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In the standard big bang model the Universe starts in a radiation dominated era, where the gravitational
perturbations are described by second order differential equations, which generally have two orthogonal sets
of solutions. One is the so-called growing (cosine) mode and the other is the decaying (sine) mode, where the
nomenclature is derived from their behaviour on superhorizon (subhorizon) scales. In most cosmological
analyses it is assumed that only the growing mode is a viable solution, because on very large scales and early
times the decaying solution shows singular behavior and the amplitude of the mode is also highly suppressed
in many inflationary models. However, physically interesting models do exist that would allow for decaying
solutions, such as models in which the Universe today originates from a bounce. Without singling out a
specific model, an interesting and valid question is whether a decaying mode can actually result in a sensible
cosmology, and withstand current precision cosmological constraints. The decaying mode is qualitatively
different to the growing mode of adiabatic perturbations as it evolves with time on superhorizon scales. The
time dependence of this mode on superhorizon scales is analyzed in both the synchronous gauge and the
Newtonian gauge to understand the true gauge invariant behavior of these modes. We then provide a gauge
invariant procedure of normalizing this mode on subhorizon scales. Then we explore constraints on the
amplitude of this mode on scales between k ∼ 10−5 Mpc−1 and k ∼ 10−1 Mpc−1 using the temperature and
polarization anisotropies from the cosmic microwave background, by computing the Fisher information.
Binning the primordial power nonparametrically into 100 bins, we find that the decaying modes are
constrained at comparable variance as the growing modes on scales smaller than the horizon today using
temperature anisotropies.Addingpolarization datamakes the decayingmodemore constrained. The decaying
mode amplitude is thus constrained by∼1=l of the growingmode. On superhorizon scales, the growingmode
is poorly constrained, while the decaying mode cannot substantially exceed the scale-invariant amplitude.
This interpretation differs substantially from the past literature, where the constraints were quoted in gauge-
dependent variables, and resulted in illusionary tight superhorizon decaying mode constraints. The results
presented here can generally be used to nonparametrically constrain any model of the early Universe.
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I. INTRODUCTION AND HISTORICAL CONTEXT

Our current understanding of the Universe builds upon a
widely accepted standard big bang model, in which the

Universe starts out in a hot and dense radiation dominated
phase. Precise initial conditions and an explanation of the
homogeneity and isotropy of the large scale Universe are
required to match current observations. An epoch of
cosmological inflation has been the most widely accepted
extension to the standard big bang model that could
potentially resolve these issues. Most importantly, it pro-
vides a natural way to generate small perturbations in the

*darsh.kodwani@physics.ox.ac.uk
†pdm@ast.cam.uk
‡pen@cita.utoronto.ca
§wangxin35@mail.sysu.edu.cn

PHYSICAL REVIEW D 99, 123518 (2019)

2470-0010=2019=99(12)=123518(11) 123518-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.123518&domain=pdf&date_stamp=2019-06-17
https://doi.org/10.1103/PhysRevD.99.123518
https://doi.org/10.1103/PhysRevD.99.123518
https://doi.org/10.1103/PhysRevD.99.123518
https://doi.org/10.1103/PhysRevD.99.123518


metric and densities of particles that manifest themselves as
the temperature and polarization anisotropies in the cosmic
microwave background (CMB) and density fluctuations that
eventually grow into the large scale structure, which have
been studied extensively over the last few decades [1–3].
The simplest models of inflation predict Gaussian adiabatic
initial conditions for the radiation dominated era. However
these are not the only possible initial conditions.
After neutrino decoupling at around z ∼ 109, the

Universe contains baryons, photons, dark matter, and
neutrinos. Each of these species has an equation governing
its perturbations, which are described by second order
partial differential equations. In total there are eight
possible solutions for the densities of the particles that
can exist in the early Universe; two corresponding to each
species [4–9]. These solutions fall into two general classes,
adiabatic or curvature and entropy or isocurvature fluctua-
tions. The adiabatic solutions are defined as the solutions of
the differential equations in which the relative number
densities of all the particle species are the same. These are
known as curvature perturbations as they correspond to an
overall shift in the curvature of spacelike surfaces. On the
contrary, the isocurvature perturbations correspond to
solutions where the fractional number density of the
particle species is not the same on spacelike surfaces.
Thus isocurvature perturbations are defined between any
two species. For example, there can be a relative difference
in the densities or velocities of the baryons and cold dark
matter. Canonically the isocurvature is defined as the
fractional difference in particle species to the photon
density. In general there can be isocurvature between
any of the particle species and therefore the most general
initial conditions are given by a set of five possible linear
combinations of modes: Adiabatic modes, CDM isocurva-
ture, baryon isocurvature, neutrino density isocurvature,
and neutrino velocity isocurvature [4,7–9]. There have been
many attempts to constrain the amplitude of these general
sets of initial conditions and most studies show that the
amplitude of isocurvature fluctuations must be much
smaller than the amplitude of adiabatic fluctuations
[10–13]. There is a further class of isocurvature known
as compensated isocurvature in which there are isocurva-
ture fluctuations due to both baryons and dark matter. This
type of isocurvature has been shown to be more compatible
with current observations [14–16].
In this study we do not consider isocurvature modes;

instead we analyze the structure of adiabatic modes. Since
the differential equations that govern all perturbations are
second order differential equations, even for the adiabatic
solution, there are two possible modes. One is called the
decaying mode and the other is the more familiar growing
mode. These names are motivated by the early time,
superhorizon behavior of these modes, as the decaying
mode has a decaying behavior whereas the growing mode
remains constant. The amplitude of these modes is usually

set initially during a preradiation dominated era. Since the
perturbation solution is a linear combination of each of
these modes, both of these modes will be sourced by any
preradiation phase that gives rise to adiabatic initial
conditions.
The decaying mode is qualitatively different to the

growing mode as its amplitude is time dependent even
on superhorizon scales as shown in Fig. 1. Furthermore,
since we are not directly able to measure superhorizon
modes it may also be sensible to define these modes by
their subhorizon behavior. On subhorizon scales, both of
these modes are described by oscillatory functions. In a
pure radiation universe, the decaying solution is a sine wave
and the growing solution is a cosine wave. We use the
names sine (cosine) modes or decaying (growing) modes
interchangeably throughout this paper. While it is difficult
to source decaying modes from inflation, there are scenar-
ios in which they might be generated. Specifically, there
have been many studies of bouncing and cyclic universes in
which decaying modes can be sourced. In particular,
growing modes in a prebounce contracting phase can
become decaying modes in the postbounce expanding
phase [17–21]. There is currently no consensus on how
the modes are matched across a bounce as this involves
understanding the quantum behavior of the fields causing
the bounce in the large curvature regime. There have been
some recent attempts at computing the propagation of
perturbations across a bounce both classically and quantum
mechanically in [22,23] that suggest decaying modes could
be present. More recent studies of the perturbations have
gone beyond the leading order expansions and have shown
that the decaying modes will also be sourced at second
order in perturbation theory (for example, from the neutrino

FIG. 1. Schematic diagram showing that in general both the
decaying and growing modes should be sourced by whatever
preradiation dominated era sets the initial conditions of the
Universe. The amplitude of the decaying mode is time dependent
and therefore the amplitude of the decaying mode at recombi-
nation is very sensitive to the initial time the amplitudes are set.
The amplitude is in log (linear) scale for the super- (sub-) horizon
modes. While the numerical value of the amplitude appears to
diverge the superhorizon, it does not lead to divergent observable
constraints.
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velocity mode as it sources anisotropic stress) even if at
leading order one only keeps growing modes [6]. Instead of
studying a particular scenario in detail we instead use the
studies above as a motivation to study decaying modes in
general.
There has only been one study [24] that has attempted to

analyze the effect of decaying modes and our aim is to
further elaborate and build on this analysis. In this study we
quantify how large the amplitude of these decaying modes
can be irrespective of how they are sourced. We do this by
finding the Fisher information in each bin of k in the
decaying mode power spectrum, similar to what is done in
studies that attempt to reconstruct the power spectrum for
the growing mode [25–29]. This gives a direct handle on
the fraction of decaying modes present on all scales in the
Universe at the time of recombination. We show the
constraints on the decaying mode power spectrum that
come from using both the temperature and polarization
angular power spectrum of the CMB.
The paper is organized as follows. In Sec. II we present

an intuitive explanation for the growing and decaying
modes in a pure radiation universe. We then extend this
analysis to describe the initial conditions in general in both
the synchronous and Newtonian gauge to analyze the gauge
dependence of the gravitational potentials and confirm the
time-dependent behavior of decaying modes on super-
horizon modes. With the time dependence established
we provide a normalization procedure of decaying modes
on subhorizon modes. In Sec. III we describe our formalism
to constrain the power in the decaying modes using a Fisher
matrix formalism and present the results. We conclude and
address possible future directions in Sec. IV.

II. THEORY OF THE DECAYING MODE

A. Review of radiation domination

The equations that govern the evolution of the perturba-
tions in standard cosmology are the perturbed Einstein
equations. In homogenous and isotropic models of the
Universe, the solution to the Einstein equations is given by
the Friedmann-Robertson-Lemaitre-Walker (FRLW) met-
ric. In the Newtonian (N) gauge, the perturbed FRLW
metric for scalars is parametrized by

ds2N ¼ aðτÞ2ð−dτ2Nð1þ 2ΦÞ þ dxiNdx
j
Nγijð1 − 2ΦÞÞ: ð1Þ

Here aðτÞ is the conformal scale factor and γij is the flat
three-dimensional metric on spatial hypersurfaces. This
parametrization of the metric is particularly useful to
analyze the physical behavior of perturbations as it is
directly related to the gauge invariant Bardeen potentials,
Ψ ¼ ΨB, Φ ¼ −ΦB [30]. The equation of motion for the
gravitational perturbations in the presence of a pure
radiation fluid in the Newtonian gauge, in the absence
anisotropic stress, is given by [31]

Φ00 þ 3Hð1þ c2sÞΦ0 − c2s∇2Φ

þ ð2H0 þ ð1þ 3c2sÞH2ÞΦ ¼ 4πGa2τδS: ð2Þ

Here H≡ a0=a is the conformal Hubble parameter and δS
is a source term [see Eq. (5.22) in [31] for full definitions].
The source term is generated by isocurvature fluctuations
and thus is 0 for a pure adiabatic solution. If we restrict
ourselves to the radiation dominated era of the Universe
and without isocurvature, Eq. (2) simplifies in Fourier
space to

Φ00
k þ

4Φ0
k

τ
þ k2Φk

3
¼ 0; ð3Þ

which has a simple solution

Φk ¼ Ak
j1ðxÞ
x

þ Bk
n1ðxÞ
x

: ð4Þ

The amplitudes Ak and Bk are set by the initial conditions
for the differential equation, which are the initial conditions
for our Universe. The k index shows that the amplitude can
be different for different k’s. Here we have defined x≡ kτffiffi

3
p .

The j1ðxÞ and n1ðxÞ are the Bessel and Neumann functions
of order 1, respectively. The term with the Bessel
(Neumann) function is the growing (decaying) one, which
has a cosinal and sinusoidal oscillation, respectively. It is
illuminating to look at the asymptotic limit of these modes.
At early times on superhorizon scales, i.e., x ≪ 1, the
potential becomes

Φkðx ≪ 1Þ ¼ Ak

3
þ Bk

x3
: ð5Þ

Here we see that the decaying mode diverges as x → 0.
Furthermore, in most models of inflation the decaying
mode is suppressed by Oðe3NÞ, where N is the number of
e-folds, as the curvature perturbations in inflation will have
their amplitudes set at a much earlier time. These are the
main reasons behind most cosmological analyses assuming
Bk ¼ 0. We also see that the growing mode is a constant on
superhorizon scales. The usual procedure is to match the
primordial curvature perturbation Rk to the amplitude of
Ak, i.e., Rkðτ ¼ 0Þ ¼ − 3

2
ϕkðτ ¼ 0Þ. Now let us analyze

the large x limit (subhorizon limit)

ΦkðxÞ ¼ −
�
Ak

sin x
x2

þ Bk
cos x
x2

�
: ð6Þ

Here we see that both modes simply oscillate at late times
on subhorizon scales. Thus if there was any remaining non-
negligible amount of decaying mode amplitude on sub-
horizon scales, it would not decay away. It is therefore
sensible to ask how large the amplitude of such a decaying
mode has to be to lead to observable effects (or similarly,
constrained by the data). That is the main question we set
out to answer in this paper.

INITIAL CONDITIONS OF THE UNIVERSE: A SIGN … PHYS. REV. D 99, 123518 (2019)

123518-3



B. CMB anisotropies

The angular power spectrum of the CMB anisotropies is
given by [32]

CXY
l ¼

Z
∞

0

d ln kPXYðkÞjΔX
l ðkÞΔY

lðkÞj: ð7Þ

Here PðkÞ is the primordial power spectrum of curvature
perturbations. X; Y ∈ fT; Eg where T, E stand for temper-
ature and polarization, respectively. ΔX

l ðkÞ is either the
temperature or polarization transfer function for adiabatic
modes. In general, the transfer functions are computed
using a line of sight approach by separating out the
geometric projection effects (that depend on l) and the
physical effects coming from gravitational potentials and
Doppler effects [33]. On large scales the source function for
temperature anisotropies is given by the gravitational
potential, ΔT

T ≈ 1
3
Φ. This effect is caused by photons from

the CMB having to climb out of a gravitational well and is
called the Sachs-Wolfe effect. Thus, on large scales the
CMB power spectrum should directly see a change in the
gravitational potential, such as the change due to decaying
modes in Eq. (5).
We can check this explicitly by implementing the initial

conditions for the decaying mode into the Boltzmann-
solver CLASS [34] and in the synchronous (S) gauge these
are parametrized by

ds2S ¼ a2ðτÞð−dτ2S þ dxiSdx
j
SðγSij þ hijÞÞ: ð8Þ

We focus on scalar perturbations in this paper and it is
canonical to separate hij into two scalars: its trace h and
traceless 6η parts. The initial conditions in this gauge are
given by [24]

hðx;ϕÞ ¼ x2 þ fGDx
3
2 sin ξ;

ηðx;ϕÞ ¼ 2 −
5þ 4Rν

6ð15þ 4RνÞ
x2 þ fGD

x
1
2

�
11 − 16Rν

5

8
sin ξþ 5γ

8
cos ξ

�
;

δνðx;ϕÞ ¼ −
2x2

3
þ fGDx

3
2

��
1

4Rν
−
2

5

�
sin ξ −

γ

4Rν
cos ξ

�
;

Θνðx;ϕÞ ¼ −
23þ 4Rν

18ð15þ 4RνÞ
kx3 þ fGD

16Rν
kx

1
2

��
−3 −

72

5
Rν

�
sin ξþ γ

�
3 −

8Rν

5

�
cos ξ

�
;

Θrðx;ϕÞ ¼ Θb ¼ −
kx3

18
þ fGDkx

5
2

3ð25þ γ2Þ ðγ cos ξ − 5 sin ξÞ;

σνðx;ϕÞ ¼
4

3ð15þ 4RνÞ
x2 þ fGD

x
1
2

�
γ

2
cos ξþ 11 − 16Rν=5

10
sin ξ

�
;

δrðx;ϕÞ ¼ −
2

3
x2 −

2fGD
3

x
3
2 sin ξ;

δcðx;ϕÞ ¼ δb ¼ −
x2

2
−
fGDx

3
2

2
sin ξ; ð9Þ

with the following definitions:

ξ≡ γ

2
log xþ ϕ; γ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32

5
Rν − 1

r
;

x≡ kτ; Rν ≡ ρν
ρν þ ργ

: ð10Þ

The amplitude fGD is the ratio of the decaying mode to the
growing mode. We have defined the densities δi, velocities
Θi for each of the species i ∈ fradiationðrÞ; CDMðcÞ;
baryonsðbÞ; neutrinosðνÞg. σν is the quadrupole moment
of the neutrino phase space density and Rν is the relative
energy density fraction of neutrinos. The physical reason for
the neutrinos having a quadrupole is that they will have

anisotropic stress after they decouple. However this is also
the case for the growing adiabatic mode [4,5], which can be
obtained by setting fGD equal to 0 in Eq. (9). We also note
that the decaying mode has two independent variables fGD
and ϕ. This is because for decaying modes there is an
additional equation of motion for the neutrino distribution.
This can easily be seen if one considers a pure radiation fluid
coupled to neutrinos, as was pointed out in [24]. It is known
that the growing mode remains constant on superhorizon
scales. However this is not the case for decaying modes. We
have already seen this for a pure radiation universe in Eq. (6).
The initial conditions in the synchronus gauge do not make
the timedependence (or independence) apparent as it appears
both growing and decaying modes are time dependent.
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However themetric potentials η and h are not gauge invariant
quantities. It is, therefore, better to analyze the time depend-
ence in the Newtonian gauge as the metric potentials are
directly related to the gauge invariant Bardeen potentials.
We can switch to Newtonian gauge by either solving the
Boltzmann equations in the Newtonian gauge or, as we are
only interested in the behavior of the gravitational perturba-
tions, we can relate the two metrics via

gμνðNÞ ¼ gαβðSÞ
∂xαðSÞ
∂xμðNÞ

∂xβðSÞ
∂xνðNÞ

; ð11Þ

where the variables with ðNÞ=ðSÞ are in the Newtonian/
synchronous gauge, which is defined in Eqs. (1) and (8),
respectively. The relations between the metric potentials can
then be calculated to be

Ψðx;ϕÞ ¼ 1

2k2

�
ḧðx;ϕÞ þ 6η̈ðx;ϕÞ þ _aðτÞ

aðτÞ ð
_hðx;ϕÞ

þ 6_ηðx;ϕÞÞ
�
;

Φðx;ϕÞ ¼ ηðx;ϕÞ − 1

2k2
_aðτÞ
aðτÞ ½

_hðx;ϕÞ þ 6_ηðx;ϕÞ�: ð12Þ

Using these to evaluate the Newtonian potentials we get

Ψðx;ϕÞ¼ 20

15þ4Rν

þfGD
8x

1
2

ð6γcosξ−ð9−γ2ÞsinξÞþOðx−5
2Þ;

Φðx;ϕÞ¼4ð5þ2RνÞ
15þ4Rν

þ fGD
40x

1
2

½ð15γcosξþð25−16RνÞsinξÞþOðx−5
2Þ:

ð13Þ

We see that for the growing mode, i.e., when fGD ¼ 0, the
metric potentials are constant. Whereas for the decaying
mode, the potentials are clearly time dependent. Thus, we
need to specify the time at which the decaying modes start
evolving as the constraints we get on the amplitude depend
on this time, as is shown in Fig. 1. To get an idea of what
the power spectrum of the decaying mode looks like we
have implemented these initial conditions in the CLASS
Boltzmann code and the resulting power spectra for the
temperature and polarization, and their cross spectrum, are
shown in Fig. 2. In Fig. 2 we have assumed a power
spectrum of the decaying mode to be analogous to the
growing mode and set the spectral index nDs ¼ nGs ¼ 0.96
while the amplitude is defined by the scalar amplitude AG

s
and the fraction of decaying mode amplitude AD

s ¼ fGDAG
s .

This amplitude is time dependent as explained before, so
we set it at the minimum time used in the source function
integral.1 Later on when we are computing the errors on the
amplitudes we normalize the modes such that the decaying
modes have the same amplitude as the growing modes on
subhorizon scale. We set ϕ ¼ 0 and the rest of the
cosmological parameters are set to the fiducial values given
in Table I.
There is a clear divergence on large scales, which

comes from the divergence of the gravitational potential
on superhorizon scales. The gravitational potential enters
the Cl’s through the transfer function’s ΔlðkÞ. These
are (numerically) computed using a line of sight integral
[33] over the source function (which contains the Sachs-
Wolfe, Doppler, and integrated Sachs-Wolfe effect terms)
convolved with a projection function that is a Bessel
function.

ΔlðkÞ≡
Z

τ0

τi

dτSTðτ; kÞjlðkðτ0 − τÞÞ: ð14Þ

FIG. 2. Angular power spectrum of the CMB temperature and polarization anisotropies.

1A summary of schemes used for setting the initial conditions
is given in Fig. 10 of [34].
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Here τ0 is the time at recombination and τi is the time at
which the initial conditions are sourced. We show the
transfer functions for l ¼ 2, 582 in Fig. 3.
The low l’s show the divergent behavior for the decaying

mode, whereas at l ¼ 582 we see that both modes are
similar with the decaying mode having a lower amplitude.
This means a non-negligible amplitude of the adiabatic
perturbations could be in decaying modes if they are
generated at late times or on large scales. Furthermore, a
primordial power spectrumwith a large spectral index could
also allow for a non-negligible contribution of the decaying
mode amplitude to the overall adiabatic perturbations.
Instead of focusing on setting the amplitude at early

times, we use a renormalizing procedure to set the
amplitude of the decaying modes. There are two reasons
to use this normalization procedure. First, it provides a
unique way to set the initial conditions as the decaying
modes are time dependent and the time dependence is
different in different gauges. For example the time depend-
ence of decaying mode metric potentials in the synchro-
nous gauge in Eq. (9) is clearly different from the metric

potentials in the Newtonian gauge in Eq. (13). Second,
since both the growing and decaying solutions are
described by regular (nondiverging) functions on subhor-
izon scales we can set the amplitudes of the growing mode
equal to that of the decaying mode deep inside the horizon.
This makes it easier to see the effect of decaying modes that
are set at late times as they would naturally be normalized
on subhorizon scales.
The normalization of the two modes is done in terms of

the transfer functions in k space as opposed to the transfer
functions in l space as we wish to isolate the physical
effects of the gravitational potentials (which show the
behavior of the growing and decaying modes) from
the projection effects. We equate the amplitudes of the
decaying and growing modes on all scales below the
fiducial horizon scale khorizon ¼ 3 × 10−3 Mpc−1. In prac-
tice it is not easy to do this since the transfer functions are
highly oscillating functions. Our approach is to integrate
the transfer function for each l for all k’s that are inside the
horizon for both the growing mode and decaying mode.
The ratio of these integrals tells us the normalization for the
decaying mode transfer function for a given l that ensures
the decaying mode will have the same amplitude as the
growing mode on subhorizon scales. This would corre-
spond to the case where the Universe starts at τ1 in Fig. 1.
Thus the renormalized decaying mode transfer function can
be written as

Δ̂D
l ðkÞ ¼ ΔD

l ðkÞΣl;

Σl ≡
R kmax
khorizon

dkΔG
l ðkÞR kmax

khorizon
dkΔD

l ðkÞ
: ð15Þ

TABLE I. Fiducial cosmological parameters and systematic
parameters.

As 2.3 × 10−9

h 0.6711
Ωbh2 0.022068
Ωcdmh2 0.12029
k� 0.05 Mpc−1
ns 0.9619
Neff 3.046
lmax 2500
fsky 1

FIG. 3. Transfer functions for growing and decaying modes. FIG. 4. Renormalization function defined in Eq. (15).
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We know a priori that this is the most conservative one can
be as for decaying modes to have the same amplitude as
growing modes on subhorizon scales they must have a very
large amplitude on superhorizon scales (at least for modes
that entered that horizon at early times) and thus they will
be highly constrained. Any early Universe model that is
responsible for generating the initial conditions can be
renormalized in this way, thus allowing a direct comparison
of the amplitudes of a model to our results by simply
applying the renormalization function in Fig. 4.

III. ANALYSIS

There are a variety of ways to model the primordial
power spectrum. The most popular one, and the one which
is normally constrained with data, is a power law with an
amplitude and spectral index. There are a variety of ways to
look for deviations from this. Here we take an unparame-
trized approach to constraining the decaying mode to keep
our findings as general as possible. For that purpose, we
model the power spectrum as a set of bins in k with an
independent amplitude and constrain the amplitude in each
of those bins. The power spectrum is then given by

Pðk; k0; ϵÞ ¼
�
PðkÞðGÞ þ ϵðGÞ or ðDÞ

k0
if k0 ≡ k

PðkÞðGÞ otherwise;
ð16Þ

where PðkÞðGÞ ¼ AðGÞ
s ð kk�Þn

ðGÞ
s −1. We choose 100 values for

k0 from an infrared cutoff of 3 × 10−5 Mpc−1 to 3 ×
10−1 Mpc−1 with the precise values for each bin shown
in Fig. 5.
To account for the information on smaller scales we

would also need to account for CMB lensing due to large
scale structure, which we know can change the temperature
power spectrum by Oð20%Þ on scales below l ∼ 3000;
thus we do not look at smaller l’s. This parametrization
allows us to look for features in the primordial power
spectrum that can arise by either the growing mode or the
decaying mode. In the case where the feature is due to the
decaying mode, i.e., ϵðDÞ is added to the power spectrum,

we also use the decaying mode transfer functions to
evaluate the Cl’s. Since the Cl’s are a linear function of
the power spectrum, the total Cl’s will just be the sum of
the growing mode fiducial power spectrum Cl’s and a
response due to the decaying mode being added. We also
consider the effect adding polarization information has on
the constraints. Since the transfer function for the decaying
mode is different for polarization and temperature, the
same primordial power spectrum may not be able to
account for the change in temperature and polarization.
A similar analysis has been done for parametrized iso-
curvature modes [7] and it was shown that adding polari-
zation significantly increases the constraining power of the
CMB for the amplitude of isocurvature modes. In principle,
one could apply this unparametrized approach to primor-
dial isocurvature perturbations as well and we leave this to
future works.
To answer these questions we use the Fisher information

as a metric to quantify the information in the decaying
modes. The expression for the Fisher matrix for a Gaussian
likelihood with a parameter independent covariance matrix
can be written as

Fαβ ¼
Xlmax

l¼2

fskyð2lþ 1Þ
2

TrðC−1
l ∂αClC−1

l ∂βClÞ: ð17Þ

The matrix C depends on the observables being used.
When the temperature and polarization of the CMB are
being used the matrix becomes

Cl ≡
�
CTT
l þ NTT

l CTE
l

CET
l CEE

l þ NEE
l

�
: ð18Þ

The fiducial Cl is assumed to be that of the growing mode
only as we know it fits the data with the fiducial cosmology.
The derivatives of the Cl matrix will have either the
growing or decaying transfer functions, depending on
which mode is being constrained. Where NTT

l , NEE
l

represent the noise covariance for temperature and polari-
zation, respectively. We also assume the polarization and
temperature noise are uncorrelated; thus the covariance
between them is 0. We model the noise for the CMB
polarization and temperature as Gaussian random noise per
frequency channel as given in the Planck blue book [35],

NTTðEEÞ
l ¼ ððσ2TðEÞB2

l Þ100 þ ðσ2TðEÞB2
l Þ143

þ ðσ2TðEÞB2
l Þ217 þ ðσ2TðEÞB2

l Þ353Þ−1; ð19Þ

where σTðEÞ represent the variance for temperature (polari-
zation) and 100, 143, 217, 353 are the Planck frequency
channels in GHz. The window function is given by

B2
l ¼ expð− lðlþ1Þθ2beam

8 ln 2 Þ. The values of the beam size and
variance are given in Table II.

FIG. 5. k values at which we add power to the primordial power
spectrum.
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If we only use the temperature spectrum from the CMB
the expression for the Fisher matrix simplifies to

Fαβ ¼
Xlmax

l¼2

fsky
2lþ 1

2

∂αCTT
l ∂βCTT

l

ðCTT
l þ NTT

l Þ2 : ð20Þ

It is worth noting that the derivatives of the Cl’s with

respect to the parameters ϵðDÞ
k0

=ϵðGÞk0
simply return the

transfer function squared of the decaying/growing mode

at k0. The errors on the parameters i, σi (which in our case
are the amplitudes in each k bin) can be obtained by
σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

p
. We plot these variances in Fig. 6 along with

the ratio of the errors of the decaying and growing modes.
We see that most of the information is in the range k ∼
10−3 − 10−1 Mpc−1 and adding the polarization data
increases the information content by up to 2 orders of
magnitude in this range. Similar results for the growing
mode have been found in previous studies; see for example
[25,36,37]. We note that most of the analysis done so far
focuses on providing detailed precision on growing modes
and thus having more k bins in a narrower range of wave
numbers. Our aim is to probe the errors on a much broader
range of k’s, which has not been done before, yet we still
note that in regions of overlapping k space we recover
similar results albeit without the same level of resolution.
We see that on larger scales cosmic variance dominates

and most of the information is lost. The first thing to note

TABLE II. Planck noise.

Frequency (GHz) θbeamðradÞ σTðμK-radÞ σEðμK-radÞ
100 0.002763 0.001984 0.003174
143 0.002065 0.001746 0.003333
217 0.001454 0.003809 0.007785
353 0.001454 0.011665 0.023647

FIG. 6. This plot shows the errors for the decaying and growing modes in each of the 100 k bins. The analysis is done for four
specifications: temperature anisotropies in a Planck-like experiment and a cosmic variance limited experiment and the same analysis for
temperature and polarization data. The top plot shows the errors and the bottom plot shows the ratio of the errors of the decaying to
growing modes. The vertical line is drawn at roughly the size of the horizon as inferred from the maximum scale observable by an
observer at recombination. Since l ¼ 2 is the largest mode observable in the CMB we compute the corresponding k using l ¼ kχ. This
expression is true in a flat sky, where χ is the comoving distance to recombination ∼10 Gpc=h; furthermore, l ¼ 2 corresponds to a
mode wave with two wavelengths in a unit circle, thus giving a further factor of π=2 to the wave number giving k ∼ 3 × 10−4 Mpc−1.
The horizontal line on the bottom plot is at 1 and we note that the ratio of the errors asymptotes to 1. This is just a manifestation of the
fact that we have normalized the amplitudes (but not the phase) of both modes to be equal on subhorizon scales.
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about the decaying mode is that the overall difference in the
Fisher information from the largest to the smallest scales is
much lower than the growing mode. This is because on
large scales we can see from theCl’s that there is a large rise
in power for the decaying mode transfer functions.
Therefore even with the large errors due to cosmic variance,
the excessive power in decaying modes on large scales can
be constrained. On subhorizon scales the errors on both
modes are approximately the same as we have normalized
both modes to have the same amplitudes on subhorizon
scales. The second feature of the decaying mode is that
there is a large increase in Fisher information, relative to the
growing mode, when polarization information is included.
This is to be expected because, as was mentioned before,
the polarization transfer functions and temperature transfer
functions are different. The fiducial cosmology we have
assumed has been fitted to the temperature and polarization
data with growing mode transfer functions; thus even if we
allow a lot of freedom in the primordial power spectrum,
the Cl’s, which are a convolution between the transfer
functions and the primordial power spectrum, will struggle
to accommodate the decaying mode power spectrum with
the temperature and polarization transfer functions at the
same time.
Finally it is interesting to note that modes that are smaller

than ∼10−4 Mpc−1 will be larger than the Universe’s
horizon today and some modes that are even larger may
never enter the horizon of our Universe. Thus one has to ask
the philosophical question of how modes that are beyond
our observable Universe can be observed, even indirectly.
The physical mechanism for superhorizon modes effecting
subhorizon observables is either through the gravitational
effect of superhorizon modes on small scale structure or,
potentially the dominant effect, through the effect of spatial
gradients of the density perturbations. A discussion of the
gradient method to analyze long wavelength perturbations
can be found in [38,39]. Both of these effects have been at
the heart of the separate universe approach of describing
superhorizon perturbations in which the local, subhorizon,
modes evolve in a different universe with different
cosmological parameters such as curvature, Hubble rate,
etc. Such claims have to be backed up with careful analysis
of the underlying physics, in particular, the curvature of
spacelike surfaces, as one has to understand how the
equivalence principle, which would suggest large scale
modes should not effect the curvature of spacelike surfaces,
can allow for such superhorizon modes to effect the
subhorizon modes. There have been many attempts to
address this issue and a long yet not exhaustive list is given
here [40–45]. Most of these attempts have focused on
calculating the backreaction of the growing superhorizon
modes through the nonlinear evolution of the modes due to
Einstein’s equation. It would be interesting to see whether
similar calculations can be used to evolve decaying modes
and understand the physical origin on their effect on

subhorizon scales. We do not attempt to address this here
and note that our current study provides a direct way to test
whether the methods used to understand superhorizon
evolution of modes lead to testable predictions.

IV. SUMMARY AND FUTURE OUTLOOK

In this paper we have analyzed the constraints on the
amplitudes of the primordial power spectrum across a
broad range of scales for adiabatic initial conditions.
Adiabatic initial conditions have two orthogonal set of
modes that can be excited when the Universe starts (during
radiation domination) or at later times. These are the sine
(decaying) mode or the cosine (growing) mode. In general
both modes can be excited; however, most cosmological
analysis assumes only the cosine mode is excited and thus
the constraints on the amplitudes of the primordial power
spectrum are directly matched to the amplitude of the
cosine mode.
The sine mode numerically appears to diverge at early

times on superhorizon scales. Special care is needed to
interpret superhorizon physics, and a mapping onto physi-
cal quantities is essential. Past work attempted to normalize
the decaying mode at a superhorizon initial condition,
making the allowed amplitudes for the sine mode sensitive
to the numerical start time universe. Instead of taking a
parametrized approach, in this analysis we have mapped
the amplitude of the primordial power spectrum to the
amplitude of both the modes by looking for additional
power spectrum features for discrete scales.
We have calculated the Fisher information for both

the sine and cosine modes using a fiducial cosmology.
The initial conditions for this cosmology are normalized to
be equal for both modes on subhorizon scales. We have
computed the Fisher information for these modes for a
cosmic variance limited experiment as well as a full sky
Planck-like experiment with temperature and polarization
anisotropies. Both of the modes are best constrained on
scales k ∼ 10−3 − 10−1 Mpc−1. The sine mode is almost
equally well constrained on larger scales, ∼10−4 Mpc−1,
due to the divergent growth of its amplitude, whereas the
cosine mode is less well constrained on these scales as they
are cosmic variance limited. The angular power spectrum
for the anisotropies of the CMB is a convolution between
the primordial power spectrum and the transfer function.
Therefore allowing the primordial power spectrum to be a
freely varying function may allow the decaying mode to fit
the observed temperature anisotropies, it is unable to fit the
polarization anisotropies at the same time as they have
different transfer functions. It is worth emphasizing that
this argument only holds when we keep the cosmological
parameters fixed. If we let the cosmological parameter vary
at the same time as varying the primordial parameters one
may be able to find new points in parameter space that fit
the observed data that allow for non-negligable amounts of
power in the sine mode.
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This approach of constraining the initial conditions of
the Universe can be very useful in understanding the early
Universe models that set the initial conditions in radiation
domination. While the simplest models of single field
inflation give rise to nearly scale invariant adiabatic
perturbations, alternative early Universe models can give
rise to localized features. In the context of inflation, these
localized features will temporarily break the slow roll
behavior as the features usually come from (but are not
limited to) sharp features in the inflationary potential
[46–48]. Perhaps the more interesting sets of models to
test using our approach are those of bouncing or cyclic uni-
verses. It is possible that cosine modes in a prebounce era
source sine modes in the postbounce era. Thus any signs of
the sine mode in our current Universe might also be a sign
of a previous cycle of our Universe. This intriguing
possibility depends on how the perturbations are matched
across the bounce. There are various approaches to how this
matching is done; however, most approaches depend on the
underlying model that causes the bounce [17–21].
There are various natural extensions to this paper. We

have not looked at specific models in this paper; however,
one could try to understand what is the best way to match
perturbations across a bounce and what features they give
rise to in the primordial power spectrum. Throughout this
work we have assumed the cosmological parameters for the
sine and cosine mode are the same. This does not have to be
the case, as described above, and the best way to constrain

the primordial and cosmological parameters together would
be to do a markov chain monte carlo analysis. We leave a
complete markov chain monte carlo analysis of the adia-
batic sine and cosine modes as well as the different types of
isocurvature modes in addition to the cosmological param-
eters to future works. In addition to scalar perturbations,
one can also ask whether the most general tensor pertur-
bations have been understood. Since tensor perturbations
also have a second order differential equation that is the
equation of motion they also must have two independent
solutions and these topics are currently being explored.
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