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Generalized ideas of unified dark matter and dark energy in the context of dynamical space time theories
with a diffusive transfer of energy are studied. The dynamical space-time theories introduce a vector field
whose equation of motion guarantees a conservation of a certain energy momentum tensor, which may be
related, but in general is not the same as the gravitational energy momentum tensor. This particular energy
momentum tensor is built from a general combination of scalar fields derivatives as the kinetic terms, and
possibly potentials for the scalar field. By demanding that the dynamical space vector field be the gradient
of a scalar the dynamical space time theory becomes a theory for diffusive interacting dark energy and dark
matter. These generalizations produce nonconserved energy momentum tensors instead of conserved
energy momentum tensors which lead at the end to a formulation for interacting dark energy and dark
matter (DE-DM). We solved analytically the theories and we show that the ΛCDM is a fixed point of these
theories at large times. A particular case has asymptotic correspondence to previously studied non-
Lagrangian formulations of diffusive exchange between dark energy and dark matter.
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I. INTRODUCTION

Dark energy and dark matter (DE-DM) constitute most
of the observable Universe. Yet the true nature of these two
phenomena is still a mystery. One fundamental question
with respect to those phenomena is the coincidence
problem which is trying to explain the relation between
dark energy and dark matter densities. In order to solve
this problem, one approach claims that the dark energy is a
dynamical entity and hope to exploit solutions of scaling or
tracking type to remove dependence on initial conditions.
Others left this principle and tried to model the dark energy
as a phenomenological fluid which exhibits a particular
relation with the scale factor [1], Hubble constant [2] or
even the cosmic time itself [3].
Interaction between DM and DE was considered in many

cases, such as [4]. Unifications between dark energy and

dark matter from an action principle were obtained from
scalar fields [5–9] or by other models [10–15] including
Galileon cosmology [13] or telleparallel modified theories
of gravity [16,17]. Beyond those approaches, a unification
of dark energy and dark matter using a new measure of
integration (the so-called two measure theories) has been
formulated [18–22]. A diffusive interaction between dark
energy and dark matter was introduced in [23–28] and was
formulated in the context of an action principle based on a
generalization of those two measures theories in the context
of quintessential scalar fields [24,25].
In recent publications [26], diffusion of energy between

dark energy into dark matter was discussed. The models
of such type are interesting as an approach to solve the
coincidence problem. The basis of those models are
considering a non-conserved stress energy tensor Tμν with
a source current jμ:

∇μT
μν
ðDustÞ ¼ γ2jν ð1Þ
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where γ2 is the coupling diffusion coefficient of the fluid.
The current jμ is a timelike covariant conserved vector
field jμ;μ ¼ 0 which describes the conservation of the
number of particles in the system. Due to the fact that
the Einstein tensor is covariantly conserved∇μGμν ¼ 0, we
have to introduce on the right-hand side of the Einstein
tensor a compensating energy momentum tensor, for two
diffusive fluids, where:

∇μT
μν
ðDustÞ ¼ −∇μT

μν
ðΛÞ ¼ γ2jν ð2Þ

so that the total energy momentum tensor is conserved:

∇μðTμν
ðDustÞ þ Tμν

ðΛÞÞ ¼ 0 ð3Þ

Such models could originate from irreversible diffusive
exchange of energy, or have a Lagrangian origin, by
introducing an independent stress energy momentum tensor
Tμν
ðχÞ directly in the Lagrangian. The structure of the paper is

as follows: In Sec. II we discuss dynamics of exchange of
energies between two diffusive fluids, with two different
equation of states. Such a system has a universal model
independent behavior. In Sec. III we present the Lagrangian
model leading to such an interactive energy momentum
tensor. In Sec. IV we discuss solutions for the theory which
contains more general combinations for the stress energy
momentum tensor Tμν

ðχÞ. In Sec. V we are looking for few

asymptotic solutions for the theory. In Sec. VI we discuss a
special case of a Lagrangian which corresponds to the
diffusive model which has been introduced in Sec. II.

II. COUPLED DIFFUSIVE FLUIDS

We assume that stress energy momentum tensors are in
the form of ideal fluids, where:

Tμ
ν ¼ Diagðρ;−p;−p;−pÞ ð4Þ

where ρ is the energy density and p is the pressure.
Then Eqs. (1)–(2) read:

_ρdust þ 3Hð1þ ω̃Þρdust ¼
γ2

a3
ð5Þ

and

_ρΛ þ 3Hð1þ ωÞρΛ ¼ −
γ2

a3
: ð6Þ

The diffusion constant γ2 is always positive. ω and ω̃
denote the ratio of the pressure and the density for the
corresponding fluids. In order investigate the behavior of
the solution, we introduce the dynamical systemmethod for
the equations. The dimensionless quantities for the system
are defined as [28]:

x ¼ ρdust
3H2

; y ¼ ρΛ
3H2

; δ ¼ γ2

a3Hρdust
ð7Þ

where δ describes the strength of the relative diffusion.
From Friedmann equations xþ y ¼ 1. The complete
autonomous system method equations are

x0 ¼ 6x2ðω̃ − ωÞ þ xðγδþ 3þ 6ωþ 3ω̃Þ ð8aÞ

δ0 ¼ δðγδþ 3ðx − 1Þðω − ω̃ÞÞ: ð8bÞ

Table I presents the critical points in the system. In order
to determine the stability of the system we have to specify
the equations of states. For the case of dark matter and dark
energy we can choose two cases: the first on: ω ¼ −1; ω̃ ¼
0 and the second oneω ¼ 0, ω̃ ¼ −1. The phase portrait for
both cases is presented in Fig. 1. The case ω ¼ 0, ω̃ ¼ −1,
which represent the exchange of energy from the dark
energy into dark matter include a stable point Að0;− 3

γÞ
which corresponds to dark energy dominant with diffusion
effect. However, the second case ω ¼ −1, ω̃ ¼ 0, which
represent the exchange of energy from the dark matter into
dark energy includes a stable point Cð0; 0Þ which corre-
sponds to dark energy dominant with no diffusion effect.
In this model we have chosen ω and ω̃ being constants,

whereas in general Lagrangian models ω and ω̃ are varying
in time. However we expect that ω and ω̃ can be
approximated by constants for large times. In the next
sections we investigate more general dynamics on the basis
of the action principle.

TABLE I. The properties of the critical points for the exponential potential.

Name The point Eigenvalues Densities fraction

A ð0; 3γ ðω − ω̃ÞÞ 3ð3ωþ 1Þ, 3ðω − ω̃Þ 0

B
�
ωþ1=3
ω−ω̃ ;− 3ω̃þ1

γ

�
1
2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36ω2 − 72ωω̃þ 9ðω̃ − 2Þω̃ − 3

p
− 6ω − 3ω̃ − 3

�
− 3ωþ1

3ω̃þ1

C (0,0) 3ðω̃ − ωÞ, 3ð2ωþ ω̃þ 1Þ 0
D

�
2ωþω̃þ1
2ðω−ω̃Þ ; 0

�
−3ð2ωþ ω̃þ 1Þ, 3

2
ð1þ 3ω̃Þ − 2ωþω̃þ1

3ω̃þ1
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III. A LAGRANGIAN WITH DYNAMICAL
SPACE-TIME

A. Two measures theories

The two measure theory implies other measure of
integration in addition to the regular measure of integration
in the action

ffiffiffiffiffiffi−gp
. The new measure is also a density and a

total derivative. A simple example for constructing this
measure is by introducing 4 scalar fields φa, where a ¼ 1,
2, 3, 4. The measure reads:

Φ ¼ εαβγδεabcd∂αφa∂βφb∂γφc∂δφd: ð9Þ

A complete action involving both measures takes the form:

S ¼
Z

d4xΦL1 þ
Z

d4x
ffiffiffiffiffiffi
−g

p
L2: ð10Þ

As a consequence of the variation with respect to the scalar
fields φa, under the assumption that L1 and L2 are
independent of the scalar fields φa, we obtain that:

Aα
a∂αL1 ¼ 0; ð11Þ

where Aα
a ¼ εαβγδεabcd∂βφb∂γφc∂δφd. Since det½Aα

a� ∼Φ3

as one easily see then that for Φ ≠ 0, Eq. (11) implies that
L1 ¼ M ¼ Const. These kind of contributions have been
considered in the two measures theories which are of
interest in connection with a unified model of dark energy
and dark matter [19].

B. Dynamical time action

The constraint on the term in the action L2 as in the two
measure theories (10) could be generalized to a covariant
conservation of a stress energy momentum tensor Tμν

ðχÞ
which coupled directly in the action [27]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
χμ;νT

μν
ðχÞ ð12Þ

to a vector field χμ with its covariant derivatives
χμ;ν ¼ ∂νχμ − Γλ

μνχλ. From the variation with respect to
the vector field χμ gives a constraint on the conservation of
the stress energy tensor Tμν

ðχÞ.

δχμ∶ ∇μT
μν
ðχÞ ¼ 0: ð13Þ

Similarly as the variation with respect to the scalar field φa
in the Lagrangian (10) yields ∂αL ¼ 0. The correspon-
dence between them is when Tμν

ðχÞ is taken to be as

Tμν
ðχÞ ¼ gμνLm. By introducing the term in the action (12),

we get:

Z
d4x

ffiffiffiffiffiffi
−g

p
χμ;νT

μν
ðχÞ ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
χλ;λLm

¼
Z

d4x∂μð
ffiffiffiffiffiffi
−g

p
χμÞLm ¼

Z
d4xΦLm: ð14Þ

Similarly to the variation (10), the variation with respect to
the scalar field gives again ∂μLm ¼ 0. For dynamical time
theories, the variation with respect to the dynamical time
vector field yields the same constraint.
The name dynamical time theory (DTT) was considered

due to the fact the energy density T0
0ðχÞ is the canonically

conjugated variable to the dynamical time χ0:

πχ0 ¼
∂L
∂ _χ0

¼ T0
0ðχÞ ≔ ρðχÞ ð15Þ

where ρðχÞ is the energy density of the original stress energy
tensor.

C. Dynamical time action with diffusive source

In order to break the conservation of Tμν
ðχÞ as in the

diffusion equation [Eq. (1)], the vector field χμ should be
coupled in a mass like term in the action:

Sðχ;AÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
χμ;νT

μν
ðχÞ

þ κ

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðχμ þ ∂μAÞ2 ð16Þ

where A is a scalar field different from ϕ. From a variation
with respect to the dynamical space time vector field χμ we
obtain:

∇νT
μν
ðχÞ ¼ κðχμ þ ∂μAÞ ¼ fμ; ð17Þ

where the current source reads: fμ ¼ κðχμ þ ∂μAÞ. From
the variation with respect to the new scalar A a covariant
conservation of the current indeed emerges:

∇μfμ ¼ κ∇μðχμ þ ∂μAÞ ¼ 0: ð18Þ

The stress energy tensor Tμν
ðχÞ is substantially different from

stress energy tensor that we all know from Einstein
equation which is defined as 8πG

c4 Tμν
ðGÞ ¼ Rμν − 1

2
gμνR.

In this case, the stress energy momentum tensor Tμν
ðχÞ is

a diffusive nonconservative stress energy tensor. However,
from a variation with respect to the metric, we get the
conserved stress energy tensor as in Einstein equation:

Tμν
ðGÞ ¼

−2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LMÞ

δgμν
; ∇μT

μν
ðGÞ ¼ 0: ð19Þ
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Using different expressions for Tμν
ðχÞ which depends on

different variables, gives the conditions between the dynami-
cal space time vector field χμ and the other variables.

D. Higher derivatives action

A particular case of diffusive energy theories is obtained
when κ → ∞. In this case, the contribution of the current fμ
in the equations of motion goes to zero and yields a
constraint for the vector field being a gradient of the scalar:

fμ ¼ κðχμ þ ∂μAÞ ¼ 0 ⇒ χμ ¼ −∂μA: ð20Þ

For the rest of the paper we use the notation χ for the scalar
field which is coupled to the stress energy momentum
tensor and not A due to earlier publications. The theory (16)
is reduced to a theory with higher derivatives:

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p ∇μ∇νχT
μν
ðχÞ: ð21Þ

The variation with respect to the scalar A gives∇μ∇νT
μν
ðχÞ ¼

0 which corresponds to the variations (17)–(18). In the
following paper we use the reduced theory with higher
derivative in the action.

IV. SCALAR FIELD GRAVITY WITH DIFFUSIVE
BEHAVIOR

A. Dynamical time action with diffusive source

In this section we consider the following action:

L ¼ 1

2
Rþ χ;μ;νT

μν
ðχÞ −

1

2
ϕ;μϕ;μ − VðϕÞ ð22Þ

which contains a scalar field with potential VðϕÞ. The stress
energy momentum tensor Tμν

ðχÞ is chosen to be

Tμν
ðχÞ ¼ −

λ1
2
ϕ;μϕ;ν −

λ2
2
gμνðϕ;αϕ

;αÞ þ gμνUðϕÞ; ð23Þ

where λ1 and λ2 are arbitrary constants, and UðϕÞ is a
another potential. In such a case the density and pressure
resulting from Tμν

ðχÞ are

ρðχÞ ¼ ðλ1 þ λ2Þ
_ϕ2

2
þ UðϕÞ; ð24Þ

pðχÞ ¼ −λ2
_ϕ2

2
− UðϕÞ: ð25Þ

Notice that the starting point was the case of two fluids.
But here we discuss the single fluid with a Lagrangian
involving two different measures: where the modified
measure is generalized by using the dynamical space time
vector field χμ.

There are three independent sets of equations of motions:
χ, ϕ and the metric gμν. The variation with respect to the
field χ yields:

∇μ∇νT
μν
ðχÞ ¼ 0 ð26Þ

The variation with respect to the field ϕ gives a non-
conserved current jμ:

jμ ¼ λ1
2
ðχ;μ;ν þ χ;ν;μÞϕ;ν þ ð1þ λ2□χÞϕ;μ; ð27Þ

with the nonconservation law:

∇μjμ ¼ V 0ðϕÞ −□χU0ðϕÞ: ð28Þ

The Einstein equations derived from the variation with
respect to the metric take the form:

Gμν ¼ gμν
�
−χ;α;βT

αβ
ðχÞ þ

1

2
ϕ;αϕ;α þ VðϕÞ

�

− ϕ;μϕ;ν þ χ;α;β
∂Tαβ

ðχÞ
gμν

þ∇λðχ;μTνλ
ðχÞ þ χ;νTμλ

ðχÞ − χ;λTμν
ðχÞÞ ð29Þ

where the derivative of the energy momentum tensor Tμν
ðχÞ

with respect to gμν yields:

χ;α;β
∂Tαβ

∂gμν ¼ −
λ1
2
χð;μϕ;νÞ

□ϕþ
�
λ1
2
þ λ2

�
ϕ;μϕ;ν

□χ

þ λ1
2
χ;γ;μϕ;νϕ;γ − λ2ϕ

;μ;λχ;νϕ;λ − λ2χ
;μϕ;γ;νϕ;ν

þ λ1
2
ϕ;μχ;γ;νϕ;γ −

λ1
2
χð;νϕ;μÞ;γϕ;γ

þ λ1
2
πð;νϕ;μÞ;γχ;γ þ χð;μϕ;νÞU0ðϕÞ:

The expression in the right-hand side of Eq. (29) is the total
energy momentum tensor.

B. Cosmological solution

For the solution we assume homogeneity and isotropy,
therefore we solve our theory with a FLRW metric:

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − Kr2
þ r2dΩ2

�
: ð30Þ

According to this ansatz the scalar fields are solely
functions of time.
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Integrating Eq. (26) once, we express it in the form:

ðλ1 þ λ2Þ _ϕ ϕ̈þU0ðϕÞ _ϕþ 3Hλ1 _ϕ
2 ¼ σ

a3
ð31Þ

where σ is an integration constant.
For dark energy dynamics we can assume that

UðϕÞ ¼ const. Then the solution for Eq. (31) is

_ϕ2 ¼ _ϕ2
ð0Þa

− 3λ1
λ1þλ2 þ σ

λ1 þ λ2
a−

3λ1
λ1þλ2

Z
t

0

dsa−
3λ2

λ1þλ2 : ð32Þ

In addition for the same theoretical reason we assume that
VðϕÞ ¼ Const. Then the current conservation law (28) has
the solution:�

λ1
2
− λ2

�
χ̈ þ ð1 − 3H _χÞλ2 ¼

σ̃
_ϕa3

ð33Þ

where σ̃ is another integration constant. Now from the
stress energy momentum tensor the total energy density
term is

ρ ¼ 3

2
Hðλ1 − 2λ2Þ_χ _ϕ2 þ 1

2
_ϕ2ð1 − 2ðλ1 þ λ2Þχ̈Þ

þ _χ _ϕ ððλ1 þ λ2Þϕ̈Þ þ V; ð34Þ

and the total pressure is

p ¼ 1

2
_ϕ2 −

1

2
λ1χ̈ _ϕ

2 þ λ2 _χ _ϕ ϕ̈−V: ð35Þ

V. ASYMPTOTIC SOLUTIONS

We are not able to find the exact solutions for the
Einstein Eq. (29) together with the equations for the scalar
fields χ [Eq. (31)] and ϕ [Eq. (33)]. So we are looking for
asymptotic solutions.

A. A power law solution

We assume a power law solution for a large time:

a ∼ tα: ð36Þ

Then from Eq. (31) the solution for the scalar field ϕ
derivative is

_ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ

3αðλ1 − λ2Þ þ λ1 þ λ2

s
t
1
2
−3α

2 ; ð37Þ

where ϕ0 is an arbitrary integration constant.
The solution for the scalar field χ is

_χ ¼ Ct ð38Þ

with the constant:

C ¼ 2λ2
−6αλ2 þ λ1 − 2λ2

: ð39Þ

By inserting the solutions (37) and (38) into Einstein
equation we obtain:

ρ ¼ α1
a3

þ α2t
a3

þ V ð40Þ

where the constants are

α1 ¼
18α2λ2ð2λ2 − λ1Þ

2ðλ1 − 2λ2ð3αþ 1ÞÞ ð41Þ

α2 ¼
ð6αþ 2Þλ1λ2 þ 2ð3αþ 1Þðλ2 − 1Þλ2 þ λ1

2ðλ1 − 2λ2ð3αþ 1ÞÞ : ð42Þ

We get an asymptotic solution if the potential V ¼ 0 and
the power of the scale factor is one:

a ∼ t: ð43Þ

This solution is the same as the one obtained in the model
of Einstein equation with relativistic diffusion exchange of
energy [28].

B. Exponential solution

We insert the exponential solution aðtÞ ∼ eH0t in
Eq. (32). Then we get:

_ϕ2 ¼ _ϕ2
0a

− 3λ1
λ1þλ2 − σ0H0

λ1 þ λ2
3λ2

1

a3
ð44Þ

if we impose 3λ1
λ1þλ2

> 0. Then from Eq. (33) we obtain the
asymptotic solution:

_χ ¼ 1

3H0

þO
�
1

a3

�
: ð45Þ

With those solutions the density is given by:

ρ ¼ H0ð3λ2 − 1Þσ λ1 þ λ2
6λ2

1

a3
þ V

þ 1

2
_ϕ2
0ð1 − 2λ2Þa−

3λ1
λ1þλ2 : ð46Þ

This particular solution corresponds to a slowly varying

dark energy (V þ 1
2
_ϕ2
0ð1 − 2λ2Þa−

3λ1
λ1þλ2) approaching a con-

stant value V, for λ1 and λ2 being positive, and λ1 ≪ λ2. In
the case of negative λ1 but still jλ1j ≪ jλ2j, we get slowly
growing vacuum energy, which corresponds to an asymp-
totically super accelerating universe.
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VI. λ2 = 0 CASE

Solution (44) does not make sense for λ2 ¼ 0. Therefore
this case should be treated separately. This special choice of
the energy momentum has been explored by Gao, Kunz,
Liddle and Parkison as a unification of dark energy and
dark matter [29] without using a Lagrangian formulation.
These authors proposed as a unification of dark energy and
dark matter:

Tμν
ðχÞ ¼ −

λ1
2
ϕ;μϕ;ν þ gμνUðϕÞ ð47Þ

as the right-hand side of Einstein tensor. The action that
produces asymptotically the same model using dynamical
time theories was obtained in Ref. [30]. Here we explore
the asymptotic solution with diffusive behavior. Under the
assumption that all of the potentials are constant Eq. (31)
has the solution:

_ϕ2 ¼
_ϕ2
ð0Þ
a3

þ σ

λ1

t
a3

: ð48Þ

Then, the integral of Eq. (33) is

_χðtÞ ¼ _χð0Þ − 2

λ1
tþ

Z
dt

2σ̃

λ1 _ϕa3
ð49Þ

with the asymptotic behavior:

_χðt → ∞Þ → −
2t
λ1

: ð50Þ

Notice that this asymptotic behavior is essentially different
from the previous cases. Then the total density reads:

ρ ¼ V þ α1
a3

þ α2
a4.5

; ð51Þ

where the coefficients are

α1 ¼
5 _ϕ2

0λ1 þ λ1σχ0 þ 3σt
2λ1

; ð52Þ

α2 ¼ −
2σ̃

3 _ϕ0H0λ1
ð3 _ϕ2

0H0λ1 þ 3H0σtþ σÞ: ð53Þ

Additional symmetry for this case is obtained:

χ → χ þ ct ð54Þ

or in terms of the dynamical time (χ0 ⇔ _χ)

χ0 → χ0 þ c: ð55Þ

In the previous cases _χ is asymptotically a constant, equal
to 1

3H0
. In the special case of λ2 ¼ 0 there cannot be any

particular choice for asymptotic value of χ, because the
symmetry will change it to any other arbitrary constant.
One can calculate the conserved quantity associated with
the symmetry (55) and it is the analogous of particle number.
A remarkable result is the correspondence between the

solution (51) and the solutions for the DM-DE interaction
system from Sec. II. For ω̃ ¼ 0 the dust density equation
yields:

FIG. 1. The phase portrait for the dynamical system method. In the left panel the ω̃ ¼ −1 refers to dark energy and in the right panel
the ω ¼ −1 refers to dark energy.
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∂tρdust þ 3Hρdust ¼
γ2

a3
; ð56Þ

with the solution:

ρdust ¼
C1

a3
þ γ2t

a3
; ð57Þ

where C1 is an integration constant. For interacting dark
energy, that satisfies ω ¼ −1, the energy density reads:

∂tρΛ ¼ −
γ2

a3
; ð58Þ

whereas for ρΛ

ρΛ ¼ C2 − γ2
Z

dt
a3

: ð59Þ

The C2 is another integration constant. Asymptotically, the
total density gives:

ρ ¼ C1 þ γ2t
a3

þ C2 þO
�
1

a6

�
; ð60Þ

which corresponds to the density (51), and the last term α2
a4.5

becomes negligible. Hence, the integration constants equal
to the integration constants from the Lagrangian case:

C1 ¼
5 _ϕ2

0 þ σχ0
2

ð61Þ

γ2 ¼ 3σ

2λ1
; C2 ¼ V: ð62Þ

This correspondence does not hold for the whole history
of the universe, however asymptotically the models (our
Lagrangian model and the previously studied non-
Lagrangian models) fit each other for the case λ2 ¼ 0
and approach ΛCDM for late times. Of course that the

solutions will have to be studied and this will be a main
goal for further investigations.
One can see that both models with exactly the same

homogeneous solution where σ̃ ¼ 0. In this case α2 ¼ 0
[see Eq. (53)] and the corresponding relations between
the constants of the models present in Eqs. (61)–(62).
In order to assess the viability of the model, let us see

how some physical quantities change versus the redshift (z)
for both models. The connection between the cosmic time
derivative and the redshift derivative reads:

d
dt

¼ −HðzÞðzþ 1Þ d
dz

ð63Þ

which is obtained from the dependence of scale factor on
the red-shift a ¼ 1

zþ1
. The numerical solution of the

partial densities for the simplest case appear in Fig. 2.
Even this simple case describes a diffusive interaction
between dark energy dark matter from an action prin-
ciple. However, the presence of the coupling constant σ̃
yields to additional part (∼a−4.5) which could resolve the
singularity problem as discussed in Ref. [30]. But in any
case, all the solutions approach ΛCDM model for the
late universe.

VII. CONCLUSIONS

We have extended the results of our earlier papers
concerning the DM-DE interaction in the context of two
measures models and the dynamical time theories. The
extension consists in a general choice of the conserved non-
canonical energy-momentum tensor. The energy momen-
tum tensor is more general than the one proposed by Gao,
Kunz, Liddle, and Parkinson [29] as well as the dark energy
dark matter unification obtained in the two measures limit,
which corresponds to the case where the conserved
noncanonical energy-momentum tensor is proportional to
the metric tensor [19,20].

FIG. 2. The numerical solution of the partial densities of the dark energy and dark matter components, for different values of the
coupling γ2 (which is corresponding to the diffusion constant σ).
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The constants λ1 and λ2 parametrize the more general
choice considered here. λ2 ¼ 0 corresponds to the case
considered by Gao, Kunz, Liddle, and Parkinson in their
non-Lagrangian formalism. In our Lagrangian formu-
lation, for this type of energy momentum tensor, as
additional shift symmetry for the dynamical time appears
and at the same time the dynamical time behaves asymp-
totically as the cosmic time. Diffusive type is obtained
when the dynamical space time vector is taken to be
the gradient of a scalar, then instead of a conservation law
of the energy momentum introduced in the action, we
obtain a nonconservation of this energy momentum tensor
of the diffusive type, which leads then to an interacting
DE/DM scenario. This formulation of DE-DM have a
direct correspondence with the behavior of non
Lagrangian formulations of DE/DM interactions only in
the case λ2 ¼ 0. In the other cases, the asymptotic

behavior is different and in particular the dynamical time
does not behave as cosmic time asymptotically, in fact as
the cosmic time increases, the dynamical time approaches
the finite value 1

3H in an asymptotically de Sitter space.
In all cases we do not need to introduce the dark matter in
the initial Lagrangian, it appears dynamically. As a result
of the dynamic evolution in our model we obtain an
asymptotically ΛCDM solution.
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