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The coherence of the relic gravitons is investigated within a quantum mechanical perspective. After
introducing the notion and the properties of the generalized Glauber correlators valid in the tensor case, the
degrees of first- and second-order coherence are evaluated both inside and beyond the effective horizon.
The inclusive approach (encompassing the polarizations of the gravitons) is contrasted with the exclusive
approximation where the total intensity is calculated either from a single polarization or even from a single
mode of the field. While the relic gravitons reentering the effective horizon after the end of a quasi-de Sitter
stage of expansion are first-order coherent, the Hanbury Brown-Twiss correlations always exhibit a super-
Poissonian statistics with different quantitative features that depend on the properties of their initial states
and on the average over the tensor polarizations.
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I. INTRODUCTION

As gravitational wave astronomy is opening a new
observational window, the potential implications of the
current developments for the stochastic backgrounds of relic
gravitons aremore accurately investigated. In awide range of
scenarios, the early evolution of the space-time curvature
induces a stochastic background of primordial gravitational
waves with a spectral energy density extending today from
frequenciesOðaHzÞ (i.e., 1 aHz ¼ 10−18 Hz) up to frequen-
cies OðGHzÞ (i.e., 1 GHz ¼ 109 Hz). While the specific
features of differentmodelswill necessarily produce avariety
of spectral amplitudes, all the current and planned experi-
ments aiming at a direct (or indirect) detection of the relic
gravitons are (or will be) sensitive to the average intensity of
the gravitational field. In the language of the quantum theory
of optical coherence, the mean intensity of the field (or the
average multiplicity of gravitons) is related to the degree of
first-order coherence. With the goal of inspiring some of the
future endeavors, it is interesting to analyze the degrees of
quantum coherence of the relic gravitons in a systematic
perspective similar to the one already attempted in the case of
large-scale curvature inhomogeneities.
The quantum theory of optical coherence [1–3] is

customarily formulated in the context of vector fields,

but it can be generalized to the tensor and scalar cases by
appropriately including (or excluding) the relevant polar-
izations. This is, after all, the logic already followed in
quantum optical analyses where the scalar analog of the
electromagnetic field is often scrutinized by focusing
the attention on a single polarization (see e.g., Ref. [4]).
The quantum treatment of the problem (not reallymandatory
prior to the celebrated series of experiments of Hanbury
Brown and Twiss [5,6]) stems from the inadequacy of the
classical description of the degree of second-order coher-
ence of certain optical fields. According to the same
perspective, we can argue that the Young two-slit experi-
ment (i.e., first-order correlations) is not a valid criterion to
infer the quantum or classical nature of a given radiation
field, whether it be a vector field (as in the case of the
photons) or a tensor field (as in the case of the gravitons).
The interferometry originally developed by Hanbury Brown
and Twiss can be then applied to relic phonons (i.e., quanta
corresponding to large-scale curvature perturbations) and
relic gravitons as first suggested some time ago [7,8]. While
various approximations have been attempted, we intend to
generalize the Glauber theory to the case of tensor fields.
The relic gravitons are potentially produced in the early

Universe thanks to the pumping action of the gravitational
field, as suggested in Refs. [9–12] even prior to the
formulation of conventional inflationary models. The quan-
tum theory of parametric amplification, originally devel-
oped for photons [13,14], has been generalized to the case of
fields of different spins and, in particular, to the case of relic
gravitons (see e.g., Refs. [7,8] and references therein). The
gravitons produced from the vacuum or by stimulated
emission (i.e., from a specific initial state) typically have
opposite comoving momenta and lead to squeezed states
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[15]. Similar patterns arise in different scenarios including
the conventional inflationary models where the spectral
energy density has the usual quasiflat slope [16] with a low-
frequency break around 100 aHz [17]. Even if a direct
detection of relic gravitons is not behind the corner both for
technical and conceptual reasons, the degree of quantum
coherence of the large-scale correlations could be used to
disambiguate their origin, at least in principle [7,18,19]. In
light of these ambitious targets, the present investigations are
therefore mandatory. Indeed, the astrophysical events
observed by the Ligo/Virgo Collaboration (e.g., the three-
detector observations of gravitational waves from black-
hole coalescence [20], the evidence of gravitational waves
from neutron star inspiral [21], and the observation of a
50-solar-mass binary black-hole coalescence for a redshift
z ¼ 0.2 [22]) are qualitatively different from the potential
signals coming from relic gravitons. Even if the spectra
of relic gravitons are rightfully advertised as a potential
snapshot of the early Universe, their spectral energy density
between few mHz (i.e., 1 mHz ¼ 10−3 Hz) and the kHz is
rather minute.1 The signal may sharply augment when the
spectral energy density increases for frequencies larger than
the mHz as it happens when the tensor modes of the
geometry inherit a refractive index [24,25] or in the presence
of stiff phases. In these cases, it can happen that hc ¼
Oð10−25Þ [24], while the chirp amplitude hc corresponding
to the astronomical signals detected so far by the Ligo/Virgo
Collaboration isOð10−21Þ [20–22]. Even if the current upper
limits on stochastic backgrounds of relic gravitons are still
far from the final targets [26,27], the terrestrial interferom-
eters in their advanced version [28,29] will hopefully probe
chirp amplitudesOð10−25Þ corresponding to spectral ampli-
tudes h20Ωgw ¼ Oð10−11Þ. In the foreseeable future, the
Japanese Kamioka Gravitational Wave Detector [30,31]
(effectively a prosecution of the Tama-300 experiment
[32]) and the Einstein telescope [33] should both be opera-
tional in the audio band. The GEO-600 detector [34,35] is
already progressing towards a further reduction of the
quantum noise that will probably be essential for the
third generation of terrestrial wideband interferometers.
The space-borne interferometers, such as (e)Lisa (Laser
Interferometer Space Antenna) [36], Bbo (Big Bang
Observer) [37], and Decigo (Deci-hertz Interferometer
Gravitational Wave Observatory) [38,39], should (hope-
fully) operate between few mHz and the Hz, maybe after
2035. While the sensitivities of these instruments are still at
the level of targets, we can say that they should probably
range between h20Ωgw ¼ Oð10−12Þ and h20Ωgw ¼ Oð10−15Þ.
The layout of this investigation is the following. In Sec. II,

the Glauber correlators are introduced in the tensor case.

In Sec. III, the degree of first-order coherence is evaluated
both inside and beyond the effective horizon. Section IV is
devoted to the estimate of the degree of second-order
coherence, while the role of the initial stateswill be analyzed
in Sec. V. Section VI contains the concluding discussion. To
make the analysis self-contained, themost relevant technical
results have been relegated to Appendixes A and B.

II. QUANTUM COHERENCE OF RELIC
GRAVITONS

The canonical theory of optical coherence is formulated
in terms of vectors [1–4], but it is not uncommon to
consider the scalar analog of the electromagnetic field by
discussing a single polarization. The aim of this section is
to extend the Glauber approach to the case of the diver-
genceless and traceless tensor fields describing the evolu-
tion of the relic gravitons.

A. Glauber correlation functions

The transverse and traceless fluctuations of the metric are
conventionally denoted by δtgij ¼ −a2hijðxÞ where xi ≡
ðx⃗i; τiÞ and ∂ihij ¼ hij ¼ 0. The background geometry will
be taken to be a conformally flat ḡμν ¼ a2ðτÞημν where ημν
is the Minkowski metric with signature ðþ;−;−;−Þ and
aðτÞ is the scale factor in the conformal time parametriza-
tion. For practical purposes, the correlation functions
will be defined via the rescaled tensor amplitude μ̂ijðxÞ ¼
ĥijðxÞaðτÞ, and the hats will denote throughout the quantum
field operators as opposed to their classical analog. The
operators μ̂ijðxÞ consist of a positive and of a negative

frequency part, i.e., μ̂ijðxÞ ¼ μ̂ðþÞ
ij ðxÞ þ μ̂ð−Þij ðxÞ, with

μ̂ðþÞ
ij ðxÞ ¼ μ̂ð−Þ†ij ðxÞ. If jvaci is the state that minimizes the

tensor Hamiltonian when all the modes are inside
the effective horizon (for instance at the onset of

inflation), the operator μ̂ðþÞ
ij ðxÞ annihilates the vacuum

[i.e., μ̂ðþÞ
ij ðxÞjvaci ¼ 0 and hvacjμ̂ð−Þij ðxÞ ¼ 0]. In the tensor

case, the Glauber correlation function is given by

T ðn;mÞ
ði1j1Þ;…ðinjnÞ;ðinþ1jnþ1Þ;…;ðinþmjnþmÞðx1;…xn; xnþ1;…; xnþmÞ
¼ Tr½ρ̂μ̂ð−Þi1j1

ðx1Þ…μ̂ð−Þinjn
ðxnÞμ̂ðþÞ

ðinþ1jnþ1Þðxnþ1Þ…
× μ̂ðþÞ

ðinþmjnþmÞðxnþmÞ�; ð2:1Þ
where ρ̂ is the density operator representing the (generally
mixed) state of the field μ̂ij. Equation (2.1) generalizes the
Glauber correlator (normally written in the case of photons)
to the case of gravitons.2 In quantum optics, an exclusive
perspective is often invoked by purposely neglecting one of
the two polarizations of the photon [4]. This choice,

1Optimistically,Oð10−16.5Þ, at least in the case of conventional
inflationary scenarios where the absolute normalization of the
tensor power spectrum solely depends on the tensor-to-scalar
ratio rT < 0.07 [23]. The corresponding chirp amplitude is
Oð10−29Þ for a comoving frequency of Oð0.1Þ kHz.

2Instead of (nþm) vector indices [2], in Eq. (2.1), we have
(nþm) pairs of tensor indices [i.e., ði1j1Þ…ðinjnÞ…ðinþmjnþmÞ].
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motivated by specific empirical requirements,3 amounts to
expunging from the Glauber correlators the vector indices.
The same logic and notations will be used in the case of the
gravitons so that we define the scalar analog of Eq. (2.1),

Sðn;mÞðx1;…xn;xnþ1;…;xnþmÞ
¼Tr½ρ̂μ̂ð−Þðx1Þ…μ̂ð−ÞðxnÞμ̂ðþÞðxnþ1Þ…μ̂ðþÞðxnþmÞ�;

ð2:2Þ

with the proviso that now Eq. (2.2) holds in the case of a
single tensor polarization. It is finally not uncommon to treat
the Mach-Zehnder and Hanbury Brown-Twiss interferom-
etry in terms of a single mode of the field [40]. The single-
mode experiments use plane parallel light beams of which
the transverse intensity profiles are not important for the
measured quantities. In these situations, is often sufficient to
consider the light beams as exciting a single mode of the
field. This viewpoint is even more exclusive than the one
described by Eq. (2.2) where all the modes of the field are
taken into account. In the explicit estimates of the following
sections, we shall consider, in this order, the inclusive
description of Eq. (2.1), the exclusive approach of the
single-polarization approximation [i.e., Eq. (2.2)], and
finally the single-mode approximation.

B. Physical interpretations of the Glauber correlators

Equations (2.1) and (2.2) arise when considering the n-
fold delayed coincidence measurement of the tensor field at
the space-time points ðx1;…xn; xnÞ. Let us focus, in
particular, on the operator appearing inside the trace of
Eq. (2.1), namely

Q̂ði1j1Þ;…ðinjnÞðx1;…xnÞ
¼ μ̂ð−Þi1j1

ðx1Þ…μ̂ð−Þinjn
ðxnÞμ̂ðþÞ

i1j1
ðx1Þ…μ̂ðþÞ

injn
ðxnÞ; ð2:3Þ

and let us define jfagi as the state of the field after the
measurement and jfbgi as the state of the field before
the measurement. The matrix element corresponding
to the absorption of gravitons at different times and at
different locations of the hypothetical detectors can then be

expressed as hfagjμ̂ðþÞ
i1j1

ðx1Þ…μ̂ðþÞ
injn

ðxnÞjfbgi. To obtain the
rate at which the absorptions occur, we must sum over the
final states, i.e.,

X
fag

jhfagjμ̂ðþÞ
i1j1

ðx1Þ…μ̂ðþÞ
injn

ðxnÞjfbgij2 ¼

≡X
fag

hfbgjμ̂ð−Þi1j1
ðx1Þ…μ̂ð−Þinjn

ðxnÞjfagi

× hfagjμ̂ðþÞ
i1j1

ðx1Þ…μ̂ðþÞ
injn

ðxnÞjfbgi; ð2:4Þ

that coincides, thanks to the completeness relation, with the
expectation value of the operator given in Eq. (2.3), namely

hfbgjQ̂ði1j1Þ;:::ðinjnÞðx1; :::xnÞjfbgi: ð2:5Þ

Equation (2.5) becomes practically identical to Eq. (2.1)
for xnþr ¼ xr and ðinþrjnþrÞ ¼ ðirjrÞ with r ¼ 1; 2; :::; n
and n ¼ m. The Glauber correlation function in the tensor
case will therefore correspond to

T ðnÞ
ði1j1Þ;…ðinjnÞ…ði2nj2nÞðx1;…xn; xnþ1;…; x2nÞ
¼ Tr½ρ̂μ̂ð−Þði1j1Þðx1Þ…μ̂ð−ÞðinjnÞðxnÞμ̂

ðþÞ
ðinþ1jnþ1Þðxnþ1Þ…

× μ̂ðþÞ
ði2nj2nÞðx2nÞ�: ð2:6Þ

The analog of Eq. (2.6) in the single-polarization approxi-
mation follows instead from Eq. (2.2), and it is given by

SðnÞðx1;…xn; xnþ1;…; x2nÞ
¼ Tr½ρ̂μ̂ð−Þðx1Þ…μ̂ð−ÞðxnÞμ̂ðxnþ1Þ…μ̂ðx2nÞ�: ð2:7Þ

Having extended the Glauber correlators to the tensor case,
it is now useful to introduce the corresponding degrees of
quantum coherence.

C. Degrees of coherence for tensor fields

The first-order Glauber correlation function follows from
Eq. (2.6) for n ¼ 1, and it is

T ð1Þ
ði1j1Þ;ði2j2Þðx1; x2Þ ¼ hμ̂ð−Þi1j1

ðx1Þμ̂ðþÞ
i2j2

ðx2Þi: ð2:8Þ

From Eq. (2.7), we can similarly obtain the analog of
Eq. (2.8) in the single-polarization approximation:

Sð1Þðx1; x2Þ ¼ hμ̂ð−Þðx1Þμ̂ðþÞðx2Þi: ð2:9Þ

When ði1j1Þ ¼ ði2j2Þ, Eq. (2.8) describes the intensity
averaged over the tensor polarizations and shall be
denoted by

T ð1Þðx1; x2Þ ¼ hμ̂ð−Þij ðx1Þμ̂ðþÞ
ij ðx2Þi: ð2:10Þ

Equation (2.6) in the case n ¼ 2 determines the
second-order correlation function, which is relevant when
discussing the Hanbury Brown-Twiss interferometry in the
tensor case:

3In quantum optics, the single-polarization approximation is
motivated by various experiments dealing with a single polari-
zation (for instance in a cavity); this approach is exclusive since
the experiments are typically conceived by only considering a
single polarization. Since in the case of relic gravitons the initial
conditions are not observationally accessible, it is useful consider
also an inclusive approach where the sum over the polarizations is
not neglected in the definition of the intensity and the quantum
state of relic gravitons is unpolarized.
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T ð2Þ
ði1j1Þ;ði2j2Þði3j3Þ;ði4j4Þðx1; x2; x3; x4Þ
¼ hμ̂ð−Þi1j1

ðx1Þμ̂ð−Þi2j2
ðx2Þμ̂ðþÞ

i3j3
ðx3Þμ̂ðþÞ

i4j4
ðx4Þi: ð2:11Þ

Similarly from Eq. (2.7), we can obtain the analog of
Eq. (2.11) in the single-polarization approximation:

Sð2Þðx1; x2; x3; x4Þ ¼ hμ̂ð−Þðx1Þμ̂ð−Þðx2Þμ̂ðþÞðx3Þμ̂ðþÞðx4Þi:
ð2:12Þ

Equations (2.11) and (2.12) can describe the correlations of
the intensities at two separate space-time points. This choice
corresponds to the interferometric strategy pioneered by
Hanbury Brown and Twiss (HBT) [5,6] as opposed to the
standard Young-type experiments where only amplitudes
(rather than intensities) are allowed to interfere. The appli-
cations of the HBT ideas range from stellar astronomy [5,6]
to subatomic physics [41]. The interference of the intensities
has been used to determine the hadron fireball dimensions
[42,43] corresponding to the linear size of the interaction
region in proton-proton collisions. To disambiguate the
possible origin of large-scale curvature perturbations [7,8]
and of relic gravitons, probably the only hope is the analysis
of the degree of second-order coherence, as we shall argue.
Since the intensity must be Hermitian [40], the standard
HBT correlators follow from Eqs. (2.11) and (2.12) by
requiring

x2 ¼ x3; ði2j2Þ ¼ ði3j3Þ;
x4 ¼ x1; ði1j1Þ ¼ ði4j4Þ: ð2:13Þ

Thus,with the identifications (2.13), the intensity correlators
will be given by

T ð2Þðx1;x2Þ¼ hμ̂ð−Þij ðx1Þμ̂ð−Þkl ðx2Þμ̂ðþÞ
kl ðx2Þμ̂ðþÞ

ij ðx1Þi; ð2:14Þ

Sð2Þðx1;x2Þ¼ hμ̂ð−Þðx1Þμ̂ð−Þðx2Þμ̂ðþÞðx2Þμ̂ðþÞðx1Þi: ð2:15Þ

Note that Eq. (2.14) does depend on the polarizations
through the sum over the tensor indices, while the sum
does not appear in Eq. (2.15). From the results of Eqs. (2.8)–
(2.10) and of Eqs. (2.13)–(2.15), the corresponding degrees
of quantum coherence can be easily obtained. More spe-
cifically, the degrees of first-order coherence are

gð1Þðx1; x2Þ ¼
T ð1Þðx1; x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T ð1Þðx1Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T ð1Þðx2Þ
q ;

ḡð1Þðx1; x2Þ ¼
Sð1Þðx1; x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sð1Þðx1Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sð1Þðx2Þ
q : ð2:16Þ

When the degree of first-order coherence has an overline, it
means that it is evaluated in the single-polarization

approximation. The single-mode approximation for the
degrees of coherence will be distinguished by a subscript

(i.e., gð1Þs ). For the sake of conciseness in Eq. (2.16), the
following notations have been used,

T ð1Þðx1Þ¼T ð1Þðx1;x1Þ; T ð1Þðx2Þ¼T ð1Þðx2;x2Þ;
Sð1Þðx1Þ¼Sð1Þðx1;x1Þ; Sð1Þðx2Þ¼Sð1Þðx2;x2Þ; ð2:17Þ

and the same notations spelled out in Eq. (2.17) will be used
throughout. Finally, the degrees of second-order coherence
for the relic gravitons follow from Eqs. (2.14) and (2.15),
and they are given by

gð2Þðx1; x2Þ ¼
T ð2Þðx1; x2Þ

T ð1Þðx1ÞT ð1Þðx2Þ
;

ḡð2Þðx1; x2Þ ¼
Sð2Þðx1; x2Þ

Sð1Þðx1ÞSð1Þðx2Þ
: ð2:18Þ

As in the case of the degree of first-order coherence, the
overline refers to the case of a single polarization; as usual,

gð2Þs will denote the degree of second-order coherence in the
single-mode approximation.

III. FIRST-ORDER COHERENCE
OF RELIC GRAVITONS

The field operators describing the positive and negative
frequency parts can be expressed as

μ̂ð−Þðx⃗; τÞ ¼
ffiffiffi
2

p
lP

ð2πÞ3=2
X
α

Z
d3kffiffiffiffiffi
2k

p eðαÞij â†
−k⃗α

ðτÞe−ik⃗·x⃗; ð3:1Þ

μ̂ðþÞðx⃗; τÞ ¼
ffiffiffi
2

p
lP

ð2πÞ3=2
X
α

Z
d3kffiffiffiffiffi
2k

p eðαÞij âk⃗αðτÞe−ik⃗·x⃗; ð3:2Þ

where lP ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
and eðαÞij (with α ¼ ⊗, ⊕) denotes the

polarization tensor of the graviton. The creation and anni-
hilation operators obey ½âk⃗α; â†p⃗β� ¼ δð3Þðk⃗ − p⃗Þδαβ, and
their evolution follows from the quantum Hamiltonian
discussed in Appendix A and here reported in the absence
of a coherent component,4

ĤðtÞ ¼ 1

2

Z
d3p

X
α

fp½â†p⃗αâp⃗α þ â−p⃗αâ
†
−p⃗α�

þ λâ†−p⃗αâ
†
p⃗α þ λ�âp⃗αâ−p⃗αg; ð3:3Þ

where λ ¼ iH ¼ ia0=a and, as alreadymentioned, the prime
will denote throughout the discussion a derivation with
respect to the conformal time coordinate. Equation (3.3)

4The coherent component will be separately analyzed in
Sec. V. To avoid digressions, some technical aspects involving
the notational conventions have been relegated to Appendix A.
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includes the sum over the two polarizations of the gravitons
and is the continuous-mode generalization of the quantum
mechanical Hamiltonian of Mollow and Glauber [13] (see
also Ref. [44]). In the analysis of the evolution of the scalar
and tensor modes of the geometry, the quantum optical
analogy was first pointed out in Refs. [15,45].

A. General expressions for the degree
of first-order coherence

The evolution of âk⃗;αðτÞ and â†
−k⃗;α

ðτÞ is determined by

the Hamiltonian of Eq. (3.3) via the corresponding equa-
tions in the Heisenberg representation [see Eq. (A9)]. Their
solution is then expressed in terms of the values of the
creation and annihilation operators at the reference time τi,

âp⃗;αðτÞ ¼ up;αðτ; τiÞb̂p⃗;αðτiÞ − vp;αðτ; τiÞb̂−p⃗;αðτiÞ; ð3:4Þ

â†−p⃗;αðτÞ ¼ u�p;αðτ; τiÞb̂†−p⃗;αðτiÞ − v�p;αðτ; τiÞb̂�p⃗;αðτiÞ; ð3:5Þ

where the subscript p⃗ denotes the comoving three-momen-
tum, while the subscript α refers to the polarization. All the
wavelengths that are today of the order of (or smaller than)
the Hubble radius were presumably inside the effective
horizon at τi (i.e., kτi ≫ 1) as it happens, for instance, in
the case of conventional inflationary models. The two
complex functions up;αðτ; τiÞ and vp;αðτ; τiÞ appearing in
Eqs. (3.4) and (3.5) are then solely determined by the
specific dynamical evolution of the pump field λ appearing
in Eq. (3.3), but they are also subjected to the condition
jvp;αðτ; τiÞj2 − jup;αðτ; τiÞj2 ¼ 1 since the commutation
relations between the two sets of creation and annihilation
operators must be preserved. For each of the two tensor
polarizations, up;αðτ; τiÞ and vp;αðτ; τiÞ depend upon one
amplitude and two phases, and in spite of their specific
unitary evolution, they can always be parametrized as

uk;αðτ; τiÞ ¼ e−iδk;α cosh rk;α;

vk;αðτ; τiÞ ¼ eiðθk;αþδk;αÞ sinh rk;α; ð3:6Þ
where δk;α, θk;α, and rkα are all real and depend on τ and τi.
The canonical transformation of Eqs. (3.4) and (3.5) is
generated by the squeezing operator SðzÞ and by the
rotation operator RðδÞ,

SðzÞ ¼ eσðzÞ=2; RðδÞ ¼ e−inðδÞ=2; ð3:7Þ
where σðzÞ and nðδÞ involve both an integral over the
modes and a sum over the two tensor polarizations5:

σðzÞ ¼
X
λ

Z
d3k½z�kλb̂k⃗;λb̂−k⃗;λ − zk;λb̂

†
−k⃗;λ

b̂†
k⃗;λ
�; ð3:8Þ

nðδÞ ¼
X
λ

Z
d3kδk;λ½b̂†k⃗;λb̂k⃗;λ þ b̂−k⃗;λb̂

†
−k⃗;λ

�: ð3:9Þ

Note that δk;λ is real, while zk;λ ¼ rk;λeiθk;λ ; the parametri-
zation of Eq. (3.6) follows from Eqs. (3.4) and (3.5) by
appreciating that6

R†ðδÞS†ðzÞb̂k⃗;αSðzÞRðδÞ
¼ e−iδk;α coshrkαb̂k⃗;α−eiðθk;αþδk;αÞ sinhrk;αb̂

†
−k⃗;α

; ð3:10Þ

R†ðδÞS†ðzÞb̂†
−k⃗;α

SðzÞRðδÞ
¼ eiδk;α cosh rkαb̂

†
−k⃗;α

− e−iðθk;αþδk;αÞ sinh rk;αb̂k⃗;α: ð3:11Þ

Recalling the specific form of Eqs. (3.8) and (3.9), the
squeezed states of the field will then be denoted as
jfzδgi ¼ SðzÞRðδÞjvaci. From the Hamiltonian (3.3),
the evolution equations for rk;λ, θk;λ, and δk;λ can be easily
derived and are reported in Eqs. (A15) and (A16). Inserting
Eqs. (3.1) and (3.2) into Eq. (2.8) and using Eqs. (3.4) and
(3.5), we obtain the explicit form of the first-order Glauber
correlation function given in Eq. (2.8):

T ð1Þ
ijklðx1;x2Þ¼ hμ̂ð−Þij ðx1Þμ̂ðþÞ

ij ðx2Þi

¼ 1

ð2πÞ3
Z

d3kffiffiffiffiffi
2k

p
Z

d3pffiffiffiffiffiffi
2p

p
X
α

X
β

eðαÞij eðβÞkl

×e−iðk⃗·x⃗1þp⃗·x⃗2Þv�k;αðτ1;τiÞ
×v�k;βðτ2;τiÞhb̂k⃗;αðτiÞb̂†−p⃗;βðτiÞi: ð3:12Þ

If the operator b̂k⃗;αðτiÞ annihilates the initial state
at τi, the expectation value appearing in the last line of
Eq. (3.12) corresponds to δð3Þðk⃗þ p⃗Þδαβ. However, to
account for the possible presence of a finite number
of gravitons at τi, the expectation value shall be modified
as hb̂k⃗;αðτiÞb̂†−p⃗;βðτiÞi ¼ ½n̄kðτiÞ þ 1�δð3Þðk⃗þ p⃗Þδαβ, where
n̄kðτiÞ denotes the average multiplicity of the initial state.
With these specifications, Eq. (3.12) becomes

T ð1Þ
ijklðx1;x2Þ¼

1

ð2πÞ3
Z

d3k
2k

X
α

eðαÞij eðαÞkl v
�
k;αðτ1;τiÞv�k;αðτ2;τiÞ

× ½n̄kðτiÞþ1�e−ik⃗·r⃗; ð3:13Þ
5These two operators are typically expressed for a discrete set

of modes, but in the present context, their continuous-mode
generalization must be considered as it happens in the derivation
of the ground state wave function of an interacting Bose gas at
zero temperature [46,47]; the same approach has been used to
describe the superfluid ground state [48,49].

6Note, incidentally, that δk;α denotes the phase δ with modulus
of three-momentum k and polarization α; this quantity has noting
to do with the Kroeneker δαβ where α and β are instead two
generic tensor polarizations. With this specification, no confusion
is possible.
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where r⃗ ¼ ðx⃗1 − x⃗2Þ. In the standard situation, the relic
graviton background is not polarized so that the uk;α and
vk;α are the same for each of the two polarizations:

vk;⊗ðτ; τiÞ ¼ vk;⊕ðτ; τiÞ ¼ vkðτ; τiÞ;
uk;⊗ðτ; τiÞ ¼ uk;⊕ðτ; τiÞ ¼ ukðτ; τiÞ: ð3:14Þ

Inserting the condition (3.14) into Eq. (3.13), we have that
the first-order correlator becomes

T ð1Þ
ijklðx⃗1;x⃗2;τ1;τ2Þ

¼ 2

ð2πÞ3
Z

d3k
k

Aijklðk̂Þv�kðτ1;τiÞv�kðτ2;τiÞ½n̄kðτiÞþ1�e−ik⃗·r⃗;

ð3:15Þ

Aijklðk̂Þ¼
1

4
½pikðk̂Þpjlðk̂Þþpilðk̂Þpjkðk̂Þ−pijðk̂Þpklðk̂Þ�;

ð3:16Þ

where pijðk̂Þ ¼ ½δij − k̂ik̂j�. The degree of first-order coher-
ence is determined by Eq. (3.16) with k ¼ i and l ¼ j,

T ð1Þðx⃗1; x⃗2; τ1; τ2Þ ¼ T ð1Þ
ijijðr⃗; τ1; τ2Þ

¼ 1

π2

Z
kdkj0ðkrÞv�kðτ1; τiÞvkðτ2; τiÞ

× ½n̄kðτiÞ þ 1�; ð3:17Þ

where r ¼ jx⃗1 − x⃗2j and j0ðkrÞ ¼ sin kr=ðkrÞ is the zeroth-
order spherical Bessel function [50,51]. In the single-
polarization approximation the analog of Eq. (3.17) reads

Sð1Þðx⃗1; x⃗2; τ1; τ2Þ ¼
1

4
T ð1Þðx⃗1; x⃗2; τ1; τ2Þ: ð3:18Þ

In Eq. (3.18), the factor 4 comes from the sum over the
polarizations that is counted in T ð1Þðr⃗; τ1; τ2Þ but not in
Sð1Þðr⃗; τ1; τ2Þ. As a consequence, the degree of first-order
coherence is

gð1Þðr; τ1; τ2Þ ¼
T ð1Þðx⃗1; x⃗2; τ1; τ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ð1Þðτ1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ð1Þðτ2Þ

q ¼ ḡð1Þðr; τ1; τ2Þ

¼
R
kdkj0ðkrÞv�kðτ1; τiÞvkðτ2; τiÞ½n̄kðτiÞ þ 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

kdkjvkðτ1; τiÞj2½n̄kðτiÞ þ 1�
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

kdkjvkðτ2; τiÞj2½n̄kðτiÞ þ 1�
q : ð3:19Þ

The degree of first-order coherence computed in the single-
polarization approximation, i.e., ḡð1Þðr; τ1; τ2Þ, coincides
with gð1Þðr; τ1; τ2Þ because of Eq. (3.18). When τ1 → τ2
and r → 0, we also have that

lim
τ1→τ2

gð1Þð⃗x1; ⃗x1; τ1; τ2Þ ¼ lim
τ1→τ2

ḡð1Þð⃗x2; ⃗x2; τ1; τ2Þ ¼ 1:

ð3:20Þ

Thus, in the zero-delay limit and for spatially coincident
points, the relic gravitons are always first-order coherent.
The result implied by Eq. (3.20) is actually more general,
and it holds in all relevant physical regimes, as we shall
discuss in the following three subsections.

B. Degree of first-order coherence
beyond the effective horizon

For the sake of concreteness, we shall first consider
the situation where the scale factor evolves as a power
of the conformal time [i.e., aðτÞ ¼ ð−τ=τ1Þ−β for
τ < −τ1]. The explicit form of ukðτÞ and vkðτÞ follows
then from the solution of Eqs. (A12) and (A13) with the

correct boundary conditions for τ → −∞; the result is
given by7

ukðτÞ ¼
i
2
N

ffiffiffiffiffiffiffiffi
−kτ

p �
Hð1Þ

νþ1ð−kτÞ þ
�
2ν

kτ
− i

�
Hð1Þ

ν ð−kτÞ
�
;

ð3:21Þ

vkðτÞ¼−
i
2
N � ffiffiffiffiffiffiffiffi

−kτ
p �

Hð2Þ
νþ1ð−kτÞþ

�
2ν

kτ
− i

�
Hð2Þ

ν ð−kτÞ
�
;

ð3:22Þ

where N ¼ ffiffiffiffiffiffiffiffi
π=2

p
eiπðνþ1=2Þ=2 and ν ¼ ðβ þ 1=2Þ. In the

exact de Sitter case, β → 1 and ν → 3=2, and the results
of Eqs. (3.21) and (3.22) then imply

7Equations (3.21) and (3.22) follow from the solutions of
Eqs. (A12) and (A13). The linear combinations fk ¼ ðuk − v�kÞ=ffiffiffiffiffi
2k

p
and gk ¼ −iðuk þ v�kÞ

ffiffiffiffiffiffiffiffi
k=2

p
satisfy two decoupled equations

that are solved in terms of Hankel functions of first and second
kinds [50,51].
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ukðτÞ¼
�
1−

i
2kτ

�
e−ikτ; vkðτÞ¼−

i
2kτ

eikτ: ð3:23Þ

When the given wavelength is larger than the effective
horizon (i.e., kτ ≪ 1), Eq. (3.23) implies that ukðτÞ≃
vkðτÞ ≃ ið−2kτÞ−1. The squeezing parameters and the
squeezing phases can be determined directly from
Eqs. (A15) and (A16), but the same result also follows from
the explicit expressions of ukðτÞ and vkðτÞ with the help of
Eq. (3.6). For instance, in the case of an exact de Sitter
background of Eq. (3.23), the squeezing parameter and the
two corresponding phases are

rk ¼ arcsinhy → − ln ð−kτÞ þ k2τ2 þOðk4τ4Þ; ð3:24Þ

δk¼ kτ− arctany→−kτ−
π

2
þ8

3
k3τ3þOðk5τ5Þ; ð3:25Þ

θk ¼
π

2
þ arctany→ 2kτþπ−

8

3
k3τ3þOðk5τ5Þ; ð3:26Þ

where y ¼ H=ð2kÞ ¼ 1=ð−2kτÞ. The conformal time coor-
dinate τ is negative during an exact de Sitter phase so that
y → −∞ for typical wavelengths larger than the effective
horizon. In the same limit, it also follows from Eqs. (3.25)
and (3.26) that the combination ðδk þ θk=2Þ is practically
vanishing to an excellent approximation:

lim
jkτj≪1

�
δk þ

θk
2

�
→

4

3
k3τ3 þOðk5τ5Þ ≪ 1: ð3:27Þ

While the result of Eq. (3.27) holds in the exact de Sitter case,
in the quasi-de Sitter case, we have instead8 ν ¼ ð3 − ϵÞ=
½2ð1 − ϵÞ�. In the quasi-de Sitter case, the results of Eq. (3.22)
can then be expanded by recalling that for the range of
parameters characteristic of the slow-roll dynamics (i.e.,
ϵ < 1) we have

Hð2;1Þ
ν ðzÞ¼� i

π

�
z
2

�
−ν
�
ΓðνÞþ

�
z
2

�
2

Γðν−1ÞþOðz4Þ
�
;

ð3:28Þ

where the plus and theminus apply to theHankel functions of
second and first kinds, respectively [50,51]. Since to leading
order in jkτj there is a cancellation in vkðτÞ and ukðτÞ, the
correct asymptotic result follows from Eq. (3.28) by keeping
the next-to-leading correction in jkτj,

ukðτÞ ¼
eiπðν−3=2Þ=2

2
ffiffiffiffiffiffi
2π

p ΓðνÞð−kτÞ−νþ1=2

�
iþ x

2

�
;

vkðτÞ ¼
e−iπðν−3=2Þ=2

2
ffiffiffiffiffiffi
2π

p ΓðνÞð−kτÞ−νþ1=2

�
iþ x

2

�
; ð3:29Þ

which coincides with Eq. (3.23) for ν ¼ 3=2 and in
the limit jkτj ≪ 1. According to Eq. (3.29), the
asymptotic values of the phases appearing in Eqs. (3.25)
and (3.26) are given by δk ¼ πð1=2 − νÞ=2þOðkτÞ and by
ðθk þ δkÞ ¼ πð5=2 − νÞ=2þOðkτÞ. Conversely, in the
quasi-de Sitter case, the combination ðδk þ θk=2Þ of
Eq. (3.27) is much larger than Oðk3τ3Þ, i.e.,

lim
jkτj≪1

�
δk þ

θk
2

�
¼ πð3 − 2νÞ

4
þOðkτÞ

≃ −πϵ=2þOðϵ2Þ þOðkτÞ: ð3:30Þ

From the results obtained so far, it then follows that the
degrees of first-order coherence of Eq. (2.16) can be
explicitly computed from Eq. (3.29) when the relevant
wavelengths are larger than the effective horizon:

gð1Þðr; τ1; τ2Þ ¼
R
kdkj0ðkrÞjk2τ1τ2j1=2−ν½n̄kðτiÞ þ 1�R

kdkjk2τ1τ2j1=2−ν½n̄kðτiÞ þ 1�

¼
R
k2ð1−νÞdkj0ðkrÞ½n̄kðτiÞ þ 1�R

k2ð1−νÞdk½n̄kðτiÞ þ 1�
≡ ḡð1Þðr; τ1; τ2Þ: ð3:31Þ

Equation (3.31) shows that the degrees of first-order
coherence defined in Eq. (2.16) coincide and the single-
polarization approximation gives the same result of the
exact Glauber correlator. Since the dependence on τ1 and
τ2 disappears from Eq. (3.31), the degree of first-order
coherence goes always to 1 beyond the effective horizon.
Equation (3.31) explains and justifies the analog result
already mentioned in the zero-delay limit [see Eq. (3.20)].

C. Degree of first-order coherence inside
the effective horizon

When the expansion rate exceeds the wave number, a
mode is said to be beyond the effective horizon; this does
not necessarily have anything to do with causality [52]. The
qualitative description of the evolution of the tensor modes
of the geometry stipulates that a given wavelength exits the
effective horizon (also dubbed sometimes Hubble radius)
at a typical conformal time τex (for instance during an
inflationary stage of expansion) and approximately reenters
at τre, when the Universe still expands but at a decelerated
rate. Inside the effective horizon, i.e., in the limit jkτ ≫ 1,
Eqs. (3.24)–(3.26), the squeezing parameters become

8Note that ϵ ¼ ½H2 −H0�=H2 is the slow-roll parameter
written in terms of the conformal time parametrization consis-
tently employed in the present paper.
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rk ≪ 1; δk≃kτ; θk≃π=2; δkþ
θk
2
≃kτþπ

4
≫ 1:

ð3:32Þ

By taking the large argument limits of the corresponding
Hankel functions in Eqs. (3.21) and (3.22), ukðτÞ and vkðτÞ
can be determined when jkτj ≫ 1,

ukðτÞ ¼ e−ikτ
�
1þO

�
1

kτ

��
;

vkðτÞ ¼ −eikτ
�
1þO

�
1

kτ

��
; ð3:33Þ

implying δk ≃ kτ and ðθk þ δkÞ ≃ kτ. These results also
imply that δk þ θk=2 ≃ kτ ≫ 1 and apply when the modes
of the fields are inside the effective inflationary horizon.
Equation (3.33) is, however, not applicable during the
radiation of matter phases but only describes the modes
inside the effective horizon during the inflationary phase.
To compute the degrees of coherence inside the effective

horizon after the end of inflation, it is simpler to avoid a
specific exact solution such as the ones discussed in
Eqs. (3.21)–(3.22) and directly work within an appropriate
Wentzel-Kramers-Brillouin (WKB) approximation where
the evolution of uk and vk will be approximate but more
generally applicable. The strategy will be to ensure the
correct normalization of ukðτÞ and vkðτÞ in the limit kτ ≫ 1
and then compute their form when the modes reenter either
during the radiation-dominated phase or during the matter
epoch. This analysis has been relegated to Appendix B, and
it can be found in the current literature. As a consequence,
the functions ukðτÞ and vkðτÞ can be expressed as

ukðτÞ ¼
��

1 −
iH
2k

�
cþðkÞe−ikτ −

iH
2k

c−ðkÞeikτ
�

→ cþðkÞe−ikτ; ð3:34Þ

vkðτÞ ¼
�
iH
2k

c�þðkÞeikτ −
�
1 −

iH
2k

�
c�−ðkÞe−ikτ

�

→ −c�−ðkÞe−ikτ; ð3:35Þ

where c�ðkÞ have been determined in Eq. (B4) from the
exact matching across the turning points τex and τre (see
also Refs. [15,24]). As a function of kτ, the explicit
expressions of Eqs. (3.34)–(3.35) hold in the limit
kτ ≫ 1. The values of c�ðkÞ depend on the reentry and
on the exit of the given mode, and they can be usefully
approximated from Eq. (B4) as9

c�ðkÞ ¼
e−iν�ðkÞ

2i

��
are
aex

��
i ∓ Hre

k

�
� ð1þ iÞ

�
aex
are

��
;

ð3:36Þ

where ν�ðkÞ ¼ kðτex ∓ τreÞ and the relation jcþðkÞj2 −
jc−ðkÞj2 ¼ 1 holds explicitly. Equation (3.36) follows from
the results of Appendix B, and it implies that, for wave-
lengths shorter than the effective horizon, the degree of
first-order coherence becomes

gð1Þðr;τ1;τ2Þ¼ ḡð1Þðr;τ1;τ2Þ

¼
R
kdkj0ðkrÞjc−ðkÞj2½n̄kðτiÞþ1�e−ikðτ1−τ2ÞR

kdkjc−ðkÞj2½n̄kðτiÞþ1� :

ð3:37Þ
The result of Eq. (3.37) goes to 1 in the zero-delay limit;
conversely, if τ1 ≠ τ2, the degree of first-order coherence
computed from Eq. (3.37) is always smaller than 1; i.e.,
jgð1Þð0; τ1; τ2Þj ≤ 1 where the sign of equality holds
for τ1 ¼ τ2.

D. Single-mode approximation

If the integrals over the modes and the sum over the
polarizations are replaced by a single quantum oscillator,
the two terms appearing in the exponent of the operator
SðzÞ become

X
β

Z
d3kz�kβâk⃗βâ−k⃗β →

z�

2
â2;

X
β

Z
d3kzkβâ

†
−k⃗β

â†
k⃗β

→
z
2
â†2: ð3:38Þ

This is, in a nutshell, the idea of the single-mode approxi-
mation, which is not fully realistic since, in Eq. (3.38), the
squeezing parameter and the phases must anyway follow
the dynamics coming from the full Hamiltonian. With these
caveats, the single-mode approximation is crude but
interesting, at least for comparison. We shall denote with
the calligraphic style the continuous-mode operators, while
the single-mode operators will be denoted by the standard
capital letter in roman style; so, for instance,

SðzÞ→SðzÞ¼e
z�
2
â2−z

2
â†2 ; RðδÞ→RðδÞ¼e−

i
2
δâ†â; ð3:39Þ

where z ¼ reiθ, α ¼ jαjeiφ and so on and so forth. Using
the properties of Eq. (3.39), we will have, for instance,

R†ðδÞS†ðzÞâSðzÞRðδÞ¼ e−iδ coshrâ−eiðθþδÞ sinhrâ†:

ð3:40Þ

The degree of first-order coherence in the single-mode case
will then be given by

9We correct here a minor typographical error in the second
paper of Ref. [24] where τex and τre have been interchanged in the
phase ν�.
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gð1Þs ðτ1; τ2Þ ¼
hâ†ðτ1Þâðτ2Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hâ†ðτ1Þâðτ1Þi
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hâ†ðτ2Þâðτ2Þi
p ; ð3:41Þ

where the subscript s reminds us that we are here discussing
the single-mode approximation. In spite of the statistical

properties of the state, gð1Þs → 1 in the zero-delay limit10

(i.e., for τ1 → τ2). The single-mode limit can also be
implemented in a slightly different way by introducing
two different oscillators ½ĉ; ĉ†� ¼ 1 and ½d̂; d̂†� ¼ 1 (with
½ĉ; d̂� ¼ 0). In this case, the two-mode squeezing and
rotation operators [53,54] [analogs of RðδÞ and SðzÞ but
valid in the two-mode case] imply

R̄†ðδÞS̄†ðzÞĉ S̄ðzÞR̄ðδÞ¼ e−iδ coshrĉ−eiðθþδÞ sinhrd̂†;

ð3:42Þ

R̄†ðδÞS̄†ðzÞd̂ S̄ðzÞR̄ðδÞ ¼ e−iδ cosh rd̂ − eiðθþδÞ sinh rĉ†:

ð3:43Þ

In this case, the sum â ¼ ðĉþ d̂Þ= ffiffiffi
2

p
obeys ½â; â†� ¼ 1.

By summing Eqs. (3.42) and (3.43), Eq. (3.40) is
recovered. The degree of first-order coherence will then
follow, with the same properties, from Eq. (3.41). In the
approach of Eqs. (3.42) and (3.43), the multiplicity of a
given state is the sum of the individual multiplicities,
i.e., hzjâ†âjzi ¼ ðhzjĉ†ĉjzi þ hzjd̂†d̂jziÞ=2 ¼ sinh2 r.

IV. SECOND-ORDER COHERENCE OF RELIC
GRAVITONS

A. General expressions for the degree of
second-order coherence

The Hanbury Brown-Twiss correlations preliminary pre-
sented in Eq. (2.14) will now be estimated. For the sake of
convenience, the discussion mirrors exactly the same steps
of the previous section. After determining the correlation
functions, the degrees of second-order coherence will be
explicitly discussed in various limits. From the expressions
of μ̂ð−ÞðxÞ and μ̂ðþÞðxÞ, Eq. (2.14) becomes

T ð2Þðx1; x2Þ ¼
1

ð2πÞ6
Z

d3k1ffiffiffiffiffiffiffi
2k1

p
Z

d3k2ffiffiffiffiffiffiffi
2k2

p
Z

d3k3ffiffiffiffiffiffiffi
2k3

p
Z

d3k4ffiffiffiffiffiffiffi
2k4

p e−iðk⃗1þk⃗4Þ·x⃗1e−iðk⃗2þk⃗3Þ·x⃗2

×
X
α1

X
α2

X
α3

X
α4

eðα1Þij ðk̂1Þeðα2Þkl ðk̂2Þeðα3Þkl ðk̂3Þeðα4Þij ðk̂4Þhâ†−k⃗1;α1ðτ1Þâ
†
−k⃗2;α2

ðτ2Þâk⃗3;α3ðτ2Þâk⃗4;α4ðτ1Þi: ð4:1Þ

The expectation value appearing in the last line of Eq. (4.1) must be first referred to the initial time τi when, by
definition, all the relevant modes are inside the effective horizon (i.e., kτi ≫ 1). For this purpose, using Eqs. (3.4) and (3.5),
we can write

hâ†
−k⃗1;α1

ðτ1Þâ†−k⃗2;α2ðτ2Þâk⃗3;α3ðτ2Þâk⃗4;α4ðτ1Þi¼ v�k1;α1ðτ1;τiÞv�k2;α2ðτ2;τiÞvk3;α3ðτ2;τiÞvk4;α4ðτ1;τiÞhb̂k⃗1;α1 b̂k⃗2;α2 b̂
†
−k⃗3;α3

b̂†
−k⃗4;α4

i
þv�k1;α1ðτ1;τiÞu�k2;α2ðτ2;τiÞuk3;α3ðτ2;τiÞvk4;α4ðτ1;τiÞhb̂k⃗1;α1 b̂

†
k⃗2;α2

b̂−k⃗3;α3 b̂
†
−k⃗4;α4

i:
ð4:2Þ

Since the relic graviton background is not polarized,
as in Eq. (3.13), the standard quantum-mechanical
initial conditions imply uk;⊕ðτ; τiÞ ¼ uk⊗ðτ; τiÞ ¼ ukðτ; τiÞ
and vk;⊕ðτ; τiÞ ¼ vk⊗ðτ; τiÞ ¼ vkðτ; τiÞ. If the initial state is
not the vacuum11 at τi, the expectation value can be
expressed as hb̂†⃗k;αðτiÞb̂ ⃗p;βðτiÞi ¼ n̄kðτiÞδαβδð3Þð⃗k − ⃗pÞ,
where n̄kðτiÞ is the average multiplicity of the initial state
and the standard case vacuum result will be recovered from
the final HBT correlations in the limit n̄kðτiÞ → 0. After

inserting into Eq. (4.1) the results of Eq. (4.2), the explicit
form of the HBT correlations is

T ð2Þðx1; x2Þ ¼
1

ð2πÞ6
Z

d3k
k

Z
d3p
p

½n̄kðτiÞ þ 1�½n̄pðτiÞ þ 1�

× f4jvkðτ1; τiÞj2jvpðτ2; τiÞj2

þ 1

4
½1þ ðk̂ · p̂Þ2�½1þ 3ðk̂ · p̂Þ2�

× ½v�kðτ1; τiÞv�pðτ2; τiÞvkðτ2; τiÞvpðτ1; τiÞ
þ v�kðτ1; τiÞu�kðτ2; τiÞupðτ2; τiÞ
× vpðτ1; τiÞ�e−iðk⃗−p⃗Þ·r⃗g: ð4:3Þ

Equation (4.3) differs from the single-polarization approxi-
mation described by Eqs. (2.12) and (2.15). In the

10The second-order correlations in the single-mode approxi-
mation will not be that trivial but they will instead depend on the
specific properties of the quantum state.

11As already mentioned in Sec. III, this parametrization of the
initial state will be complemented by the considerations of Sec. V,
where a more specific discussion will be outlined.
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single-polarization approximation, Eq. (4.3) must then be
replaced by the result that follows, in the same physical
situation, from Eqs. (2.12) and (2.15):

Sð2Þðx1;x2Þ¼
1

4ð2πÞ6
Z

d3k
k

Z
d3p
p

½n̄kðτiÞþ1�½n̄pðτiÞþ1�

×fjvkðτ1;τiÞj2jvpðτ2;τiÞj2
þ½v�kðτ1;τiÞv�pðτ2;τiÞvkðτ2;τiÞvpðτ1;τiÞ
þv�kðτ1;τiÞu�kðτ2;τiÞupðτ2;τiÞvpðτ1;τiÞ�
×e−iðk⃗−p⃗Þ·r⃗g: ð4:4Þ

Following the same logic, the explicit expression given in
Eq. (4.4) together with Eq. (3.17) shall be inserted into the
second expression of Eq. (2.18), and this will lead to the
explicit expression of the degree of second-order coherence
in the single-polarization approximation. The results of
Eqs. (4.3) and (4.4) imply that the degrees of second-order
coherence of Eq. (2.18) only depend on r ¼ jx⃗1 − x⃗2j:

gð2Þðr; τ1; τ2Þ ¼
T ð2Þðr; τ1; τ2Þ

T ð1Þðτ1ÞT ð1Þðτ2Þ
;

T ð1ÞðτÞ ¼ 1

π2

Z
kdkjvkðτÞj2½n̄kðτiÞ þ 1�; ð4:5Þ

ḡð2Þðr; τ1; τ2Þ ¼
Sð2Þðr; τ1; τ2Þ

Sð1Þðτ1ÞSð1Þðτ2Þ
;

Sð1ÞðτÞ ¼ 1

4π2

Z
kdkjvkðτÞj2½n̄kðτiÞ þ 1�: ð4:6Þ

B. Degree of second-order coherence beyond the
effective horizon

When the wavelengths of the gravitons exceed the
effective horizon, the functions ukðτ; τiÞ and vkðτ; τiÞ are
given by the result of Eqs. (3.29). Using Eq. (4.3), to leading
order in kτ1 ≪ 1 and pτ2 ≪ 1, the HBT correlations
become

T ð2Þðr;τ1;τ2Þ¼
24νΓ4ðνÞ
4096π8

Z
kdk½n̄kðτiÞþ1�jkτ1j1−2ν

×
Z

pdp½n̄pðτiÞþ1�jpτ2j1−2ν

×Eðk;p;rÞ½1þOðk2τ21Þ�½1þOðp2τ22Þ�;
ð4:7Þ

where the function Eðk; p; rÞ appearing in Eq. (4.7) can be
expressed as

Eðk; p; rÞ ¼
Z

dk̂
Z

dp̂

�
1þ 1

8
½1þ ðk̂ · p̂Þ2�½1þ 3ðk̂ · p̂Þ2�e−iðk⃗−p⃗Þ·r⃗

�

¼ 704π2

15
−
352π2

45
ðk2r2 þ p2r2Þ þOðk4r4Þ þOðp4r4Þ þOðk2p2r4Þ: ð4:8Þ

In Eq. (4.8), dk̂ and dp̂ denote the angular integrations over the directions of the comoving three-momenta. The result of
Eqs. (4.7)–(4.8) can be compared with the intensity correlations computed in the single-polarization approximation. For this
purpose, Eq. (3.29) must be inserted into Eq. (4.4) so that, to leading order in kτ1 ≪ 1 and pτ2 ≪ 1, the intensity
correlations in the single-polarization approximation will be

Sð2Þðr;τ1;τ2Þ¼
24νΓ4ðνÞ
256ð2πÞ8

Z
kdk½n̄kðτiÞþ1�jkτ1j1−2ν

Z
pdp½n̄pðτiÞþ1�jpτ2j1−2νĒðk;p;rÞ½1þOðk2τ21Þ�½1þOðp2τ22Þ�;

ð4:9Þ

where this time the analog of Eq. (4.8) is given, with the
same notations, by

Ēðk; p; rÞ ¼
Z

dk̂
Z

dp̂½1þ 2e−iðk⃗−p⃗Þ·r⃗�

¼ 48π2 −
16

3
π2ðk2r2 þ p2r2Þ þOðk4r4Þ

þOðp4r4Þ þOðk2p2r4Þ: ð4:10Þ

The degrees of second-order coherence defined in Eqs. (4.5)
and (4.6) follow then from Eqs. (4.8) and (4.9) by recalling

the explicit form of T ð1ÞðτÞ and Sð1ÞðτÞ given in Eqs. (3.17)
and (3.18). Bearing in mind the results for the first-order
correlations, it turns out that the intensity correlations are
factorized as follows,

T ð2Þðr; τ1; τ2Þ ≃
41

30
T ð1Þðτ1ÞT ð1Þðτ2Þ; ð4:11Þ

Sð2Þðr; τ1; τ2Þ ≃ 3Sð1Þðτ1ÞSð1Þðτ2Þ; ð4:12Þ
when the wavelengths exceed the effective horizon. The
approximate equalities remind us that Eqs. (4.11)–(4.12)
hold in the limits jkτ1j ≪ 1 and jpτ2j ≪ 1. Thanks to
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Eqs. (4.5) and (4.6), the results of Eqs. (4.11) and (4.12)
imply that12

gð2Þðr; τ1; τ2Þ →
41

30
; ḡð2Þðr; τ1; τ2Þ → 3: ð4:13Þ

According to Eq. (4.13), the degree of second-order coher-
ence is always super-Poissonian when the relevant wave-
lengths exceed the effective horizon since both gð2Þ and ḡð2Þ
are larger than 1. In the single-polarization approximation,
the degree of second-order coherence goes to 3, while the
presence of the polarization reduces the degree of second-
order coherence.

C. Degree of second-order coherence inside
the effective horizon

The initial conditions of the Einstein-Boltzmann
hierarchy (both for the scalar and for the tensor modes

of the geometry) are set before matter-radiation equality
when the relevant wavelengths are larger than the
Hubble radius at the corresponding epoch [7,8]. For an
experiment probing the degree of second-order coherence
in the cosmicmicrowave background (CMB), the results of
Eq. (4.13) are the most relevant ones. If we are, however,
interested in gravitons of which the frequencies are
comparable with the operating window of wideband
interferometers (i.e., between few Hz and 10 kHz), the
relevant expression of the degree of second-order coher-
ence follows when the wavelengths of the gravitons are all
within the effective horizon. As already established in
Eqs. (3.34)–(3.35), inside the effective horizon, ukðτÞ¼
cþðkÞe−ikτ and vkðτÞ ¼ −c−ðkÞ�eikτ. In the limit kτ1≫1

and pτ2 ≫ 1, Eq. (4.3) reads

T ð2Þðr;τ1;τ2Þ¼
1

ð2πÞ6
Z

d3k
k

½n̄kðτiÞþ1�
Z

d3p
p

½n̄pðτiÞþ1�f4jc−ðkÞj2jc−ðpÞj2

þ1

4
½1þðk̂ · p̂Þ2�½1þ3ðk̂ · p̂Þ2�½jc−ðkÞj2jc−ðpÞj2þc−ðkÞc�þðkÞcþðpÞc�−ðpÞ�e−iðk−pÞðτ1−τ2Þe−iðk⃗−p⃗Þ·r⃗g: ð4:14Þ

The last to terms of Eq. (4.14) can be rewritten by factoring jc−ðkÞj2jc−ðpÞj2 and by using Eqs. (3.36) in the obtained
expression; the result of this step is given by

jc−ðkÞj2jc−ðpÞj2
�
1þ c�þðkÞcþðpÞ

c�−ðkÞc−ðpÞ
�
≃ jc−ðkÞj2jc−ðpÞj2

�
1þ

�ði −Hre=kÞ
ðiþHre=kÞ

��ðiþHre=pÞ
ði −Hre=pÞ

��
: ð4:15Þ

Equation (4.15) can be explicitly estimated in two complementary limits. In the first case, kτre ¼ pτre ≃ 1; this choice
corresponds to the situation where, in the vicinity of the turning points, ja00=aj ≠ 0. If the modes reenter when the condition
ja00=aj → 0, then kτre < 1 and pτre < 1 (see also Appendix B and the discussion therein). In both situations, the results are
similar, and Eq. (4.15) can be approximated as

T ð2Þðr;τ1;τ2Þ¼
4

ð2πÞ6
Z

d3k
k

½n̄kðτiÞþ1�
Z

d3p
p

½n̄pðτiÞþ1�f4jc−ðkÞj2jc−ðpÞj2

þ1

8
½1þðk̂ · p̂Þ2�½1þ3ðk̂ · p̂Þ2�fjc−ðkÞj2jc−ðpÞj2þc−ðkÞc�þðkÞcþðpÞc�−ðpÞ�e−iðk−pÞðτ1−τ2Þe−iðk⃗−p⃗Þ·r⃗g: ð4:16Þ

The result of the angular integration appearing in Eq. (4.16) is a complicated function of kr and pr that goes to a constant for
kr < 1 and pr < 1. Therefore, the degrees of second-order coherence will receive the dominant contribution for
kr ∼ pr ∼Oð1Þ,

gð2Þðτ1; τ2Þ ≃
41

30

R
kdk½n̄kðτiÞ þ 1�jc−ðkÞj2

R
pdpjc−ðpÞj2½n̄pðτiÞ þ 1�e−iðk−pÞΔτR

kdk½n̄kðτiÞ þ 1�jc−ðkÞj2
R
pdpjc−ðpÞj2½n̄pðτiÞ þ 1� ; ð4:17Þ

ḡð2Þðτ1; τ2Þ ≃ 3

R
kdk½n̄kðτiÞ þ 1�jc−ðkÞj2

R
pdpjc−ðpÞj2½n̄pðτiÞ þ 1�e−iðk−pÞΔτR

kdk½n̄kðτiÞ þ 1�jc−ðkÞj2
R
pdpjc−ðpÞj2½n̄pðτiÞ þ 1� ; ð4:18Þ

12Note that a previous analysis of gð2Þðr; τ1; τ2Þ in the limits jkτ1j ≪ 1 and jkτ2j ≪ 1 led to 71=60 ≃ 1.18 [18], while this more
accurate analysis shows that this result must be corrected as 41=30 ≃ 1.36.
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where Δτ ¼ τ1 − τ2. Equations (4.17) and (4.18)
coincide with Eq. (4.13) in the zero-delay limit. When
τ1 ≠ τ2, it can be demonstrated that jgð2ÞðτÞj < gð2Þð0Þ and
jḡð2ÞðτÞj < ḡð2Þð0Þ, which implies, in a quantum optical
language, that the degree of second-order coherence is not
only super-Poissonian but also bunched [1,40].

D. Single-mode approximation and its
physical interpretation

The degree of first-order coherence has been analyzed in
the single-mode approximation at the end of Sec. III, and in
full analogy with the definition of Eq. (3.41), the degree of
second-order (temporal) coherence will be defined as

gð2Þs ðτ1; τ2Þ ¼
hâ†ðτ1Þâ†ðτ2Þâðτ2Þâðτ1Þi
hâ†ðτ1Þâðτ1Þihâ†ðτ2Þâðτ2Þi

: ð4:19Þ

In the zero-delay limit, Eq. (4.19) becomes

lim
τ1→τ2

gð2Þs ðτ1; τ2Þ ¼ gð2Þs ¼ hâ†â†â âi
hâ âi2 ; ð4:20Þ

where, for simplicity, we will employ the notation gð2Þs ¼
gð2Þs ð0Þ. After using the commutation relations, Eq. (4.20)
can be expressed in terms of N̂ ¼ â†â and of the
dispersion σ2:

gð2Þs ¼ σ2 − hN̂i þ hN̂i2
hN̂i2 ; σ2 ¼ hN̂2i − hN̂i2: ð4:21Þ

Equation (4.21) is often presented in terms of the so-
called Mandel Q parameter [1] defined, within our

notations, as Q¼hN̂i½gð2Þs −1�, implying Q¼ σ2=hN̂i−1.
In the case of a single-mode squeezed state, we have that
the previous quantities can all be expressed in terms of a
single parameter, which is the average multiplicity of the
state denoted hereunder by hN̂i ¼ n̄sq ¼ sinh2 r:

gð2Þs ¼ 3þ 1

n̄
; Q ¼ ð2n̄þ 1Þ: ð4:22Þ

In the case of a coherent state, the Mandel parameter
vanishes so that the result of Eq. (4.22) can be dubbed
by saying that the degree of second-order coherence is
super-Poissonian. The results obtained in the present
section suggest the following hierarchy:

gð2Þs ¼ ḡð2Þ > gð2Þ > 1: ð4:23Þ

The first equality follows from the comparison between the
single-mode approximation ofEqs. (4.21)–(4.22) and single-
polarization approximation discussed in Eqs. (4.12),
(4.13), and (4.18). Equation (4.23) suggests that the inter-
ference of the intensities of a single polarization can be

approximatedwith the interference of the intensity of a single
mode of the field. The effect of the polarizations is a
progressive reduction of the degree of second-order coher-
ence. This reduction preserves the super-Poissonian charac-
ter of the quantumstate so that the Poissonian limit (typical of
the coherent state) is never reached.

V. STIMULATED VERSUS SPONTANEOUS
EMISSION

The stimulated emission of relic gravitons does not
reduce the degrees of coherence below the Poissonian
limit, provided the average multiplicity of the initial state
does not dominate against the average multiplicity of the
produced gravitons. This conclusion partly follows from
Eqs. (3.37), (4.17), and (4.18), where the average multi-
plicity of gravitons at τi has been already considered.
When the average multiplicity of the initial state does not
vanish, the previous results describe the interference of the
intensities of the relic gravitons produced by stimulated
emission. Conversely, in the limit n̄kðτiÞ → 0, the same
expressions hold in the case of spontaneous emission where
b̂kðτiÞ annihilates the vacuum at τi. While the previous
analyses show that the super-Poissonian behavior is not
altered by more general parametrizations of the initial state,
it is also true that the parametrization of the initial state
suggested above is not the most general one. This com-
plementary aspect of the present analysis will now be
clarified by considering the initial conditions provided by
a coherent state in the continuous mode representation.
Since a given multiparticle density matrix can be projected
on the coherent state basis via the so-called Klauder-
Sudarshan P-representation [4], this analysis seems
appropriate and sufficiently conclusive, at least for the
present purposes.

A. Squeezed coherent states

For a continuum of modes, the Glauber displacement
operator is defined as [55]

DðαÞ¼edðαÞ; dðαÞ¼
X
λ

Z
d3k½αk⃗λâ†k⃗;λ−α�

k⃗λ
âk⃗;λ�; ð5:1Þ

with the same notations already employed for the squeez-
ing and rotation operators SðzÞ and RðδÞ of Eqs. (3.7) and
(3.8). The squeezed coherent states of relic gravitons can
be introduced in two complementary perspectives mirror-
ing their quantum optical analogs originally discussed
by Caves [56] (sometimes also referred to as the ideal
squeezed state) and by Yuen [57] (the so-called two-photon
coherent states). In the Caves representation, the initial
state is rotated, squeezed, and finally displaced,13

13We recall that, by definition, jfzδgi ¼ SðzÞRðδÞjvaci and
jfβgi ¼ DðβÞjvaci.
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i.e., jfαzδgi ¼ DðαÞjfzδgi. In the Yuen representation
[57], the squeezed-coherent states of relic gravitons are
instead defined as jfzδβgi ¼ SðzÞRðδÞjfβgi. According to
the strategy of Ref. [57] [appropriately extended to the
continuous-mode description of Eq. (5.1)], the creation
operators transform as

D†ðβÞR†ðδÞS†ðzÞâq⃗λSðzÞRðδÞDðβÞ
¼ ½e−iδqλ cosh rqλβq⃗λ − eiðθqλþδqλÞ sinh rqλβ�−q⃗λ�
þ e−iδqλ cosh rqλâq⃗λ − eiðθqλþδqλÞ sinh rqλâ

†
−q⃗λ: ð5:2Þ

If the action of the displacement operator precedes the
squeezing and the rotation, as suggested in Ref. [56], the
creation operators transform instead as

R†ðδÞS†ðzÞD†ðαÞâq⃗λDðαÞSðzÞRðδÞ
¼ αq⃗;λ þ e−iδqλ cosh rqλâq⃗λ − eiðθqλþδqλÞ sinh rqλâ

†
−q⃗λ:

ð5:3Þ

Comparing the two expressions of Eqs. (5.2) and (5.3), we
conclude they are not equivalent in general but coincide, in
practice, provided αq⃗;λ equals the expression inside the
square bracket appearing in Eq. (5.2), i.e.,

αq⃗;λ ¼ e−iδq;λ coshrq;λβq⃗;λ−eiðθq;λþδq;λÞ sinhrq;λβ�−q⃗;λ: ð5:4Þ

Even if Eqs. (5.4), (5.2), and (5.3) are general, for the
present purposes, it will be sufficient to consider a single
polarization and then contrast the obtained results with the
findings of the previous sections.

B. Degrees of coherence

The first-order and second-order Glauber correlators for
a squeezed-coherent state are

Sð1Þðx1; x2Þ ¼ hfδzαgjμ̂ð−Þðx1Þμ̂ðþÞðx2Þjfαzδgi; ð5:5Þ

Sð2Þðx1;x2Þ¼ hfδzαgjμ̂ð−Þðx1Þμ̂ð−Þðx2Þμ̂ðþÞ

× ðx2Þμ̂ðþÞðx1Þjfαzδgi: ð5:6Þ

The action of DðαÞ over μ̂ð−ÞðxÞ and μ̂ðþÞðxÞ displaces the
field operators by their classical value [55],

D†ðαÞμ̂ð−ÞðxÞDðαÞ ¼ μ�cðxÞ þ μ̂ð−ÞðxÞ;
D†ðαÞμ̂ðþÞðxÞDðαÞ ¼ μcðxÞ þ μ̂ðþÞðxÞ;

μcðxÞ ¼
1

ð2πÞ3=2
Z

d3kffiffiffiffiffi
2k

p αk⃗e
−ik⃗·x⃗; ð5:7Þ

where we stress that μcðxÞ is not an operator but a classical
field. Inserting Eq. (5.7) into Eq. (5.5), the first-order
Glauber correlator is

Sð1Þðx1;x2Þ¼μ�cðx1Þμcðx2Þþhfδzgjμ̂ð−Þðx1Þμ̂ðþÞðx2Þjfzδgi
¼μ�cðx1Þμcðx2ÞþW0ðr;τ1;τ2Þ;

W0ðr;τ1;τ2Þ¼
1

4π2

Z
kdkj0ðkrÞv�kðτ1Þvkðτ2Þ: ð5:8Þ

The first term in Eq. (5.8), analog to the condensate arising
in the theory of superfluidity [48,49], depends on x1 and x2.
Conversely, the second term W0ðr; τ1; τ2Þ is the quantum
contribution, which is a function of the distance. The
explicit form of the HBT correlations is given by

Sð2Þðx1;x2Þ¼ hμ̂ð−Þðx1Þμ̂ð−Þðx2Þμ̂ðþÞðx1Þμ̂ðþÞðx2Þiþ jμcðx1Þj2jμcðx2Þj2þjμcðx1Þj2hμ̂ð−Þðx2Þμ̂ðþÞðx2Þi
þ jμcðx2Þj2hμ̂ð−Þðx1Þμ̂ðþÞðx1Þiþμ�cðx1Þμ�cðx2Þhμ̂ðþÞðx2Þμ̂ð−Þðx1Þiþμcðx1Þμcðx2Þhμ̂ð−Þðx1Þμ̂ðþÞðx2Þi
þμ�cðx1Þμcðx2Þhμ̂ð−Þðx2Þμ̂ðþÞðx1Þiþμcðx1Þμ�cðx2Þhμ̂ð−Þðx1Þμ̂ðþÞðx2Þi: ð5:9Þ

Besides the contribution of the condensate and of the quantum fluctuations [first line of Eq. (5.9)], we can identify a mixed
contribution [second line of Eq. (5.9)] and two interference terms [third and fourth lines of Eq. (5.9)] that depend on the
mutual phases characterizing the displacement, squeezing, and rotation operators. The degree of second-order coherence
can then be expressed in the following manner,

gð2Þðx1; x2Þ − 1 ¼ W1ðr; τ1; τ2Þ
½jμcðx1Þj2 þW0ðτ1Þ�½jμcðx2Þj2 þW0ðτ2Þ�

þ μ�cðx1Þμcðx2ÞW2ðr; τ1; τ2Þ þ μcðx1Þμ�cðx2ÞW�
2ðr; τ1; τ2Þ

½jμcðx1Þj2 þW0ðτ1Þ�½jμcðx2Þj2 þW0ðτ2Þ�

−
μ�cðx1Þμ�cðx2ÞW3ðr; τ1; τ2Þ þ μcðx1Þμcðx2ÞW�

3ðr; τ1; τ2Þ
½jμcðx1Þj2 þW0ðτ1Þ�½jμcðx2Þj2 þW0ðτ2Þ�

; ð5:10Þ

where, from Eq. (5.8), we defined W0ðτÞ ¼ W0ð0; τ; τÞ and also
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W1ðr; τ1; τ2Þ ¼ hμ̂ð−Þðx1Þμ̂ð−Þðx2Þμ̂ðþÞðx1Þμ̂ðþÞðx2Þi − hμ̂ð−Þðx1Þμ̂ðþÞðx1Þihμ̂ð−Þðx2Þμ̂ðþÞðx2Þi

¼ 1

16π4

Z
kdkj0ðkrÞ

Z
pdpj0ðprÞ½v�kðτ1Þv�pðτ2Þvkðτ2Þvpðτ1Þ þ v�kðτ1Þu�kðτ2Þupðτ2Þvpðτ1Þ�; ð5:11Þ

W2ðr; τ1; τ2Þ ¼ hμ̂ð−Þðx2Þμ̂ðþÞðx1Þi ¼
1

4π2

Z
kdkj0ðkrÞv�kðτ2Þvkðτ1Þ; ð5:12Þ

W3ðr; τ1; τ2Þ ¼ −hμ̂ðþÞðx2Þμ̂ðþÞðx1Þi ¼
1

4π2

Z
kdkj0ðkrÞukðτ2Þvkðτ1Þ: ð5:13Þ

According to Eq. (5.10) and thanks to the explicit form
of Eqs. (5.11)–(5.13), the sign of gð2Þðx1; x2Þ − 1 may
become negative, and this possibility is well known from
quantum optical studies where a squeezed state with a
strong coherent component may have a sub-Poissonian
statistics [1,40,56,57], provided the average multiplicity of
the coherent component dominates against the squeezing
contribution, as already anticipated at the beginning of this
section. A similar conclusion will be reached hereunder,
and to investigate the analog phenomenon in the present
case, we consider the regime x1 → x2 where Eq. (5.10)
becomes

gð2ÞðxÞ − 1 ¼ W2
0ðτÞ þ jW3ðτÞj2

½jμcðxÞj2 þW0ðτÞ�2
þ 2

W0ðτÞ
½jμcðxÞj2 þW0ðτÞ�2

−
μ�2c ðxÞW3ðτÞ þ μ2cðxÞW�

3ðτÞ
½jμcðxÞj2 þW0ðτÞ�2

: ð5:14Þ

The explicit expressions of W0ðτÞ, W1ðτÞ, W2ðτÞ, and
W3ðτÞ appearing in Eq. (5.14) are

W0ðτÞ ¼ W2ðτÞ ¼
1

4π2

Z
kdkjvkðτÞj2; ð5:15Þ

W1ðτÞ ¼ W2
0ðτÞ þ jW3ðτÞj2; ð5:16Þ

W3ðτÞ ¼
1

4π2

Z
kdkukðτÞvkðτÞ: ð5:17Þ

While the term appearing in the first line at the right-hand
side of Eq. (5.14) is always positive semidefinite, the
remaining two terms (in the second line of the same
equation) do not have a definite sign. We can therefore
conclude that gð2ÞðxÞ > 1 as long as the average multiplic-
ity of the produced gravitons exceeds the coherent com-
ponent of the initial state. In particular, when μcðxÞ → 0,
the case treated in the previous section is recovered, and
gð2ÞðxÞ → 3.

C. Wavelengths inside and beyond the effective horizon

If the spectrum of the initial fluctuations is characterized
by a given wavelength (for instance a thermal wavelength)
at τi, the present value of this characteristic scale will be

much larger than theHubble radius at the present time unless
the total number of e-folds Nt is very close14 to the critical
number of e-folds Ncrit ¼ Oð66Þ [58,59]. Even assuming
(or tuning) Nt ∼ Ncrit, it seems difficult to conceive an
initial state that could make the statistics sub-Poissonian.
For this purpose, we can investigate more carefully the sign
of gð2ÞðxÞ − 1when the coherent component dominates over
the average multiplicity of the produced gravitons. It is
useful to introduce the quantities ϵ0ðxÞ¼W0ðτÞ=jμcðxÞj2<1

and ϵ3ðxÞ ¼ W3ðτÞ=jμcðxÞj2 < 1 that are both smaller than 1
when the coherent component exceeds the squeezed con-
tribution; Eq. (5.14) can then be written as

gð2ÞðxÞ − 1 ¼ ϵ20ðτÞ þ jϵ3ðxÞj2
½1þ ϵ0ðxÞ�2

þ 2
ϵ0ðxÞ

½jμcðxÞj2 þW0ðτÞ�2

−
e−2iφðxÞϵ3ðxÞ þ e2iφðxÞϵ�3ðxÞ

½1þ ϵ0ðτÞ�2
; ð5:18Þ

where μcðxÞ ¼ eiφðxÞjμcðxÞj has been separated in its modu-
lus and phase. The first term on the right-hand side of
Eq. (5.18) contains contributions Oðϵ20Þ and Oðϵ23Þ that are
subleading in comparison with the remaining two terms (of
order ϵ0 and ϵ3, respectively). The sign of ½gð2ÞðxÞ − 1� will
then be determined by the balance of the dominant con-
tributions on the right-hand side. If we now recall Eq. (3.6)
and assume, for simplicity, that φ is constant, we can
rephrase the dominant contributions of Eq. (5.18) as

gð2ÞðxÞ − 1

≃
1

2π2jμcðxÞj2
Z

kdk½jvkðτÞj2 − cos 2ζkjukðτÞjjvkðτÞj�;

ð5:19Þ

where ζk ¼ ðφ − θk=2Þ. This result implies that gð2ÞðxÞ −
1 < 0 when cos 2ζk > jvkj=jukj and provided the

14The value of Ncrit also depends on the postinflationary
history. Conservative estimates suggest Ncrit ¼ 63�15 [58,59].
In the case of a standard postinflationary history, Ncrit¼63.6þ
ð1=4Þlnϵ. According to some, for the consistency of the infla-
tionary scenarios, we must anyway demand that the total number
of e-folds exceeds Ncrit.
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coherent component exceeds the squeezing contribution.
In this limit, however, the large-scale fluctuations will
simply correspond to the coherent contribution. Thus the
coherent component can only exceed the squeezing con-
tribution provided the total number of e-folds is tuned
around its critical value. If we now recall Eq. (3.6), the
condition ðjvkðτÞj2 − cos 2ζkjukðτÞjjvkðτÞjÞ < 0 becomes

sinh rk½sinh rk − cosh rk� cos2 ζk
þ sinh rk½sinh rk þ cosh rk� sin2 ζk < 0: ð5:20Þ

After simple algebra, Eq. (5.20) can also be expressed as

ðe2rk − 1Þ sin2 ζk − ð1 − e−2rkÞ cos2 ζk < 0; ð5:21Þ

showing that if ζk ¼ 0 the inequality is always verified
even in the limit rk ≫ 1. The results of the Caves
approach [56] discussed so far can be translated into
the Yuen description [57] by making use of Eq. (5.4),
which can also be written, in the single-polarization
approximation,

jαkj2 ¼ jβkj2½cosh 2rk − sinh 2rk cos 2γk�
¼ jβkj2½e−2rkcos2γk þ e2rksin2γk�; ð5:22Þ

where γk ¼ ½ðδk þ θk=2Þ − χk�. From Eq. (5.4), the
relation between ζk and γk is given by

cos2ζk ¼
e−2rkcos2γk

e−2rkcos2γk þ e2rksin2γk
;

sin2ζk ¼
e2rksin2γk

e−2rkcos2γk þ e2rksin2γk
; ð5:23Þ

which also demands e4rkð1 − e−2rkÞ sin2 γk < e−2rkð1−
e−2rkÞ cos2 γk. In analogy with Eq. (5.21), if γk → 0, the
previous inequality is always verified even in the limit
rk ≫ 1. But unfortunately, the limit γk → 0 can only be
realized in the exact de Sitter case [see Eq. (3.23)] or if
we consistently tune χk → ðδk þ θk=2Þ for all modes that
exceed the Hubble radius. Conversely, without fine-
tuning, Eq. (3.30) implies γk ≃ −πϵ=2 in the quasi-de
Sitter case, and Eq. (5.23) demands

e4rkð1−e−2rkÞπ
2ϵ2

2
−e−2rkð1−e−2rkÞ

�
1−

π2ϵ2

4

�
< 0:

ð5:24Þ

In the second term, we can always neglect the ϵ2 correction,
which is small with respect to 1; from the remaining
terms, we have 1 < rk < ð1=6Þ ln ½4=ðπ2ϵ2Þ − 1=2�, i.e.,
rk < 2.15 for ϵ ¼ 0.001. This condition is therefore
unphysical since the average multiplicity of the gravitons
produced during inflation would be negligibly small and

this would imply that the tensor modes are not amplified in
comparison with the scalar modes.15

The result of Eq. (5.24) is, in some sense, pleonastic
since the relic gravitons potentially observable today (for
instance, in the audio band) are all inside the effective
horizon (i.e., kτ ≫ 1) and, in this limit, γk ≠ 0 for inde-
pendent reasons. Again, the statistics can never become
sub-Poissonian unless the average multiplicity of gravitons
produced during inflation is negligible.16 Inside the Hubble
radius, the phases are determined by the pair of conditions

e−iδk ¼ cþðkÞ
jcþðkÞj

e−ikτ

¼ e−iðkτþνþÞ−iπ=2 ½zði − q−1Þ þ ð1þ iÞz−1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ðz=qÞ2 þ 2=z2 þ 2 − 2=q

p
→ e−iðkτþνþÞþiπ=2 1 − iqffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ 1
p ; ð5:25Þ

eiðδkþθkÞ ¼ −
c�−ðkÞ
jc−ðkÞj

e−ikτ

¼ e−iðkτ−ν−Þ−iπ=2
½zð−iþ q−1Þ − ð1 − iÞz−1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ðz=qÞ2 þ 2=z2 − 2 − 2=q

p
→ e−iðkτ−ν−Þ−iπ=2

1 − iqffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

p ; ð5:26Þ

where z ¼ are=aex, q ¼ k=Hre and ν�ðkÞ ¼ kðτex ∓ τreÞ.
In Eqs. (5.25) and (5.26), the corresponding expressions
have been simplified in the limit z ≫ 1 and k=Hre < z2 so
that the squeezing phases are given by

δk ¼ kτ þ νþðkÞ −
π

2
þ arctan q ð5:27Þ

θk þ δk ¼ −kτ þ ν−ðkÞ −
π

2
− arctan q: ð5:28Þ

But this means δk þ 2θk ≃ ½νþ þ ν−�=2 ¼ kτex ¼ Oð1Þ,
implying that, for squeezed-coherent states, the statistics
of the relic gravitons is never sub-Poissonian. Following
the ideas conveyed in this section, different initial states

15It should be clear that the value ϵ ¼ 0.001 has not been
randomly chosen. In the concordance paradigm, the slow-roll
parameter epsilon is related to the tensor-to-scalar ratio rT (not to
be confused with rk) as rT ¼ 16ϵ. Since rT must be smaller than
0.07 (or even 0.05) [23], we also have that epsilon must be
conservatively of order 10−3. The addition of gauge fields in the
game may increase rT but may also affect the scalar mode so that,
in this case, it is possible to show that rT must be bounded from
below (i.e., 10−3 < rT < 1 [60]).

16The present results are at odds with the claim of Ref. [19]
(obtained in the single-mode approximation) where the authors
suggest that the analog of γk is generically vanishing. This is only
true provided the phase of the coherent state is tuned in a way that
the squeezed contribution is exactly canceled.
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such as squeezed-number states or even mixed states (e.g.,
squeezed thermal states) can be analyzed with similar
qualitative results. In some cases, the degree of second-
order coherence can be reduced by the presence of an
appropriate initial state. While we leave the explicit
analysis of this interesting point to a more topical dis-
cussion, we can safely conclude that the properties of the
initial states may very well interfere with the squeezing
contribution but do not affect the super-Poissonian char-
acter of the degree of second-order coherence and of the
HBT correlations especially inside the effective horizon.17

Before concluding this section, it is useful to recapitulate
the overall perspective of the present analysis that has been
conducted by considering the limit of the relevant Glauber
correlators when the wavelengths are either larger than the
effective horizon (sometimes also dubbed Hubble radius in
the previous sections) or shorter than the effective horizon.
The frequency range where these two limits are verified
depends on the model under consideration. The simplest
framework where a concrete estimate is possible, as already
remarked in the last paragraph of the Introduction, is
represented by the concordance paradigm [23] where the
only source of inhomogeneity is represented by the scalar
and tensor modes of the geometry. This is also the per-
spective conveyed in the first applications of HBT interfer-
ometry to cosmology [7,8]. The concordance paradigm
enhanced by the tensor modes is sometimes dubbed
TΛCDM, where T stands for the tensor component, Λ
represents the dark energy component, andCDMreminds us
of the cold dark matter component. This scenario is
characterized by seven independent parameters, and the
tensor component is described by the tensor-to-scalar ratio
rT defined in the Introduction and controlling, at once, the
amplitude of the spectral energy density and its slope. The
spectral energy density in critical units (i.e., h20Ωgw) roughly
decreases as the inverse frequency square for between a few
aHz and 100 aHz, while it is quasiflat (i.e., slightly
decreasing) between 100 aHz and the GHz. As already
mentioned in the Introduction and in the previous section,
the spectral energy density in the quasiflat branch is
optimistically Oð10−16.5Þ since the absolute normalization
of the tensor power spectrum solely depends on the tensor-
to-scalar ratio rT < 0.07 [23]. The corresponding chirp
amplitude is Oð10−29Þ for a comoving frequency of
Oð0.1Þ kHz. Of course, the signal may get larger when
the spectral energy density increases for frequencies larger
than the mHz as it happens when the tensor modes of the
geometry inherit a refractive index [24,25] or in the presence
of stiff phases. In these cases, as already mentioned, it can

happen that hc ¼ Oð10−25Þ [24], while, for comparison, the
chirp amplitude hc corresponding to the astronomical
signals detected so far by the Ligo/Virgo Collaboration is
Oð10−21Þ [20–22].
Between a few aHz and 100 aHz, the low-frequency

branch of the concordance spectrum is universal, and it is
caused by the tensor modes of the geometry reentering the
effective horizon after matter-radiation equality. Between
100 aHz and 100 MHz, the spectral energy density depends
on the modes reentering the effective horizon during the
radiation-dominated stage of expansion, and the related
degrees of coherence follow, in this frequency range, from
the results of Secs. III. 3, IV. 3, and V. 3. In these cases, the
relevant wavelengths are all shorter than the Hubble radius.
We can therefore conclude that the relic gravitons, in the
concordance paradigm, are always first-order coherent and
their degree of second-order coherence is always super-
Poissonian. The estimates of the degrees of quantum
coherence for wavelengths larger than the Hubble radius
(see Secs. III. 2 and IV. 2 and part of Sec. V. 3) can be instead
applied in the complementary situation where the wave
kτ < 1; this is, for instance, the regime where the initial
conditions of the Einstein-Boltzmann hierarchy are set prior
tomatter-radiation equality. The estimates of Secs. III and IV
show that the degree of second-order coherence is also
super-Poissonian when the relevant wavelengths are larger
than the Hubble radius, and this conclusion is relevant for
potential tests of the HBT correlations in CMB physics, as
already remarked in the past [8] and at the beginning of
Sec. IV. 3.
In Sec. II, we started the analysis from the expressions of

the Glauber correlators written in the tensor case since these
expressions have never been discussed before in their full
generality. The expressions for the derivedHBT correlations
and for the degrees of quantum coherence discussed in
Secs. III and IVare also general. The estimates of the degrees
of quantum coherence presented in the previous sections
hold, in practice, also when the initial state is characterized
by an average multiplicity of gravitons, as remarked at the
beginning of this section. It can, however, happen, as
stressed prior to Eq. (5.18), that the initial state has its
own degree of coherence. We confirm, after the analysis,
that, even assuming (or tuning) Nt ∼ Ncrit, it seems difficult
to conceive an initial state that could make the statistics sub-
Poissonian even in the case of an initial Fock state of which
the statistics is notoriously sub-Poissonian [1–3,61]. All in
all, the analysis of the Hanbury Brown-Twiss correlations
shows, in a conservative perspective, that the degree of
second-order coherence is always super-Poissonian in the
context of the concordance paradigm for both the sponta-
neous and the stimulated emission of the relic gravitons.

VI. CONCLUSIONS

To assess the classical or quantum origin of the relic
gravitons, the only sound strategy is a careful scrutiny of

17It has been recently shown that the degree of second-order
coherence of relic gravitons in a squeezed number state can be
smaller than 3 and it goes to 1.5 when the average multiplicity of
the created gravitons is much larger than the average multiplicity
of the initial state [61]. We can therefore say that the degree of
second-order coherence is generically between 1.5 and 3.
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the higher degrees of quantum coherence. The first step
along this direction is a proper extension of the Glauber
theory of quantum coherence to the case of the tensor
modes of the geometry, and this has been the aim of the
present investigation. The degree of first-order coherence of
relic gravitons always tends to 1 when the corresponding
wavelengths are either larger or smaller than the effective
horizon. In standard Young interferometry, the degree of
first-order coherence goes to 1 when the interference
fringes are maximized, while it goes to 0 in the opposite
case when the field is incoherent. Classical configurations
and quantum states of a given optical field lead to compa-
rable degrees of first-order coherence, and this conclusion
remains practically unchanged in the case of relic gravitons.
The analysis of the Hanbury Brown-Twiss correlations in
their canonical form shows instead that the degree of second-
order coherence is always larger than 1. In the quantum
optical jargon, the relic gravitons are therefore bunched, and
their statistics is super-Poissonian. The results are physically
similar if more exclusive approaches are adopted when, for
instance, a single tensor polarization or even a single mode
contributes to the total intensity of the field. The obtained
conclusions do not change if we consider stimulated
(rather than spontaneous) emission of relic gravitons.
While the super-Poissonian nature of the degree of
second-order coherence is a necessary condition if we want
to infer the quantum origin of the relic gravitons, such a
requirement is not sufficient since other states (for instance,
mixed) may lead to a super-Poissonian degree of
second-order coherence. Even if, according to some, the
quantum origin of the relic gravitons and of large-scale
curvature perturbations is indisputable, the spirit of the
present analysis is more modest and it aims at formulating a
set of criteria which could independently rule in (or out) the
conventional viewpoint. The obtained results suggest the
Hanbury Brown-Twiss interferometry and the scrutiny of
the higher degrees of quantum coherence could be a valid
(and probably unique) tool in these matters.
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Note added in proof.—While correcting the proof of the
paper, a preprint appeared on the archive by S. Kanno [63]
reinstating the viewpoint already expressed in [19].
Reference [63] suggests that the requirement γk ¼ 0 cannot
be obtained from the dynamics but should be extrinsically
imposed as a “necessary condition” (see statements in
Sec. 4.6 of Ref. [63] and discussion therein) with the aim of
obtaining a sub-Poissonian statistics. This condition, well
known from analog quantum optical studies [56,57] (see
also [7]), should follow from the dynamics that suggests
instead the opposite in the case of relic gravitons. The

present findings, obtained from the full Glauber correlators
properly defined in the tensor case, show that the super-
Poissonian statistics is always the natural outcome of a
potential observation able to resolve the HBTcorrelations
for the relic gravitons in different kinematical regions (i.e.,
when the wavelengths are either larger or smaller than the
effective horizons). This is true, in particular, in the audio
band (i.e., between few Hz and 10 kHz).

APPENDIX A: QUANTUM THEORY OF
PARAMETRIC AMPLIFICATION

The action describing the parametric amplification of the
relic gravitons can be compactly expressed as [10]

SðtÞ ¼ 1

8l2
P

Z
d3x

Z
dτfa2½∂τhij∂τhij − ∂khij∂khij�

− 4l2
Pa

4Πij
ðtÞhijg; ðA1Þ

where the tensor component of the anisotropic stress
has been included for completeness. The rescaled
tensor amplitude μij ¼ ahij and the anisotropic stress
can be always expressed in terms of the corresponding
polarizations18

μijðx⃗; τÞ ¼
ffiffiffi
2

p
lP

X
α

μαe
ðαÞ
ij ;

ΠðtÞ
ij ðx⃗; τÞ ¼

ffiffiffi
2

p
lP

X
α

ΠðtÞ
α eðαÞij ; ðA2Þ

so that the resulting tensor Hamiltonian derived from
Eq. (A1) becomes

HðtÞ ¼ 1

2

X
α

Z
d3x½π2α þ 2Hμαπα þ ∂kμα∂kμα

þ 4l2
Pa

3μαΠ
ðtÞ
α �; ðA3Þ

where πα ¼ μ0α −Hμα (not to be confused with the
anisotropic stress) denotes the canonical momentum.
The classical fields can then be promoted to the status
of field operators and then Fourier transformed:

μ̂αðx⃗; τÞ ¼
1

ð2πÞ3=2
Z

d3pμ̂p⃗;αðτÞe−ip⃗·x⃗;

π̂αðx⃗; τÞ ¼
1

ð2πÞ3=2
Z

d3pπ̂p⃗;αðτÞe−ip⃗·x⃗: ðA4Þ

In terms of μ̂p⃗α and π̂p⃗α, the Hamiltonian (A3) becomes

18We remind the reader that eðαÞij denotes the two tensor
polarizations; in the sums of Eq. (A2), the index α ¼ ⊗, ⊕
where e⊕ij ¼ ðm̂im̂j − n̂in̂jÞ and e⊗ij ¼ ðm̂in̂j þ m̂jn̂iÞ are ex-
pressed in terms of the mutually orthogonal unit vectors m̂
and n̂ that are also orthogonal to the comoving three-momentum
of the wave.
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ĤðtÞ ¼ 1

2

Z
d3p

X
α

fπ̂−p⃗απ̂p⃗α þ p2μ̂−p⃗αμ̂p⃗α

þH½π̂−p⃗αμ̂p⃗α þ μ̂−p⃗απ̂p⃗α�
þ 2l2

Pa
3½Π̂ðtÞ

−p⃗αμ̂p⃗α þ μ̂−p⃗αΠ̂
ðtÞ
p⃗α�g: ðA5Þ

The creation and annihilation operators obey the commu-
tation relation ½âk⃗;α; â†p⃗;β� ¼ δð3Þðk⃗ − p⃗Þδαβ and are related
to μ̂p⃗α and π̂p⃗α via the following pair of equations:

μ̂p⃗α ¼
1ffiffiffiffiffiffi
2p

p ½âp⃗;α þ â†−p⃗;α�; π̂p⃗α ¼ −i
ffiffiffiffi
p
2

r
½âp⃗;α − â†−p⃗;α�:

ðA6Þ

Inserting Eq. (A6) into Eq. (A5), we have that the
Hamiltonian of the problem is given by

ĤðtÞ ¼ 1

2

Z
d3p

X
α

fp½â†p⃗;αâp⃗;αþ â−p⃗;αâ
†
−p⃗;α�

þ iH½â†−p⃗;αâ†p⃗;α− âp⃗;αâ−p⃗;α�
þ γ−p⃗αâp⃗αþ γ�−p⃗αâ

†
p⃗αþ γp⃗αâ−p⃗αþ γ�p⃗αâ

†
−p⃗αg; ðA7Þ

where γ�p⃗α is related to the presence of the anisotropic
stress and may lead to a coherent component that has been
specifically discussed in Sec. V in general terms. The
Hamiltonian for the scalar modes of the geometry has
the same form of Eq. (A7) but a different pump field [7,8].
The Hamiltonian of the problem can be phrased as

ĤðtÞ ¼ 1

2

Z
d3p

X
α

fp½â†p⃗;αâp⃗;αþ â−p⃗;αâ
†
−p⃗;α�

þλâ†−p⃗;αâ
†
p⃗;αþλ�âp⃗;αâ−p⃗;α

þ γ−p⃗αâp⃗αþ γ�−p⃗αâ
†
p⃗αþ γp⃗αâ−p⃗αþ γ�p⃗αâ

†
−p⃗αg; ðA8Þ

and λ ¼ iH. Equation (A8) describes the parametric
amplification of relic gravitons, and its quantum optical
analog was first discussed in Ref. [13] in the single-mode
approximation. Equation (A8) may also describe an
interacting Bose gas at zero temperature [46–49], and in
this case, the free Hamiltonian corresponds to the kinetic
energy, while the interaction terms account for the two-
body collisions with small momentum transfer. In a
cosmological context, the one-mode analog of Eq. (A8)
is implicit in Refs. [15,45]; the quantum theory of para-
metric amplification both in the scalar and in the tensor
cases was first discussed in connection with the HBT
interferometry in Refs. [7,8]. The evolution equations in
the Heisenberg description follow from the Hamiltonian
(A8) and are

dâp⃗α
dτ

¼ −ipâp⃗;α − iλâ†−p⃗;α − iγ�−p⃗;α;

dâ†−p⃗α
dτ

¼ ipâ†−p⃗;α þ iλ�âp⃗;α þ iγp⃗;α: ðA9Þ

The Hamiltonian (A8) can be diagonalized via a canonical
transformation of the type [46]

âp⃗;αðτÞ¼ up;αðτ;τiÞb̂p⃗;αðτiÞ−vp;αðτ;τiÞb̂−p⃗;αðτiÞþζp⃗;α;

ðA10Þ

â†−p⃗;αðτÞ ¼ u�p;αðτ; τiÞb̂†−p⃗;αðτiÞ − v�p;αðτ; τiÞb̂p⃗;αðτiÞ
þ ζ�−p⃗;αðτ; τiÞ: ðA11Þ

Inserting Eqs. (A10) and (A11) into Eq. (A9), the
evolution equations for upαðτ; τiÞ and vpαðτ; τiÞ are

dup;α
dτ

¼ −ipup;α þ iλv�p;α; ðA12Þ
dvp;α
dτ

¼ −ipvp;α þ iλu�p;α; ðA13Þ
dζp⃗α
dτ

¼ −ipζp⃗α − iλζ�−p⃗α − iγ�−p⃗α: ðA14Þ
The transformation of Eqs. (A10) and (A11) preserves the
commutation relations between the two different sets of
operators provided jupαðτ; τiÞj2 − jvpαðτ; τiÞj2 ¼ 1. The
latter condition holds independently for each mode and
for each polarization. In this case, the two complex
functions upαðτ; τiÞ and vpαðτ; τiÞ must therefore depend,
for each polarization and for each mode, upon three real
functions (i.e., two phases and one amplitude) and have
been parametrized in terms of the a squeezing amplitude
rp;α supplemented by two squeezing phases (i.e., θp;α and
δp;α), as already mentioned in Eqs. (3.6) and (3.10)–(3.11).
Inserting therefore Eq. (3.6) into Eqs. (A12) and (A13), the
evolution of the squeezing parameter and of the phases can
be written by

r0p;α¼−Hcosθp;α; δ0p;α¼p−Hsinθp;α tanhrp;α;

ðA15Þ

θ0p;α ¼ −2pþ 2
H sin θp;α
tanh 2rp;α

: ðA16Þ

While Eqs. (A12)–(A13) are linear and can be solved in
various cases, the nonlinear equations (A15) and (A16) are
fully equivalent but more difficult to approximate. It would
be tempting, for instance, to argue that the limiting form of
Eqs. (A15) and (A16) gives the limit of a certain solution
of Eqs. (A12) and (A13). This kind of inference can be,
however, dangerous. For instance, Eqs. (3.24), (3.25), and
(3.26) satisfy Eqs. (A15) and (A16) in the exact de Sitter
case (i.e., H ¼ −1=τ). In the limit jkτj ≪ 1, we have,
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approximately, that δk þ θk=2 ≃ 0, which is indeed the
correct result. However, by summing up Eqs. (A15) and
(A16) and by taking the limit of the obtained expression,
we would be led to conclude that the same result also holds
for jkτj ≫ 1 (i.e., inside the effective horizon). This,
however, does not happen as it can be verified from the
exact solution of Eqs. (3.24)–(3.26) implying that the
wanted combination is given by

δ0k þ
θ0k
2
¼ 4k3τ2

4k2τ2 þ 1
: ðA17Þ

If we now take the limit kτ≪ 1, we will have from
Eq. (A17) that δk þ θk=2 ≃ 4k3τ3=3 ≪ 1 that coincides
with Eq. (3.27). In the opposite limit (i.e., jkτj ≫ 1),
Eq. (A17) does not imply δk þ θk=2 ≪ 1 but rather
δk þ θk=2 ≃ kτ ≫ 1. This result indeed agrees with the
exact solution (3.24)–(3.26) in the limit jkτj ≫ 1 [see
also Eq. (3.32)].

APPENDIX B: EVOLUTION INSIDE THE
EFFECTIVE HORIZON

The relic gravitons potentially observable today are all
inside the effective horizon, and to estimate their degrees of
quantum coherence, the full expressions of ukðτÞ and vkðτÞ
must be evaluated for τ > τre [see e.g., Eq. (3.32) and the
discussion thereafter]. For this purpose, the idea is to
estimate the amplification of the mode functions and then
relate the obtained result to the asymptotes of ukðτÞ and
vkðτÞ in the limit kτ ≫ 1 and τ > τre. As already mentioned
in the bulk of the paper, Eqs. (A12) and (A13) can be
decoupled. In particular, the combination ðuk − v�kÞ=

ffiffiffiffiffi
2k

p ¼
fk obeys the standard equations f00k þ ½k2 − a00=a�fk ¼ 0 of
which the solution is well known in the different asymptotic
regimes (see e.g., Ref. [24]). A given wavelength exits the
effective horizon (also sometimes dubbed the Hubble radius
[52]) at some typical conformal time τex during an infla-
tionary stage of expansion and approximately reenters at τre,
when the Universe still expands but in a deceleratedmanner.
The two typical times τex and τre are the turning points of the
WKB approximation [15] and are both determined from
the condition k2 ¼ ja00=aj. If ja00=aj ≠ 0 in the vicinity of the
turning point, then kτ ≃ 1, and this iswhat normally happens

at τex. However, when ja00=aj → 0 in the region where the
turning point is located, the situation is different. Since
ja00=aj → 0 during radiation, if the given mode reenters
during the radiation epoch (or anyway in a regimewhere the
pump field vanishes either approximately or exactly), then
kτre ≪ 1 (even if, for τ > τre, jkτj > 1). In the WKB
approximation, we therefore have

fkðτÞ ¼
1ffiffiffiffiffi
2k

p e−ikτ; τ < τex; ðB1Þ

fkðτÞ¼
a
aex

�
fkðτexÞþgkðτexÞ

Z
τ

τex

a2ex
a2ðτ1Þ

dτ1

−k2
Z

τ

τex

dτ1
a2ðτ1Þ

Z
τ1

τex

aexaðτ2Þfkðτ2Þdτ2
�
;τex < τ< τre:

ðB2Þ
Note that gk ¼ f0k −Hfk and

gkðτÞ ¼
aex
a

gkðτexÞ −
k2

aðτÞ
Z

τ

τex

aðτ1Þfkðτ1Þdτ1: ðB3Þ

When themodes reenter theHubble radius (i.e., for τ > τre),
the mode function is expressible as fkðτÞ ¼ ½cþðkÞe−ikτþ
c−ðkÞeikτ�=

ffiffiffiffiffi
2k

p
, where c�ðkÞ are fixed by continuity and

are given by19

c�ðkÞ¼
e−ikðτex∓τreÞ

2ik

�
are
aex

ðik∓HreÞþ
aex
are

ðikþHexÞ

�areaexðHre ∓ ikÞðHexþ ikÞJ ðτex;τreÞ
�
; ðB4Þ

where J ðτex; τreÞ ¼
R
τre
τex

dτ=a2ðτÞ and c�ðkÞ satisfy

jcþðkÞj2−jc−j2¼1. We can now go back to the original
quantities, namely ukðτÞ and vkðτÞ. In this way, Eqs. (3.34)
and (3.35) can be easily obtained. Note furthermore that
Eq. (3.36) follows from Eq. (B4) by simply setting kτex ≃ 1
and by keeping the dominant terms without violating the
conditions jcþðkÞj2 − jc−j2 ¼ 1.
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