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We study the scalar and tensor perturbations generated by the fragmentation of the inflaton condensate
into oscillons or transients after inflation, using nonlinear classical lattice simulations. Without including
the backreaction of metric perturbations, we find that the magnitude of scalar metric perturbations never
exceeds a few ×10−3, whereas the maximal strength of the gravitational wave signal today is Oð10−9Þ for
standard postinflationary expansion histories. We provide parameter scalings for the α-attractor models of
inflation, which can be easily applied to other models. We also discuss the likelihood of primordial black
hole formation, as well as conditions under which the gravitational wave signal can be at observationally
interesting frequencies and amplitudes. Finally, we provide an upper bound on the frequency of the peak of
the gravitational wave signal, which applies to all preheating scenarios.
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I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) anisotropies [1–6] have ruled out to a high statistical
significance single-field inflation driven by a monomial
inflaton potential [7–11]. A broad class of inflaton potentials
which fit the observational constraints, feature a power-law
minimum and a plateaulike region away from it, where slow-
roll inflation is realized, see Fig. 1.
Such potential profiles can have important consequences

for reheating—the period after inflation where the energy
of the inflaton is transferred to the Standard Model degrees
of freedom (d.o.f.), the universe thermalizes and becomes
radiation dominated, setting the scene for big bang nucleo-
synthesis (BBN) (for reviews on reheating, see [12–16]).
The nonlinear effects related to the shape of the inflaton
potential are most prominent when the couplings of the
inflaton to other fields are suppressed with respect to its
own self-interactions, VðϕÞ, during the initial oscillatory
stage of reheating, see Fig. 1. In this case the parametric
resonance coming from the inflaton condensate oscillations
leads to the exponential amplification of its own fluctua-
tions (called self-resonance), as opposed to the standard
reheating scenarios where the amplification of daughter
fields is assumed [17–21].
The nonlinear dynamics following efficient self-

resonance and the backreaction of inflaton fluctuations
can be quite rich in potentials which flatten away from the
minimum. If the minimum of the potential is quadratic,
long-lived pseudosolitonic objects called oscillons [22–27]
are produced in abundance [28–31]. In this case, we get a
matter dominated equation of state for the universe follow-
ing inflation. For a power-law (but nonquadratic) minimum
in the potential, short-lived pseudosolitonic objects called

transients are produced, followed by a transition to a
radiation dominated state of expansion [32,33].
This work can be considered as a follow-up to [32,33],

where we studied the details of self-resonance and nonlinear
inflaton dynamics, and its implications for the postinfla-
tionary expansion history of the universe. Here we focus on
the gravitational effects of the nonlinear field dynamics. We
concentrate on the cases where oscillons or transients are
copiously produced. In this regime, the plateau as well as the
central minimum ofVðϕÞ are relevant for the field dynamics.
If only the power-law region around the central mini-

mum is probed by the inflaton after inflation, pseudosoli-
tonic objects do not form copiously. In this case the
oscillating condensate can still be destroyed slowly due
to its self-interactions [32–36] or its own gravity [37],

FIG. 1. The generic shape of the inflaton potential, VðϕÞ.
During inflation the inflaton rolls slowly along one of the
plateaus, jϕj > M, towards the minimum. Inflation ends when
the inflaton enters the central power-law region and begins to
oscillate about the bottom of VðϕÞ.
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sourcing metric perturbations as shown in [38] and [37],
respectively. We do not consider this regime here.
In the wake of the exciting aLIGO-Virgo detection of the

black-hole binary mergers [39] and their implications for
primordial black holes (PBHs) abundance as well as their
contribution to dark matter [40,41], it is natural to ask if
oscillons or transients can seed such PBHs. A recent study
invoking statistical arguments [42] argued that the inevi-
table longterm gravitational collapse of an accidentally
overdense cluster of oscillons can lead to the formation of
PBHs. But can individual oscillons or transients generate
sufficiently strong gravitational fields to trigger the collapse
of individual objects and the formation of PBHs? We
address this question by studying the scalar metric pertur-
bations sourced by oscillons and transients in a cosmo-
logical setting at the end of inflation. We employ classical
lattice simulations which capture the nonlinear evolution of
the inflaton field, but ignore the backreaction of metric
perturbations on the field dynamics (which is justified by
the small gravitational fields we find, and the few e-folds of
evolution that we consider).
We note that the formation of light PBHs through

oscillon collisions [43–46] and their evaporation through
Hawking radiation can provide additional constraints on
reheating or another channel for it [47]. The consequences
of the fragmentation of the inflaton condensate for PBHs
formation after inflation have been investigated in the
context of interacting theories [48–53] and in some self-
interacting models [42,54], but never for oscillons and
transients with lattice simulations.
The formation of oscillons after inflation is also known

to source gravitational wave (GW) backgrounds [55–61].
In this work we compare and contrast the GWs sourced by
oscillons and transients and provide some simple generic
scalings for the frequency and the energy of the maximally
excited tensor modes, which could be used by future
experiments (for reviews on stochastic GW backgrounds
from reheating and future probes see, e.g.,[62–72]).
We also provide a generic upper bound on the frequency

of the GW peak, which applies to all preheating models,
including both perturbative and nonperturbative particle
production, nonlinear dynamics of the inflaton, and/or
spectator fields.
The paper is organized as follows. In Sec. II we establish

notation, present the fiducial model, and review resonant
particle production and the subsequent nonlinear dynamics
of a self-interacting inflaton after inflation. Our analytical
predictions and lattice calculations for the sourced metric
perturbations by the oscillons and the transients are given in
Sec. III. In Sec. IV, we present the analytic estimates and
numerical results for gravitational waves sourced by the
nonlinear dynamics. We discuss the likelihood of PBHs
formation and the detection of GWs from oscillons and
transients in Sec. V and give our concluding remarks
in Sec. VI.

II. SELF-RESONANCE AFTER INFLATION

The inflationary model we consider is specified by the
action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
m2

Pl

2
Rþ ∂μϕ∂μϕ

2
− VðϕÞ

�
: ð1Þ

The focus of this paper is on the gravitational effects of
nonlinear inhomogeneities of the scalar field which are in
turn generated by self-interaction terms in VðϕÞ. Hence, we
ignore the couplings to other fields for this paper.
We work in a perturbed Friedmann-Robertson-Walker

spacetime. In the Newtonian gauge, the line element is
given by

ds2 ¼ a2ðτÞ½ð1þ 2ΦÞdτ2 − ð1 − 2ΦÞδijdxidxj�
þ a2ðτÞhijdxidxj: ð2Þ

Since we consider a single-field model of inflation, we keep
only one scalar metric perturbation, Φ, and neglect the
vector ones. We also assume that the anisotropic stress is
negligible, which is not true in the nonlinear regime, but we
will argue that this assumption will not affect our con-
clusions. The transverse traceless 3-tensor perturbation, hij,
describes the GWs.

A. Inflaton potentials

We concentrate on observationally-consistent VðϕÞ
[1–6]. Their salient features are a power-law dependence
near the central minimum, ∝ jϕj2n, for jϕj < M, and a
flattening away from it, see Fig. 1. To be in agreement with
CMB constraints, slow-roll inflation is realized in the flat
regions. For concreteness, we consider

VðϕÞ ¼ Λ4tanh2n
�jϕj
M

�
: ð3Þ

This parametrization belongs to the α-attractor T-models
[73–84], with M ¼ ffiffiffiffiffiffi

6α
p

mPl. The observational bounds on
r require M < 10mPl. For greater values of M slow-roll
inflation continues as the inflaton leaves the plateau and
enters the central power-law region, generating unaccept-
ably large r. In the following, we consider only sufficiently
small M, for which inflation ends soon after the inflaton
exits the flat region. As far as the other parameters are
concerned, n is free and

Λ4 ¼ 3π2As

N2⋆
M2m2

Pl; ð4Þ

where the measured amplitude of the curvature power
spectrum is As ≈ 2.2 × 10−9 [1,5] and the comoving pivot
scale leaves the horizon N⋆ ¼ 60 e-folds of expansion
before the end of inflation. For the M range we are
interested in, the tensor-to-scalar ratio is

KALOIAN D. LOZANOV and MUSTAFA A. AMIN PHYS. REV. D 99, 123504 (2019)

123504-2



r ¼ 2

N2⋆
M2

m2
Pl

; ð5Þ

manifesting the attractor nature of this class of
models—upon decreasing M, r is attracted to low values.
We also define an effective mass squared, m2 ≡
limϕ=M→0ϕ

−1∂ϕV, as

m2 ¼ 2nΛ2

�
Λ
M

�
2
�
ϕ

M

�
2ðn−1Þ

: ð6Þ

It determines the effective frequency of the condensate
oscillations immediately after inflation, described in the
following section.

B. Resonant particle production

The end of slow-roll inflation is followed by an
oscillatory phase, during which the inflaton condensate
oscillates about the central power-law minimum of its
potential, see Fig. 1. The periodic evolution and the
nonlinearities in VðϕÞ can lead to resonant amplification
of the small perturbations in ϕ [32,33]. Depending on the
value of the scale M, there are two distinct instability
regimes.

1. Broad resonance

For M ≪ mPl, the amplitude of the inflaton oscillations
decays very slowly due to the expansion of the universe,1,2

over many oscillatory time scales. The condensate peri-
odically probes the transition region near jϕj ∼M. This
leads to a strong instability in a broad wavelength range
of subhorizon inflaton perturbations. Within less than an
e-fold of expansion, their exponential growth, known as
broad resonance, makes mode-mode couplings, as well as
backreaction on the condensate, non-negligible.

2. Narrow resonance

WhenM ∼mPl, the initial Hubble-induced decay rate of
the amplitude of condensate oscillations is comparable to
the oscillation frequency. The inflaton is redshifted very
quickly towards the bottom of its potential, jϕj ≪ M,
where the condensate oscillations become lightly damped.
There is no time for broad resonance to be established.
However, for n > 1, the small amplitude oscillations at
late times are in an intrinsically nonlinear region,
VðϕÞ ∝ jϕj2n. They lead to a slow, but steady growth of
a narrow wavelength range of subhorizon inflaton per-
turbations. This narrow resonance develops over several
e-folds of expansion, eventually leading to substantial

backreaction effects. If n ¼ 1, no resonant instabilities are
present at all.3

C. Nonlinear dynamics

Shortly after the unstable ϕ perturbations backreact on
the condensate, nonlinear dynamics ensues [32,33]. It can
be divided into three different types, depending on the kind
of the preceding resonant instabilities (see Sec. II B), as
well as the value of the power n.

1. Oscillons

The backreaction after broad resonance about a quadratic
minimum, i.e., when M ≪ mPl and n ¼ 1, leads to the
formation of oscillons. They are quasistable and quasi-
spherical, highly overdense field configurations, with
typical density contrast δ≡ ρ=ρ̄ ≥ Oð10Þ. Within the
objects, ϕ has an approximately spherically symmetric
profile, oscillating at an angular frequency close to (but
slightly smaller than) the effective mass, m. Their typical
physical size, R ∼ 10 m−1, is much smaller than the
horizon scale. They can survive for at least millions of
oscillations [86,87], which can be equivalent to Oð10Þ
e-folds of expansion. Since the ϕ oscillons dominate the
energy budget and behave as pressureless dust, they can
lead to a long period of matter-dominated state of expan-
sion with an effective equation of state w ≈ 0.

2. Transients

When M ≪ mPl, but n > 1, the backreaction after the
broad resonance leads to the formation of objects which
resemble oscillons, but are much less stable. We refer to
these highly nonlinear, but ephemeral lumps of energy
density as transients [32,33]. Their properties are very
similar to those of oscillons if one uses m ¼ mðϕ ¼ MÞ as
the transients effective mass. The only difference is that
they survive for tens of oscillations only, which is ≪ Oð1Þ
e-folds of expansion in contrast to the much longer lifetime
of oscillons. After their decay, ϕ enters into a relativistic
turbulent regime, see Sec. II C 3, with w ≈ 1=3.

3. Turbulent inflaton

The backreaction following narrow resonance, occurring
for M ∼mPl and n > 1, does not lead to the formation of
nontrivial field configurations like oscillons or transients.
But still, the inflaton enters a highly inhomogeneous state,
which can persist for many e-folds of expansion. It involves
a fragmented density configuration on very small scales,
with a continuous slow fragmentation to even shorter
scales. The latter can be interpreted as a slow momentum

1The decay rate is comparable to H.
2For a recent study of the instability regime, including the

effects from the expansion of the universe, see Ref. [85].

3If we take into account the gravitational self-interactions of
an inflaton condensate, oscillating about a quadratic minimum,
fragmentation does eventually occur [37], but its typical timescale
is much longer than the oscillation timescale.
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upscatter due to the weak nonlinear self-interactions. The
kinetic and gradient energies are approximately equal to
each other and much greater than the self-interaction
energy, yielding w ≈ 1=3.4 We note that this inhomo-
geneous state of ϕ is also observed after the decay of
the transients for M ≪ mPl and n > 1 [32,33]. The one-
point PDF of the density contrast, δ, fits well a lognormal
distribution, see Sec. III B 2, which is a compelling
indication for scalar field turbulence [14,35,36,89]. On
the other hand, when n ¼ 1, ϕ does not evolve into this
state [due to VðϕÞ] since it either forms long-lived oscillons
(for M ≪ mPl) or remains approximately homogeneous
(for M ∼mPl).

III. SCALAR GRAVITATIONAL
PERTURBATIONS

The postinflationary resonant production of inflaton
particles, caused by the nonlinear self-interactions of the
inflaton field, can lead to the emergence of oscillons and
transients as described in the previous section. In this
section: (A) We provide analytic estimates for the
Newtonian potential, Φ, induced by the formation of such
postinflationary oscillons and transients. (B) We carry
out detailed lattice simulations of the nonlinear field
dynamics, calculate Φ from the simulations, and compare
our analytic predictions with the results from these
simulations.

A. Analytic estimates

1. Linear regime

When the inflaton field starts oscillating coherently at
the end of inflation, one can work to first order in field
perturbations. The inflaton can be split into a time-
dependent background component and space-dependent
perturbations, ϕðx; τÞ ¼ ϕ̄ðτÞ þ δϕðx; τÞ. The generalized
Poisson equation, following from a combination of the
linearized Einstein equations [13], determines the evolution
of the (nondynamical) scalar metric perturbation, Φ, see
Eq. (2):

∇2Φ
a2

¼ δρm
2m2

Pl

; ð7Þ

where δρm ¼ δρ − 3Hϕ̄0δϕ=a2 is the comoving density
perturbation, δρ ¼ δT0

0 ¼ ϕ̄0δϕ0=a2 þ ∂ϕ̄V̄δϕ is the infla-
ton density perturbation and 0 ≡ ∂τ. Since the condensate
oscillations are lightly damped, on average 3Hjϕ̄0j ≪
a2∂ϕ̄V̄. Similarly, on subhorizon scales 3Hjδϕj ≪ jδϕ0j.
Hence, to a good approximation, for k ≫ H,

Φ̃k ≈ −
3

2

�
H
k

�
2 δρ̃k

ρ̄
: ð8Þ

Since the resonant instabilities occur on subhorizon scales,
i.e., δρ̃k=ρ̄ grows for k ≫ H, the scalar metric perturbation
can grow, but remains small, Φ ≪ 1, due to the H=k
suppression factor in Eq. (8).5 Therefore, while the inflaton
condensate oscillates and we are in the linear regime for
density perturbations, δρ=ρ̄ ≪ 1, the growth in Φ induced
by resonant instabilities does not lead to the breakdown of
linear perturbation theory.

2. Nonlinear regime

The resonant growth in δϕ eventually leads to the
breakdown of linear perturbation theory, δρ=ρ̄ ∼ 1.
Backreaction comes from subhorizon inflaton perturba-
tions. The universe remains homogeneous and isotropic
on superhorizon scales, whereas on sub-Hubble scales it
becomes highly nonlinear. To estimate whether the self-
gravity of subhorizon nonlinear overdensities is important,
we estimate the linear scalar metric perturbation they
source in the homogeneous and isotropic spacetime, see
Eq. (2). To this end we consider a Poisson-like equation

∇2Φnl

a2
¼ ρðxÞ − ρ̄

2m2
Pl

; ð9Þ

where the “nl” superscript reminds us that the gravitational
sources are nonlinear. We ignore any possible general
relativistic corrections, which normally is a good approxi-
mation on subhorizon scales. Anisotropic nonlinear
stresses, which lead to the distinction between two inde-
pendent scalar metric perturbations [one of which is
governed by Eq. (9)], are also not considered. Since the
anisotropic stresses are comparable to ρ, we believe thatΦnl

is sufficient for an order-of-magnitude estimate of the
importance of the self-gravity of nonlinear subhorizon
structures.

3. Oscillons and transients

Oscillons: To roughly estimate the scalar metric pertur-
bations sourced by oscillons, we consider an individual
object of mass M and radius R. Up to a constant, the
Newtonian potential on the surface of a single oscillon is

jΦnlj ∼M=ð8πm2
PlRÞ ∼ ρcR2=ð6m2

PlÞ ∼H2
brR

2; ð10Þ

where ρc is the core energy density and factors of order
unity have been ignored. The last scaling needs an

4This behavior appears to persist when couplings to additional
light fields are introduced [88].

5On superhorizon scales, k ≪ H, Weinberg’s adiabatic theo-
rem forbids the growth of the Newtonian potential [90] in our
single-field model. For a recent numerical study of the evolution
of the curvature perturbation during preheating in multifield
models, see Ref. [91].
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explanation. Oscillons formed as a consequence of self-
resonance have ϕc ∼ ϕ̄br, where ϕ̄br is the amplitude of the
oscillating inflaton at the time of backreaction (or frag-
mentation). Hence, ρc ∼ ρ̄br and Φnl ∼H2

brR
2. In this very

rough estimate, horizon size objects can become strongly
gravitating. However, the typical scale of inhomogeneities
at the time of backreaction tends to be much smaller than
the Hubble horizon. The maximally resonant length scale
k−1phys ∼ Rres=ð2πÞ ∼ fewm−1, which we can take as an
upper bound on the oscillon radius, i.e., R ∼ 10 m−1. At
the time of backreaction, H2

br ∼m2ϕ̄2
br=ð6m2

PlÞ. Putting
these together

jΦnlj ∼ 10 ×

�
M
mPl

�
2

: ð11Þ

Since we require M ≪ mPl for efficient resonance, it is
unlikely for oscillons to have Φnl ≳ 1 and collapse due to
their own gravitational field.
Besides the Newtonian potential, it is also useful to

consider the gravitational field on the surface of the
oscillons:

g≡ j∇Φnlj=a ∼Φnl=R ∼ 10ðM=mPlÞ2=R: ð12Þ

Transients: Similar considerations apply to transients,
with m ¼ mðϕ ¼ MÞ. In particular, the predictions for the
Newtonian potential and acceleration on the surface of a
single object given in Eq. (11) and Eq. (12), respectively,
still hold.

B. Results from lattice simulations

We calculate the nonlinearly sourced scalar metric
perturbation, Φnl in Eq. (9), by modifying LATTICEEASY
[92]. The inflaton field and the scale factor are evolved
according to the prescription from the default version of
LATTICEEASY (with gravity only at the background level).
The Newtonian potential is then calculated from the
energy density of the fields using our own Poisson equation
solver (described in the Appendix). For our simulations, we
consider parameter sets used in our previous studies [32,33]
and repeat the same convergence tests.

1. Oscillons

In Fig. 2, we show histograms of the energy density, the
Newtonian potential and the magnitude of the gravitational
field across the box forM ≈ 0.775 × 10−2mPl at 0.16, 0.50,
and 1.00 e-folds after the end of inflation. The first row
represents the moment when backreaction effects become
important. The second one shows the beginning of oscillon
formation, and the third row shows the settled oscillon
configuration.
The histograms were generated after finding the grea-

test and the smallest values of the quantity of interest.

Afterwards the interval was split into 200 (100) linear
(logarithmic) bins for the Newtonian potential (the energy
density and g). The heights of the bins are normalized,
i.e.,

P
binsP ¼ 1.

As we discuss below, the numerical solution to Eq. (9)
using data from our lattice simulations confirms the
estimates from Sec. III A 2.
Energy density: The evolution of the energy density (first

column in Fig. 2) contains valuable information. In the top
two panels of the first column, one can see the gradual
formation of a high density plateau, which becomes very
prominent in the bottom-most panel. This plateau in the
histogram represents points lying within oscillons. Oscillon
cores are highly overdense—the maximal density seen in
the second from the top panel is at ρmax ≈ 60 × ρ̄, whereas
in the bottom panel ρmax ≈ 200 × ρ̄. Note that this increase
in the oscillon overdensity is expected since the average
energy density in the box redshifts as ρ̄ ∝ a−3, while the
energy density inside oscillons is constant (i.e., does not
redshift).
In the energy density histograms one can also see the

formation of a well-defined low-density peak, centered near
the mean density, ρ̄. Unlike the high-density plateau, once
formed it does not evolve with time. Most of it represents
the underdense regions, lying outside the oscillons. It
implies that oscillons, albeit dominant in energy, are
subdominant in volume. The symmetry of this low density
peak points towards a lognormal distribution of the energy
density in the underdense regions which is a tantalizing hint
for relativistic turbulence. Indeed, in the Transients sub-
section to follow, we show the development and persistency
of a similar peak and its lognormality for transients.
Newtonian potential: The second column in Fig. 2 shows

the evolution of the Newtonian potential. Our naive
estimate for the gravitational potential inside oscillons in
Eq. (11) (represented by a vertical dashed line in the second
column panels) describes the typical value calculated from
the simulation reasonably well (up to order unity).
The skewness of the Newtonian potential histograms

is due to oscillons. Since oscillons represent highly over-
dense regions giving rise to gravitational attraction, we see
greater departures of Φnl from 0 in the negative direction.
Note that we have put Φ̄nl ¼ 0 in the simulation box. The
small decrease in the greatest departure from 0 between
the second and third panels is because the oscillons in the
second panel are slightly bigger and decay into smaller
ones which form the stabilized configuration in the
third panel.
Gravitational field: In the third column of Fig. 2, we

show the evolution of histograms of the gravitational field
(equivalently, acceleration). If the oscillons had a uniform
spherically symmetric density up to radius R, then g ∝ r for
r < R and g ∝ r−2 for r > R, where r is the distance from
the oscillon core. Hence, the maximal g will be on the
surface of the oscillons. Our oscillons do not have an
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exactly uniform density, but we still expect that the
maximal g in the histograms will come from regions
close to the oscillon surfaces. This maximal value was
estimated in Eq. (12) and is represented by a vertical dashed
line; it again agrees with the values from the numerical
simulations.
Let us reiterate the main takeaway from this subsection.

Since oscillons do not form efficiently for M ≳ 10−2mPl,
the gravitational potential on the surfaces of individual
objects is bound to be

jΦnlj ∼ 10 ×

�
M
mPl

�
2 ≲ 10−3: ð13Þ

Oscillons do not gravitate strongly, justifying the linear
treatment of metric perturbations. Nevertheless, it will be
interesting to study the stability of these individual objects
and their clustering when the backreaction from gravity is

included. Gravitational clustering could lead to collisions
as well as collapse of overdense oscillon clusters and
perhaps formation of PBHs [42–45], see Sec. VA for
further discussion.

2. Transients

We have also analyzed the scalar metric perturbations
created by the transients, see Fig. 3. The data is for n ¼ 2,
M ≈ 0.775 × 10−2mPl, extracted at 0.16, 0.42, and 0.85
e-folds after the end of inflation. The first row shows the
moment when backreaction becomes significant. The
second row depicts a relatively stable transient configura-
tion and the third row shows the simulation box after the
transients have disappeared.
During the formation of the transients and their stabi-

lization (first and second row) we arrive at qualitatively
similar results to oscillons. We again observe the formation
of a high-density plateau region and a broad low-density

FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy density, ρ,
Newtonian potential, Φ, and the gravitational acceleration, g, across the simulation box at ΔN e-folds after the end of inflation
(in each column, later times are at the bottom). The orange contours, in the snapshots of the simulation box in the last column, are drawn
around regions of overdensity ≥5. This is for the T-model with n ¼ 1, M ¼ ffiffiffiffiffi

6α
p

mPl, α ¼ 10−5. The vertical dashed line is at
gR ¼ −Φ ¼ 10ðM=mPlÞ2—the approximate prediction for the Newtonian potential on the oscillon surface of radius R. Since oscillons
are spherical, localized objects, g should be maximal near their surfaces. It agrees with the observed maximal value of g within the
simulation box.
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peak centered near ρ̄, a skewed Newtonian potential dis-
tribution and maximal jΦnlj and g in agreement with our
expectations and similar to the oscillon case, see eq. (13).
After the transients decay away (third row) we observe a

very simple picture. The inflaton dynamics is dominated by
the potential minimum, i.e., the evolution should be similar
to the pure λϕ4 case studied in [34–36]. We find that the
energy density histogram becomes quite symmetric. The
high-density plateau disappears, whereas the broad peak
centered near the mean remains. It can be fitted well with a
lognormal curve, see Fig. 4. There we fit the data from the
first panel in the third row in Fig. 3 with

PðρÞ ¼ PðρÞΔ ln ρ;

PðρÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp

�
−
ðln½ρ=ð3H2m2

PlÞ� − μÞ2
2σ2

�
; ð14Þ

whereΔ ln ρ is the width of the logarithmic bin. We also put
μ ¼ −σ2=2, so that the expectation value of ρ is equal to the
measured mean. This leaves only σ as a free parameter and
after fitting we find σ ≈ 0.77. It is remarkable that a one-
parameter fit describes the data so well. The lognormality is

a tantalizing hint for relativistic turbulence as pointed out
in [14,89].
The Newtonian potential also becomes symmetric about

0 after the transients decay (see the second panel in the third
row in Fig. 3). This reflects the symmetric distribution of

FIG. 3. Transients formation and decay. The notation and parameters are the same as in Fig. 2, besides n ¼ 2.

FIG. 4. The energy density distribution for n ¼ 2,
M ≈ 0.775 × 10−2mPl, after the transients decay. The black curve
and the orange-shaded area underneath represent a fit, see
Eq. (14), to the simulation data (red points).
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underdensities and overdensities about the mean. Note that
the maximal departure from 0 now is only jΦnlj ≈ 5 × 10−4

which is an order of magnitude smaller than when
transients (or oscillons) are present. The gravitational field,
g, also decreases accordingly.

IV. GRAVITATIONAL WAVES

The nonlinear, inhomogeneous field dynamics at the end
of inflation sources gravitational waves. We first provide
analytic estimates for the expected gravitational wave
frequency and energy density from linear and nonlinear
field dynamics. We compare these estimates with lattice
simulations which compute the field dynamics and the
gravitational wave production numerically.

A. Analytic estimates

1. Linear regime

In the early postinflationary stages, while the oscillating
inflaton condensate is still intact, the scalar-vector-tensor
decomposition applies. The linear tensor metric perturba-
tions, hij, evolve freely. There are no constraint equations
for them and they represent the two dynamical gravitational
d.o.f. To linear order in metric perturbations, hij is also
gauge invariant, and is governed by the sourcefree linear
equation of motion

h00ij þ 2Hh0ij − ∇2hij ¼ 0: ð15Þ

Just like during inflation, subhorizon Fourier modes,
k ≫ H, are oscillatory, with a decaying amplitude scaling
inversely with the scale factor, ∝ a−1, whereas for super-
horizon modes, k ≪ H, there is a constant (and a decaying)
solution in accordance with Weinberg’s adiabatic theorem
[90]. These GWs have a purely quantum origin.
Earlier on, during inflation, comoving modes lying deep

within the Hubble sphere, started out in the Bunch-Davies
vacuum, ∝ e−ikτ=ða ffiffiffi

k
p Þ. Those which were stretched to

super-Hubble scales froze (attaining a scale-invariant
power spectrum), whereas those which did not cross out,
remained in their vacuum state.
Later on, during the oscillatory stage, the frozen modes

remain constant until reentry inside the horizon, where they
start decaying and oscillating again (being in a nonvacuum
state). Those in the Bunch-Davies vacuum remain in it.
These modes are considered unphysical in the sense that
their contribution to the energy budget of the universe is
ignored. Otherwise, we enter the realm of the cosmological
constant problem.

2. Nonlinear regime

The fragmentation of the inflaton condensate due to
resonant particle production can lead to the generation
of a stochastic gravitational wave background [38,62–68].

The linear tensor metric perturbations are sourced by the
nonlinear inflaton configurations

h00ij þ 2Hh0ij − ∇2hij ¼
2

m2
PI
ΠTT

ij ; ð16Þ

where the source term is the transverse traceless part of the
anisotropic stress tensor

ΠTT
ij ¼ ð∂iϕ∂jϕÞTT: ð17Þ

Note that unlike the gravitational waves from inflation,
the GWs from the nonlinear stage have a classical origin.
They are sourced by the classical evolution of inhomoge-
neities on subhorizon scales. These GWs are the particular
solution of the inhomogeneous equation of motion,
Eq. (16), whereas the inflationary GWs are the comple-
mentary solution of the homogeneous part, Eq. (15). In this
work we focus on the GWs from the nonlinear stage. As we
will see, their power spectrum is strongly peaked around a
single frequency, determined by the fragmentation length
scale. This fragmentation length scale corresponds to the
wavelength of inflaton perturbations modes (typically
subhorizon) which first went nonlinear.
Frequency of GWs: Let us start with a quick derivation of

the frequency observed today of a GW signal with a
comoving wave number k, generated when the scale factor
is ag. The frequency (in Hz) can be written as

f0 ¼
1

2π

k
a0

¼ 1

2π

k

agρ̄
1=4
g

�
ρ̄g
ρ̄th

�
1=4 ag

ath

ath
a0

ρ̄1=4th ; ð18Þ

where ath and ρth are the scale factor and energy density of
the universe when the dominant components of the energy
density are thermalized. We define a mean equation of state
ρ̄a3ð1þwÞ ¼ const for ag < a < ath and recall that entropy
conservation for a > ath implies

ρ1=4th ath
ρ1=4rel;0a0

¼
�
gth
g0

�
−1=12

; ð19Þ

where ρ̄rel;0 is the energy stored in relativistic d.o.f. today.
gth and g0 are the relativistic d.o.f. at ath and today, res-
pectively. All of this yields the well-known result [63,65]

f0 ¼
1

2π

k

agρ̄
1=4
g

�
ag
ath

�ð1−3wÞ=4�gth
g0

�
−1=12

× ð3Ωrel;0Þ1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mPlH0

p
: ð20Þ

It can be further simplified, by substituting for the known
parameters Ωrel;0 ¼ 4.3 × 10−5h−2100, h100 ¼ 0.67 [5] and
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making the mild assumptions that gth ¼ 102 and
ag ≈ ath, to

f0 ¼
k
ag

1

ρ̄1=4g

× 4 × 1010 Hz: ð21Þ

Frequency upper bound: We note that the frequency of the
peak of the GW power spectrum, f0;max, has an upper
bound. The peak is determined by the co-moving wave
number, kmax, for which the source term, Eq. (17), has
maximal power. The same wave number determines
where the gradient energy density, ρ

▿
, has maximal power.

Since during preheating parametric resonance amplifies
Bunch-Davies vacuum fluctuations, we have ρ̄1=4g ≳
ρ̄1=4▿;g > kmax=ag. Hence

f0;max ≲ 4 × 1010 Hz: ð22Þ

If the bound is saturated, the energy density of the unstable
Bunch-Davies vacuum fluctuations is similar to the back-
ground energy density at the start of preheating. This
renders invalid the semiclassical picture of quantum field
fluctuations on top of a classical inflaton background and
quantum backreaction has to be considered. Note that this
result can be extended to any preheating scenario involving
inhomogeneous (not necessarily scalar) classical field
configurations, since for relativistic fields the anisotropic
stress is always less than or comparable to the gradient
energy.
Thus, the maximal frequency at which we can reliably

predict a gravitational wave signal from preheating is
∼1010 Hz. If we put aside all theoretical prejudice regard-
ing the energy scale and dynamics at the time of preheating,
then to completely explore the frequency range of gravi-
tational waves possible from preheating, we need a detector
with sufficient sensitivity up to ∼1010 Hz.6

By looking at Eq. (21) one can see two competing
effects. For the peak frequency, the first factor giving the
physical wave number at the time of the generation of the
GWs is typically proportional to the Hubble parameter at
that moment

k
ag

≡ β−1Hg: ð23Þ

The earlier the GWs are generated, the smaller the horizon
at that time is and hence the higher the frequency is.
The energy density in the second factor (ρ̄−1=4g ) has the

opposite effect. The more efficient the resonance is (i.e., the
earlier the time of backreaction is) the greater the mean
energy density of the universe is and hence the lower the
frequency is. This second effect is a manifestation of the
redshifting of the gravitational waves—the earlier in time
they are generated the longer they are redshifted to lower
frequencies.
Overall, the first effect wins, since the Hubble parameter

is proportional to the square root of the mean energy
density. Hence, if we wish to drive f0;max coming from
Eq. (21) to small enough values to be of observational
interest for the model under consideration, we need to
consider “inefficient” self-resonance (i.e., slow particle
production, leading to delay in backreaction and late-time
production of GWs). This can be seen explicitly in the
following expression

f0;max ¼ β−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hgffiffiffi
3

p
mPl

s
× 4 × 1010 Hz: ð24Þ

The typical value of β for self-resonance is 10−2, hence an
energy scale of generation ∼103 TeV (much lower than the
typical large scale inflation) leads to f0;max ∼ 1 Hz.
GW energy density: We now consider the actual strength

of the GW signal itself. Conventionally, it is characterized
by the ratio of the GW energy density by logarithmic
comoving momentum interval and the critical energy
density of the universe, today, i.e.,

ΩGW;0h2100 ¼
h2100
ρ̄c;0

dρGW;0

d ln k
: ð25Þ

We are again interested in the value of this quantity for the
peak of the GW background. Since ρGWa4 ¼ const, we get

FIG. 5. The upper bound on the today frequency of the
maximally energetic GWs from preheating, f0;max ¼
4 × 1010Rth Hz, Rth ¼ ðag=athÞð1−3wÞ=4, see Eq. (22) and pre-
ceding comments. In this paper we assume Rth ¼ 1.

6We stress that the frequency bound relies on the assumption
of standard expansion histories after the generation of the GWs,
i.e., ag ¼ ath or w ¼ 1=3 when ag < a < ath. If there is a
period between the generation of GWs and thermalization with
w ≠ 1=3, the frequency bound will receive a correction factor of
ðag=athÞð1−3wÞ=4 according to Eq. (20), see Fig. 5. In principle gth
should also be considered as a free parameter. However, since it
enters with a power of 1=12, only very exotic scenarios with a
huge number of d.o.f. can lead to correction factors significantly
different from 1. That is why we always keep gth ¼ 102.
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ΩGW;0h2100 ¼ ΩGW;g

�
ag
ath

�
1−3w

×

�
gth
g0

�
−1=3

Ωrel;0h2100; ð26Þ

where ΩGW;g is the fractional energy density in gravita-
tional waves at the time of production. We now estimate
this energy density as follows:

ρGW;g ∼
�
h0ij
ag

�
2

m2
Pl ∼

�∇hij
ag

�
2

m2
Pl; ð27Þ

and from the equation of motion for gravitational waves,
Eq. (16),

h00ij
a2g

∼
∇2hij
a2g

∼
ð∂iϕ∂jϕÞTT

m2
Pl

: ð28Þ

If a fraction δ∇ of the mean energy density at the time of
GW generation is stored in the form of gradients (taken
as a proxy for the energy density involved in generating
gravitational waves) then

ρGW;g ∼H2
gm2

Pl

�
Hg

k=ag

�
2

δ2∇ ∼ ρ̄c;gβ
2δ2∇; ð29Þ

implyingΩGW;g ∼ β2δ2∇. After substituting for it in Eq. (26)
we arrive at

ΩGW;0h2100 ∼ β2δ2∇
�
ag
ath

�
1−3w

×

�
gth
g0

�
−1=3

Ωrel;0h2100: ð30Þ

Plugging in the values of the known parameters and setting
ag ≈ ath, finally yields

ΩGW;0h2100 ∼ 10−5β2δ2∇: ð31Þ

In the calculations below, we will use δ∇ ¼ 1=3 for the
inhomogeneous scalar field, typically valid at the time of
backreaction of the field.
The typical values of ΩGW;0h2100 ≲ 10−10 at the peak are

quite small. Qualitatively, this bound can be understood
from the following reasoning. The factor of 10−5 in Eq. (31)
comes from Ωrel;0. Since gravitational waves redshift as
radiation (or relativistic matter) we expect ΩGW to scale
linearly with Ωrel, which has been decreasing since the
epoch of equality. The additional β suppression is a
consequence of the suppression of GW production on
subhorizon scales sourced by the anisotropic part of the
energy momentum tensor of the scalar field [see Eq. (29)].
This last suppression is similar in nature to the one
discussed after Eq. (8) for the scalar metric perturbations.

3. Oscillons and transients

Oscillons: For the typical length scale which first
becomes nonlinear when oscillons form, the parameter β
is given by (refer to Sec. III A 2)

β ¼ Hbrabr
k

∼
HbrR
2π

∼
M
mPl

: ð32Þ

Assuming that the peak of the GWs is generated around the
time of backreaction of this mode, its frequency today is

f0 ∼
ffiffiffiffiffiffiffi
mPl

M

r
× 108 Hz: ð33Þ

In deriving the above expression we used Eq. (24) and
Hbr ∼ Λ2=mpl with Λ2 given by Eq. (4).
Similarly, using Eq. (31), the expected strength of the

gravitational waves today is

ΩGW;0h2100 ∼ 10−6
�
M
mPl

�
2

: ð34Þ

Once oscillons have settled, we do not expect significant
emission of GWs from individual oscillons, since field pro-
files of individual objects are spherically symmetric [59].
We stress that if the universe is not radiation dominated

after the time of production (which is likely since oscillons
lead to a matter-like equation of state), then there will be
additional suppression factors in the frequency (see eq. (20)
and the fractional density of the gravitational waves [see
Eq. (30)] from oscillons after inflation.
Transients: The formation of transients is very similar

to the one of oscillons. We expect the frequency and the
strength of the peak of the GW power spectrum to be
the same as in the oscillon case, see Eqs. (33), (34). As the
transients decay, those which evolve in a nonspherical
manner may generate an additional GW signal. Its typical
frequency should be again set by the spatial extend of the
individual objects, whereas its strength is hard to model
analytically and is best studied numerically.

B. Results from lattice simulations

We employed HLATTICE [93] for the calculation of the
GWs sourced by the nonlinear field dynamics. For the cases
we studied, we used the same simulation parameters, i.e.,
box size, lattice points separation, time step, initial con-
ditions, etc., as for the LATTICEEASY simulations discussed
in Sec. III B. However, we used a more accurate 6th-order
symplectic integrator for the self-consistent evolution of
the scalar field and the scale factor. We also used the
HLATTICE2 spatial-discretization scheme (with keff , not
kstd) when calculating the field spatial derivatives. Those
improvements in accuracy were necessary for the compu-
tation of the GWs. To find the GWs, we evolved the tensor
metric perturbations passively, i.e., we solved Eq. (16),
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without taking into account their feedback on the field and
background metric dynamics. The time step for the GW
integrator was four times greater than the one for the field
and scale factor evolution.

1. Oscillons

The generated GW power spectrum from the oscillon
formation for M ≈ 0.775 × 10−2mPl is shown in Fig. 6.
Time runs from red to purple. One can see four distinct
stages [55].
The first 5–6 red peaked curves represent the oscillatory

stage, during which the condensate is still intact. A broad
range of δϕ̃k is steadily excited via broad resonance, see
Sec. II B, and is responsible for the generation of the GWs.
The frequency of the curves peak is slightly under 109 Hz,
which corresponds to the predicted order of magnitude in
Eq. (33) and is determined by the wave number of the most
unstable δϕ̃k. The rapid growth of the peak height reflects
the exponential amplification of the inflaton perturbations.
Even at this stage, the source term in Eq. (16) has to be
evaluated beyond linear order in perturbations.
The next 3–4 red curves show the onset of the nonlinear

regime. This stage is known as rescattering, since mode-
mode couplings, including the backreaction of amplified
δϕ̃k on the condensate, become important. The broad peak,
centered on the most unstable frequency, becomes wider.
Its height grows more slowly than before and approaches
the predicted value of ∼10−10, see Eq. (34), as the field
becomes completely inhomogeneous (with ∼1=3 of the
total energy being stored in gradients).
The following thick band of red-green curves represents

the third stage. There the oscillons form and stabilize, with
GWs power increasing slowly on all scales.
The last and longest stage is given by the green-purple

curves. The oscillons have stabilized and sphericalized,
while being assembled in a fixed comoving gridlike
configuration. Since there are almost no time-dependent

quadrupole moments to act as sources, there is very little
and slow production of GWs. On intermediate and low
frequencies, GW power propagates (almost freely) toward
lower frequencies and lower values as time goes by and the
universe expands. This makes sense since the oscillon-
dominated universe undergoes a matterlike state of expan-
sion, with ρ̄ ∝ a−3. Since HLATTICE uses a formula like
Eq. (21) to calculate the GW frequency today (more speci-
fically, f0ðk;τÞ¼k=ðaðτÞρ̄1=4ðτÞÞ×4×1010Hz, where τ is
the time of output, beyond which it is assumed that the
universe is thermal and radiation dominated), it follows that
f0ðk; τÞ will decrease with time in a matter-dominated
universe. The energy density of GWs redshifts as radiation,
which explains why the GWs contribution to the energy
budget of the matter-dominated universe decreases with
time. Albeit nearly spherical, individual oscillons do gen-
erate small amounts of GWs. This is visible at the high
frequency end of the GW spectrum. Oscillons act as objects
of fixed physical size, sourcing GWs of fixed physical wave
number. For the HLATTICE conventions this implies that
f0ðk;τÞρ̄1=4ðτÞ∝k=aðτÞ¼ const, i.e., the oscillons-sourced
GWs are at increasingly higher f0ðk; τÞ. This small late-
time effect has an intrinsic numerical component. The
oscillons are inevitably less well resolved as the comoving
lattice expands, sourcing weak late-time high-frequency
GWs. This does not affect the spectrum on intermediate and
low frequencies. For more detailed studies of GWs from
oscillons see [55–61].

2. Transients

Transients decay away quickly, in a non-spherical
manner. Hence, unlike the cases when we have oscillons
in which gravitational waves are not generated after
oscillons are formed, the decay of the transients potentially
can act as an additional source of GWs. Let us see what the
simulations actually tell us. In Fig. 7 we give the evolution

FIG. 6. The gravitational waves generated between ΔN ¼ 0 to
1 (red to purple curves) for the oscillon model from Fig. 2. The
peak of the red curves is close to the predicted values in Eqs. (33)
and (34).

FIG. 7. The gravitational waves generated between ΔN ¼ 0 to
0.85 (red to purple curves) for the transients model from Fig. 3.
The peak of the red curves is close to the predicted values in
Eqs. (33) and (34), and almost identical to the one in Fig. 6.
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of the GWs power spectrum for M ≈ 0.775 × 10−2mPl,
n ¼ 2 (the notation is the same as in Fig. 6). One can
distinguish five different stages. The first three are identical
to the oscillon case: steady generation of GWs due to self-
resonance [peaked around the frequency from Eq. (33)], a
stage of rescattering when backreaction effects become
important [with the peak widening and approaching the
value from Eq. (34)], and a stage where the transients form
and stabilize and GWs are produced slowly on all frequen-
cies. However, the fourth stage (of transients decay) and the
fifth stage (of turbulent evolution) are not observed with
oscillons.
While transients are decaying (green lines in Fig. 7),

GWs are generated on high frequencies and within a broad
low-frequency band. Note that the equation of state at these
times is still < 1=3 [32,33] and the GWs energy density
redshifts faster than ρ̄. This additional sourcing of GWs
provides some boost of the signal (by a factor of a few) in
comparison to the oscillon case.
After the transients decay, their dynamics is dominated

by the potential minimum. We find the same type of GWs
(light blue-purple lines in Fig. 7) as observed in the pure
λϕ4 case [38,63,64]. There is no generation of GWs on
lower frequencies, whereas there is some continuous
production at higher frequencies.

V. DISCUSSION

A. PBH seeds

The sourced gravitational field by oscillons is weak. The
magnitude of the Newtonian potential on their surfaces is
given in Eq. (11). It cannot exceed 10−3, since oscillons
cannot form for M ≳ 10−2mPl, see Refs. [32,33]. Strong
gravitational effects such as gravitationally induced col-
lapse of individual objects, which may lead to the formation
of primordial black holes (PBHs), is expected only for large
values of the scalar potential, jΦj ∼ 1. Since this is not the
case, the self-gravity of individual objects affects their
shapes negligibly.
However, the gravitational potential of an overdense

region of a collection of oscillons can potentially grow over
time. This long-term effect (which lies well beyond the
duration of our simulations) can potentially lead to the
formation of PBHs [42]. Overdense clusters of oscillons
can in principle collapse due to their own gravity, however
the details would depend on angular momentum distribu-
tion as well as the details of close interactions. Some of the
collapsed cluster objects can become PBHs which can
account for a significant fraction of the dark matter in our
universe and/or the binary black hole merger events
observed in Ligo [39–42,94]. We note that this growth
of overdensities, at least before close encounters of the
solitons, is similar in nature to the one of a massive
oscillating and self-gravitating inflaton condensate [37].
Unlike oscillons, we do not expect transients to act as

efficient seeds of PBHs for two reasons. First, transients

form when the scalar field potential near the minimum
∝ jϕj2n, n > 1, implying positive pressure of the effective
background fluid, p > 0 [32,33]. This can lead to a
substantial suppression of the growth rate of overdensities
[95] (note for oscillons p ≈ 0 [32,33]). Second and more
importantly, the transients are quite unstable. It is unlikely
that they can be present for the entire duration of the slow
collapse of a cluster of objects. Hence, the PBHs formation
mechanism employed for oscillons simply does not apply
to transients, due to the short live times and positive
background pressure of the latter.
Nevertheless, one may wonder whether the inherent

instability of the transients (which leads to their collapse
due to their self-interactions) provides another way for
forming PBHs. We have checked that during the collapse of
individual objects, the gravitational potential does not
change much (i.e., its magnitude never exceeds 10−3 for
the optimal choice of parameters). Just like oscillons,
individual transients cannot collapse into PBHs.

B. Gravitational wave detection

The formation of oscillons leads to the generation of a
stochastic gravitational wave background. In Fig. 8 we give
its power spectrum for three different values of M in gray,
dark gray, and black. The gray curve is from the end
of the simulation presented in Sec. IV B (for M ≈ 0.775×
10−2mPl). The dark gray and black curves are for M1 ≈
2.44 × 10−4mPl and M2 ≈ 6.25 × 10−6mPl, respectively.
They were found after rescaling the gray curve accord-
ing to f0 → ðf0;maxðM1;2Þ=f0;maxðMÞÞf0 and ΩGW;0 →
ðf0;maxðMÞ=f0;maxðM1;2ÞÞ4ΩGW;0. The first rescaling is
trivial, whereas the second one comes from Eqs. (33)
and (34).

FIG. 8. The gray, dark gray, and black lines show the variation
of the oscillon-sourced GWs power spectra today, scaled accord-
ing to Eqs. (33) and (34). For M yielding peak frequencies lower
than the one of the left red dashed line, the inflaton does not form
oscillons. ForM leading to frequencies greater than the one of the
right red dashed line the consistency of oscillon formation
scenario is ruled out by virtue of the constraint from Eq. (22).
The detection ranges of LISA, BBO, and Ligo O5 [94,96] are
given in orange, blue, and green, respectively.
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Since the inflaton does not form oscillons when
M ≳ 10−2mPl, see Refs. [32,33], the gray curve is close
to the lowest in frequency (and the greatest in strength)
signal that can be achieved within the allowed parameter
space. It has f0;max ∼ 109 Hz as depicted by the left red
dashed vertical line in Fig. 8. The right red dashed vertical
line corresponds to the upper bound given in Eq. (22). It is
saturated by M2, see Eq. (33).
There is a very narrow frequency range in which we can

detect GWs from inflaton oscillons. It lies well beyond the
reach of planned GW detectors, see Fig. 8. However, the
conclusions drawn so far rely on two major assumptions:
(i) the universe thermalizes (and becomes radiation domi-
nated) immediately after the generation of GWs, ag ¼ ath,
see Eqs. (20) and (26); (ii) the inflaton, not another
spectator scalar field, forms the oscillons.
If we relax (i) [but keep (ii)] and put ag < ath, as well as

w < 1=3 in Eqs. (20) and (26), the GWs signal can be
brought to frequencies of observational interest, see Figs. 5
and 8. Nevertheless, the strength of the signal will be below
the sensitivity of the planned detectors. On the other hand,
if we relax (ii), while keeping (i), the frequency and the
strength of the signal will be determined by the generic
expressions given in Eqs. (24) and (31) [not in Eqs. (33)
and (34)]. This way the frequency of the GW signal can be
brought down to sufficiently low values, without penalizing
the strength of the signal, making planned GW detectors
the ideal probes of oscillons [56–61].
Even if the oscillon-sourced GWs elude direct detection,

in principle they can still have observational consequences.
Since GWs are massless, they contribute to the effective
number of light d.o.f.,ΔNeff , during the epoch of the CMB.
Thereby, they can affect the big bang nucleosynthesis
and the cosmic microwave background [97]. More spe-
cifically, bounds on beyond-the-Standard-Model contribu-
tions to ΔNeff constrain the total integrated GW energy
density. If primordial GWs are the only relativistic d.o.f.
apart from the Standard Model ones, present constraints
yield

R
d ln fΩGW;0ðfÞ≲ 10−6 [98]. The upcoming CMB

S4 experiments are expected to improve the threshold by
over an order of magnitude [99]. The oscillon-sourced
GWs

R
d ln fΩGW;0ðfÞ ∼ 10−9, require an additional couple

of orders of magnitude to become detectable.7 Note that this
measurement is insensitive to the peak frequency and
provides a unique window to high-frequency GWs, which
are otherwise inaccessible with current and planned GW
detectors.
Despite transients being unstable and decaying away

the same conclusions, regarding the observations of the

stochastic gravitational wave background they generate,
apply to them.

VI. CONCLUSIONS

We studied the scalar and tensor metric perturbations
generated by oscillons and transients after inflation. We
evolved the nonlinear inflaton structures numerically with
classical lattice simulations. We used the simulation output
to source the metric perturbations passively, i.e., without
considering the backreaction of the metric perturbations on
the inflaton dynamics. However, gravity was included in
the lattice simulations at the background level.
For the magnitude of the scalar metric perturbations we

found a parametrized upper bound, see Eq. (13). It is the
same for transients and oscillons. For the optimal choice of
parameters, it is ≈10−3, implying that both oscillons and
transients are weakly gravitating objects. It is highly
unlikely for individual objects to collapse under their
own gravitational pull and form PBHs.
The spectra of the GWs sourced by oscillons and

transients are quite similar. Albeit the transients decay
generates additional GWs and the subsequent evolution of
the turbulent inflaton leads to even more GWs, the shapes,
the height and the frequency of the sourced GW power
spectrum by oscillons and transients are almost the same,
see Figs. 6 and 7 and Eqs. (33) and (34). If the oscillons or
the transients are formed by the inflaton, and we assume
that the universe becomes radiation dominated soon after
soliton formation, the typical GWs frequencies today are
109–1010 Hz. They lie well beyond the reach of all planned
GW detectors. If we postulate a long period of w < 1=3
state of expansion after the inflaton fragments into oscillons
or transients, the GWs frequencies can be reduced at the
expense of the strength of the GW signal, still lying outside
the scope of current GW detectors.
As a fiducial model we considered the α-attractor

T-model for which the inflaton potential is symmetric
and asymptotes to a constant value away from the central
minimum. Our conclusions should apply to asymmetric
potentials such as the ones in α-attractor E-models [80,81]
as well as power-law monodromy type potentials
[101,102], since the dynamics of the oscillons and tran-
sients is determined mainly by the region near the central
minimum.8

7On the one hand, this is difficult because it is likely that there
is an interval of matter domination following the time when
gravitational wave from oscillons are produced (though not true
for transients). Alternatively, one can assume an expansion period
with a stiff equation of state, w > 1=3, [100] between the oscillon
decay and thermalization, to boost ΩGW;0.

8Note that the actual embedding of the α-attractor inflaton
potentials in supergravity suffers from instabilities in auxiliary
fields for M <

ffiffiffi
2

p
mPl [75,103–106]. We have ignored this

theoretical constraint and considered the single-field models at
the phenomenological level. However, to ensure the transition to
a radiation dominated universe, i.e., the succesful completion of
reheating, at some point one has to account for couplings of the
inflaton oscillons to other fields. They eventually lead to the
decay of the oscillons into relativistic matter [107,108], ending
the matter-dominated state of expansion.
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In future work we plan to consider dynamical gravita-
tional clustering, as well as self-gravitating individual
objects.
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APPENDIX: POISSON SOLVER

From our simulations we find the energy density field at
each lattice cite, ρx;y;z, which acts as a source for the
gravitational potential in the Poisson equation (9). To find
Φnl

x;y;z, we then solve the Poisson equation with periodic
boundary conditions. Since the Laplacian operator is linear,
in (discrete) Fourier space Eq. (9) reduces to a simple
algebraic form

Φ̃nl
kx;ky;kz

¼ a2ρ̃kx;ky;kzdx
2

2m2
PlD̃ðkx; ky; kzÞ

;

D̃ðkx; ky; kzÞ ¼ −6þ 2
X

i¼x;y;z

cos

�
2π

N
ki

�
; ðA1Þ

where each integer Fourier mode wave number can be
0 ≤ ki < N (but k2x þ k2y þ k2z ≠ 0), with N3 being the
total number of lattice points in the real-space cubic

lattice. Since we consider linear metric perturbations,
we assume they have zero spatial mean, i.e., we put
Φ̃nl

kx¼0;ky¼0;kz¼0 ¼ 0. The comoving distance between

neighboring lattice points, dx, is constant. Note also that
as a comoving (discrete) real-space Laplacian operator, we
use the standard second-order,Oðdx2Þ, accurate expression

∇2Φnl
x;y;z ¼

D½Φnl
x;y;z�

dx2
;

D½Φnl
x;y;z� ¼ Φnl

xþ1;y;z þΦnl
x−1;y;z þΦnl

x;yþ1;z þΦnl
x;y−1;z

þΦnl
x;y;zþ1 þΦnl

x;y;z−1 − 6Φnl
x;y;z: ðA2Þ

This is consistent with LATTICEEASY, since it uses the same
implementation to calculate the Laplacian of ϕ.
We can also compute the magnitude of the gravitational

acceleration, g ¼ j∇Φnlj=a. To calculate the comoving
gradient we again use a standard finite difference imple-
mentation

∇iΦnl
x;y;z ¼

Gi½Φnl
x;y;z�

dx
;

Gx½Φnl
x;y;z� ¼ Φnl

x;y;z −Φnl
x−1;y;z;

Gy½Φnl
x;y;z� ¼ Φnl

x;y;z −Φnl
x;y−1;z;

Gz½Φnl
x;y;z� ¼ Φnl

x;y;z −Φnl
x;y;z−1: ðA3Þ
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