete set of real harmonics via

XLðΩÞ¼

8>>>>>>>><
>>>>>>>>:

ffiffiffi
2

p
CL sinðMϕþKψÞdLðθÞ ifM>0;ffiffiffi

2
p

CL sinðKψÞdLðθÞ ifM¼0;K>0;

CLdLðθÞ ifM¼0;K¼0;ffiffiffi
2

p
CL cosðKψÞdLðθÞ ifM¼0;K<0;ffiffiffi

2
p

CL cosðMϕþKψÞdLðθÞ ifM<0:

ð9:11Þ

These functions satisfy the same eigenvalue equation (9.8)
as the YL, form a basis for the real functions on S3, and are
orthonormalized in the real sense,

Z
S3
dΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΩðα≡ 0Þ

p
XLXL0 ¼ 2π2δLL0 : ð9:12Þ

We expand

ϕðτ;ΩÞ ¼
X
L

fLðτÞXLðΩÞ; ð9:13Þ

φðΩÞ ¼
X
L

fL;1XLðΩÞ; ð9:14Þ

which gives19

Sϕ ¼
X
L

Z
1

0

dτNs

�
pq
2N2

s

_f2L − 2½JðJ þ 1Þ þ αK2�f2L
�
:

ð9:15Þ

All the modes fL are decoupled from one another. The
EOM are, ∀L,

d
dτ

ðpq _fLÞ þ 4N2
s ½JðJ þ 1Þ þ αK2�fL ¼ 0; ð9:16Þ

and it is possible to show that the on-shell action takes the
form

Sðon-shellÞϕ ¼
X
L

1

2Ns
½pqfL _fL�τ¼1

τ¼0: ð9:17Þ

Unfortunately, we could not find a closed-form solution
to Eq. (9.16) for general no-boundary solutions ðpðτÞ;
qðτÞ; NsÞ with Dirichlet boundary conditions fLð0Þ ¼ 0,
fLð1Þ ¼ fL;1. Instead, we proceeded numerically. This
exercise is greatly simplified by the linearity of Eq. (9.16);
we only need to solve the equation once [for each couple
of arguments ðp; qÞ of the background wave function]
with fLð0Þ ¼ 0 and an essentially arbitrary initial value for

18Note that the scalar harmonics YL do not depend on τ. [The
eigenvalues given in Eq. (9.8) do.] This feature allows us to
proceed analytically for perturbations on the single-squashed S3.
For the double-squashed S3 [i.e., ds2 ¼ σ21 þ ð1þ βÞ−1σ22þ
ð1þ αÞ−1σ23, α, β ≠ 0], the harmonics depend nontrivially on
the squashing parameters, and it seems one must proceed
numerically [62,63].

19In the isotropic limit α≡ 0, this coincides with previous
work: for Ref. [40], identify J ≅ l=2, and for Ref. [12], identify
J ≅ ðn − 1Þ=2.
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_fLð0Þ.20 We can then simply rescale this solution by a
complex number such that fLð0Þ ¼ 0, fLð1Þ ¼ 1. If we call
the resulting function f̃L, the action we are interested in is
given by

Sðon-shellÞϕ ¼ pq
2Ns

X
L

_̃fLð1Þf2L;1; ð9:18Þ

where again p, q are the arguments of the background wave
function here.
While we cannot analytically solve Eq. (9.16) in general,

we can determine the leading behavior of fL near τ ¼ 0
up to a proportionality factor. For the no-boundary NUT-
type backgrounds, we have pðτÞ; qðτÞ ¼ 2iNsτ þOðτ2Þ as
τ → 0. Thus, αðτÞ → 0 as τ → 0, and (9.16) becomes

d
dτ

ðτ2 _fLÞ ≈ JðJ þ 1Þ fL

near τ ¼ 0 for the NUT-type background: ð9:19Þ

Trying an ansatz fLðτÞ ∝ τA yields AðAþ 1Þ ¼ JðJ þ 1Þ,
so A ¼ J or A ¼ −1 − J. The latter choice would cause fL
to blow up as τ → 0, so we discard this solution since the
boundary condition fLð0Þ ¼ 0 cannot be imposed on it.
(Additionally, these solutions have infinite action.) Thus,
for perturbations around the NUT-type background,
fLðτÞ ∝ τJ near τ ¼ 0.21 This relation lets us set up the
numerical integration problem at a finite value τ ¼ ε ⪆ 0:
fLðεÞ ¼ AεJ, _fLðεÞ ¼ AJεJ−1, where A is chosen arbitrar-
ily at first and later rescaled, following the discussion
above. For the Bolt-type background, one can similarly
derive fLðτÞ ∝ τjKj for K ≠ 0 near τ ¼ 0 and set up the
numerical integrator accordingly. For K ¼ 0, we have
fLðτÞ ∝ τ�

ffiffi
c

p
with c ¼ 2JðJ þ 1ÞiNs=p0, and the sign is

chosen such that Reð� ffiffiffi
c

p Þ > 0.

D. Fluctuations around the NUT solution

As we have mentioned above, while we could not
solve Eq. (9.18) for a general no-boundary background
ðpðτÞ; qðτÞ; NsÞ, we can solve it explicitly for the special
case of the NUT-type solution with pð1Þ ¼ qð1Þ (i.e., in the
isotropic limit). In this case, we have pðτÞ ¼ qðτÞ; ∀
τ ∈ ½0; 1�, and so αðτÞ≡ 0, and one obtains [9,10,12,40]
[see also Eq. (C15)]

Sðon-shellÞϕ ðα ¼ 0Þ

¼ 1

2

X
L

JðJ þ 1Þp
�∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p=3 − 1
p þ ð2J þ 1Þi
JðJ þ 1Þ þ p=12

�
f2L;1

¼
X
L

	
∓ 2JðJ þ 1Þ

ffiffiffiffiffiffi
3p

p �
1þO

�
1ffiffiffiffi
p

p
��

þ 6iJðJ þ 1Þð2J þ 1Þ
�
1þO

�
1

p

��

f2L;1: ð9:20Þ

This result for the isotropic limit suggests that the imaginary

part of Sðon-shellÞϕ —the part which determines the normal-
izability of the fluctuation wave function—tends to an
α-dependent constant at largevolume.Numerically, we found
this to be the case indeed. Therefore, let us define a function
FLðαÞ, the leading term at large volume [or better, in Dx
defined in Eq. (4.23)] in the approximation of the imaginary

part of Sðon-shellÞϕ ,

ImðSðon-shellÞϕ Þðp; α;B4Þ ≈
X
L

FLðαÞf2L;1; ð9:21Þ

where FLð0Þ ¼ 6JðJ þ 1Þð2J þ 1Þ from Eq. (9.20) and
we expect corrections to this formula to be small in Dx.
The results of our numerical investigations for FLðαÞ are
summarized in Figs. 6–10. Most importantly, the numerics
support the conclusion that

FLðαÞ > 0; ∀ L; α: ð9:22Þ

FIG. 6. The coefficient-functions FLðαÞ, for perturbations
labeled by the quantum numbers L ¼ ðJ; K;MÞ ∈
ð1=2; 1=2;MÞ, in jΨfluctðfLjB4Þj ∼ exp ½−FLðαÞf2L=ℏΛ�. Here,

jB4 means we are considering massless scalar perturbations
around a fixed, anisotropic, no-boundary Taub-NUT-dS instanton
at large volume and with squashing α.

20In practice, one starts the numerical integration at τ ¼ ε ⪆ 0;
see below.

21This holds for J ≠ 0. For J ¼ 0, the A ¼ J solution is
identically zero due to the initial boundary condition and
thus cannot be made to satisfy the final boundary condition.
This holds also for perturbations around the Bolt-type back-
ground. We therefore exclude the homogeneous J ¼ 0 mode
from this analysis, which is better thought of as a background
field.
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This implies that the NBWF for massless, minimally coupled
scalar perturbations around any anisotropic NUT-type back-
ground are suppressed and normalizable.

E. Fluctuations around the Bolt solution

In this section, we present our results for the NBWF
of massless scalar fluctuations around the Bolt-type
background discussed in Sec. V. We use analogous notation
as in the previous section. The results are shown in
Figs. 11–14.

FIG. 7. The coefficient functions FLðαÞ, for L ¼ ð5=2; K;MÞ,
in jΨfluctðfLjB4Þj ∼ exp ½−FLðαÞf2L=ℏΛ�.

FIG. 8. The coefficient functions FLðαÞ for L ¼ ð5=2; 1=2;MÞ
in jΨfluctðfLjB4Þj ∼ exp ½−FLðαÞf2L=ℏΛ�, at larger values of α.
This is an extension of the same type of J ¼ 5=2, K ¼ 1=2 data
points shown in Fig. 7. From that figure, it was not clear what the
behavior would be at large α, but we see here that the function
reaches a minimum at a positive value and increases monoton-
ically from there onwards. All of the FLðαÞ with K ≠ 0 appear to
share this qualitative behavior.

FIG. 9. The coefficient functions FLðαÞ, for L ¼ ð2; K;MÞ, in
jΨfluctðfLjB4Þj ∼ exp ½−FLðαÞf2L=ℏΛ�.

FIG. 10. Behavior of the coefficient functions FLðαÞ for L ¼
ð2; 0;MÞ in jΨfluctðfLjB4Þj ∼ exp ½−FLðαÞf2L=ℏΛ�, at larger val-
ues of α. This is an extension of the same type of J ¼ 2, K ¼ 0
data points shown in Fig. 9. From that figure, it was not clear
what the behavior would be at large α. This figure and further
numerical investigations suggest that FJ;K¼0ðαÞ tends to zero as α
tends to þ∞. Still, every mode function is normalizable.

FIG. 11. The coefficient functions FLðαÞ, for L ¼ ð1=2;
1=2;MÞ, in jΨfluctðfLjCP2nB4Þj ∼ exp ½−FLðαÞf2L=ℏΛ�. Here,
jCP2nB4 means we are considering massless scalar perturbations
around a fixed, anisotropic, no-boundary Taub-Bolt-dS instanton
at large volume and with squashing α.
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X. TUNNELING WAVE FUNCTION

In this section, we comment on the tunneling proposal
for the wave function of the Universe [21,22] in the

BB9 model [34] and its relation to the no-boundary
proposal we studied in this paper. Instead of a tedious
review of the tunneling wave function (TWF) (see, e.g.,
Refs. [23,64,65]), we simply note that the TWF result
written in Ref. [34] agrees with “half” of the result we have
presented in Sec. IV for the contribution to the semi-
classical NBWF from the 4-disk topology, at least for small
α ≈ 0 and α → −1 in the regime (4.11) where the TWF is
known.22 We did not discuss the α → −1 limit in detail in
this paper23 because the NBWF does not behave classically
there and for that reason is of less immediate interest.
However, convenient expansions in the small parameter
y≡ pð1þ αÞ ∼ 1=x exist in this regime [66] [they are the
analogs of Eqs. (4.26) and (4.27) in the regime Dx]. They
show that the NBWF behaves as jΨHHðp; qÞj ∼ e−q=ℏ ¼
e−p=ð1þαÞℏ in this regime,24 up to small corrections in y,
which coincides with the result stated in Ref. [34] for the
TWF. In Dx and for α ≈ 0, we obtained jΨHHðp; αÞj∼
e−6α

2=ℏΛ, which again coincides with the result stated in
Ref. [34]. More precisely, one arrives in Ref. [34] at the
following expressions for the TWF ΨT in the BB9
minisuperspace model,

ΨTða > 1=H; lowest nontrivial order in βþÞ

∼ exp

�
−

i
3ℏH2

ð−f6Þ3=2
�
× exp

�
−

4ia2β2þ=ℏffiffiffiffiffiffiffiffi
−f6

p þ 3i

�
;

ð10:1Þ
ΨTðβþ → −∞; a ≫ e2βþÞ ∼ exp ð−x=6Þ; ð10:2Þ

where

f6 ≡ 1 − ðaHÞ2; x≡ a2e−4βþ : ð10:3Þ
The connection with our notation in this paper is

6p ¼ a2e2βþ ; 6q ¼ a2e−4βþ ; Λ ¼ 18H2: ð10:4Þ
One may verify that Eqs. (10.1) and (10.2) coincide with
eiS̄

þ
0
=ℏ in the appropriate regimes, up to a factor independent

of p and q, where S̄þ0 is the no-boundary Taub-NUT-dS
action that appears in the contribution to the semiclassical
NBWF from the 4-disk [Eq. (4.18)].
In Ref. [34], one does not compute the TWF behavior in

the intermediate regime α ∈ ð−1; 0Þ or in the regime α > 0,
so a comparison with our result for the NBWF is not
possible there. However, the coincidence of the TWF and
the NBWF=2 for α ≈ 0 and α → −1 in the classical regime
makes it tempting to conjecture that the two objects will

FIG. 12. The same data as in Fig. 11, zoomed in on the region
near α− ¼ 5 − 3

ffiffiffi
3

p
.

FIG. 13. The same data as in Fig. 11, zoomed in on the region
near αþ ¼ 5þ 3

ffiffiffi
3

p
.

FIG. 14. The coefficients FLðαÞ, for L ¼ ð5=2; K;MÞ, in
jΨfluctðfLjCP2nB4Þj ∼ exp ½−FLðαÞf2L=ℏΛ�.

22“Half” because the NBWF is real and receives contributions
from pairs of instantons, while the TWF does not per se.

23However, we did give all the relevant information to do so in
Eqs. (4.13) and (4.16).

24This behavior can readily be guessed from the on-shell action
(4.16).
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coincide in large portions of the minisuperspace including
α ∈ ð−1; 0Þ (and in the classical regime, i.e., where the
saddle points are complex). On the other hand, they will
certainly not coincide in the entire minisuperspace, e.g., for
p → 0 and α ≈ 0, let alone in general in other models. Our
reasoning behind this conjecture is that the TWF has been
claimed to be representable as a (Lorentzian) path integral
over geometries which start at zero size [22–24,67]. In the
semiclassical limit, the TWF should thus be dominated by
one or more instantons, and in a BB9 minisuperspace
path integral on the 4-disk, this instanton should be the
Taub-NUT-dS solution—the same one which appears in the
semiclassical NBWF/2—provided it is regular. A caveat
here is that in recent work on the TWF in perturbative
minisuperspacemodels [23,24] this last assumption does not
hold—the relevant instantons are singular there. On the
other hand, it is unclear how, and indeed whether, the
implementation of the TWF as a gravitational path integral
discussed in that work can be extended to nonperturbative
minisuperspacemodels like the BB9model. In any case, it is
possible to write down a BB9 minisuperspace path integral,
which yields a Green’s function for the BB9WDWoperator
and which agrees with the information about the TWF given
in Ref. [34]. (In our recent work [11], consider a lapse
contourwhich runs fromN ¼ iε, ε → 0þ, down the negative
imaginary axis and which avoids the pointN ¼ 0.) The path
integral we have in mind is not “Lorentzian” in the sense
of Ref. [19], but as we hope to have made clear with this
paper, this qualification is of no fundamental importance in
minisuperspace path integral constructions of wave/Green’s
functions. We leave these further investigations into the
tunneling wave function for future work.25

XI. CONCLUSION

The main purpose of this paper was to continue the
development and refinement of the no-boundary proposal
in the context of an exactly solvable Bianchi IX minisuper-
space model, building on Refs. [11,40] and staying close
to the recently proposed definition of the no-boundary
proposal in terms of a collection of saddle points [27]. Our
work was motivated in part by the need to address the
challenges to the definition of the no-boundary proposal
presented in Refs. [9,10], but it also contributes to the
history, by now very long, of the development and
applications of the no-boundary proposal.
Ourwork significantly substantiates andextends our earlier

work on the Bianchi IXmodel [11] by giving a more detailed
analysis of the saddle points, including a second topological
contribution, by studying the phase transitions between
the various saddle points and by confirming the expected

normalization properties. From the latter follows the predic-
tionof suppressed anisotropies, a clear refutationof the claims
ofRefs. [9,10], and somemoredetailed aspects ofRefs. [9,10]
were addressed in detail.We also showed that this model may
be viewed as a nonlinear extension of the dS minisuperspace
model perturbed by a single mode of either a tensor field or
massless minimally coupled field.
We have, in addition, shown that our model has the

expected isotropic limit and that the no-boundary proposal
predicts that massless scalar fluctuations around our BB9
model have the expected decaying Gaussian wave func-
tions. We also carried out a comparison with the tunneling
wave function in the BB9 model and found a large regime
of parameter space in which the two proposals coincide.
Our work was primarily based on the no-boundary

proposal defined as a collection of saddle points [27], which
we found in practice to be a very useful guiding principle,
but we also examined a number of aspects of full minisuper-
space quantization using path integrals. We found, in
particular, an unphysical dependency on certain features
of the minisuperspace model such as the parametrization of
the metric, which only reinforces the approach of Ref. [27]
as the most reliable definition of the no-boundary proposal.
To conclude, we address a recent criticism [24] of the no-

boundary proposal concerning the lack of a general definition
as to which compact 4-manifolds to include in the sum
Eq. (3.4). While we generally agree that this is an issue,
we offer some thoughts on why it may not be such a pressing
one. First, a sum over compact manifolds is often held to be
ill defined due to the fact that they cannot be classified.
(Although, see Ref. [39] for an interesting alternative view on
this.) Second, in the semiclassical limit (which is the only
regime inwhichwe expect the current framework of quantum
cosmology to be valid) and for a sufficiently small region of
superspace, one expects only a single manifold to be relevant
in the sum since the contributions from the various M are
generally exponentially different. Our analysis of the NBWF
in the BB9 minisuperspace model confirms this expectation.
Finally, the sum-over-manifolds aspect of the definition ofΨ
might be circumvented or at least be profoundly redrawn by
the holographic definition of the NBWF in terms of the
partition function of a Euclidean CFT that is defined directly
on the boundary [68,69].
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APPENDIX A: DETAILED DISCUSSION OF
SADDLE POINTS ON CP2nB4

The attentive reader will have noticed that in our
discussion of the saddle points on the manifold CP2nB4,

in the interval α ∈ ½5 − 3
ffiffiffi
3

p
; 5þ 3

ffiffiffi
3

p �≡ ½α−; αþ� ≈
½−0.2; 10.2� and at small x, we seem to have found only
two saddle points instead of the expected four. The reason
is that the (existing) differences between the saddle points
appear only at a subleading order in x in this interval, and
Eq. (5.11) is too crude to capture this. More precisely, we
find the following perturbative expansions in x for the four
different saddle points for all values of α except α�,

NBoltþ ðþÞ ¼
	 ffiffiffiffiffiffi

3q
p þ g0ðαÞ þOð ffiffiffi

x
p Þ þ if−ðα; xÞ if α ∈ ðα−; αþÞ;ffiffiffiffiffiffi

3q
p þOð ffiffiffi

x
p Þ þ i½fþðαÞ þ fþ;1ðαÞxþOðx2Þ� elsewhere exceptα ¼ 5� 3

ffiffiffi
3

p
;

NBolt
− ðþÞ ¼ NBoltþ ðþÞ�;

NBoltþ ð−Þ ¼
	 ffiffiffiffiffiffi

3q
p

− g0ðαÞ þOð ffiffiffi
x

p Þ þ ifþðα; xÞ if α ∈ ðα−; αþÞ;ffiffiffiffiffiffi
3q

p þOð ffiffiffi
x

p Þ þ i½f−ðαÞ þ f−;1ðαÞxþOðx2Þ� elsewhere exceptα ¼ 5� 3
ffiffiffi
3

p
;

NBolt
− ð−Þ ¼ NBoltþ ð−Þ�; ðA1Þ

where f� were defined in Eq. (5.11) and

f−ðα; xÞ ¼ −1þ f1ðαÞx − f3=2ðαÞx3=2 þOðx2Þ; ðA2Þ

fþðα; xÞ ¼ −1þ f1ðαÞxþ f3=2ðαÞx3=2 þOðx2Þ; ðA3Þ

g0ðαÞ ¼
s−

1þ α
; ðA4Þ

f1ðαÞ ¼ −
ð1þ αÞ2

18
; ðA5Þ

f3=2ðαÞ ¼
ð1þ αÞ2ð2α − 1Þ

18s−
; ðA6Þ

f−;1ðαÞ ¼
−αfα½3ðsþ − 67Þ þ αðα − 2þ sþÞ� þ 3sþ þ 148g − sþ − 22

18ðαþ 1Þsþ
; ðA7Þ

fþ;1ðαÞ ¼
−αfα½3ðsþ þ 67Þ − αðα − 2 − sþÞ� þ 3sþ − 148g − sþ þ 22

18ðαþ 1Þsþ
; ðA8Þ

sþðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 10α − 2

p
; ðA9Þ

s−ðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α2 þ 10αþ 2

p
: ðA10Þ

(In Eqs. (A9) and (A10), we mean the positive square root,
and recall that q≡ 12=½ð1þ αÞ2x�).
There are various useful things note about these for-

mulas. The most basic one is that the series expansions of
the saddles around x ¼ 0 change form when α crosses α− or
αþ. Second, we must determine the regime in which the

approximations implied by the expansions we have pre-
sented are accurate. At finite α, this is not simply the regime
x ≪ 1. This is because the coefficient functions f3=2 and
f�;1 diverge as α → α� (since these are the zeroes of s�),
while the supposedly more leading terms remain finite.26

So, in order to use the approximations implied by
Eqs. (A1), we must stay sufficiently far away from
α ¼ α�. More precisely, for α ∈ ðα−; αþÞ, we must have

26The higher-order terms in the real parts of the saddles, which
we have not written, have the same trouble.
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x3=2 ≪ s−; ðA11Þ

and for α outside of this strip, we must have

x ≪ sþ: ðA12Þ

Having said this, there is nothing inherently singular about
the points α ¼ α�; i.e., all (4þ 3) solutions of Eq. (5.2)
exist there and when x ≪ 1 are well-approximated by the
estimates we have given in Sec. VA of the main text (or by
the nonsingular terms in the expansions given here). We
refer the reader to Appendix B for evidence of this. In other
words, the expansions we have provided in this section
should be viewed as asymptotic series instead of conver-
gent ones, at least for α close to α�. This interpretation is
further supported by the observation that the singular terms
we have not written in Eqs. (A1) diverge more violently
near α� than the ones we have written. For example, the
Oðx2Þ term in the imaginary part of the second line in
Eq. (A1) diverges as x2=s3þ near α ¼ α�, which is a
stronger divergence than the previous term in the expansion
(∼x=sþ). So, if we were to include such a term in an
approximation to the saddles, this would further restrict us
to the regime x ≪ ðsþÞ3=2 [cf. Eq. (A12), which less
restrictive]. So, the amount of terms one should ideally
retain in the asymptotic series in Eqs. (A1) depends on the

value of α (slightly more precisely, on how close α lies
to α�).
Finally, to use the expansions for NBoltþ ð−Þ and NBolt

− ð−Þ
at large α, we see that we must have α2x ≪ 1 [for the
NBoltþ ðþÞ and NBolt

− ðþÞ solutions αx ≪ 1 suffices at large
α]. This should be contrasted with the condition αx ≪ 1, or
p ≫ 1, which delineates the regimeDx at large α (recallDx
was defined in our discussion of the contributions to the

NBWF from the manifold B4 in Sec. IV B). In the ðp; αÞ
plane, this translates to the stronger condition p ≫ α at
large α. In short, we have provided reliable approximations
to all the no-boundary instantons on the manifold CP2nB4

in the parameter regime

p ·
αþ 1

ðαþ 2Þ2 ≫ 1ðD̃xÞ; ðA13Þ

while for the no-boundary instantons on B4, we needed
only

p ·
αþ 1

αþ 2
≫ 1ðDxÞ: ðA14Þ

For the actions of the instantons corresponding to
Eqs. (A1), we obtain

S0ðNBoltþ ðþÞÞ ¼

8>><
>>:

− 2p3=2ffiffiffiffiffiffiffiffiffiffiffi
3ð1þαÞ

p þOð 1ffiffi
x

p Þ þ iFþðα; xÞ if α ∈ ðα−;αþÞ;

− 2p3=2ffiffiffiffiffiffiffiffiffiffiffi
3ð1þαÞ

p þOð 1ffiffi
x

p Þ þ i½FþðαÞ þOðxÞ� elsewhere exceptα ¼ α�;

S0ðNBolt
− ðþÞÞ ¼ −S0ðNBoltþ ðþÞÞ�;

S0ðNBoltþ ð−ÞÞ ¼

8>><
>>:

− 2p3=2ffiffiffiffiffiffiffiffiffiffiffi
3ð1þαÞ

p þOð 1ffiffi
x

p Þ þ iF−ðα; xÞ if α ∈ ðα−; αþÞ;

− 2p3=2ffiffiffiffiffiffiffiffiffiffiffi
3ð1þαÞ

p þOð 1ffiffi
x

p Þ þ i½F−ðαÞ þOðxÞ� elsewhere exceptα ¼ α�;

S0ðNBolt
− ð−ÞÞ ¼ −S0ðNBoltþ ð−ÞÞ�; ðA15Þ

where

Fþðα; xÞ ¼ F0ðαÞ þ F1ðαÞxþ F3=2ðαÞx3=2 þOðx2Þ;
ðA16Þ

F−ðα; xÞ ¼ F0ðαÞ þ F1ðαÞx − F3=2ðαÞx3=2 þOðx2Þ;
ðA17Þ

F0ðαÞ ¼
2ðα − 17Þ

9
; ðA18Þ

F1ðαÞ ¼ −
2α

9
ð1þ αÞ; ðA19Þ

F3=2ðαÞ ¼
s−
243

ð1þ αÞð11 − 8α − α2Þ; ðA20Þ

FþðαÞ ¼
2

9ð1þ αÞ2 ½α
3 − 17þ 2sþ − α2ð15þ sþÞ

− αð33 − 10sþÞ�; ðA21Þ

F−ðαÞ ¼
2

9ð1þ αÞ2 ½α
3 − 17 − 2sþ − α2ð15 − sþÞ

− αð33þ 10sþÞ�: ðA22Þ

The effects of the divergent terms in Eqs. (A1) near α ¼ α�
only show up at order x2 in Eqs. (A15) (and even then only
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in the real parts), giving us a rather reliable approximation
of the action in the regime D̃x by using only the non-
divergent terms in the asymptotic expansions of Eqs. (A1).

APPENDIX B: PHASE TRANSITIONS
ON CP2nB4

We begin the discussion of phase transitions on the
manifold CP2nB4, or, in other words, the possible
exchange in dominance between the various saddle points
on CP2nB4, by plotting the leading-order behavior of the
on-shell actions of the various saddle points in D̃x
[Eqs. (A15)]. This is shown in Fig. 15.
As we have noted in Appendix A, and as can be seen in

Fig. 15, the two types of solutions seem to degenerate in the
regime α ∈ ½α−; αþ�≡ ½5 − 3

ffiffiffi
3

p
; 5þ 3

ffiffiffi
3

p � ≈ ½−0.2; 10.2�.
This only truly happens at infinite volume (infinite p and q,
or x ¼ 0 and finite α), however.27 An interesting question is
whether a phase transition might happen at finite volume.
By “phase transition,” we mean a “first-order” one, in
which below some temperature (α) there is one metastable
phase and one stable phase, in which the free energy
[−ImðS0ðNsÞÞ] of the former is greater than that of the
latter. At some critical temperature, the free energy curves

intersect at a nonzero angle so that there is a discontinuity
in the first derivative of lowest free energy curve as a
function of temperature. (According to this definition, the
transitions across α ¼ α� that one observes in Fig. 15 are
not phase transitions.)
In brief, we find that phase transitions at finite volume

are possible. To definitively establish this, we turn to

FIG. 15. The opposite of the imaginary part of the on-shell
action, −ImðS0ðNsÞÞ, is shown for the two kinds of regular saddle
points on the manifold CP2nB4 (which can be labeled by Ns)
that have no-boundary initial conditions and match onto the
arguments of the wave function ðp; qÞ on some spacelike slice.
The potential contributions of these saddle points to the wave
function are weighted according to e−ImðS0ðNsÞÞ=ℏ. At infinite p
and q, ImðS0ðNsÞÞ is only a function of α ¼ p=q − 1, the shape
of which is shown here.

FIG. 16. The absolute difference between the imaginary parts
of the on-shell actions of the two types of no-boundary saddle
points on the manifold CP2nB4 is plotted as a function of the
squashing parameter α, at a finite value of x (chosen to be 10−3

here) and near α ¼ α− ¼ 5 − 3
ffiffiffi
3

p
≈ −0.2. This result confirms

that a phase transition around α ¼ α− is possible. By “phase
transition,” we mean an exchange of dominance among saddle
points that contribute to a functional integral over geometries on
CP2nB4 that are weighted by eiS=ℏ with S the Einstein-Hilbert
action. The approximations given in Appendix A are not valid
near α ¼ α− at finite x, so the existence of an intersection
between −ImðS̄0Þ for the two types of saddle points near α ¼ α−
and at finite x could not be inferred from the information in
Appendix A.

FIG. 17. The same setup as in Fig. 16, but now near
α ¼ 3

ffiffiffi
3

p
− 4 ≈ 1.2. Contrary to the situation in the regime

around α ¼ α−, we do expect the approximations given in
Appendix A to be valid around α ≈ 1.2. The approximations
suggest an intersection between the curves −ImðS̄0Þ in this
regime, and the numerics confirm this expectation.

27Even there, the degeneracy is not complete; while the
difference in the imaginary part of the on-shell action tends to
zero, there remains a finite difference in the real part of the on-
shell actions. This can be traced back to Eqs. (A1); in the limit
x → 0, we have NBoltþ ðþÞ − NBoltþ ð−Þ → 2g0ðαÞ. This results in a
different real part of the on-shell action in Eqs. (A15).
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numerics, the results of which are shown in Figs. 16–18. In
these numerics, we have computed the solutions of
Eq. (5.2) to machine precision and evaluated the action
(5.12) on them.
As we noted in Appendix A, the approximations we have

written there are not valid for α close to α� (at fixed x). So,
from the expansions in Appendix A, we cannot extract the
exact behavior of the actions near α�; in particular, we
cannot confirm nor rule out an intersection in this regime at
finite x. The numerics confirm an intersection near both of
these points at finite x (Figs. 16 and 18). On the other hand,
we can analytically justify the intersection between the
(imaginary parts of the) actions that we observe numeri-
cally near the point α ≈ 1.2. For this, we use Eqs. (A15), in
particular, the expressions for the imaginary part of S̄0
inside the interval α ∈ ðα−; αþÞ. From there, we infer that at
small x there should be an intersection between the curves
near the zero of the function F3=2 in the interval ðα−; αþÞ,
which is at α ¼ 3

ffiffiffi
3

p
− 4 ≈ 1.2. This value lies “far away”

from α ¼ α�, so we are hopeful the calculation is trust-
worthy. This is indeed confirmed by the numerics
(see Fig. 17).

APPENDIX C: A NONLINEAR EXTENSION OF
THE de Sitter+ ðn= 2Þ GRAVITATIONAL WAVE

MODE MINISUPERSPACE

In this section, we explain how the anisotropic BB9
minisuperspace model can be viewed as a nonlinear
extension of the isotropic dS minisuperspace model per-
turbed by a particular tensor (or gravitational wave) mode.
We begin by reviewing the latter model in the context of the
NBWF. The general tensor-perturbed minisuperspace
model can be defined through the 4-metric ansatz

2π2ds2 ¼ −
N2

QðτÞ dτ
2 þQðτÞðΩij þ εijÞdΩidΩj; ðC1Þ

where Ω ¼ ðθ;ϕ;ψÞ are the standard angles on S3 with θ,
ϕ ∈ ½0; π� and ψ ∈ ½0; 2πÞ, ψ ≅ ψ þ 2π, and Ωij ¼
diag½1; sin2ðθÞ; sin2ðθÞ sin2ðϕÞ�ij are the components of
the round metric on the unit S3 in these coordinates.
Here, we have assumed that the 4-manifold on which

the metric (C1) lives is the closed 4-ball B4, with τ ∈ ½0; 1�
a radial coordinate, and we will only take into account such
geometries in the no-boundary sum.28 The lapseN has been
gauge fixed to a constant and is integrated over in a
minisuperspace path integral representation of the NBWF.
The wave function is defined on 3-spheres with metrics
given by the spatial part of Eq. (C1) and is thus a functional
of Q ∈ Rþ and the collection of functions fεijðΩÞg. We
will take the perturbation ε to be transverse and traceless.
As such, it may be expanded in terms of the (real)
transverse traceless tensor harmonics Gij on S3 at any
value of τ,

εijðτ;ΩÞ ¼ 2
X
n;l;m

φnlmðτÞðGijÞnlmðΩÞ; ðC2Þ

where

∇2ðGijÞnlm ¼ −ðn2 þ 2n − 2ÞðGijÞnlm; ðC3Þ

and n, l, m are integers with n ∈ f2; 3;…g; l ∈
f2; 3;…; ng, and m ∈ f−l;−lþ 1;…; lg, and covariant
derivatives are with respect to Ωij. (See Ref. [5] for a more
general discussion and Ref. [70] for an explicit construction
of the harmonics.) The harmonics satisfy

∇iðGijÞnlm ¼ 0 ¼ ΩijðGijÞnlm ðC4Þ

and are normalized according to

Z
S3
d3Ω

ffiffiffiffi
Ω

p
ðGijÞnlmðGijÞn0l0m0 ¼ 2π2δnn0δll0δmm0 : ðC5Þ

Thus, the wave function can equivalently be viewed as a
function on the infinite set of real variables Q and fφnlmg.
From here on, we will suppress the l and m indices. The
action, expanded to second order in the φn, reads

FIG. 18. The same setup and qualitative conclusions as in
Fig. 16, but now near α ¼ αþ.

28Of course, one can be more general and sum over other
geometries as well. These will require an adjusted metric ansatz.
For example, in Sec. IX E, we discussed massless minimally
coupled scalar fluctuations around the no-boundary background
saddle point which lives on CP2nB4.
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Stensor½Q; fφng;N�

¼
Z
B4

d4x
ffiffiffiffiffiffi
−g

p �
R
2
− 2π2Λ

�
þ
Z
S3
d3y

ffiffiffi
h

p
K

¼ Sisotropic½Q;N� þ
X
n

Z
1

0

dτN

�
Q2

2N2
_φ2
n þ

2

N2
Q _Qφn _φn

þ
�
Qþ 3 _Q2

4N2
−
nðnþ 2Þ þ 2

2

�
φ2
n

�
; ðC6Þ

where

Sisotropic½Q;N� ¼
Z

1

0

dτN

�
−

3

4N2
_Q2 þ 3 −Q

�
; ðC7Þ

and we have again absorbed Λ into S, N, and Q in the
second line.29

The correspondence between the BB9 minisuperspace
model (in a perturbative limit) and this minisuperspace
model only holds on shell. That is, it holds only when the
constraint following from the action (C6) is satisfied and
the EOM following from variations of the tensor modes φn
are imposed. (By “correspondence,” we mean an equality
or simple relation between the actions of the two theories
after an identification of the d.o.f.) To zeroth order in the
perturbations φn, the constraint is the constraint following
from Sisotropic alone,

3 _Q2

4N2
þ 3 −Q ¼ terms quadratic in the fluctuations; ðC8Þ

which, with an appropriate30 no-boundary boundary con-
dition at τ ¼ 0 on the field Q, fixes Q and N to their
background values Q̄ðτÞ and Ns up to an inconsequential
sign choice [11,14,40,71],

Ns ¼ 3ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q=3 − 1

p
− iÞ; ðC9Þ

Q̄ðτ;NsÞ ¼ ðQ − N2
s=3Þτ þ ðN2

s=3Þτ2: ðC10Þ

(In these equations,Q is the real number in the argument of
the wave function.) With this, one can show that the EOM
for the φn are, to lowest nontrivial order in φn, given by

φ̈n þ 2
_̄Q
Q̄

_φn þ N2
snðnþ 2Þ φn

Q̄2
¼ 0: ðC11Þ

With Dirichlet boundary conditions on the φn at τ ¼ 0 and
τ ¼ 1, φnð0Þ ¼ 0, φnð1Þ ¼ φn;1, the action of the solution
ðQ̄; φ̄n; NsÞ can be written as

S̄tensor ¼ S̄isotropic þ
X
n

Q _̄Qð1Þ
Ns

φ2
n;1

þ
X
n

Z
1

0

dτNs

�
Q̄2

2N2
s

_̄φ2
n −

nðnþ 2Þ
2

φ̄2
n

�
: ðC12Þ

The solution φ̄n is given by (e.g., Ref. [12])

φ̄nðτ;NsÞ ¼
ξðτ;NsÞ
ξð1;NsÞ

φn;1; ðC13Þ

ξðτ;NsÞ ¼ τnþ1Q̄−ðnþ2Þ=2½ _̄Qþ ðnþ 1Þ _̄Qð0Þ�: ðC14Þ

The integrals in Eq. (C12) evaluate to

Q2

2Ns
φn;1 _̄φnð1Þ

¼ 1

2

X
n

nðnþ 2ÞQ
�∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q=3 − 1
p þ ðnþ 1Þi
nðnþ 2Þ þQ=3

�
φ2
n;1;

ðC15Þ

while the middle terms in Eq. (C12) evaluate to

�2Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q=3 − 1

p
φ2
n;1: ðC16Þ

The connection with the BB9 model is given via the
identifications

p ¼ Qe
ffiffiffiffiffiffi
2=3

p
φ; ðC17Þ

q ¼ Qe−
ffiffiffiffiffiffi
8=3

p
φ; ðC18Þ

NðτÞ → e−
ffiffiffiffiffiffi
2=3

p
φNðτÞ: ðC19Þ

With this correspondence, and with the field φ treated
perturbatively, the anisotropic theory with action given in
Eq. (2.5) reduces to

Spert BB9½Q;φ;N�

¼ Sisotropic½Q;N� þ
Z

1

0

dτN

�
Q2

2N2
_φ2 − 4φ2

�
: ðC20Þ

In this expression, we recognize part of the action (C12) for
the n ¼ 2 contribution. The difference is that the action
(C12) is an on-shell expression, while the action (C20) is

29The action (C6) is appropriate for Dirichlet, or position,
boundary conditions at τ ¼ 0 and τ ¼ 1 on all fields. It is also
appropriate for Neumann, or momentum, boundary conditions at
τ ¼ 0 on the scale factor Q and Dirichlet boundary conditions on
Q at τ ¼ 1 and Dirichlet boundary conditions on the φn at both
boundaries. (See also footnote 8.) Note that our 3þ 1 decom-
position of the 4-manifold has introduced an artificial boundary at
τ ¼ 0.

30For instance, ΠQð0Þ ¼ −3i with ΠQ ¼ −3 _Q=2N the mo-
mentum conjugate to Q.
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also valid off shell (neither the constraint nor the EOM have
been imposed), and that there is an extra term in (C12). On
shell and to lowest nontrivial order in φ, we have

Spert BB9½Q̄; φ̄;Ns�
¼ Stensor½Q̄; φ̄2 ¼ φ̄;Ns� ∓

X
n

2Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q=3 − 1

p
φ2
n;1;

ðC21Þ

which establishes the correspondence between the (slightly
anisotropic) BB9 model and the perturbative n ¼ 2 tensor
mode model we have alluded to. We say the BB9 model is a
nonlinear extension of the dSþ ðn ¼ 2Þ tensor mode
model because of the relations (C17), (C18), and (C21);
the BB9 action reduces, up to a real factor which does not
affect how perturbations are weighted, to the n ¼ 2 tensor
action under an appropriate identification of the d.o.f. and
in a perturbative limit.
Since we have computed the NBWF on arbitrarily

deformed 3-spheres in the main text, we can, in particular,
take the limit of small anisotropy α ≈ 0 and compare the
result31 to the result we reviewed above for the perturbative
n ¼ 2 tensor mode model, thus testing the relation (C21)
and the consistency of our calculations. (We will perform
this check in the regime Q ≫ 1 since that is the regime we
have focused on in the main text.) According to Eq. (4.27),
and using the identifications (C17) and (C18), we have

S̄pert BB9≈ ∓ 2ffiffiffi
3

p Q3=2 �
ffiffiffi
3

p
ð3 − 4φ2Þ

ffiffiffiffi
Q

p
þOðQ−1=2Þ − 6½1 − 6φ2 þOðQ−1Þ�i: ðC22Þ

According to the discussion in this Appendix, this is indeed
equal to the rhs of Eq. (C21).

APPENDIX D: A NONLINEAR EXTENSION OF
THE de Sitter+ ðn= 2Þ MASSLESS SCALAR

MINISUPERSPACE

Here, we discuss how the BB9 minisuperspace model
can be viewed as a nonlinear extension of the dS minisuper-
space model containing a (particular mode of a) massless
minimally coupled scalar. Our conventions match those of
Appendix C, and the discussion is analogous. The metric
ansatz for the dSþmassless scalar model is

2π2ds2 ¼ −
N2

QðτÞ dτ
2 þQðτÞdΩ2

3; ðD1Þ

and the scalar is decomposed into (real) scalar harmonics
on S3 at each τ (see Refs. [5,70]),

φðτ;ΩÞ ¼
X
n;l;m

φnlmðτÞYnlmðΩÞ; ðD2Þ

where n ∈ f0; 1; 2;…g; l ∈ f0; 1;…; ng; m ∈ f−l;−lþ
1;…; lg,

Z
S3
d3Ω

ffiffiffiffi
Ω

p
YnlmYn0l0m0 ¼ 2π2δnn0δll0δmm0 ; ðD3Þ

∇2Ynlm ¼ −nðnþ 2ÞYnlm: ðD4Þ

Suppressing l and m, the dSþ scalar (off-shell) minisuper-
space action reads

Sscalar½Q; fφng;N�

¼
Z
B4

d4x
ffiffiffiffiffiffi
−g

p �
R
2
− 2π2Λ −

1

2
gμν∂μφ∂νφ

�

þ
Z
S3
d3y

ffiffiffi
h

p
K

¼ Sisotropic½Q;N�

þ
X
n

Z
1

0

dτN
�
Q2

2N2
_φ2
n −

nðnþ 2Þ
2

φ2
n

�
: ðD5Þ

For the n ¼ 2 scalar mode, we see that this exactly
matches Eq. (C20), which is the action for the BB9
minisuperspace model for slightly anisotropic configura-
tions φ ≈ 0. Thus,

Spert BB9½Q;φ;N� ¼ Sscalar½Q;φ2 ¼ φ;N�: ðD6Þ

In contrast to the correspondence between the perturbative
BB9 minisuperspace model and the dSþ ðn ¼ 2Þ pertur-
bative tensor model (Appendix C), the correspondence
between the perturbative BB9 minisuperspace model and
the dSþ ðn ¼ 2Þ scalar model holds also off shell (instead
of only on shell).

APPENDIX E: THE OFF-SHELL STRUCTURE IN
MINISUPERSPACE MODELS DEPENDS ON THE

CONSTRUCTION (SOME EXAMPLES)

In this Appendix, we illustrate by means of two simple
examples that the off-shell structure of minisuperspace path
integrals depends sensitively on the choice of gauge for the
lapse function NðτÞ and on the boundary conditions B
imposed on the paths. The examples are well known from
the literature, so we will skip over some details here and
focus on the results.

31More precisely, it is only the contribution to the NBWF from
the B4 topology that is relevant here, i.e., Eq. (4.28). By “result,”
we mean the leading order in ℏ behavior of the wave function,
i.e., the on-shell action. As we have stressed on multiple
occasions, one should not expect subleading terms to match.
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Let us first clarify what we mean by “off-shell structure
of minisuperspace path integrals.” The minisuperspace path
integral construction of solutions to the WDW equation, or
Green’s functions of the WDW operator, takes the general
form

ΨðyÞ ¼
Z

DNDxαDΠαΔFPδð _N − χðx;Π; NÞÞeiS=ℏ; ðE1Þ

where we singled out the contribution from a single
4-manifold (our analysis applies to each contribution
separately). Here, χ is an essentially arbitrary gauge-fixing
function, and ΔFP is the associated determinant which
renders the entire expression independent of χ. The only
gauge choice that has been used in practical computations
to our knowledge is χ ≡ 0. This choice sets the lapse to an
undetermined number which labels the gauge orbits, and
one can show that ΔFP is constant in this case. Specifying
the integration ranges and boundary conditions on the lapse
and fields, one arrives at [see Eq. (3.3)]

ΨðyÞ ¼
Z
C
dNKðy; N;B; 0Þ; ðE2Þ

Kðy; N;B; 0Þ ¼
Z
B

xð1Þ¼y

DxαDΠαeiS½x;Π;N�=ℏ; ðE3Þ

S½x;Π;N� ¼
Z

1

0

dτðΠα _xα − NHÞ

þ ðboundary term appropriate to BÞ: ðE4Þ

To evaluate Eq. (E2), perhaps approximately, in the
literature, one usually employs a two-step semiclassical
approximation. One first writes the integrand K of the N
integral as an asymptotic series in ℏ, keeping only the
leading term:

Kðy; N;B; 0Þ ≈ PeiS0=ℏ: ðE5Þ

The off-shell structure we mentioned above refers to the
properties of the functions P and S0 in the complex N
plane. These properties include poles, essential singular-
ities, branch points, and relative homology groups of
the Morse function ReðiS0=ℏÞ. These last groups essen-
tially determine the possible contours C in the definition
(E2), which lead to a convergent integral [72]. After the
step (E5), the N integral is in turn approximated in
the ℏ → 0 limit by the method of steepest descent, so that
in the end

Ψ ≈AeiS̄0=ℏ: ðE6Þ

There are several reservations one may have about this
two-step procedure. A first point of caution, which has
been brought up before [16], is that the properties of the
approximation (E5) in the complex N plane may not
reflect the properties of the exact expression (E3).32 Since
we know of no way to concretely illustrate this reser-
vation—it would require a system in which the semi-
classical approximation to a path integral is not exact and
yet known in closed form, a scenario which may not even
exist [73]—we will not take it too seriously. Anyhow,
this possible issue can be avoided by considering models
in which the approximation (E5) is exact. Much of the
discussion in the literature (e.g., Refs. [11,14,16,17,40]),
which includes our recent work and the examples we
discuss below, has focused on such models. A second,
not unrelated but more serious point, is that the semi-
classical approximation (E5) may change its functional
form as N moves across the complex plane. In other
words, something like a phase transition may occur as N
crosses a line in the complex plane.33 As we demonstrate
in Appendix F, this is what happens in the dSþmassless
minimally coupled scalar minisuperspace model that was
reviewed in Appendix D and was recently discussed by
Feldbrugge et al. in Refs. [9,10]. This phenomenon
may complicate the evaluation of the integral (E2) in
the ℏ → 0 limit.
Let us now turn to a first example, namely, the dS

minisuperspace model in 3þ 1 dimensions with two
different choices for B in Eq. (E3). The dS minisuperspace
model is defined via the metric ansatz (D1), which specifies
the wave function (E2) up to the choices of B and C. The
possible quantum-mechanical boundary conditions B that
one can impose at the south pole of the geometry in the
context of the NBWF (i.e., the point τ ¼ 0 in a 3þ 1
decomposition of the space) have been discussed at length
in Refs. [14,16]. Their discussion can be summarized as
follows: as ℏ → 0, the no-boundary amplitude should be
determined by a regular solution to Einstein equations on a
compact manifold. This condition implies a specific
behavior of the metric near the south pole, as we have
mentioned in the Introduction to this paper. For the dS
minisuperspace model, this is QðτÞ ∼�2iNτ þOðτ2Þ as
τ → 0, or Qð0Þ ¼ 0, ΠQð0Þ ¼∓ 3i. In a path integral over
one quantum-mechanical d.o.f., we expect to be able to

32With “properties,” we again mean, e.g., poles, essential
singularities, and branch points. Note that in general neither
the expression (E3) nor its approximation (E5) needs to be
analytic an function of N at fixed y and B. This calls for particular
caution when evaluating contour integrals such as Eq. (E2).

33These are not the same phase transitions as those that occur
for the contributions to the NBWF from the CP2nB4 topology,
which were discussed in Sec. V of the main text and in
Appendix B. Those phase transitions happen when the arguments
of the wave function cross a certain real line in the minisuper-
space, as opposed to the situation here in which the lapse which
crosses a generally complex line.
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specify a single boundary condition at τ ¼ 0. In this case,
the most straightforward options are

B ¼ fQð0Þ ¼ 0g; ðDÞ ðE7Þ

or

B ¼ fΠQð0Þ ¼ −3ig; ðNÞ; ðE8Þ

where D and N stand for “Dirichlet” and “Neumann”
boundary conditions, respectively.34 We consider both
choices. Straightforward calculation shows

ΨðDÞ
HH ðQÞ¼

Z
CD

dN
1ffiffiffiffi
N

p exp

�
i
ℏ

�
N3

36
þ
�
3−

Q
2

�
N−

3Q2

4N

��
;

ðE9Þ

ΨðNÞ
HHðQÞ ¼ e3Q=ℏ

Z
CN

dN exp

�
i
ℏ

�
N3

9
−QN

�
−
N2

ℏ

�
;

ðE10Þ

where we have absorbed Λ into Q, N, and ℏ and we have
included a label on the contours which are to be deter-
mined. (We neglect overall Q-independent factors.) The
central point we would like to make is that the properties of
the integrands in Eqs. (E9) and (E10) in the complex N
plane are different; e.g., while the integrand in Eq. (E10)
is an entire function, the integrand in Eq. (E9) has an
essential singularity at N ¼ 0, which is also a branch point.
Evidently, choosing the same contour for both boundary
conditions, CD ¼ CN, does not imply that the respective

integrals are equal. Instead, to makeΨðDÞ
HH andΨðNÞ

HH agree, at
least in the semiclassical limit, the contours must be chosen
such that the same saddle points dominate the respective
integrals. If we choose a branch cut for the square root
appearing in Eq. (E9) that lies along the positive imaginary
N axis, appropriate choices are CD ¼ R↓—the contour that
lies along the real line except that it avoids the origin
by passing into the fImðNÞ < 0g half-plane [40]—and
CN ¼ R. Note that changing CN from R to R↑ would not

alter ΨðNÞ
HH but that changing CD from R↓ to R↑ (together

with an adjusted choice for the branch cut) would radically

alter35 ΨðDÞ
HH [14,19,40]. Choosing CD ¼ R↓, CN ¼ R, we

can evaluate (E9) and (E10) in closed form, ∀ℏ,

ΨðNÞ
HHðQÞ ¼ Ai

�
−
�

9

ℏΛ

�
2=3

�
ΛQ
3

− 1

��
¼ ΨðDÞ

HH ðQÞ;

ðE11Þ

where we have reintroduced Λ. Finally, we note that this
first example demonstrates that the no-boundary proposal
does not have a unique implementation in terms of a
minisuperspace path integral. There are various ways to
construct it, and these are in agreement with one another.
We now turn to our second example, which is meant to

illustrate the sensitivity of the off-shell structure of min-
isuperspace path integrals to the choice of gauge for the
histories summed over (see also Ref. [74]). For clarity, we
have in mind to remain within the same minisuperspace
model (i.e., the wave function is a functional of the same
kinds of 3-metrics) but to construct the NBWF by summing
over 4-geometries using a different gauge fixing for the
lapse function. Unfortunately, in almost all the examples in
the literature we are familiar with, in a given minisuper-
space model, there is a single known gauge in which the
calculation of the NBWF (formulated as a minisuperspace
path integral) can be carried out analytically.36 So, in fact,
we will not be able to sharply make the comparison we
have in mind (but see Ref. [64]). Instead, we will consider
two qualitatively similar minisuperspace models, the dS
minisuperspace models in 2þ 1 [18] and 3þ 1 [1,14,40]
dimensions, and compare the computation of the NBWF in
two qualitatively different gauges in these models.
The details of the calculation in 3þ 1 dimensions have

been reviewed above. For the (2þ 1)-dimensional discus-
sion [18], we will sum over metrics of the form

16π2ds2 ¼ −N2dτ2 þ aðτÞ2dΩ2
2; ðE12Þ

where dΩ2
2 is the round metric on the unit 2-sphere

[compare this to the (3þ 1)-dimensional gauge Eq. (D1)].
In this gauge, the Lorentzian action S½a;N� is quadratic
in a, and so the path integral in Eq. (E3) can be eva-
luated exactly by the semiclassical “approximation.”

34One motivation for the choice of sign of the initial momen-
tum we have made in Eq. (E8) is that the Euclidean action of the
classical configuration that dominates the path integral in the
small volume regime, Q < 3=Λ, is negative with this choice
(following Ref. [1]). More pertinently, the wave function of
(massless, scalar) fluctuations around the background that is
selected by the choice of sign in Eq. (E8) is normalizable when
this wave function is defined via a path integral with Dirichlet
boundary conditions at the south pole [12,40] (see also Sec. IX).
For the opposite choice of sign in Eq. (E8), the fluctuation wave
function, defined via Dirichlet boundary conditions, would not
have been normalizable. This conclusion can be reversed if other
boundary conditions are considered for the fluctuations [23,57].

35This statement should be qualified: in the pure dS minisuper-
space model that we are considering here, the integral in Eq. (E9)
defined via CD ¼ R↓ and the same expression defined by the
choice CD ¼ R↑ differ in the semiclassical limit by a relative
factor e12=ℏΛ and a phase, which areQ independent. These would
be irrelevant to any discussion of normalization or probabilities,
so the two wave functions should, in fact, be identified. More
precisely, we mean that the choices CD ¼ R↑;↓ imply very
different states when fluctuations are included (cf. footnote 34).

36The model in Ref. [74] is an exception, and that paper
illustrates our point, perhaps more clearly than via the example
we give here.
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For the gauge choice analogous to Eq. (D1) in 2þ 1
dimensions,

16π2ds2 ¼ −
N2

qðτÞ dτ
2 þ qðτÞdΩ2

2; ðE13Þ

S½q;N� is not quadratic in q, and the calculation of (E3) is
more involved [we could not even solve the second-order
EOM analytically; i.e., we could not write down Eq. (E5)].
The same statement holds for the analogous gauge choice
to Eq. (E12) in 3þ 1 dimensions.
Choosing Dirichlet boundary conditions B ¼ fað0Þ ¼

0g in the path integral (E3), including a three-dimensional
cosmological constant 16π2Λ and setting the reduced
three-dimensional Planck mass to unity, a straightforward
calculation shows [18]

ΨHHðaÞ¼
Z
C2þ1

dÑ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðÑÞ
p exp

�
i

ℏ
ffiffiffiffi
Λ

p
�
Ñ−

Λa2

tanhðÑÞ
��

;

ðE14Þ

where Ñ ≡ ffiffiffiffi
Λ

p
N. Our point is that the integrand in

Eq. (E14) bears little resemblance to the integrands in
Eqs. (E9) and (E10); for example, the former has infinitely
many singularities and saddle points in the complex Ñ
plane,37 while the latter expressions have a finite amount.
ForΨHHðaÞ to be controlled by the same saddle point as the

ΨðD;NÞ
HH ðQÞ discussed earlier in this Appendix, the contour

C2þ1 could be chosen as any contour that runs from the
upper-left imaginary Ñ plane to the upper-right imaginary
Ñ plane by passing an infinitesimal distance below the
origin Ñ ¼ 0. All such contours yield a convergent integral
in Eq. (E14). This statement is not true for, say, the integral
in Eq. (E9), which would require the contour to run to
infinity in the wedges 0 < θ < π=3 or 2π=3 < θ < π of the
upper-half N plane [where θ≡ argðNÞ; θ ¼ 0 representing
the positive real line]. Contours running to infinity in the
π=3 < θ < 2π=3 wedge would not yield a convergent

integral for ΨðDÞ
HH ðQÞ, but they would for ΨHHðaÞ. This

illustrates that the relative homology groups of the Morse
functions which feature in the semiclassical approximation
of the NBWF in various parametrizations of the same
minisuperspace model are inequivalent [75].
The takeaway message from this Appendix is that the

contour C for the gauge-fixed lapse, which appears in a
minisuperspace path integral expression of solutions to the
WDWequation or Green’s functions of the WDWoperator
[see Eqs. (E2)–(E4)], is not an invariant in all constructions

of either of these objects. In one construction, which
involves specifying a class of metrics summed over and a
choice of boundary conditions B on the path integral, a
particular C may lead to a well-defined object (i.e., solution
or Green’s function), while the same C may lead to an ill-
defined object in another attempted construction of the same
object. The reason is that the integrands of the lapse contour
integral in different constructions may have a different
singularity structure in the complex plane. This conclusion
has been arrived at before in Ref. [74] (see also references
therein) and is further supported by all the minisuperspace
models we know of that have been studied in quantum
cosmology via a path integral approach since that work.

APPENDIX F: COMMENTS ON THE
CALCULATION OF FELDBRUGGE et al.

In this Appendix, we comment on the recent calculation
performed by Feldbrugge et al. in [10], which led the
authors to conclude that any quantum state constructed via
a minisuperspace path integral is inevitably ill defined.
We will point out a technical error in their computation
which invalidates their conclusion. An explicit counterex-
ample to their claim is provided by the no-boundary
quantum state in the BB9 minisuperspace model that has
been constructed via a minisuperspace path integral in
Ref. [11] and has been further elaborated upon in the main
body of this paper. In Sec. VIII, we have argued why this
counterexample is in no way inconsistent with previous
work (on the contrary), addressing further criticism that
the same authors made in Ref. [30]. In Ref. [11], it was
claimed that the computation in Ref. [10] is plagued by the
breakdown of perturbation theory—in this Appendix, we
give the details that substantiate this claim.
In Ref. [10], the authors consider the dSþ

massless scalar minisuperspace that was reviewed in
Appendix D.38 The action is written in Eq. (D5), and the
second-order EOM are

Q̈ −
2N2

3
¼ −

2

3

X
n

Q _φ2
n; ðF1Þ

∀ n∶φ̈n þ 2
_Q
Q

_φn þ N2nðnþ 2Þ φn

Q2
¼ 0: ðF2Þ

For the effective field theory description of gravity that we
are using to be valid, the φnlm must remain small (compared
toMPl ¼ 1) at all τ. At this point, one proceeds in Ref. [10]
with the general algorithm to compute solutions of the

37These saddles correspond to a series of complete 3-spheres
[with (real) round metrics on them of radius 1=

ffiffiffiffi
Λ

p
] which

eventually match on to Hartle and Hawking’s (generally com-
plex) solution on part of a 3-sphere [18].

38The authors incorrectly state that they are studying the
tensor-perturbed dS minisuperspace model that we have reviewed
in Appendix C. As we have explained, the dSþ scalar and dSþ
perturbative tensor theories have a different off-shell structure
[compare Eqs. (C6) and (D5)]. In Ref. [10], one assumes the off-
shell action (D5) and is thus studying the dSþmassless scalar
minisuperspace model.
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WDWequation or Green’s functions of the WDWoperator
in this model, reviewed in Appendix E. The first step is the
approximation (E5), for which one requires a solution to
the classical EOM (F1), (F2) for arbitrary N ∈ C. Initially,
one attempts to proceed analytically with this program—let
us discuss this aspect of their calculation first.
At least initially, one does not discuss in detail the

boundary conditions B that are required to specify this
classical solution. At a later stage, it becomes apparent that
the authors have in mind the Dirichlet boundary conditions
B ¼ fQð0Þ ¼ 0;φnð0Þ ¼ 0g at the south pole of the geom-
etry (the manifold on which their solutions live is implicitly

assumed to be B4) and the usual Dirichlet boundary
conditions that match the argument of the wave function/
Green’s function at τ ¼ 1, fQð1Þ ¼ Q;φnð1Þ ¼ φn;1g.
Whatever the case may be, one proceeds in their analytic
computation by disregarding the term on the rhs of the
equality in Eq. (F1). It turns out that this assumption is
inconsistent for some valuesN ∈ C. These values are easily
determined: under the assumption, for allN ∈ Cnf� ffiffiffiffiffiffiffi

3Q
p g,

Qðτ;NÞ ∝ τ as τ → 0 according to Eq. (F1), and

φnðτ;NÞ ∝ τ½γnðNÞ−1�=2 as τ → 0 ðF3Þ

according to Eq. (F2), with

γn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

36nðnþ 2ÞN2

ð3Q − N2Þ2

s
: ðF4Þ

The sign ambiguity for the square root in Eq. (F4) is resolved
in Ref. [10] by choosing, for each N, the branch which has
Re½γnðNÞ� ≥ 0. This is certainly possible, but (1) it does not
ensure that φnðτ;NÞ is bounded on τ ∈ ½0; 1� for all N, and
(2) it does not ensure that

Q _φ2
n ∝ τγnðNÞ−2 as τ → 0 ðF5Þ

is small compared to the terms on the lhs of Eq. (F1)—
conditions that are required for the consistency of the
calculation. Let us define three regimes in the complex N
plane,

Re½γnðNÞ� ≥ 2 ðgreenÞ; ðF6Þ

Re½γnðNÞ� < 2 ðorangeÞ; ðF7Þ

Re½γnðNÞ� < 1 ðredÞ; ðF8Þ

where we have assigned a color to each regime (note red is
contained in orange). In the green regime, the analytic
computation in Ref. [10] is consistent, while in the orange

FIG. 19. The complex N plane, illustrating the deficiencies of the calculation in Ref. [10]. To make this plot, we have chosen the
numerical values n ¼ 3, Q ¼ 100, and Λ ¼ 1, but our qualitative conclusions apply generally to the parameter space. First, the green,
orange, and red regions are, respectively, the regions defined in Eqs. (F6)–(F8). The green regions are the subset of the complex plane
where the analytic computation done in Ref. [10] is consistent, while in the orange and red regions, the computation is inconsistent
because those points correspond either to a singular solution which violates the effective field theory approximation and/or does not
correspond to a solution to the EOM because at those locations a term in the EOM was neglected while it was inconsistent to do so. In
the green regime, we have used the off-shell action S0ðNÞ found in Ref. [10] to compute its critical points (the four black dots) and their
corresponding steepest descent and ascent curves (the descent curves run in the vertical direction). The black line segments that lie along
the real N axis represent the branch cuts for the function S0ðNÞ, analytically continued from the green regime in which its form is known
to as much of the rest of the complex plane as possible, which were found in Ref. [10].
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and red regimes, the computation is inconsistent. We
pictorially represent these regions in Fig. 19, together with
some other elements that are relevant to the discussion of the
calculation done in Ref. [10].
Because the assumption to neglect the term on the rhs of

Eq. (F1) is only consistent in the green regime, the function
KðQ;φn;1; N; 0; 0; 0Þ which features in the integrand in
Eq. (E2) is only known analytically in that regime. From
Fig. 19, however, it is clear that to evaluate the integral in
Eq. (E2) semiclassically one will generally require knowl-
edge of the integrand outside of the green regime. (This
holds if the contour C is chosen to be any infinite or half-
infinite curve or a closed curve around the origin.) This
knowledge includes the location and type of eventual
singularities in the orange regime and the behavior of
the integrand at infinity.
The conclusions the authors make in Ref. [10] are based

upon the extrapolation of the consistent analytic result in the
green regime to the orange and red regimes in which their
computation is inconsistent. At a later stage of the paper, one
attempts to justify this extrapolation with a numerical
investigation of the EOM and off-shell action S0ðNÞ in
Eq. (E2) in the orange and red regimes, claiming that, despite
the inconsistency in their analytic calculation, their extrapo-
lated analytic result is nevertheless a “good approximation”
to the integrand K. For instance, one finds numerical
evidence for the existence of a branch cut in the numerical
integrand which is exhibited by the analytic result, even
though the branch cut lies outside of the green regime except
for one point (see Fig. 19). For the scenario at hand—the
semiclassical evaluation of an integral—however, numerical
hints do not suffice. The reason is that to evaluate the integral
semiclassically in a controlled manner, defined, say, by a
contour that encircles the origin, one must deform the
contour onto a sum of steepest descent lines. For the sake
of the argument, let us assume that there are no singularities
in the orange region which prohibit us from deforming the
contour at will (except for a singularity at the origin), and let
us take the branch cut structure of the integrand seriously. As
one correctly mentions in Ref. [10], the branch cut prohibits
us from choosing a deformation of the contour, which
always remains on a steepest descent line. To evaluate the
integral, we are forced to leave the steepest descent lines,
going around the branch cut in someway. However, oncewe
leave a steepest descent line,we immediately lose the control
that the steepest descent approximation usually gives us.
Generally, as ℏ → 0, both the real and the imaginary parts
of the integrand will oscillate heavily, and the standard
Gaussian approximation scheme is lost. Of course, this does

notmean that it is impossible in general to evaluate a contour
integral of some function efðzÞ=ℏ, which has a finite branch
cut, around that branch cut. However, as ℏ → 0, the result of
the integral will depend sensitively on the details of the
function fðzÞ. If f and g have the same finite branch cut, and
f ¼ g to the accuracy “ε,” this implies nothing about the
contour integrals of efðzÞ=ℏ and egðzÞ=ℏ around the branch cut
as ℏ → 0.
We conclude that the computation performed in Ref. [10]

does not provide evidence for the statement that all wave
functions (or Green’s functions for that matter) defined via
minisuperspace path integrals are necessarily ill defined.
On the other hand, we could not complete the calculation
one had in mind in Ref. [10] either. This would require
solving the EOM (F1) and (F2) analytically in the entire
complex N plane, or at least in a larger part than the green
region in Fig. 19, which is very challenging.
There are less ambitious variants of this calculation

that one can complete, however. A first variant is the
computation of the NBWF of massless scalar fluctuations
under the assumption of vanishing backreaction on the
geometry. This is the calculation that was done in Ref. [12]
for perturbations around a fixed homogeneous and iso-
tropic background (also reviewed in Ref. [40]) and was
extended in this paper in Sec. IX for perturbations around
specific (BB9) fixed homogeneous but anisotropic back-
grounds. We stress that in this calculation the background
is completely fixed, meaning a solution to the Einstein
equations is fixed, which includes, in the terminology of
this paper, a specification of the lapse N ¼ Ns. This is how
one generally proceeds when claiming to do quantum field
theory in curved background spacetimes. We also stress
that this is not the computation Ref. [10] had in mind and
that was reviewed above; in that computation, the authors
wished to include the effects of backreaction. This can be
seen from the EOM (F1) and (F2), in which the scale factor
Q and the fields φn are treated at the same level.39 A second
variant is the computation of the NBWF in the BB9
minisuperspace model we have illustrated in Ref. [11]
and in this paper. As we have explained in Appendixes C
and D, the BB9 model can be viewed as an extension of
either the dSþ ðn ¼ 2Þ perturbative tensor mode model or
the dSþ ðn ¼ 2Þmassless scalar model. Similar statements
hold for the calculation of the tunneling proposal in these
simple models (e.g., Refs. [23,24,34]).

39Note also that neglecting the term on the rhs of Eq. (F1) does
not mean one is neglecting backreaction. The lapse is not fixed
either way.
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