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We study unimodular gravity in the context of cosmology, particularly some interesting consequences that
might be able to describe the background cosmology and the late cosmic acceleration.We focus our attention
on the hypothesis of nonconservation of the energy momentum tensor. This characteristic has an interesting
outcome: we can obtain a modified Friedmann equation along with the acceleration equation and also new
fluid equations related to a third order derivative of the scale factor, known in cosmography as the jerk
parameter. As a consequence of this theory, it seems that radiation and the cosmological constant are
intimately related, in agreement with what some authors have called the third coincidence problem. Their
connection is the parameter zini, which has a value of 11.29 and coincides with the reionization epoch. As a
result, we are able to explain the late acceleration as a natural consequence of the equations, associating the
new fluid with radiation and, thus, eliminating the need for another component (i.e., dark energy). Finally, we
interpret the results and discuss the pros and cons of using the cosmological constant under the hypothesis of
nonconservation of the energy momentum tensor in the unimodular gravity scenario.
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I. INTRODUCTION

Understanding the Universe acceleration at late times
[1,2] is one of the most challenging puzzles in modern
cosmology. This acceleration is attributed to an unknown
entity called dark energy (DE) under the Einsteinian gravity,
but it could also be explained by modifying the theory of
gravity. The first way implies that approximately 69% [3] of
our Universe is filled with something we do not know yet.
Following this line of thought, some of the most studied
models are the cosmological constant (CC) [4], phantomand
quintessence fluids [5,6], and generalized perfect fluids [7].
The second possibility considers that Einstein’s theory of
gravitation must be changed in order to explain this
gravitational anomaly. A collection of different models is
helping to understand how the theory of gravitation should
bemodified: for instance, thefðRÞ theories [8], scalar-tensor
theories [9], braneworlds [10], and Cardassian models [11].

Even though there is a large number of models attempt-
ing to explain this phenomenon, the CC is the simplest and,
according to the observations, apparently the preferred
candidate responsible for the current Universe acceleration.
This approach has been historically adopted in what is
known as the Λ cold dark matter (CDM) model, the
standard model of cosmology. Despite these positive
attributes, ΛCDM exhibits some theoretical issues, e.g.,
the inability to match the observed value of the CC and the
theoretical prediction coming from quantum field theory,
where it is associated with the expectation value of the
vacuum energy density [12]. Another puzzling issue is the
coincidence problem, i.e., why does the Universe accelerate
at z ∼ 0.7 and not after or before?
Unimodular gravity (UG) [13–16] was first obtained by

Einstein as an alternative field equation to general relativity
(GR)1 [17] (other references can be traced to [18–20]) and
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1The vacuum solutions such as Schwarzschild and Kerr remain
unaltered in comparison with GR, and the same happens for
gravitational waves provided that ∇μTμν ¼ 0.
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seems to be a serious alternative to face the problem of the
Universe acceleration due to some interesting properties.
First, in UG the determinant of the metric is kept fixed,
instead of being a dynamical variable as in GR. This
condition reduces the symmetry of the group of diffeo-
morphisms to the group of unimodular general coordinate
transformations that leave the determinant of the metric
unchanged. As a consequence, the new equations governing
the dynamics of spacetime are the trace-free Einstein
equations, and now the vacuum energy has no direct
gravitational effect. An important difference between them
is the nature of the CC: while in GR it is a coupling constant
in the Lagrangian, in UG it arises directly as an integration
constant in the equations of motion.
UG seems like a promising candidate to deal with the

problems that afflict the CC, and it opens an interesting
possibility of a natural violation of energy-momentum
conservation (many authors propose the energy-momentum
conservation as a separate assumption [13,20]) that,
although incompatible with GR, it preserves coordinate
transformations. This characteristic is the reason why UG
was recently proposed by [14–16] as a serious candidate to
address the CC problem. The authors suggest that energy-
momentum violations have been small but cumulative
through the history of the Universe, and those could be
the cause of an effective CC with a value of the same
order of magnitude that the one expected phenomenologi-
cally. Despite their interesting point of view, the authors in
[14–16] offer only a rather rough analysis of how the small
violations of the energy conservation affect the standard
evolution of the Universe in their specific model.
In addition, it seems that preventing the vacuum energy

from gravitating could be a possible path to avoid some of
the CC issues. For instance, in [21] the author uses this
approach to calculate the density parameter of the CC,
obtaining a constriction of ΩΛ ¼ 0.704.
In this paper we study some of the cosmological con-

sequences of UG, maintaining the nonconservation of the
energy-momentum tensor, and thus modifying not only
the equations of the fluids but also the Friedmann and
acceleration equations. The new generated terms manifest
themselves in the background cosmology and undoubtedly
also at the perturbative level. The new correction terms in
the dynamics involve the jerk parameter (JP) that depends
on the third order derivative of the scale factor. Choosing a
particular JP, we allow the conservation of the equation of
the fluids but maintain the new terms in the dynamical
equations of UG. We interpret these new terms as some
residual relativistic particles (radiation) that will be iden-
tified as the cause for the Universe late acceleration. This
result has profound implications for the existence of the CC
and its relation with the hypothesis of the nonconservation
of the energy-momentum tensor.
We organize the paper as follows: in Sec. II we present

the UG field equations and obtain the movement equations

in a homogeneous and isotropic cosmology, together with
the nonconservation of the energy-momentum tensor. In
Sec. III we show the modifications of Friedmann and
acceleration equations in this scenario, presenting the
master equations involving the jerk parameter. In
Sec. IV we reveal how a particular jerk recovers the
traditional cosmology, introducing a new approach to
resolve the problem of CC. Finally in Sec. V we give
some conclusions and outlooks.

II. UG FIELD EQUATIONS

Unimodular gravity can be described by the Einstein-
Hilbert action

S ¼
Z

d4xξ

�
1

16πG
Rþ Lmatter

�
; ð1Þ

where ξ ¼ ffiffiffiffiffiffi−gp
, ξ being a fixed scalar density which

normally is called the unimodular condition, and Lmatter is
associated with the matter density Lagrangian. It is impor-
tant to remark that this condition is not the most formal way
to define unimodular gravity: what is really relevant is that
the equations of motion are obtained by considering an
invariant volume form (dV¼ ffiffiffiffiffiffi−gp

dx1∧dx2∧ ���∧dx4).
A volume form is coordinate independent, while the
unimodular condition is not. The physical consequence
of the restricted variation considering ξ ¼ ffiffiffiffiffiffi−gp

in UG is
that the equations of motion are trace-free [20]. At the level
of the equations of motion, we can impose any ansatz for
the metric and locally rewrite them to satisfy the condition
ξ ¼ ffiffiffiffiffiffi−gp

. Therefore, it is irrelevant whether we start with a
metric that satisfies the unimodular condition, at the end it
is possible to obtain the same results with a coordinate
transformation (see the Appendix for the demonstration).
Hence, after some calculations using (1), we obtain the
following field equation:

Rμν −
1

4
gμνR ¼ 8πG

�
Tμν −

1

4
gμνT

�
; ð2Þ

where all the tensors are the standards of GR and G is
Newton’s gravitational constant. The previous equation can
be rearranged in a more familiar way as GμνþΛðR;TÞgμν¼
8πGTμν, where ΛðR; TÞ≡ 1

4
ðRþ 8πGTÞ depends on the

Ricci and energy-momentum scalars. Notice that, despite
its resemblance, strictly speaking we do not recover the ten
equations of GR, only nine independent equations.
These UG field equations could contain, in a natural way,

an explanation for DE encoded in the term ΛðR; TÞ, which
in general is not a constant function because it depends on
the scalar functions R and T. For a constant ΛðR; TÞ → Λ
we return to the traditional interpretation of the CC and UG
degenerates to general relativity as we will mention later.
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For a background cosmology, we consider an isotropic,
homogeneous, and flat Friedmann-Lemaître-Robertson-
Walker (FLRW) metric, ds2 ¼ −dt2 þ aðtÞ2dx⃗2, whereffiffiffiffiffiffi−gp ¼ aðtÞ3 is not a constant function in general; how-
ever, through a coordinate transformation it is possible to
obtain a metric that fulfills the unimodular condition.
Notice that, if we start with the canonical FLRW metric,
the physical interpretation is straightforward unlike the
other case in which a coordinate transformation leads to
ξ ¼ ffiffiffiffiffiffi−gp

(see the Appendix for the demonstration of the
equivalence between metrics). Therefore we will continue
using the standard FLRW metric.
The perfect fluid energy momentum tensor is written as

Tμν ¼ pgμν þ ðρþ pÞuμuν, where p, ρ, and uμ are
the pressure, density, and four-velocity of the fluid,
respectively. Hence, we have [13,20]

_H ¼ ä
a
−H2 ¼ −4πG

X
i

ðρi þ piÞ: ð3Þ

The Hubble rate equation is composed by the traditional
fluids except DE because it naturally emerges from UG. In
addition, we have the following equation:

8πG∇μTμν ¼
1

4
∇νðRþ 8πGTÞ ¼ ∇νΛðR; TÞ; ð4Þ

which contains information about the conservation of the
energy momentum tensor in the traditional GR form.
Indeed, a general conservation for UG theory is now
written in the form

∇μ½32πGTμν − ðRþ 8πGTÞgμν� ¼ 0: ð5Þ

Hence, it is possible to infer the following possibilities. The
first case is as follows:

(i) Assume the conservation of the energy-momentum
tensor (∇μTμν ¼ 0) as an independent hypothesis, as
in Refs. [13,20]. The traditional cosmology is easily
obtained with a CC as an integration constant,
with no differences at the background level [13].
However, in the quantum realm, authors show
important changes when compared to GR (see
[22]). In this case, the CC does not suffer from a
hierarchy problem and it is radiatively stable (see
[23] for details).

The second case, which is the reason for our study, follows:
(i) Assume the energy-momentum tensor is not

conserved [see Eq. (4)] without adding an extra
assumption. This introduces new Friedmann, accel-
eration, and fluid equations coupled with third order
derivatives in the scale factor, which later we will
relate to a cosmographic parameter.

III. NONCONSERVATION OF THE ENERGY
MOMENTUM TENSOR

If we assume the hypothesis of nonconservation of the
energy-momentum tensor, Eq. (4) must be solved to obtain
the characteristic fluid equation. Solving for (4) under a
FLRW metric and perfect fluid we have

X
i

�
d
dt

ðρi þ piÞ þ 3Hðρi þ piÞ
�
¼ H3

4πG
ð1 − jÞ; ð6Þ

where the sum is over all the species in the Universe and
j≡ a

…
=aH3 is the JP [24,25], well known in cosmography,

and this form is chosen to provide a more feasible interpre-
tation. Notice that this theory is ruled by high order equations
(third order derivatives to the scale factor and cubic exponents
in the Hubble factor), implying a large number of initial
conditions that could lead to spurious physical solutions, thus
the need for a cosmographic quantity to provide physical
interpretations. Consequently, we have given the JP a
transcendental role as a guide to elucidate the behavior of
Eq. (6) and its possible physical solutions.
The integral-transcendent-Friedmann equation can be

computed with the help of Eqs. (3) and (6), obtaining

H2 ¼ 8πG
3

X
i

ρi þH2
UGðpi;H; j; CÞ: ð7Þ

In addition, the acceleration equation is deduced from (3),
obtaining

ä
a
¼ −

4πG
3

X
i

ðρi þ 3piÞ þH2
UGðpi;H; j; CÞ; ð8Þ

where the noncanonical extra term in Eqs. (7) and (8),
i.e., the UG contribution to the standard Friedmann and
acceleration equations, is defined as

H2
UGðpi;H; j; CÞ≡ 8πG

3

X
i

pi þ
2

3

Z
a

aini

H2ðj − 1Þ da
0

a0
þ C;

ð9Þ

where the sum runs for the different species in the Universe,
aini is an initial value associated with the integral, and C is
the integration constant. One of the main characteristics of
UG is that it is possible to choose the value of the
integration constant C to obtain a CC and hence a late
Universe acceleration. However, the nature of the CC
remains unknown as in ΛCDM. Therefore, we propose
that there exists a protective symmetry that enforces C ¼ 0
[15,26,27], such that the source of the acceleration is the
constant term associated with aini in the integral. Hence,
hereafter HUGðpi;H; j; CÞ → HUGðpi;H; jÞ.
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Another important feature is that the acceleration hap-
pens when

R
H2ðj − 1Þa−1da > 2πGðρþ pÞ [see Eq. (8)],

implying that a fluid with negative equation of state (EoS)
(strictly speaking w < −1=3) is not required, as in GR, to
accelerate the Universe.

A. Master equations in UG

We start this subsection assuming a barotropic fluid
satisfying w ¼ p=ρ, where w is its constant EoS. From the
continuity equation (6), we intuitively propose

_ρm þ 3Hρm ¼ 0; → ρm ¼ ρ0ma−3; ð10Þ

and

_ρX þ 3HρX ¼ H3

4πGð1þ wXÞ
ð1 − jÞ; ð11Þ

where only two main components are present: the matter
(baryonic and DM) and the fluid coupled with the JP,
hereafter called the X-fluid. We choose to separate Eq. (6)
into Eqs. (10) and (11) to recover that matter evolves in the
traditional form as ρm ∼ a−3, without extra hypotheses. The
X-fluid’s equation of continuity is coupled with the Hubble
parameter and the JP. This coupling is one of the
differences with the standard paradigm, remarking that
the UG corrections are encoded in this equation.
Now, in order to study the UG, we propose the following

dimensionless equations for the case of X-fluid and the
Friedmann equation:

dΩXðzÞ
dz

−
3

ðzþ 1ÞΩXðzÞ ¼
2EðzÞ2

3ðzþ 1ÞðwX þ 1Þ
× ½jðzÞ − 1�; ð12Þ

EðzÞ2 ¼ Ω0mðzþ 1Þ3 þ ð1þ wXÞΩXðzÞ

−
2

3

Z
z

zini

EðzÞ2
ðzþ 1Þ ½jðzÞ − 1�dz; ð13Þ

where we use the dimensionless definitions E≡H=H0,
Ωi ≡ 8πGρi=3H2

0, and the matter equation is already
solved in (10) and added into the previous equations.
We also notice that the value wX ¼ −1 is forbidden from
Eq. (12), whose value coincides with the EoS for the
cosmological constant in GR. With regard to zini, it will
play a preponderant role in the following calculations
because it will generate a nongravitational constant that
hereafter will be interpreted as the cause of the Universe
acceleration.

In addition, for the deceleration parameter we write

qðzÞ ¼ 1

2EðzÞ2
�
Ω0mðzþ 1Þ3 þ ð1þ wXÞΩXðzÞ

þ 4

3

Z
z

zini

Eðz0Þ2½jðz0Þ − 1� dz0

ðz0 þ 1Þ
�
; ð14Þ

where zini is the same initial value related to aini. Hereafter,
we will call Eqs. (12) and (13) the master equations for any
analysis in UG.

IV. JP DIAGNOSTIC AND RESULTS

Section III A shows that the JP plays an important role in
the master equations of the UG; however, the UG does not
give information of its characteristics or its functional form.
This is significant because it is related to the nonconserva-
tion of the energy-momentum tensor and could help us
to choose an ansatz. Hence, many forms of the JP can
be proposed to model the observed Universe. Nevertheless,
we expect a JP with the capability of reproducing the
observed cosmology; i.e., it should not affect the structure
formation or nucleosynthesis, to maintain the well estab-
lished knowledge.
One interesting way is demanding the conservation of

the X-fluid’s continuity equation through a given JP. This is
achieved with the equation

jðzÞ ¼ 9ð1þ wXÞwX

2EðzÞ2 Ω0Xðzþ 1Þ3ð1þwXÞ þ 1; ð15Þ

which easily helps to integrate the master equations
resulting in

EðzÞ2 ¼ Ω0mðzþ 1Þ3 þ Ω0Xðzþ 1Þ3ðwXþ1Þ

þ wXΩ0Xðzini þ 1Þ3ðwXþ1Þ; ð16Þ

together with the deceleration parameter as

qðzÞ ¼ 1

2EðzÞ2 ½Ω0mð1þ zÞ3 þ ð1þ 3wXÞΩ0Xðzþ 1Þ3ðwXþ1Þ

− 2wXΩ0Xðzini þ 1Þ3ðwXþ1Þ�; ð17Þ

where wX must be positive to obtain a de Sitter behavior.
Notice that new physic terms arise (in comparison with the
standard model) in the HðzÞ and qðzÞ parameters, asso-
ciated with a constant that depends on the characteristics of
the X-fluid and its equation of state. Hence, the only
causative of the acceleration is

Ω0Λ ¼ wXΩ0Xðzini þ 1Þ3ðwXþ1Þ; ð18Þ

which is an integration constant that does not gravitate,
relieving the afflictions contained in GR.
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This poses the question: to what kind of fluid doesΩXðzÞ
correspond? The first idea is to make a correspondence with
radiation (which is the missing fluid in our equations,
in addition to the DE, and represents the relativistic
particles), i.e., ΩX → Ωr, being wX ¼ wr ¼ 1=3. In this
way, the standard ΛCDM is mimicked with the constant
1
3
Ω0rðzini þ 1Þ4, which is the cause of the acceleration and

the new interpretation of the CC. Figure 1 shows several JP
given by Eq. (15) with different EoS. Notice that the best
candidate, as expected, is the case wr ¼ 1=3, producing the
evolution not only in recent epochs but also in the early
universe.
One main concern is the value for Ω0r, which is con-

strained as 2.469 × 10−5h−2ð1þ 0.2271g�Þ, where g� ¼
3.04 is the standard number of relativistic species [28] and
h ¼ 0.678 is the dimensionless Hubble constant according
to Planck satellite observations [3]. In this case, zini is an
important factor that relates the Ω0Λ value with Ω0r. We
obtain the observed density parameter of Ω0Λ ¼ 0.69 for
zini ≈ 11.29 as a lower bound, equivalent to ∼13.17 Gyrs in
the past, which coincide with the reionization epoch. Thus,
the relation Ω0Λ ≡ 1

3
Ω0rðzini þ 1Þ4 found in our analysis

sheds more light on the source of such a relation.
On the other hand, recently some authors have claimed,

based on a statistical comprehensive study of observations,
that there might be another coincidence problem at the epoch
of reionization. According to Ref. [29], the observations
suggest that around z ¼ 9.6 the energy density of radiation
and the energy density of the CC coincide. In our case, the
temperature at which theUniverse should have an accelerated
stage can be estimated as follows. The relation between the
density parameters gives ρ0Λ ¼ 1

3
ρradðzini þ 1Þ4, where we

identify ρrad ¼ π2g�T4=30 [30] and T is the temperature
predicted by the model; hence we have the equation

T ¼
�
90ρ0Λ
π2g�

�
1=4

ðzini þ 1Þ−1: ð19Þ

Substituting zini ¼ 11.29, ρ0Λ ≤ ð10−12 GeVÞ4, and g� ¼
3.04, we obtain a temperature of ∼1.07 × 10−4 eV similar to
T0CMB ≈ 2.35 × 10−4 eV, which leads us to think that
Eq. (19) suggests a possible path to resolve the problem of
coincidence.
To finish this section, we discuss the possibility of other

JPs mimicking the standard cosmological behavior but
using Eq. (12) with a different evolution, i.e., without
resembling radiation. Therefore, we assume that, at late
times, Eq. (12) transmutes from a radiation component to a
new X-fluid under the change of the jerk and EoS
parameters. This premise is the cause of the aforementioned
subtle differences with the standard model. For example,
sinusoidal jerk functions with negative EoS for the X-fluid
can mimic the standard model, yielding testable differences
in the HðzÞ and deceleration parameter. It is possible to
explore a sinusoidal jerk such as jðzÞ ¼ 1þ j0sinnðzÞþ
j1cosnðzÞ, where ji (i ¼ 0; 1) and n odd are free parameters
adjusted in order to obtain a behavior comparable to the
standard cosmological model [31]. In this case, it is not
clear which value for EoS must be assigned, and also it is
not possible to recover the presence of radiation. In
addition, the sinusoidal jerk only fits the epoch of matter
and CC, leaving aside the radiation epoch in contrast to
what we found in Eq. (15).

V. CONCLUSIONS AND OUTLOOKS

UG was studied for decades but its interest as a plausible
explanation for the CC was renewed by authors in [14–16].
In this vein, we explore UG in a cosmological context,
investigating its viability to reproduce the current Universe
acceleration, improving and confirming previous findings.
If we assume that the energy momentum tensor is not

conserved through Eq. (4), the implications to the continuity
equation and, in consequence, to the Friedmann equation are
important in comparison to the standard paradigm; both new
equations contain a third derivative in the scale factor that is
interpreted as the JP. It is worth noting that the way the
equation of continuity is written suggests that the relativistic
particles (radiation and neutrinos) must be coupled with the
JP, while matter follows the standard behavior. Choosing an
appropriate JP that conserves the continuity equation of the
fluid and relates to relativistic particle behavior implies
important consequences. The first one is that UG can
reproduce the standard cosmology with two constants that
emerge naturally from the theory and, therefore, produce
a late universe acceleration. Moreover, one of those con-
stants has information about the fluid with the form
1
3
Ω0rðzini þ 1Þ4. Regarding the other constant, a protective

symmetry suggests that it must be zero, implying that only
the first term is the cause of the acceleration. Under these

FIG. 1. Jerk parameter for UG and ΛCDM, assuming Ω0r ¼
9.07 × 10−5 for both theories and wr ¼ 0.33, wX ¼ 0.25,
and wX ¼ 0.2. We observe that UG coincide with ΛCDM-
like only when wX ¼ wr ¼ 0.33, as expected. JP for ΛCDM-
like is computed through the formula jðqÞ ¼ qð2qþ 1Þþ
ð1þ zÞdq=dz [25], assuming also Ω0m ¼ 0.31 and with that
Ω0Λ ¼ 0.69 [3].
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premises and the comparison with observations, we con-
clude that zini ≈ 11.29 in order to agree with the density
parameter of CC, which suggestively comes from the
reionization epoch2 and points toward the existence of a
more fundamental relation between radiation and the CC.
In this vein, we suggest the possibility that future observa-
tions of Lyman- α emissions [33] could be the key to refute
or validate the scenario propounded in this article. In
addition, these results generate another important conse-
quence: the temperature predicted by this model sugges-
tively coincides with the current CMB temperature. Thus,
we interpret this result as being the temperature where the
Universe should begin its acceleration epoch, providing a
possible explanation for the coincidence problem.
In essence, our thesis is that this new physics is governed

by and encoded in the JP form, although the origin of this JP
and its deduction through first principles is not clear yet,3 at
least from the UG point of view. Other more fundamental
theories could give us clues about the origin of this JP.
Finally, the most outstanding feature of UG is the

possibility of solving the Universe acceleration problem
by adding a function that resembles the CC and the
standard cosmology. This function could be associated
with radiation, avoiding the need to assume an unknown
fluid (i.e., dark energy) to explain the late expansion.
Another strong point of this theory is the potential evidence
of the energy conservation violation associated with the
nonconservation of the energy-momentum tensor, which
several authors interpret as possible corroboration of the
spacetime granularity.
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APPENDIX: DEMONSTRATION OF
EQUIVALENCE

Here we show the equivalence between the FLRWmetric
and another one that fulfills the unimodular condition.
According to Alvarez et al. [23], the cosmology in UG can
be treated with the metric

ds2 ¼ −bðτÞ−2=3dτ2 þ bðτÞ1=2dx⃗2; ðA1Þ
which is written in unimodular coordinates. Notice that
Eq. (A1) can be constructed, using the standard FLRW line
element and the change of variables a → b1=4 and
dt → b−3=4dτ.
Assuming a perfect fluid energy-momentum tensor and

using UG equations [see Eq. (2)], we have

b00

b
−
1

4

�
b0

b

�
2

¼ −16πGb−3=2ðρþ pÞ; ðA2Þ

where primes indicate derivatives with respect to τ. This is
the Friedmann equation under the unimodular condition,
but the physical interpretation in this form is not straight-
forward. However, if we return to the aðtÞ and t variables to
recover the traditional FLRW line element, we finally have
_H ¼ −4πGðρþ pÞ, which is the same equation that we
use in our previous analysis. Therefore, at least in this case,
the result is independent of using the FLRW metric or the
metric of Eq. (A1). The essential point is to choose the
metric that provides the best insight into the physical
interpretation of the results.
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