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We study the preheating after inflation in the Starobinsky model with a nonminimally coupled scalar
field χ. Using the lattice simulation, we analyze the rescattering between the χ particles and the inflaton
condensate, and the backreaction effect of the scalar metric perturbations. We find that the rescattering is an
efficient mechanism promoting the growth of the χ field variance. Meanwhile, copious inflaton particles
can be knocked out of the inflaton condensate by rescattering. As a result, the inflaton field can become a
non-negligible gravitational wave source, even comparable with the χ field in some parameter regions.
For the scalar metric perturbations, which are on the sub-Hubble scale in our analysis, our results show that
they have negligible effects on the evolution of scalar fields and the production of gravitational waves in the
model considered in the present paper.

DOI: 10.1103/PhysRevD.99.123526

I. INTRODUCTION

Inflation [1,2], a phase of accelerated, quasiexponential
expansion in the early Universe, is proposed to resolve the
horizon, flatness, and monopole problems which plague the
big bang standard cosmology. Meanwhile, the super-
Hubble density perturbations during inflation provide
the seed for the formation of the large-scale structure in
the Universe [3]. In most models, inflation is driven by the
scalar field, called the inflaton, whose potential energy
dominates over the kinetic energy. In contrast to these
scalar field models, the Starobinsky model of inflation
proposed in 1980 is characterized by a pure gravitational
action of the form Rþ αR2 [1], where R is the Ricci scalar
and α is a constant. After a conformal transformation, the
Starobinsky model can be reformulated as a standard
single-field slow-roll inflationary model [4], which is
included in a class of the α-attractor E-models with the
scalar field potential being VðϕÞ ¼ Λ4j1 − exp ð− 2ϕ

MÞj2n [5]
and corresponds to the case of n ¼ 1 and M ∼Mp, where
Mp ¼ 2.4 × 1018 GeV is the reduced Planck mass. For the
Starobinsky model, assuming the number of e-folds
N ¼ 60, one can get the spectral index ns ¼ 1 − 2

N ≃
0.9667 and the extremely low tensor-to-scalar ratio r ¼
12
N2 ≃ 0.0033 in the Einstein frame, which are in excellent
agreement with the 2018 Planck data [6]. The Starobinsky
model is now regarded as one of the most popular

inflationary models due to its simplicity and great con-
sistency with observations.
The stage following inflation is called reheating [7], in

which the energy of the inflaton transfers into the thermal
energy of elementary particles and the Universe reaches a
radiation-dominated state that is necessary for a successful
big bang nucleosynthesis. The elementary theory of reheat-
ing is based on the perturbation theory, but it has been
recognized that the first stage of reheating is a nonpertur-
bative process called preheating [8–11] in many infla-
tionary models, as well as in bouncing cosmologies
[12,13]. The particle production of the daughter fields
due to the parametric resonance during preheating is
extremely efficient compared with the elementary theory
of reheating. Furthermore, the preheating is an attractive
phase with some interesting physical processes, such as the
production of a significant spectrum of gravitational waves
(GWs) [14–17] and the primordial black holes [18–20].
During this phase, the homogeneous inflaton condensate
pumps energy not only into other matter fields coupled to
the inflaton field, but also into its own fluctuations by self-
resonance. The simplest model of self-resonance is the λϕ4

model, whose nonlinear calculations of preheating were
performed in Ref. [21], but this model is strongly disfa-
vored by the Planck data due to its high tensor-to-scalar
ratio. Recently, Lozanov and Amin [22,23] found that the
self-resonance can lead to interesting nonlinear effects on
the formation of long- and short-lived localized field
configurations (oscillons and transients) for some obser-
vationally favored models—for example, the α-attractor
T-models, the α-attractor E-models, and monodromy-
type potentials. However, in the Einstein frame of the
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Starobinsky model, the inflaton field is absent of self-
resonance. Thus, coupling to other fields is necessary to
achieve an effective preheating. In Ref. [24], Tsujikawa
et al. proposed an extended Starobinsky model with a
nonminimal coupling between the curvature scalar and a
new scalar field χ, whose Lagrangian reads

L ¼ ffiffiffiffiffiffi
−g

p �
1

2κ2

�
Rþ R2

6μ2

�
−
1

2
ξRχ2 −

1

2
ð∇χÞ2 − 1

2
m2

χχ
2

�
;

ð1Þ

where κ−1 ¼ Mp, μ is fixed at 1.3 × 10−5Mp by the
magnitude of the primordial density perturbations [25], ξ
is an arbitrary coupling parameter, and mχ is the bare
mass of the scalar field χ. The above model is a phenom-
enological extension of the Starobinsky model, but its
underlying physics can be advocated by some particular
effects of quantum gravity. For example, it was generically
acknowledged that the R2 term or even higher-order terms
may arise naturally in the framework of the asymptotically
safe gravity which can be applied to realize the inflationary
phase at relatively low-energy scales [26]. Later, the
reheating process of the inflationary cosmology motivated
by the asymptotically safe gravity has been examined
in Ref. [27] at the perturbative level in the elementary
theory of reheating. Basing on the Hartree approximation,
the preheating process of the extended Starobinsky model
given in Eq. (1) has been studied in Ref. [24] by making
a conformal transformation [ĝμν ¼ Ω2gμν and Ω2 ¼
1 − ξκ2χ2 þ R=ð3μ2Þ] and introducing a scalar field ϕ≡ffiffiffiffiffiffiffiffi
3=2

p
κ−1 lnΩ2 as the inflaton. It was found that the growth

rate of the fluctuations of the χ field is improved greatly,
and the preheating is more efficient compared with that in
the chaotic inflation model with a nonminimally coupled χ
field [28,29]. Recently, the dynamics and reheating proc-
esses of the modified Starobinsky models have been
investigated in [30]. In addition, an inflationary model
similar to Eq. (1), called the mixed Higgs-R2 inflationary
model, has been proposed in [31], and its preheating
process was discussed in [32].
However, in the Hartree approximation, the rescattering

between the inflaton condensate and χ particles and the
backreaction effect of the metric perturbations cannot be
taken into account [24]. But these effects may have non-
negligible impacts on preheating. For example, in the
chaotic inflation model with Vðϕ; χÞ ¼ 1

4
λϕ4 þ 1

2
g2ϕ2χ2,

the rescattering between the χ particles and the inflaton
condensate limits the growth of fluctuations of the χ field
[33], and the metric perturbations have a large impact on
preheating, which greatly enhance the final abundance of
the field variances [34]. Moreover, Bastero-Gil et al.
[35,36] found that the amplified scalar metric perturbations
do enhance the GW stochastic background produced
during preheating in a generic supersymmetric model of

hybrid inflation. Thus, it would be interesting to perform
fully nonlinear analyses of preheating for the model in
Eq. (1) to investigate the effects of the rescattering and the
metric perturbations.
In this paper, we will use the three-dimensional lattice

simulation to investigate preheating including the scalar
metric perturbations in the Starobinsky model with a non-
minimally coupled scalar field. We organize our paper as
follows: Sec. II gives the basic equations and initial con-
ditions of the field andmetric variables. InSec. III,we present
the numerical results and analyze the evolution of scalar
fields. The equation of state is studied in Sec. IV, and the
effect of the scalarmetric perturbations is discussed in Sec.V.
Finally, our conclusions and discussions are given in Sec.VI.

II. BASICS EQUATIONS

After a conformal transformation, the system given in
Eq. (1) can be expressed to be the Einstein frame one, with
the Lagrangian taking the form

L ¼
ffiffiffiffiffiffi
−ĝ

p �
1

2κ2
R̂ −

1

2
ð∇̂ϕÞ2 − 1

2
e−

ffiffi
2
3

p
κϕð∇̂χÞ2 − Vðϕ; χÞ

�
;

ð2Þ

where ϕ is the introduced scalar field and

Vðϕ; χÞ ¼ e−2
ffiffi
2
3

p
κϕ

�
3μ2

4κ2

�
e

ffiffi
2
3

p
κϕ − 1þ ξκ2χ2

�
2

þ 1

2
m2

χχ
2

�
:

ð3Þ

Afterwards, sincewework only in theEinstein frame, the caret
will be dropped in the following discussion. In the inflationary
era, the χ field does not need tobe taken into consideration, and
the ϕ field plays the role of an inflaton field.
After the end of inflation, the ϕ field enters the coherent

oscillation phase, in which the ϕ field behaves as an inflaton
with the quadratic potential around ϕ ¼ 0. The parametric
resonance of the χ particles occurs by the tachyonic
instability, and the copious χ particles of small-momentum
modes are excited. This is because the coupling of the χ field
and inflaton field gives a tachyonicmass to the χ field,whose
square of the effective mass is defined as

m2
χ;eff ¼

d2V
dχ2

¼ e−2
ffiffi
2
3

p
κϕ½3μ2ξðe

ffiffi
2
3

p
κϕ − 1þ 3ξκ2χ2Þ þm2

χ �:

ð4Þ

Although there is no ϕ resonance in this model, the
produced χ particles knock inflaton quanta out of the
condensate and into low-momentum modes. The growth of
the inflaton fluctuations can be expected, and it is interest-
ing to investigate the impacts of them on preheating. Before
studying these processes, let us give the basic equations of
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this model during preheating. In order to add the metric
perturbations to the nonlinear calculations simultaneously,
we use the Arnowitt-Deser-Misner metric [37], whose
spacetime line element reads

ds2 ¼ gμνdxμdxν

¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ; ð5Þ

where N is the lapse function, Ni is the shift vector field,
and γij is the spatial metric. The lapse and shift vector are
gauge functions. Although the Newtonian gauge is usually
optimal, it is very difficult to investigate the nonlinear
preheating under it, so we will work in the synchronous
gauge with N ¼ 0 and Ni ¼ 0. Then we perform a
conformal transformation of the spatial metric, γ̃ij ¼
e−2βγij, with e2β ¼ detðγijÞ1=3. The variable β represents
one scalar degree of freedom (d.o.f.), and the spatial metric
γ̃ij contains two tensor d.o.f., two vector d.o.f., and one
traceless scalar d.o.f. For simplicity, we neglect the per-
turbations of the spatial metric γ̃ij with γ̃ij ¼ δij and only
consider the effect of the scalar metric variable β. So, the
spacetime metric (5) can be rewritten as

ds2 ¼ −dt2 þ e2βδijdxidxj: ð6Þ

The averaged scale factor is given by aðtÞ≡ he3βi1=3
(where h� � �i denotes the spatial average), and the
Hubble parameter is defined to be HðtÞ≡ _a=a. Thus,
one can obtain the following motion equations of two
scalar fields and the metric variable:

ϕ̈þ 3_β _ϕ−e−2β∇2ϕ − e−2β∂kβ∂kϕ

þ κffiffiffi
6

p ð_χ2 − e−2β∂kχ∂kχÞ þ
dV
dϕ

¼ 0; ð7Þ

χ̈ þ 3_β _χ −e−2β∇2χ − e−2β∂kβ∂kχ

−
ffiffiffi
2

3

r
κð _ϕ _χ −e−2β∂kχ∂kϕÞ þ e

ffiffi
2
3

p
κϕ dV

dχ
¼ 0; ð8Þ

β̈ þ _β2 ¼ −
κ2

6
ðρþ 3pÞ; ð9Þ

where the total energy density and pressure are defined as

ρ ¼ 1

2
ð _ϕ2 þ e−

ffiffi
2
3

p
κϕ _χ2Þ

þ 1

2
e−2βðð∂ϕÞ2 þ e−

ffiffi
2
3

p
κϕð∂χÞ2Þ þ Vðϕ; χÞ; ð10Þ

p ¼ 1

2
ð _ϕ2 þ e−

ffiffi
2
3

p
κϕ _χ2Þ

−
1

6
e−2βðð∂ϕÞ2 þ e−

ffiffi
2
3

p
κϕð∂χÞ2Þ − Vðϕ; χÞ: ð11Þ

In addition, from the Hamiltonian constraint equation, one
can obtain

3_β2 − 2e−2β∇2β − e−2β∂kβ∂kβ

¼ κ2
�
1

2
ð _ϕ2 þ e−

ffiffi
2
3

p
κϕ _χ2Þ

þ 1

2
e−2βð∂kϕ∂kϕþ e−

ffiffi
2
3

p
κϕ∂kχ∂kχÞ þ Vðϕ; χÞ

�
:

ð12Þ

The initial conditions of the preheating are determined
by the dynamics of inflation. The inflation takes place when
the value of the ϕ field is larger than Mp, and it ends when
the Hubble slow-roll parameter ϵ≡ − _H=H2 is equal to
unity, at which point the values of the inflaton and its
derivative are ϕe ≃ 0.97Mp and _ϕe ≃ −3.75 × 10−6M2

p,
respectively. It is reasonable to treat the end of inflation
as the onset of preheating. Thus, the initial preheating
values of the inflaton and its derivative can be set as ϕi ¼
ϕe and _ϕi ¼ _ϕe. Therefore, the energy scale at the begin-
ning of the preheating is about ð6 × 1015 GeVÞ4, which is
less than the inflationary scale. Since the matter field χ is
negligible at the beginning of preheating, the χ field and its
derivative are initialized as zero. The fluctuations of two
scalar fields and their derivatives are initialized by quantum
vacuum fluctuations. For convenience, we initialize the
scale factor as ai ¼ 1, which means that the scalar metric
variable can be initialized as βi ¼ 0. The initial value of _β
can be obtained from Eq. (12).

III. NONLINEAR PREHEATING PROCESS

Using a modified version of the publicly available
Fortran package HLattice [38], where the fourth-order
Runge-Kutta integrator takes the place of the symplectic
one, we perform numerical lattice simulations with 1283

points to investigate the evolutions of the field and metric
variables during preheating in the model in Eq. (2). In our
analysis, we choose the lattice length of side L to satisfy
LH < 2π, which means that all field modes are within the
horizon at the beginning of the simulation. In the following
sections, for convenience we consider the cases of mχ ¼ 0

and mχ > 0, respectively.

A. Massless χ particle case

For the case of mχ ¼ 0, first we neglect the backreaction
effect of the χ particles, and then Eq. (4) becomes

m2
χ;eff ≃ 3ξe−2

ffiffi
2
3

p
κϕðe

ffiffi
2
3

p
κϕ − 1Þμ2: ð13Þ

The evolution of m2
χ;eff=ðjξjμ2Þ as a function of the scale

factor aðtÞ is shown in Fig. 1. One can see that m2
χ;eff
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oscillates around zero, which causes the parametric reso-
nance. When m2

χ;eff < 0, all modes with k2=a2 < jm2
χ;eff j

experience exponential growth. The resonance intensity
and the width of the resonance band are positively related to
the amplitude ofm2

χ;eff that is determined by the value of jξj.
Unlike the case of ξ > 0, the initial effective mass of the χ
field is tachyonic when ξ < 0. This characteristic makes the
parametric resonance in the case of ξ < 0 more efficient
than that in the case of ξ > 0 for the same jξj.
Since the resonance intensity becomes stronger and

stronger with the increase of jξj, for the case when jξj is
very small, i.e., −1 < ξ < 2, the resonance efficiency is not
enough to fight the expansion of the Universe, which can
also be found in Fig. 2, where the evolutions of the χ field
variance Vχ ≡ hχ2i − hχi2 as a function of aðtÞ are plotted
for ξ ¼ 2 (red line) and ξ ¼ −1 (blue line). One can see that
the maximum of the χ field variance is almost the same as
its initial value in both cases, which means that the former
will be less than the latter when −1 < ξ < 2. Apparently,
both evolutions of Vχ decrease initially due to the expan-
sion of the Universe, but the blue line decays more slowly
than the red one. This is because the resonance has

happened before the inflaton field enters the coherent
oscillation for the ξ < 0 case.
Figure 3 shows the semilog plot of the maximum of the χ

field variance (Vχ;max) as a function of ξ. Obviously, Vχ;max

when ξ < 0 is always greater than the value with ξ > 0 for
the same jξj. The maximum of Vχ;max is 1.99 × 10−2M2

p,
which occurs at ξ ≃ −5. Furthermore, it is easy to see that
Vχ;max decreases as 1=jξj when ξ≳ 80 and ξ≲ −40, which
is consistent with the conclusion obtained with the Hartree
approximation [24]. In Tables I and II, we give a com-
parison for the Vχ;max values obtained from the lattice
simulation and the Hartree approximation, respectively,
for several different values of ξ. We find that the growth of
the χ fluctuations is enhanced after considering the non-
linear effects. To analyze clearly the evolutions of the
inflaton field and the massless χ field during preheating, we
now separate our discussion into two cases: ξ ≥ 0
and ξ < 0.

1. ξ ≥ 0

In Fig. 4(a), we plot the evolutions of the variance of
the inflaton field Vϕ ≡ hϕ2i − hϕi2 and the χ field variance
Vχ as a function of aðtÞ for ξ ¼ 3. The variance of the
inflaton field barely increases and is far less than that of the
χ field. This is because few inflaton particles are knocked
out of the condensate due to the poor abundance of Vχ .
Thus, the homogeneous part of the inflaton field hϕi
maintains coherent oscillation, and the spatial average of
Eq. (4) (hm2

χ;effi) also oscillates sustainedly around zero

FIG. 1. The evolution of m2
χ;eff=ðjξjμ2Þ as a function of aðtÞ for

the case of mχ ¼ 0.

FIG. 2. The variance of the χ field versus aðtÞ for mχ ¼ 0.

TABLE I. A comparison of the maximum of the χ field variance
obtained in the lattice simulation and in the Hartree approxima-
tion with different values of ξ for mχ ¼ 0.

Vχ;max=M2
p

ξ Lattice Hartree

3 1.12 × 10−6 5.55 × 10−7

10 9.90 × 10−3 2.50 × 10−3

30 4.06 × 10−3 1.89 × 10−3

50 2.41 × 10−3 7.29 × 10−4

100 1.74 × 10−3 6.31 × 10−4

TABLE II. A comparison of the maximum of the χ field
variance obtained in the lattice simulation and in the Hartree
approximation with different values of ξ for mχ ¼ 0.

Vχ;max=M2
p

ξ Lattice Hartree

−3 4.06 × 10−3 2.19 × 10−3

−10 1.14 × 10−2 4.47 × 10−3

−30 9.39 × 10−3 7.01 × 10−3

−50 1.06 × 10−2 7.09 × 10−3

−100 7.97 × 10−3 3.07 × 10−3
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[see Fig. 4(b)]. Although the tachyonic mass of the χ
particle always exists, the amplitude of hm2

χ;effi, associated
with the amplitude of the oscillating inflaton field, decays
with the expansion of the Universe. This effect makes the
resonance become weak and eventually shuts off the
growth of Vχ .
Figure 5 gives the evolutions of the variances of the ϕ

and χ fields as a function of aðtÞ for ξ ¼ 5. In this case, the
stronger resonance makes the maximum of Vχ far greater
than that in the case of ξ ¼ 3. Since the production of more
χ particles leads to stronger backreaction, the variance of
the inflaton field increases significantly, although it is still
less than the χ field variance. The evolutions of hϕi and
hm2

χ;effi are shown in Figs. 6(a) and 6(b), respectively. From
these, we find that the energy transfer from the inflaton
field to the χ field accelerates the decay of the amplitude of
hϕi and promotes the decay of the amplitude of hm2

χ;effi.
Figure 6(a) indicates that hϕi oscillates around hϕi ¼
−ξ

ffiffi
3
2

q
κhχ2i rather than hϕi ¼ 0. This property can be

found in Eq. (3). With the decay of the energy of
the inflaton condensate, hϕi will finally stabilize at

hϕi ¼ −ξ
ffiffi
3
2

q
κhχ2i. Since hm2

χ;effi will always be larger

than zero and finally stabilize at hm2
χ;effi ¼ 6ξ2κ2hχ2iμ2, the

tachyonic mass of the χ field will disappear completely, and
thus the parametric resonance will be shut off correspond-
ingly. The ending time of parametric resonance is deter-
mined by both the expansion of the Universe and the
backreaction effect of the χ particles produced during
preheating. The case of ξ ≃ 5 is the critical one, where
the expansion of the Universe and the backreaction effect
have about equivalent contributions to stopping the expo-
nential growth of Vχ . When ξ≳ 5, the backreaction effect
becomes important and increasingly dominant with the
increase of ξ.
The production of a large number of the χ particles with

nonzero modes will result in the matter distribution of the χ
field having large density inhomogeneities in the position
space. This means that the GWs can be sourced by the χ
field, or more specifically, by its gradient. Although the

FIG. 3. The maximum of the χ field variance as a function of ξ
for mχ ¼ 0.

FIG. 4. (a) Left-hand plot: The variances of the ϕ field (red line) and the χ field (blue line) versus aðtÞ for ξ ¼ 3 andmχ ¼ 0. (b) Right-
hand plot: The spatial averages of the inflaton field hϕi (red line) and hm2

χ;effi (blue line) versus aðtÞ for ξ ¼ 3 and mχ ¼ 0.

FIG. 5. The variances of the ϕ field (red) and the χ field (blue)
versus aðtÞ for ξ ¼ 5 and mχ ¼ 0.
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fluctuations of the inflaton field are absent of the resonance,
the copious inflaton particles can still be knocked out
of the inflaton condensate by the χ particles created by the
resonance. Thus, the inflaton field can also become
an effective GW source. Figure 7 shows the evolutions
of the average gradient energy density of the ϕ field
Gϕ ≡ he−2βð∂ϕÞ2i=2, the average gradient energy density

of the χ field Gχ ≡ he−
ffiffi
2
3

p
κϕe−2βð∂χÞ2i=2, and the average

total gradient energy density Gtot ≡ Gϕ þ Gχ as a function
of aðtÞ for ξ ¼ 5. It is obvious that when Gtot reaches its
maximum, the gradient of the inflaton field accounts for a
small proportion of the total gradient, which means that the
inflaton field excites few GWs compared with the χ field. If
the parametric resonance can be further enhanced, more
inflaton particles are knocked out, and the contribution of
the inflaton field to GWs can be increased. For example, as
shown in Fig. 8(a), when ξ ¼ 10, after the end of the
growth of Vχ , the variance of the inflaton field is almost
equal to that of the χ field. When Gtot reaches its maximum,

the contribution of the ϕ field to the total gradient energy
density is almost the same as that of the χ field, which
means that the inflaton field becomes a GW source
equivalent to the χ field. Thus, if the rescattering effect
is not considered, the production of GWs will be seriously
underestimated.
With the increase of ξ, since the resonance efficiency

increases, more and more χ particles will be produced
during each oscillation, and their backreaction will become
stronger and stronger, which will decrease the number of
times of exponential growth of Vχ . When ξ≳ 65, the
variance of the χ field only needs to experience one
exponential growth to reach its maximum, which can be
seen in Fig. 9(a). In this figure, the evolutions of the
variances of the ϕ and χ fields as a function of aðtÞ for
ξ ¼ 70 are shown. One can see that the variance of the
inflaton field is about 1 order smaller than that of the χ field
after the end of the exponential growth of Vχ . This is
because after Vχ reaches its maximum, Vχ decreases
quickly about 1 order of magnitude, and thus there is
not enough rescattering between the χ particles and the
inflaton condensate. As a result, the χ field is the main
source of GWs at the end of the exponential growth of Vχ .
As is shown in Fig. 9(b), when Gtot reaches its maximum,
the main component of Gtot is the gradient energy of the χ
field, and the contribution of the inflaton field is negligible.
When the Universe enters the period dominated by rescat-
tering, the variance of the inflaton field is increased by an
order of magnitude after a period of sufficient rescattering,
and the maximum of Vϕ is almost equal to that of Vϕ [see
Fig. 9(a)]. However, from Fig. 9(b), one can see that the
gradient of the ϕ field during the rescattering stage does not
increase significantly with respect to that at the end of the
resonance. Thus, the inflaton field does not become an
important source of GWs in this case, and the contribution
of the inflaton field to GWs is negligible compared to the
χ field.

FIG. 6. (a) Left-hand plot: The evolutions of hϕi (red line) and −5
ffiffi
3
2

q
hχ2i (blue line) as functions of aðtÞ for ξ ¼ 5 and mχ ¼ 0.

(b) Right-hand plot: The evolutions of hm2
χ;effi (red line) and 6 × 52hχ2i (blue line) as functions of aðtÞ for ξ ¼ 5 and mχ ¼ 0.

FIG. 7. The evolutions of the average gradient energy density of
the ϕ field (red line), the χ field (blue line), and their sum (green
line) with aðtÞ for ξ ¼ 5 and mχ ¼ 0.
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Therefore, the inflaton field needs to meet two con-
ditions to become an effective GW source. One is strong
enough resonance, and the other is appropriate resonance
efficiency. For the positive ξ case, we find that the inflaton
field is a nonnegligible GW source when 6≲ ξ≲ 30.

2. ξ < 0

When ξ < 0, all modes with k2=a2 < jm2
χ;eff j of the χ

field are already tachyonic at the end of inflation, which is
the main feature different from the case of the positive ξ and
gives the negative χ case more efficient preheating. When
ξ ¼ −3, the effective mass of the χ field has a large enough
amplitude to make the variance of the χ field increase
before the inflaton enters the coherent oscillation stage [see
Fig. 10(a)]. The resonance in the ξ ¼ −3 case is far stronger
than that in the ξ ¼ 3 case, but the contribution of the
inflaton field to GWs in the ξ ¼ −3 case is as negligible as

that in the ξ ¼ 3 case [see Fig. 10(b)]. The ξ ¼ −3 case is a
marginal one, since when ξ≲ −3, the backreaction effect of
the χ particles produced by resonance becomes dominant
upon stopping the exponential growth of Vχ . When ξ ¼ −5,
Vχ;max is the maximum in the negative ξ case, and is also
larger than that obtained with ξ ¼ 10, which is the
maximum in the positive ξ case. However, unlike the ξ ¼
10 case, when ξ ¼ −5, the variance of the inflaton field
does not increase to be equal to that of the χ field [see
Fig. 11(a)]. From Fig. 11(b), one can see that the con-
tribution of Gϕ to Gtot in the ξ ¼ −5 case is non-negligible
but is obviously not as big as that in the ξ ¼ 10 case. When
ξ≲ −25, the variance of the χ field reaches its maximum
after an exponential growth, which means that the growth
of Vχ is over before the inflaton enters the coherent
oscillation stage. This property can be found in Fig. 12(a),
where the evolutions of the variances of the ϕ and χ fields
as a function of aðtÞ are shown for the case of ξ ¼ −30.

FIG. 8. (a) Left-hand plot: The variances of the ϕ field (red) and the χ field (blue) versus aðtÞ for ξ ¼ 10 and mχ ¼ 0. (b) Right-hand
plot: The evolutions of the average gradient energy density of the ϕ field (red line), the χ field (blue line), and their sum (green line) with
aðtÞ for ξ ¼ 10 and mχ ¼ 0.

FIG. 9. (a) Left-hand plot: The variances of the ϕ field (red) and the χ field (blue) versus aðtÞ for ξ ¼ 70 and mχ ¼ 0. (b) Right-hand
plot: The evolutions of the average gradient energy density of the ϕ field (red line), the χ field (blue line), and their sum (green line) with
aðtÞ for ξ ¼ 70 and mχ ¼ 0.
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FIG. 10. (a) Left-hand plot: The variances of the ϕ field (red) and the χ field (blue) versus aðtÞ for ξ ¼ −3 andmχ ¼ 0. (b) Right-hand
plot: The evolutions of the average gradient energy density of the ϕ field (red line), the χ field (blue line), and their sum (green line) with
aðtÞ for ξ ¼ −3 and mχ ¼ 0.

FIG. 11. (a) Left-hand plot: The variances of the ϕ field (red) and the χ field (blue) versus aðtÞ for ξ ¼ −5 andmχ ¼ 0. (b) Right-hand
plot: The evolutions of the average gradient energy density of the ϕ field (red line), the χ field (blue line), and their sum (green line) with
aðtÞ for ξ ¼ −5 and mχ ¼ 0.

FIG. 12. (a) Left-hand plot: The variances of the ϕ field (red) and the χ field (blue) versus aðtÞ for ξ ¼ −30 and mχ ¼ 0. (b) Right-
hand plot: The evolutions of the average gradient energy density of the ϕ field (red line), the χ field (blue line), and their sum (green line)
with aðtÞ for ξ ¼ −30 and mχ ¼ 0.

CHENGJIE FU, PUXUN WU, and HONGWEI YU PHYS. REV. D 99, 123526 (2019)

123526-8



In Fig. 12(b), we give the evolutions of Gϕ, Gχ , and Gtot for
ξ ¼ −30. One can see that, since Gϕ is far less than Gχ after
the end of the resonance, and Gϕ does not have a significant
growth during the period dominated by rescattering, the
inflaton field contributes little to the GW production. For
the negative ξ case, we find that the inflaton field is a non-
negligible GW source only when −20≲ ξ≲ −4.

B. Massive χ particle case

In this case, if the backreaction of the χ field is neglected,
Eq. (4) can be reduced to be

m2
χ;eff ≃ e−2

ffiffi
2
3

p
κϕ½3μ2ξðe

ffiffi
2
3

p
κϕ − 1Þ þm2

χ �: ð14Þ

The tachyonic effective mass of the χ field comes from the

oscillation term ðe
ffiffiffiffiffiffi
2=3

p
κϕ − 1Þ, whose evolution as a

function of aðtÞ is plotted in Fig. 13. It is obvious that
the appearance of the bare mass of the χ field will suppress
the amplitude of the effective mass and thus weaken the
parametric resonance. In order to achieve an effective

parametric resonance, the bare mass mχ needs to satisfy
the following inequalities:

½3μ2ξðe
ffiffi
2
3

p
κϕ − 1Þ þm2

χ �min − ½6μ2ðe
ffiffi
2
3

p
κϕ − 1Þ�min ≲ 0

ðξ > 0Þ; ð15Þ

½3μ2ξðe
ffiffi
2
3

p
κϕ − 1Þ þm2

χ �min − ½−3μ2ðe
ffiffi
2
3

p
κϕ − 1Þ�min ≲ 0

ðξ < 0Þ; ð16Þ

where the subscript “min” denotes the minimum. For the
ξ > 0 case, we obtain the constraint on mχ from Eq. (15):

mχ ≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2 − ξÞμ2 × ðe

ffiffiffiffiffi
2
3
κϕ

p
− 1Þmin

q

≲ 0.7μ
ffiffiffiffiffiffiffiffiffiffi
ξ − 2

p
: ð17Þ

When ξ < 0, the constraint on mχ from Eq. (16) becomes

mχ ≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðjξj − 1Þμ2 × ðe

ffiffi
2
3

p
κϕ − 1Þmax

q

≲ 1.9μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jξj − 1

p
; ð18Þ

where the subscript “max” denotes the maximum. For
example, when ξ ¼ 10 and ξ ¼ −10, the occurrence of the
parametric resonance requires that the bare mass of the χ
field satisfy mχ ≲ 2μ and mχ ≲ 5.7μ, respectively. The left
and right panels of Fig. 14 show the evolutions of the
variance of the χ field with different values of mχ as a
function of aðtÞ in the ξ ¼ 10 and ξ ¼ −10 cases, respec-
tively. As the bare mass of the χ field increases, the growth
rate and the maximum of the variance of the χ field become
smaller and smaller. The χ particle whose bare mass is
mχ ¼ 2μ for ξ ¼ 10 and mχ ¼ 6μ for ξ ¼ −10 cannot be
produced largely since the requirements given in Eqs. (17)
and (18) are not satisfied.

FIG. 13. The evolution of ðe
ffiffiffiffiffiffi
2=3

p
κϕ − 1Þ as a function of aðtÞ.

FIG. 14. (a) Left-hand plot: The variances of the χ field versus aðtÞ for mχ ¼ 0, mχ ¼ 0.5μ, mχ ¼ μ, mχ ¼ 1.5μ, and mχ ¼ 2μ in the
ξ ¼ 10 case. (b) Right-hand plot: The variances of the χ field versus aðtÞ for mχ ¼ 0, mχ ¼ μ, mχ ¼ 2μ, mχ ¼ 3μ, mχ ¼ 4μ, and
mχ ¼ 6μ in the ξ ¼ −10 case.
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The small bare mass of the χ field may have an
insignificant effect on the parametric resonance when jξj
is large enough, i.e., ξ≲ −25 and ξ≳ 65, in which after
an exponential growth Vχ reaches its maximum. For
example, as shown in Fig. 15(a), when ξ ¼ −50, the
evolutions and maximums of Vχ with mχ ¼ 2μ and mχ ¼
3μ and mχ ¼ 4μ are almost the same as those in the case
of the massless χ particle. This is because in the ξ ¼ −50
case, the bare mass of the χ field is constrained to be
mχ ≲ 13μ, and the small bare mass just accounts for a small
proportion of the effective mass of the χ field. However,
when the Universe enters the stage dominated by the
rescattering, mχ affects the evolution of the field fluctua-
tions. Figure 15(a) indicates that the abundance of the χ
field variance decays faster and faster with the increase of
mχ . If Vχ decays faster, fewer inflaton particles will be
knocked out. Thus, the maximum of Vϕ decreases with the
increase of mχ , and when mχ is larger than a critical value,
i.e., mχ ≳ 4μ in the ξ ¼ −50 case, the abundance of Vϕ

does not grow during the whole rescattering era. This
property can be found in Fig. 15(b). Therefore, the mass of
the χ field suppresses the abundance of Vϕ by weakening
the parametric resonance and accelerating the decay of Vχ

during the rescattering period.

IV. EQUATION OF STATE

Since the equation of state plays a significant role in
the analysis of the matter-radiation transition during
preheating, we discuss its evolution in this section. In
our discussion, the spatially averaged equation of state
parameter

w≡ hpi
hρi ð19Þ

will be analyzed.

A. Massless χ particle case

When −3 < ξ < 5, the energy is stored mainly in the
homogeneous inflaton condensate due to the weak reso-
nance, and the Universe is still dominated alternately by the
potential and the kinetic energy of the inflaton field. Thus,
w oscillates between −1 and 1, and the time average of w
over oscillations is zero [see Fig. 16(a)]. When ξ≲ −3 and
ξ≳ 5, copious χ particles and inflaton particles are pro-
duced, and the Universe is no longer dominated by the
inflaton condensate. Figure 16(b), where the evolution of w
as a function of aðtÞ for ξ ¼ 10 is plotted, indicates that the
equation-of-state parameter w initially oscillates between
−1 and 1, and eventually stabilizes at a value about 0.26.
Thus, the cosmic phase transition occurs.

B. Massive χ particle case

Figure 17 shows the evolutions of w as a function of aðtÞ
formχ ¼ 0,mχ ¼ μ,mχ ¼ 2μ, andmχ ¼ 3μ in the ξ ¼ −50
case. When mχ ¼ 0, w will stabilize at a value about 0.29.
For mχ ¼ μ, w also will stabilize at a value, but this stable
value is less than the one obtained in the case of mχ ¼ 0. w
does not completely stabilize when mχ ¼ 2μ and its time
average is just larger than zero. When mχ ¼ 3μ, w always
keeps oscillating around zero. So, when mχ ¼ μ, 2μ, and
3μ, although it does not affect the parameter resonance, the
nonzero mass will hinder the transition from the matter-
dominated era to the radiation-dominated one. This is
because mχ suppresses the abundance of Vϕ, which leads
to the inflaton condensate oscillating when the mass is large
enough.
Figures 16 and 17 indicate clearly that the end of

preheating cannot connect smoothly with the radiation
phase. This is because reheating never completes at the
phase of preheating, which is only the first stage of
reheating. The χ particles produced in preheating will
decay to the elementary particles populating and thermal-
izing the Universe.

FIG. 15. (a) Left-hand plot: The variances of the χ field versus aðtÞ for mχ ¼ 0, mχ ¼ 2μ, mχ ¼ 3μ, mχ ¼ 4μ, and mχ ¼ 6μ in the
ξ ¼ −50 case. (b) Right-hand plot: The variances of the ϕ field versus aðtÞ for mχ ¼ 0, mχ ¼ 2μ, mχ ¼ 3μ, mχ ¼ 4μ, and mχ ¼ 6μ in
the ξ ¼ −50 case.
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V. EVOLUTION OF THE SCALAR
METRIC VARIABLE

Now, we investigate the effect of scalar metric perturba-
tions. Figure 18 shows the evolutions of Vϕ þ Vχ and the

variance of the scalar metric fluctuations Vβ ≡ hβ2i − hβi2
as a function of aðtÞ for ξ ¼ 10 andmχ ¼ 0. It is easy to see

that, although the scalar metric variable is initialized to be
homogeneous, Vβ quickly increases from 0 to 10−12 after

the system begins to evolve. Then the variance of β

increases exponentially with the fast growth of the total
variance of the scalar fields. When the total variance stops
the growth, Vβ reaches a stable value. To reveal the

FIG. 16. (a) Left-hand plot: The spatially averaged equation-of-state parameter w versus aðtÞ for ξ ¼ 3 and mχ ¼ 0. (b) Right-hand
plot: The spatially averaged equation-of-state parameter w versus aðtÞ for ξ ¼ 10 and mχ ¼ 0.

FIG. 17. The spatially averaged equation-of-state parameter w versus aðtÞ formχ ¼ 0,mχ ¼ μ,mχ ¼ 2μ, andmχ ¼ 3μ in the ξ ¼ −50
case.
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influence of the metric fluctuations on the evolutions of the
scalar fields, we plot the aðtÞ-dependent variances of the ϕ
and χ fields with and without the scalar metric fluctuations
in Fig. 19. We find that the evolutions of the scalar fields
almost do not feel the appearance of the scalar metric
perturbations.
The large enhancement of the scalar metric perturbations

will induce the production of the second-order GWs, and
the contribution to GWs of the scalar metric perturbations is
associated with their gradient [35,36]. If the gradient of the
scalar metric perturbations can be comparable to that of the
scalar fields, they become a non-negligible GW source. In
Fig. 20, we plot the evolutions of the average total gradient
energy density of the scalar fields Gtot and the average
gradient contribution of the scalar metric fluctuations Gβ ≡
he−2βð∂βÞ2i=ð2M−2

p Þ as a function of aðtÞ for ξ ¼ 10 and
mχ ¼ 0. Since the gradient of β is far less than that of the
scalar fields, the scalar metric perturbations cannot become

a significant GW source. Similar results are found in all
other cases.
Since the scalar metric perturbations have no effect on

the evolutions of the scalar fields and the production of
GW, it is reasonable to conjecture that the contributions of
other kinds of metric perturbations can also be neglected
during preheating. Thus, one can investigate the spectrum
of GWs with a simple FRWmetric during preheating in this
model, which is an interesting issue but is beyond the scope
of the present work.

VI. CONCLUSIONS AND DISCUSSIONS

The Starobinsky model is now strongly favored among
the models of inflation. However, after the Universe enters
into the reheating period, the parametric resonance is absent
in a pure Starobinsky model. In Ref. [24], a new scalar
field χ coupled to the curvature scalar is introduced, and the
linear preheating is investigated by using the Hartree
approximation. To consider the effects of the rescattering
and the metric perturbations neglected in Ref. [24], in this
paper, we have investigated the preheating with a three-
dimensional lattice simulation. We find that the rescattering
between the produced χ particles and the inflaton con-
densate makes the maximum of the χ field variance bigger
than that in the Hartree approximation. Meanwhile, the
copious inflaton particles can be knocked out of the inflaton
condensate by rescattering. Thus, the inhomogeneous
inflaton field may become a significant GW source. When
the scalar field χ is massless, the contribution of the inflaton
field to GWs is non-negligible compared with that of the χ
field when 6≲ ξ≲ 30 and −20≲ ξ≲ −4. For the massive
χ particle case, the nonzero mass will suppress the para-
metric resonance, and accelerate the decay of the variance
of the χ field during the rescattering period. These effects
suppress the abundance of the variance of the inflaton field
and hinder the occurrence of the cosmic phase transition

FIG. 19. The variances of the inflaton field (solid red line) and χ
field (solid blue line) versus aðtÞ for ξ ¼ 10 and mχ ¼ 0. The
variances of the inflaton field (dashed purple line) and χ field
(dashed green line) in a FRW metric are also shown for
comparison.

FIG. 18. The total variance of the scalar fields (red line) and the
variance of the scalar metric perturbations (blue line) versus aðtÞ
for ξ ¼ 10 and mχ ¼ 0.

FIG. 20. The average total gradient energy density of the scalar
fields Gtot (red line) and the average gradient contribution of the
scalar metric fluctuations Gβ (blue line) versus aðtÞ for ξ ¼ 10

and mχ ¼ 0.
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from matter to radiation. Finally, we find that the sub-
Hubble scalar metric fluctuations do not affect the evolu-
tions of the scalar fields, and cannot become an effective
GW source for the model considered in this paper.
Finally, we must point out that only the parametric

resonance of the χ field fluctuations on subhorizon scales is
considered in the present paper. Indeed, the super-Hubble
modes of the χ field will also be amplified due to the
tachyonic instability, which may lead to an amplification of
super-Hubble scalar metric fluctuations. Recently, Ref. [39]
has shown, by the numerical method, that the super-Hubble
metric perturbations of scalar type enhanced during the
preheating with an arbitrary power-law potential could
significantly affect the theoretical predictions for the CMB
observations. And a similar result was earlier derived

semianalytically in Ref. [40] by virtue of the covariant
method. Therefore, for the model considered in the present
paper, the evolution of the super-Hubble scalar metric
perturbations during preheating is expected to have the
same effect, which is an interesting issue left for future
work.
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