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We propose a simple but novel cosmological scenario where both the Planck mass and the dark energy
scale emerge from the same super-Hubble quantum fluctuations of a nonminimally coupled ultralight
scalar field during primordial inflation. The current cosmic and Solar System observations constrain the
nonminimal coupling to be small.
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I. INTRODUCTION

The standard model (SM) of particle physics and general
relativity (GR) are two pillars of the current elementary
theory of physics. Apart for nonzero neutrino masses and
dark matter which, under the new particle hypothesis,
require an extension beyond the SM, there are no obser-
vations that manifestly contradict the SM and GR. Yet, the
wide separations among the four energy scales appearing
in the SM and GR—which are the Planck scale MPl ¼
ð8πGÞ−1=2 ≃ 1018 GeV, the electroweak scale MEW ≃
102 GeV, the neutrino mass scale mν ≃ 0.1 eV, and the
dark energy scale ρ1=4Λ ≃ 10−3 eV—should provide enough
motivation to search for a dynamical explanation. One
possible method is to assume that at least some of these
quantities are not fundamental constants, but rather fields
that evolved together with the cosmological evolution [1].
The idea that the gravitational constant G (namely, the

Planck scale) evolves in time has long been a topic of
investigation, and many different proposals have been
made in the literature in various contexts. For instance,
Dirac was the first to conjecture that G could vary with the
cosmic time as G ∝ t−1 based on his large-number hypoth-
esis [2]. Later, scalar-tensor theories that consistently
implement the variation of G were formulated by Jordan
and by Brans and Dicke [3,4]. Similarly, in the context of
dark energy, quintessence models have been proposed to
explain the apparent smallness of the measured dark energy
density (assuming a zero cosmological constant) and/or the
coincidence problem [5–7].
In Ref. [8], we have shown that cosmic inflation

occurring at TeV energy scales—and therefore relatively

close to MEW—could provide a natural answer to the
smallness of the cosmological constant today. The mecha-
nism advocated there relies on the growth of super-Hubble
quantum fluctuations for an ultralight scalar field during
primordial inflation [9–14], which manifest themselves
as a universal quantum-generated variance after inflation.
A similar mechanism for cosmological vector fields has
also been presented in Refs. [15,16], again predicting an
inflationary era at the TeV scale. Various other works have
since confirmed the robustness of the mechanism and
proposed extensions to scalar-tensor theories of gravity
as well as to gravitational vector fields [17–19].
In this paper, we show that cosmic inflation can

simultaneously explain both the largeness of the Planck
scale and the smallness of the cosmological constant by the
very same mechanism: super-Hubble quantum fluctuations
of a unique nonminimally coupled ultralight scalar field.
Proposals of an emerging Planck scale have provoked
continuous theoretical constructions within scalar-tensor
theories, but only a few have been concerned with the
generation of an effective Planck mass from inflation
[20–26]. As far as we are aware, the scenario we propose
is a new way to address the dark energy scale and the value
of the Planck mass simultaneously while providing a
potential link to the physics around the electroweak energy
scale. Let us finally mention that such a scenario is
fundamentally different compared to induced gravity the-
ories [27,28], in which the Einstein-Hilbert term emerges
from the quantum fluctuations of matter fields immersed in
the curved spacetime. In our case, the Einstein-Hilbert term
is already present at the classical level, although inflation
makes it become negligibly small compared to the non-
minimal coupling term.
The paper is organized as follows. In the next section we

present the main idea and basic model requirements needed
for the scenario to work, before turning to a more detailed
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calculation in Sec. III. In Sec. IV we enumerate the
observational constraints, in Sec. V we discuss other
aspects of the scenario, and we conclude in Sec. VI.

II. MAIN IDEA

The idea relies on an ultralight scalar field ϕ which only
couples to gravity with a nonminimal coupling to the Ricci
scalar R. During an extended period of inflation, it under-
goes a significant growth and could acquire a quantum-
generated super-Planckian variance. In the next section we
will explain this process in more detail, but here we
describe the model requirements. The relevant part of the
Lagrangian is given by

L ¼ 1

2
ðM2 þ ξϕ2ÞR −

1

2
ð∂ϕÞ2 − 1

2
m2

0ϕ
2; ð1Þ

where ξ represents the strength of the nonminimal cou-
pling. The hypothesis that forms the basis of this paper is
that the bare gravitational energy scale M is much smaller
than the measured Planck mass M ≪ MPl and could be as
low as or even smaller than the electroweak scale. Since the
main result does not depend on the concrete value of M,
we leaveM unspecified aside from the conditionM ≪ MPl.
As Eq. (1) shows, nonvanishing and time-independent
vacuum expectation values (VEVs) for hϕ2i contribute
to the effective gravitational energy scale by ξhϕ2i. We
therefore require that ξ be positive; otherwise, our scenario
does not work.
Once ξhϕ2i settles to Planck-like values, the potential

energy of the field today can source the acceleration of the
Universe by the mechanism of Ref. [8]. For this to happen,
it should match the cosmological constant energy scale,

1

2
m2

0hϕ2i ≃ 3H2
0M

2
PlΩΛ: ð2Þ

Moreover, ϕ behaves as dark energy provided it remains
(quasi)frozen in the Hubble flow and, as discussed in
Sec. IV, this implies some constraints on ξ.
During inflation, due to the nonminimal coupling, the

effective mass of the field is given by

m2 ¼ m2
0 − 12ξH2

inf ; ð3Þ

where we have taken the de Sitter value for the Ricci scalar
R ¼ 12H2

inf . There are a priori three possible regimes.
In the limit ξ ≪ m2

0=ð12H2
infÞ, the nonminimal coupling

is so small that it has essentially no effect during inflation.
The model matches the one of Ref. [8], and for sufficiently
long inflation one gets the de Sitter variance of a test scalar
field, hϕ2i → 3H4

inf=ð8π2m2
0Þ. Dark energy is explained by

satisfying Eq. (2), namely, for inflation occurring at the
TeV scale, H2

inf ¼ 4π
ffiffiffiffiffiffiffi
ΩΛ

p
H0MPl. As a result, one gets

ξhϕ2i
M2

Pl

→
3H0

ffiffiffiffiffiffiffi
ΩΛ

p
2πMPl

ξH2
inf

m2
0

≪ 1; ð4Þ

and thus the super-Hubble quantum fluctuations of ξϕ2 are
always deeply sub-Planckian and the model cannot explain
the measured Planck mass.
One could then consider the massless limit of Eq. (3),

obtained by taking quite fine-tuned values of ξ → m2
0=

ð12H2
infÞ. Becausem2 → 0 during inflation, hϕ2i → 3H4

inf=
ð8π2m2Þ can become very large. Plugging these values into
Eq. (2), and requiring ξhϕ2i ≃M2

Pl, one obtains a condition
for the energy scale of inflation which, after some algebra,
reads H2

inf ≃ ðΩΛ=2ÞH2
0, and the model is also ruled out.

The only remaining possibility is m2
0 < 12ξH2

inf and we
are in the presence of an ultralight tachyonic field during
inflation. Such a situation is not problematic and has been
considered as a dark energy candidate in Ref. [19]. Indeed,
because of the bare mass of the field m2

0 > 0, the tachyonic
instability generated by the expansion of the Universe
through the nonminimal coupling is only transient. As we
detail below, such a transient instability is actually a virtue
and allows the mechanism to generate both the Planck mass
and the actual value of dark energy.

III. QUANTUM-GENERATED FIELD VARIANCE

Let us now consider the limitm2
0 ≪ 12ξH2

inf to perform a
more detailed calculation of the quantum-generated vari-
ance for ϕ. We moreover assume that inflation lasted for a
very long time in the sense that the total number of e-folds
of accelerated expansion can be a large number. For a
slowly evolving Hubble parameter H during inflation,
the ϕ field undergoes a stochastic process on super-
Hubble scales, which effectively pushes its variance to
larger amplitudes [14,29–31]. Then, under the slow-motion
approximation, the coarse-grained field (which we still
denote by ϕ) follows the Langevin equation

dϕ
dN

¼ 4ξϕþ H
2π

ηðNÞ; ð5Þ

where N ¼ R
Hdt is the number of e-folds and we have

usedm2 ≃ −12ξH2. The second term on the right-hand side
represents a stochastic noise arising from the transition of
the sub-Hubble modes to the super-Hubble modes. The
quantity η is a Gaussian white noise whose two-point
correlation function is given by

hηðN1ÞηðN2Þi ¼ δðN1 − N2Þ; ð6Þ

with hηðNÞi ¼ 0. The Hubble parameter H is determined
by the Friedmann-Lemaître equation stemming from
Eq. (1), plus other terms coming from the field driving
inflation. If we denote the inflaton field by ψ, where VðψÞ
is its potential, one gets
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H2 ¼ VðψÞ
3ðM2 þ ξϕ2Þ − 1

2
ϕ;N

2 − 6ξϕϕ;N − 1
2
ψ2
;N

≃
VðψÞ

3ðM2 þ ξϕ2Þ ; ð7Þ

where a comma denotes a derivative. The second line is
obtained by assuming slow-roll and keeping only the
leading term. Assuming VðψÞ ¼ V inf to be almost constant
during a plateau-like inflationary era, we can solve the
Langevin equation to determine the stochastic motion of ϕ.
Since M is the fundamental scale in the present scenario,
we assume M4 ≳ V inf in the following analysis.
The dependence of H on ϕ prevents us from solving

Eq. (5) exactly, but the solution can be approximated in two
domains. Defining

ϕcrit ≡ Mffiffiffi
ξ

p ; ð8Þ

one sees that the behavior of H changes at ϕ ¼ ϕcrit.
We exploit this observation and consider the two limiting
cases ϕ ≪ ϕcrit and ϕ ≫ ϕcrit separately, and then combine
them to obtain the (approximate) final result. In order to
give a conservative estimate, we assume that ϕ, as well its
classical value, are initially vanishing.
Let us first investigate the motion of ϕ for ϕ ≪ ϕcrit.

During this phase, we can ignore the term ξϕ2 in the
Friedmann-Lemaître equation, and the Langevin equation
for ϕ can be solved analytically. One gets

ϕðNÞ ¼ 1

2πM

ffiffiffiffiffiffiffiffi
V inf

3

r
e4ξN

Z
N

0

e−4ξN
0
ηðN0ÞdN0: ð9Þ

Thus, the expectation value of ϕ2 is given by

hϕ2ðNÞi ¼ V inf

96π2M2ξ
ðe8ξN − 1Þ: ð10Þ

As it should be, this solution incorporates the features of
both the stochastic motion and the tachyonic instability.
For ξN ≪ 1, picking up the leading term, we obtain hϕ2i ≈
V inf=ð12π2M2ÞN and recover Brownian motion. For
ξN ≫ 1, we have hϕ2i ∝ e8ξN and its exponential growth
represents the tachyonic instability. Let us notice that had
we started from a nonvanishing VEV for ϕ, Eq. (10) would
still apply but for the variance, i.e., hδϕ2i ¼ hϕ2i − hϕi2.
If we further add the fluctuations of ϕ at the initial time
δϕð0Þ, Eq. (10) contains an additional term evolving as
hδϕð0Þi2e8ξN . As a result, for all possible initial conditions,
a long-enough inflationary period always induces an
exponential growth of the field variance.
However, Eq. (10) becomes invalid when

ffiffiffiffiffiffiffiffiffi
hϕ2i

p
reaches

ϕcrit. In terms of the number of e-folds, this happens at
N ¼ Ncrit, where Ncrit is given by

Ncrit ¼
1

8ξ
ln

�
1þ 96π2M4

V inf

�
: ð11Þ

Thus, Ncrit ¼ Oðξ−1Þ and becomes very large for small ξ.
Next, let us investigate the opposite regime, ϕ ≫ ϕcrit.
In this limit, we can ignore the term M2 in the Friedmann-
Lemaître equation and we can solve the Langevin equation
analytically for ϕ2. The result is given by

ϕ2ðNÞ ¼ e8ξðN−NcritÞϕ2
crit

þ e8ξN

ffiffiffiffiffiffiffiffiffiffi
V

3π2ξ

s Z
N

Ncrit

ηðN0Þe−8ξN0
dN0: ð12Þ

The second term on the right-hand side is directly sourced
by the stochastic noise ηðN0Þ and disappears by taking the
statistical average. Hence, one obtains

ξhϕ2ðNÞi ¼ M2

1þ 96π2M4

V inf

e8ξN: ð13Þ

From this equation, we can estimate the typical number
of e-folds required for the ϕ field to generate a large
gravitational energy scale, say M̄Pl, as

N̄Pl ¼ Ncrit þ
1

4ξ
ln

�
M̄Pl

M

�
: ð14Þ

Thus, N̄Pl is also Oðξ−1Þ. Here we have introduced the new
mass scale M̄Pl instead of the usual Planck mass MPl
because, as explained in the next section, the gravitational
couplingM2 þ ξhϕ2i appearing in the Lagrangian (1) does
not necessarily equal the one measured by Cavendish-like
experiments due to the existence of a fifth force. To
summarize, for all possible initial conditions of ϕ, a
Planck-like energy scale M̄Pl can be generated by ξhϕ2i
provided primordial inflation lasts for aboutOðξ−1Þ e-folds.1

1Strictly speaking, the number of e-folds N along each
trajectory is a stochastic quantity and another possible route
for deriving the result is to calculate its mean stochastic value
hN i [31–34]. For the regime ϕ < ϕcrit, one finds

hN i ≃ 1

8ξ
ln

�
192π2M4

V inf

�
þ γ

8ξ
; ð15Þ

which matches Ncrit up to a factor of Oð1Þ correction. Here γ ≃
0.5772 is Euler’s constant. For the regime ϕ > ϕcrit, one finds

hN i ≃ 1

4ξ

�
ln

�
M̄Pl

M

�
þ V inf

384π2M4

�
; ð16Þ

which matches the second term of Eq. (14) up to a factor of Oð1Þ
correction.
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Let us stress that the inflationary period relevant for
observations is only about 60 e-folds before the end and we
have found that the time scale for the variation of ϕ is ξ−1

(in e-folds). As a result, and provided inflation can end (see
Sec. V), the variation of ϕ during the last 60 e-folds of
inflation is thus negligibly small. Standard GR is perfectly
recovered during the inflationary era relevant to observa-
tions. Let us now examine the experimental bounds on such
a mechanism.

IV. EXPERIMENTAL BOUNDS

The existence of an ultralight massive field ϕ today
leaves various observational signatures from which we can
place bounds on both ξ and m0.
Although ϕ is not directly coupled to matter, the non-

minimal coupling of the ultralight scalar field induces a
fifth force among bodies, in addition to the pure GR
gravitational terms. This effect can be made manifest by
making a conformal transformation [35] from the present
frame with the metric gμν to the Einstein frame with the
metric g̃μν verifying

gμν ¼ A2ðϕÞg̃μν; ð17Þ

where

A2 ≡ 1

ð1þ ξ ϕ2

M2Þ
: ð18Þ

The action can be canonically normalized from the field
redefinition ϕ → χ with [36]

eχ̄ ≡
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þξϕ̄2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þξð1þ6ξÞϕ̄2

p
þ ffiffiffi

6
p

ξϕ̄

� ffiffi
6

p

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðξþ6ξ2Þϕ̄2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξð1þ6ξÞϕ̄2

q � ffiffiffiffiffiffi
6þ1

ξ

p
; ð19Þ

where we have defined the dimensionless fields ϕ̄≡ ϕ=M
and χ̄ ≡ χ=M. The original action is transformed as

S ¼ M2

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
R̃ − ð∇̃ χ̄Þ2 − 2

WðχÞ
M2

�
þ Sm½A2ðχÞg̃μν;ψm�; ð20Þ

where the potential is given by

WðχÞ
M2

¼ A4ðχÞ
2

m2
0ϕ̄

2: ð21Þ

The field redefinition (19) cannot be straightforwardly
inverted, but we can take the limit we are interested in,
namely, ξϕ̄2 ¼ M̄2

Pl=M
2 ≫ 1 and ξ ≪ 1. We obtain

ϕ̄ ≃
1

2
ffiffiffi
ξ

p e
ffiffi
ξ

p
χ̄ ; A2 ≃

1

1þ 1
4
e2

ffiffi
ξ

p
χ̄
: ð22Þ

As it should be, the coupling between χ and matter
disappears in the minimal coupling limit (ξ → 0). Such a
fifth force changes the parametrized post-Newtonian (PPN)
parameters compared to the values in GR as [37–39]

βPPN−1¼ 1

2

α2β

ð1þα2Þ2 ; γPPN−1¼−2
α2

1þα2
; ð23Þ

where α and β are defined by

α ¼
ffiffiffi
2

p ∂ lnA
∂χ̄ ≃ −

ffiffiffiffiffi
2ξ

p
4

e2
ffiffi
ξ

p
χ̄

1þ 1
4
e2

ffiffi
ξ

p
χ̄
;

β ¼ 2
∂2 lnA
∂χ̄2 ≃ −ξ

e2
ffiffi
ξ

p
χ̄

ð1þ 1
4
e2

ffiffi
ξ

p
χ̄Þ2 : ð24Þ

Using the limit ξϕ̄2 ¼ M̄2
Pl=M

2 ≫ 1 for χ̄,

e
ffiffi
ξ

p
χ̄ ¼ 2

M̄Pl

M
; ð25Þ

one gets

βPPN ¼ 1þO
�
ξ2

M2

M̄2
Pl

�
;

γPPN ¼ 1 −
4ξ

1þ 2ξ
þO

�
ξ
M
M̄Pl

�
: ð26Þ

Thus, γPPN becomes slightly smaller than unity. The most
stringent bound on γPPN comes from the Shapiro time delay
measurement using the Cassini spacecraft [40]: −0.03 <
ðγPPN − 1Þ × 105 < 4.4. This limit translates into an upper
limit on ξ as

ξ < 7.5 × 10−8: ð27Þ

As mentioned in the previous section, the gravitational
coupling as measured by Cavendish-like experiments is
M2

Pl ¼ 1=ð8πGÞ, where G is the measured Newton’s
constant. It is slightly different from M̄2

Pl due to the fifth
force induced by ϕ and reads

M2
Pl ¼

M2

A2ð1þ α2Þ ¼
M̄2

Pl

1þ 2ξ
þOðM2Þ ≃ M̄2

Pl: ð28Þ

For the values of ξ compatible with the Cassini constraints
of Eq. (27),M2

Pl is therefore indistinguishable from M̄2
Pl and

both quantities will be identified in the following.
Another effect comes from demanding that the potential

energy of the field sources the current acceleration of the
Universe. From Eq. (2) and ξhϕ2i ¼ M̄2

Pl ≃M2
Pl, one gets
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m2
0 ≃ 6ξH2

0ΩΛ: ð29Þ

Therefore, the mass is not a free parameter and for
values of ξ satisfying the Cassini bound we get m0 <
7 × 10−4H0, i.e., the field is extremely light. Let us notice
that, because it is not coupled to other sectors, such a tiny
mass is not a priori problematic. Moreover, dynamical
mechanisms able to generate small masses have been
proposed; see, for instance, Ref. [41]. The ultralight scalar
field is thus compatible with all limits associated with an
evolution of the equation of state of dark energy and its
perturbations [42,43].
Finally, there are constraints coming from the cosmo-

logical time variation of ϕ which also drives the time
variation of the gravitational constant. The equation of
motion of ϕ on the cosmological background is given by

ϕ̈þ 3H _ϕþm2
0ϕ − 6ξð2H2 þ _HÞϕ ¼ 0; ð30Þ

where a dot stands for a derivative with respect to the
cosmic time and where m2

0 is given by Eq. (29).
Nondetections of the time variation of G imply that ϕ
has not moved significantly from the initial value until the
present epoch. In the slow-roll regime, the Hubble param-
eter is approximately given by that of the standard ΛCDM
model [44]. Using this Hubble parameter, we can solve the
above equation of motion and derive the relative time
variation of G at present day for different values of ξ.
At leading order in M=M̄Pl, we have

_G
G

¼ −2
_ϕ

ϕ
: ð31Þ

The result is shown as a thick line in Fig. 1. Interestingly,
contrary to the minimally coupled case, the nonminimal
coupling term makes ϕ grow, which explains the negative

sign of _G. The orange region is the observationally allowed
region obtained by the improvements in the ephemeris of
Mars [45]. From this figure, we obtain the upper bound
ξ < 5 × 10−4, which is weaker than the one coming from
the Shapiro effect in Eq. (27).

V. DISCUSSION

In the previous sections, we have seen that the ultralight
scalar field can dynamically generate the large measured
value of the Planck mass MPl from a much lower gravi-
tational energy scale M, which could be as low as or even
smaller than the electroweak scale. Once its VEV generates
the observed Planck mass, the same field can also source
dark energy from its small, but nonvanishing mass term.
However, the mechanism requires a very long period of
inflation, of the order of Oðξ−1Þ e-folds. For ξ < 10−7, this
means that the scale factor a should have grown during
inflation by a factor of at least the tetration 4e. Accurate
observations of the cosmic microwave background (CMB)
anisotropies in the last decade strongly support the idea that
inflation occurred in the very early Universe [46–48].
Although only the last ∼60 e-folds of inflation can be
probed observationally, it is legitimate to suppose that the
total period of inflation that the Universe has experienced
may be much longer. This can happen if the inflaton had a
nearly flat potential over a sufficiently large field range and
started its motion far from the end point of inflation, as this
could very well be the case for the plateau inflationary
models favored by the data [49]. Another possibility is that
the observable inflation was preceded by a false vacuum
phase of the same field as the one relevant to the last ∼60
e-folds of inflation. It is also equally possible that the very
long inflation is sourced by a different field than the
inflaton responsible for the observable inflation.
In the following, we describe in more detail the

primordial inflationary part of the model in the presence
of the two fields. The dynamics is easier to understand
in the Einstein frame. The equations of motion for the
inflaton field ψ and the canonically normalized gravity
field χ read [50]

ψ̄ ;NN þ ffiffiffi
2

p
αðχÞχ̄;Nψ̄ ;N

3 − ϵ1
þ ψ̄ ;N ¼ −

1

A2ðχÞ
d lnU
dψ̄

;

χ̄;NN − ½αðχÞ= ffiffiffi
2

p �A2ðχÞψ̄2
;N

3 − ϵ1
þ χ̄;N ¼ −

d lnU
dχ̄

; ð32Þ

where ϵ1 is the first Hubble flow function in the Einstein
frame,

ϵ1 ≡ −
d lnH
dN

¼ 1

2
χ̄2;N þ 1

2
A2ðχÞψ̄2

;N: ð33Þ

We have introduced the two-field potential Uðχ;ψÞ as

FIG. 1. Time variation of G at present day as a function of ξ.
The bare mass of the field has been set to m0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
6ξΩΛ

p
H0, the

value explaining dark energy today. The orange region, which is
obtained from improvements in the ephemeris of Mars [45], is the
observationally allowed region.
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Uðχ;ψÞ≡WðχÞ
M2

þ A4ðχÞVðψÞ
M2

: ð34Þ

These equations can be simplified by taking the limits
we are interested in, ξ ≪ 1 and ξϕ̄2 ≫ 1, together with
Eq. (22). One gets

A2ðχÞ ≃ 4e−2
ffiffi
ξ

p
χ̄ ; αðχÞ ≃ −

ffiffiffiffiffi
2ξ

p
;

Uðχ;ψÞ ≃ 2e−2
ffiffi
ξ

p
χ̄

�
m2

0

ξ
þ 8VðψÞ

M2
e−2

ffiffi
ξ

p
χ̄

�
: ð35Þ

From these equations, with m2
0=ξ ¼ OðH2

0Þ, one gets

Uðχ;ψÞ ≃ 16e−4
ffiffi
ξ

p
χ̄ VðψÞ
M2

; ð36Þ

which from Eq. (32) gives

ψ̄ ;NN − 2
ffiffiffi
ξ

p
χ̄;N ψ̄ ;N

3 − ϵ1
þ ψ̄ ;N ≃ −

e2
ffiffi
ξ

p
χ̄

4

d lnV
dψ̄

; ð37Þ

χ̄;NN þ 4
ffiffiffi
ξ

p
e−2

ffiffi
ξ

p
χ̄ ψ̄2

;N

3 − ϵ1
þ χ̄;N ≃ 4

ffiffiffi
ξ

p
: ð38Þ

Under the slow-roll approximation, one can find an
approximate solution of Eqs. (37) and (38). Let us first
assume in Eq. (38) that

4
ffiffiffi
ξ

p
e−2

ffiffi
ξ

p
χ̄ ψ̄2

;N ≪ χ̄;N: ð39Þ

The slow-roll solution for χ̄ reads

χ̄;N ≃ 4
ffiffiffi
ξ

p
≪ 1: ð40Þ

This equation implies that χ̄ðNÞ ∝ 4
ffiffiffi
ξ

p
N. As can be

explicitly checked by using Eq. (22), this is the
Einstein-frame manifestation of the tachyonic growth of
ϕ. Plugging the above equation into Eq. (37), we get the
slow-roll solution for the inflaton ψ (with ξ ≪ 1),

ψ̄ ;N ≃ −
e2

ffiffi
ξ

p
χ̄

4

d lnV
dψ̄

: ð41Þ

This allows us to estimate the first Hubble flow function
from Eq. (33),

ϵ1 ≃ 8ξþ e2
ffiffi
ξ

p
χ̄

8

�
d lnV
dψ̄

�
2

: ð42Þ

Under our hypothesis (39), the second term

ϵψ ≡ e2
ffiffi
ξ

p
χ̄

8

�
d lnV
dψ̄

�
2

ð43Þ

is small, and for ξ ≪ 1 we recover the condition of slow-
roll inflation, ϵ1 ≪ 1. Let us mention that reversing the
inequality in our working hypothesis of Eq. (39) is not
acceptable as one would get a value larger than unity for ϵ1
and no inflation at all.
From Eq. (42), we see that the tachyonic growth of

ϕ induces corrections to the inflaton dynamics, compared
to what one would have obtained in standard GR.
The factor e2

ffiffi
ξ

p
χ̄ in Eq. (43) increases with χ and this

implies that the term ϵψ will ultimately dominate in
Eq. (42). When this happens, the kinetic energy of the
ψ field will drive inflation towards its graceful ending,
as needed. Let us notice that, even if the first Hubble
flow function ϵ1 has an additional term 8ξ, a more
detailed calculation shows that the tensor-to-scalar ratio
is given by r ¼ 16ϵψ�, which passes current constraints
for plateau-like potentials [47,51].
A last comment is in order concerning the very large-

scale structure of the Universe generated in this scenario.
Although not explicit in the above description, the fact
that the inflaton potential VðψÞ should be asymptotically
very flat implies that not only ϕ but also ψ is expected to
develop large super-Hubble fluctuations. In that situation,
the earliest phase of inflation is certainly chaotic, and
possibly eternal, depending on the shape of VðψÞ [52–56].
Determining the probability that the chaotic regime ends
in a classical evolution matching our scenario is still
an open and relevant question, which we leave to future
work [22,33].

VI. CONCLUSION

We have proposed a novel scenario where both the
Planck scale and dark energy are dynamically generated
by the stochastic and tachyonic motion of a weakly
nonminimally coupled ultralight scalar field, which alle-
viates the large hierarchy between the Planck, electro-
weak, neutrino mass, and cosmological constant scales.
According to this scenario, such an ultralight field is still
present in the current Universe and mediates a long-range
fifth force among bodies. Cosmological observations and
Solar System experiments require ξ to be small. The
stronger bound comes from the Shapiro effect measured
by the Cassini spacecraft and ξ < Oð10−7Þ. Generically,
all improvements on the bounds of a possible nonminimal
coupling in a terrestrial or Solar System environment will
be relevant in constraining, or proving, our model [57].
However, we could think of other means to test the

scenario. A possible route of detection could be through
the cosmological motion of the scalar field, which is not
exactly static. The equation-of-state parameter w for
dark energy differs from −1 due to the slow motion of
the field as

w ¼ −1þOðξÞ: ð44Þ
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According to Ref. [58], one could expect the future Euclid
satellite [59] and SKA radio telescope [60], combined
with Planck CMB data, to constrain the deviation of
wþ 1 down to 10−3. This will certainly not be enough to
reach the current bound ξ < Oð10−7Þ and one may have to
wait for the next generation of giant radio telescopes [61].
However, let us remark that as soon as the field ϕ starts to
evolve on cosmological scales, the effective gravitational
coupling given by ξϕ2 is also modified. We have not
assessed the possible joint constraints from varying dark
energy and a varying Newton’s constant, but it may be
another interesting route to explore.
Recent detections of gravitational waves (GWs) by the

LIGO/VIRGO observatory [62] have opened a new era
for GW astronomy. In the future, various types of GW
detectors will be launched and the physics of the gravity
sector will be probed much more widely and deeply. It has
been shown in Ref. [63] that it is possible to place an
upper limit on the Brans-Dicke parameter ωBD ≳ 4 × 108

using the Deci-hertz Interferometer Gravitational wave
Observatory (DECIGO), which is a planned space-based

GW detector consisting of four constellations of three
satellites forming a triangular shape [64]. In the massless
limit, the nonminimal coupling parameter is related to
ωBD as ξ ¼ 1=ð4ωBDÞ. From the DECIGO limit, we obtain
ξ≲ 6 × 10−10, which is a roughly 2 orders-of-magnitude
improvement over the current bound. Hence, there is a
window that can be probed by future GW experiments
such as DECIGO or LISA [65].
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