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This article aims at establishing new benchmark scenarios for Galactic cosmic-ray propagation in the
GV-TV rigidity range, based on fits to the AMS-02 boron to carbon ratio (B/C) data with the USINE V3.5

propagation code. We employ a new fitting procedure, cautiously taking into account data systematic error
correlations in different rigidity bins and considering Solar modulation potential and leading nuclear cross
section as nuisance parameters. We delineate specific low, intermediate, and high-rigidity ranges that can be
related to both features in the data and peculiar microphysics mechanisms resulting in spectral breaks. We
single out a scenario which yields excellent fits to the data and includes all the presumably relevant
complexity, the BIG model. This model has two limiting regimes: (i) the SLIM model, a minimal diffusion-
only setup, and (ii) the QUAINT model, a convection-reacceleration model where transport is tuned by
nonrelativistic effects. All models lead to robust predictions in the high-energy regime (≳10 GV), i.e.,
independent of the propagation scenario: at 1σ, the diffusion slope δ is [0.43–0.53], whereas K10, the
diffusion coefficient at 10 GV, is ½0.26–0.36� kpc2 Myr−1; we confirm the robustness of the high-energy
break, with a typical value Δh ∼ 0.2. We also find a hint for a similar (reversed) feature at low rigidity
around the B/C peak (∼4 GV) which might be related to some effective damping scale in the magnetic
turbulence.
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I. INTRODUCTION

The last decade in direct cosmic-ray (CR) detection
experiments has been characterized by a major improve-
ment in the precision of the data available, and by an
extension of the covered dynamical range [1–6]. In
particular, with the AMS-02 data the community has to
deal for the first time with percent level precision and a
welcomed redundancy in the measurements.

But, as well known, great responsibility inseparably
follows from great power:1 since theoretical predictions
are very far from attaining that level of precision, both due
to ignorance of the detailed underlying microphysics
(CR acceleration and transport) and because of irreducible
limitations (e.g., due to the intrinsic stochasticity of the
sources [7,8]), a preliminary question that should be
addressed is that of the best strategy to take advantage
of such a wealth of data. In this paper, we primarily focus
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1Or, in the original 1793 French version: “Une grande
responsabilité est la suite inséparable d’un grandpouvoir”. French
Revolution Parliamentary Archives, “Tome 64: Du 2 au 16 mai
1793, Séance du mardi 7 mai 1793, page 287, available, e.g., at
https://frda.stanford.edu/fr/catalog/wx067jz0783_00_0293.
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on the AMS-02 boron to carbon ratio (B/C) data [9] and
investigate how much they can constrain CR transport,
aiming at defining new benchmark models.
An ambitious approach would be to proceed with global

fits of all available data, attempting an overall and simulta-
neous understanding of CR sources (all species) and
propagation. However, this approach is prone to mixing
uncertainties of different nature, with the risk of devaluing
the actual strength of the data by introducing poorly
controlled parameters (for an illustration, see [10]).
Since our current understanding of CR measurements
has more firm elements in the propagation part than in
the source one, factorizing out propagation effects from
source effects, while inspecting their physical plausibility
a posteriori, seems justified. In this article, we proceed
through partial tests of key aspects of the current propa-
gation paradigm, with the goal of validating it or high-
lighting its breakdown. An important and relatively new
issue in this area is that systematic errors are often
dominant over statistical ones. This requires a change of
perspective in well-established practices of analyzing
the data, as well as new standards of rigor. It calls for
establishing a satisfactory protocol for analyzing the data
on a relatively simple and homogeneous data sample.
This article represents an important pillar in our CR data

analysis based on the overall philosophy sketched above.
As long established [11–15], a flux ratio of elements
present but in traces in the solar system material and
interstellar medium (ISM), such as lithium, beryllium,
boron (“secondaries”), to abundant species like carbon
or oxygen (“primaries”) is extremely sensitive to propa-
gation parameters. It was shown to be also almost insensi-
tive to the energy spectrum of the injected primary species,
notably if those are described by a common power law in
rigidity [16–18], a rather generic prediction of studies of
CR acceleration at sources [19–22]. In particular, at high
rigidities we expect the B/C ratio (currently the most
precisely measured) to be dominantly affected by diffusive
propagation and nuclear cross sections.
In [23], we performed an analysis of the high-rigidity

range of the AMS-02 B/C ratio [9], finding evidence for a
diffusive origin of the observed spectral break, at the same
rigidity scale inferred from a similar feature in the proton
and helium CR fluxes [24], i.e., ∼300 GV. Actually, recent
years have been characterized by the observational estab-
lishment of “spectral anomalies” (for reviews, see [25,26]),
in particular of spectral breaks in primary species [2,24,
27–30]. In turn, there has been growing evidence in favor
of their interpretation in terms of a high-rigidity break in
the diffusion coefficient [23,31,32], notably after the first
AMS-02 publications of nuclear CR fluxes [30,33]. In this
article, we move several steps beyond our previous analysis
[23], presenting a complete analysis aiming at constraining
CR propagation and at proposing new benchmark setups:
First, we rely on an improved analysis of the B/C data by

the AMS-02 collaboration [33]. We further benefit from
additional data on the primary species to constrain the
break independently from the B/C ratio—using the C and O
fluxes [30] which are most contributing species to B
production [34], but were not available to Ref. [23].
Second, we follow the new methodology proposed in
[35] to analyze the AMS-02 data, carefully accounting
for a number of subtle (but highly important) effects which
are usually ignored, notably the (partial) correlations in
systematic errors. This approach enables a straightforward
and sound statistical interpretation of the models (best-fit
models have χ2=dof ∼ 1), also allowing for their intercom-
parison. Third, we propose a new generic propagation
model (dubbed BIG in the following), with a number of
parameters that should be sufficient to describe all key
features currently present in the data. In addition to a high-
rigidity break, a modification of the diffusion coefficient
at low rigidity is enabled (≲5 GV), with two limiting cases
(dubbed SLIM and QUAINT): this allows us to assess the
relative discriminating strength of the data in this energy
range and to shed new light on propagation in the low-
rigidity regime, where a second diffusion break might be
present.
The paper is organized as follows: In Sec. II, the one-

dimensional (1D) propagation model and the essential
physical effects involved in CR propagation are presented,
before introducing our three benchmark scenarios (BIG,
SLIM, and QUAINT). In Sec. III, we describe the specific
iterative procedure used for the B/C analysis, and this
procedure is validated and checked in two appendices:
Appendix A assesses the robustness of the derivation of
the high-energy break, by taking advantage or not of the
C and O fluxes; Appendix B further discusses the depend-
ence of the fit parameters upon the lower rigidity cut, to
better illustrate and give meaning to the terms “low-
rigidity” and “high-rigidity”parameters. Best-fit results
for our three scenarios are presented in Sec. IV, where
these scenarios are also tentatively interpreted in terms of
the underlying microphysics. In Sec. V, we report our
conclusions and mention natural follow-up works. Note
that all results are obtained for a 1D model of our Galaxy,
with the size of the diffusive halo fixed. In order to allow for
a broader usage of our results, as they may have some
consequence in predicting the fluxes of other secondary
species, Appendix C provides a scaling of the high-rigidity
parameters with L, whereas Appendix D reminds the reader
of the effectiveness of this description, and provides a
“dictionary” to interpret the results in terms of a two-
dimensional (2D) model with different halo sizes.

II. TRANSPORT MODELS

In this section, we introduce the generic propagation
equation that we further solve semianalytically in the
framework of the USINE code [36]—for fully numerical
frameworks complementary to ours, we refer the reader to
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Refs. [14,37–40]. We also set a generic CR transport
configuration motivated by theoretical arguments on the
microphysics of CRs, with a focus on possibly important
low-energy processes. This generic setup will itself be used
as a benchmark configuration, of which we shall explore
two limiting regimes. These three cases characterize new
benchmark models (dubbed BIG, SLIM, and QUAINT—
see Sec. II B) that are aimed at capturing different theo-
retical assumptions, while still being data driven. These
configurations will be shown to provide excellent fits to the
current B/C data assuming simple power-law primary CR
spectra. Not only may this stimulate further microphysical
interpretations, but it also offers a basis for a description of
other CR data, like for instance the positron [41–43] and
antiproton fluxes [31,44–46]. Eventually, these bench-
marks will be instrumental in characterizing and hopefully
reducing theoretical uncertainties entering searches for
exotic phenomena (e.g., [31,47–52]).
The min, med, and max benchmark values proposed in

Ref. [53], all based on the same model, were defined to
roughly bracket the theoretical uncertainties on dark
matter-induced antiproton flux predictions assuming the
best-fitting propagation parameters of Ref. [15]. However,
these values have been challenged by a series of comple-
mentary constraints [31,43,54], and are anyway no longer
consistent with the B/C data [23]. The revised reference
models we propose here rely on different assumptions on
the microphysics of CR transport instead of different values
of parameters within the same configuration. This change
in philosophy stems from the fact that with increasing
precision in the (multiwavelength and multimessenger)
observational data and improvements on the theory side,
we expect to arrive soon to a much better understanding and
description of the CR microphysics itself than it was
possible two decades ago [22,55].

A. Transport description

1. Transport equation

The general formalism that provides a powerful descrip-
tion of the transport of CRs in the Milky Way derives from
the seminal textbook by Ginzburg and Syrovatskii [56]
(see also [57,58]), and relies on the following diffusion-
advection equation for a CR species of index α, here in the
steady-state approximation and in energy space (rather than
rigidity or momentum space):

−∇⃗xfKðEÞ∇⃗xψα− V⃗cψαgþ
∂
∂E

�
btotðEÞψα−β2Kpp

∂ψα

∂E
�

þσαvαnismψαþΓαψα

¼qαþ
X
β

fσβ→αvβnismþΓβ→αgψβ: ð1Þ

This equation describes the spatial and energy evolution
of the differential interstellar CR density per unit energy

ψα ≡ dnα=dE, assuming a net primary injection rate of
qα, and a secondary injection rate arising from inelastic
processes converting heavier species of index β into α
species (with a production rate σβ→αvβnism on the ISM
density nism, or a decay rate Γβ→α). This source term is
balanced by several other terms, among which the decay
rate Γα (if relevant). The central piece of the propagation
equation is the spatial diffusion coefficient K, that we
discuss in more detail in Sec. II A 3. The other processes
are mostly relevant at low rigidity, but may still affect the
determination of higher-energy parameters: convection is
featured by a velocity V⃗c, diffusive reacceleration is para-
meterized by the energy-dependent coefficientKpp, and the
inelastic destruction rate is given by σαvαnismψα, with the
σ’s being energy-dependent nuclear cross sections; energy
losses are characterized by the rate btot ≡ dE=dt, which
includes ionization and Coulomb processes as prescribed in
[14,59], as well as adiabatic losses induced by convection
and reacceleration, see [16,60].
Finally, we can switch from the interstellar (IS) CR flux

predictions to the top-of-atmosphere (TOA) ones by means
of the force-field approximation [61,62], for which we only
indicate the Fisk potential ϕF. The latter is constrained from
Ref. [63] for the AMS-02 data taking period.

2. Geometry and cross sections

We assume a 1D propagation model, as introduced in,
e.g., [15,64–68], where the magnetic halo confining the
CRs is an infinite slab in the radial direction and of
half-height L. Indeed, the radial boundary has only a minor
quantitative impact on other transport parameters when the
diffusion coefficient is taken as a scalar function (see, e.g.,
[16,60]), and neglecting the radial dependence allows us to
more efficiently probe the entire available parameter space
without significant loss of generality. Therefore, we con-
sider the vertical coordinate z to be the only relevant spatial
coordinate. See however Appendix D for some consider-
ations on the correspondence between 1D and 2D models.
The sources of CRs and the ISM gas which they scatter

off are taken homogeneous in an infinitely thin disk at
z ¼ 0, with an effective half-height h ¼ 100 pc. Energy
losses are also considered to be localized in the disk,
btot ∝ 2hδðzÞ. The ISM density is set to nism ¼ 2hδðzÞn0,
where n0 ¼ 1 cm−3, corresponding to a surface density of
Σism ¼ 2hn0 ≃ 6 × 1020 cm−2 consistent with observations
[69]. We assign 0.9 and 0.1 of this budget to hydrogen and
helium (in number), respectively. We do not indulge here in
a more detailed discussion of the determination of these
parameters and of their error from independent observa-
tions, since they are largely degenerate with the normali-
zation of the diffusion coefficient (see, e.g., [70]).
For the nuclear production and spallation cross sections,

we have run the Galprop package to extract the default
cross section models, which stem from a combination of
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several codes that best fit the available datasets. The reference
tables thus compiled are available in USINE V3.5. We further
allow for normalization, energy shift, and low-energy slope
changes according to the NSS method described in [35].

3. Diffusion in real space and momentum space,
and convection

An important physical ingredient to all propagation
models is the diffusion coefficient, which describes the
scattering of CRs off magnetic turbulence. We assume that
it can be taken as a scalar function, homogeneous and
isotropic all over the magnetic slab. This is likely a good
approximation in the context of B/C analyses because the
CR flux is locally isotropic and the magnetic field con-
figuration of the Milky Way exhibits relative fluctuations
δB=B ∼ 1 at maximal scales of order λ ≈ 100 pc (or wave
numbers k ¼ 2π=λ) [71–73]. Since at the energies of
interest, the CR flux is expected to be contributed to by
many sources mostly located many “magnetic domains”
away, an isotropic diffusion should provide at least a
reasonable effective description of the data [57]. For
discussions on anisotropic models, see, e.g., Refs. [74,75].
On the theory side, it is expected that the magnetic

turbulence responsible for CR diffusion has different
scaling behaviors in k-space, as a consequence of various
possible phenomena. For instance, the turbulence power
spectrum can be dominated by different sources depend-
ing on the dynamical range, with the resulting “two-zone”
models known to provide good fits to the data [76,77] (see
also [68,78]). A very appealing scenario is proposed in
Refs. [79–82], relying on streaming instability [83–85],
where at rigidities beyond a few hundreds of GV, CRs
diffuse on the turbulence injected on large scales by
supernova bubbles. This turbulence cascades down until
crossing the rigidity scale where the turbulence induced
by CRs themselves takes over. This naturally generates a

break like the one observed in the CR spectra and
discussed just above. On the other hand, it is known that
the CR spectra observed at low rigidity by the Voyager I
spacecraft [86,87] have a spectral slope rather different
from the slope at intermediate rigidities. Due to the
CR-wave coupling, any phenomenon with a low-rigidity
characteristic scale, affecting either propagation or injec-
tion, may thus be at the origin of correlated changes in the
CR spectra and the diffusion coefficient. For propagation,
such a scale might arise due to the decrease of the CR
pressure as CRs get closer and closer to the nonrelativisitic
regime, and/or be related to some dissipation of the
turbulence power spectrum [88–93]. In the following,
while remaining agnostic on these specifics, and in
contrast to previous B/C studies performed in the context
of semianalytical models (e.g., [15–17,60]), we want to
capture the possibility that the diffusion coefficient
departs from a single power law. This is justified by
both theoretical arguments and observational evidence,
as recalled above.
Starting from general considerations arising in the quasi-

linear theory (e.g., [57,58,94,95]), the diffusion coefficient
is expected to be linked to the magnetic turbulence
spectrum jδB=Bj through

KðEÞ ¼ vlmfp

3
≃
v
3

rL
jδB=Bj2kL

; ð2Þ

where v is the CR speed, lmfp is the mean free path length,
rL ∝ R=B is the Larmor radius defined from the rigidity
R ¼ p=Z, and kL ∝ 1=rL is the turbulence mode in
resonance with the CR Larmor radius. Consequently, we
propose a general form for the diffusion coefficient that
can account for breaks in both the high-rigidity range and
the low-rigidity range (hidden in the factor rL=jδB=Bj2kL
above), which reads

KðRÞ ¼ βη|{z}
nonrelativistic regime

K10

�
1þ

�
R
Rl

�δl−δ
sl

�sl

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
low-rigidity regime

�
R

ðR10 ≡ 10 GVÞ
�

δ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
intermediate regime

�
1þ

�
R
Rh

�δ−δh
sh

�
−sh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
high-rigidity regime

: ð3Þ

In the above equation, β ¼ v=c is the dimensionless CR
speed, and Rl=h is the location of the low/high-rigidity
break, while R10 is an intermediate rigidity (here taken at
10 GVon purpose) such that Rl < R10 < Rh (Rl ≪ Rh). We
then get the scaling KðRÞ ∝ βηRδl in the limit R ≪ Rl, and
the scaling KðRÞ ∝ Rδh in the limit R ≫ Rh. Therefore, δl,
δ, and δh simply describe the diffusion spectral indices in
the low-, intermediate-, and high-rigidity regime, respec-
tively. The parameter sl (sh) characterizes how fast the
spectral change proceeds around Rl (Rh), and is inspired by
the need to describe the very smooth hardening of the B/C

data showing up at high rigidity. Indeed, we recall that the
previous high-rigidity analysis performed in Ref. [23]
provided support to a softening of the diffusion coefficient
to explain this feature, such that we can already anticipate
that δh < δ. The normalization of the diffusion coefficient
K10 (which carries the physical units) is another free
parameter. Mind the difference with the convention used
in most past analyses, where the normalization was instead
K0 and was defined at a rigidity R0 ¼ 1 GV. Note also
that K10 ≃ Kð10 GVÞ, not a strict equality, because of
the influence of the other terms.
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We further introduce the spectral-change parameters

Δl ¼ δ − δl; ð4aÞ

Δh ¼ δ − δh; ð4bÞ

As already mentioned above, Δh is expected to be positive.
A positiveΔl is also expected from damping arguments and
from the flattening of the primary CR spectra observed by
Voyager I, as CRs may diffuse mostly on self-generated
turbulence—see the discussion above. Notice that in the
low-rigidity regime, additional nonrelativistic processes
might further be considered in an effective way by raising
the velocity β to the power η, an effective index which—it
has been argued—might take negative values in some
regimes [89,90].
A comment on η is in order: since the rigidity range of

CR data analyzed in this article is always relativistic,
sizable departures from η ¼ 1 [the natural value from
quasilinear theory, see Eq. (2)] and/or large values of VA
(which allows for energy redistribution) may be needed to
affect appreciably CRs whose v ≃ c. In a certain sense, η is
thus not a very valuable effective parameter for the problem
at hand. Nonetheless, we keep the η parameter in the
discussion for historical reasons, since in combination with
strong reacceleration it used to be an important ingredient
in past studies of B/C data, notably at low energies [14,15,
53,68,78]. Sufficiently large negative values of η < −δl (or,
similarly, of δl < −1 if η ¼ 1) can also imply superluminal
diffusion [96,97] in the non-relativistic regime. In this
sense, we caution the reader never to extrapolate acritically
the functional forms obtained here too far from the rigidity
range over which the fits have been obtained.
Let us now be more specific about reacceleration. It turns

out that spatial diffusion can rather generically be linked to
diffusion in momentum space (aka reacceleration) in most
(but not all) cases [57]. We include diffusion in momentum
space through an additional diffusion coefficient Kpp—see
Eq. (1). We follow the reacceleration model proposed in
Refs. [68,78,98], which is implemented in USINE such that
KppðR; x⃗Þ ¼ 2hδðzÞKppðRÞ, and

KðRÞ × KppðRÞ ¼
4

3
V2
A

p2

δð4 − δ2Þð4 − δÞ ; ð5Þ

where VA is an effective Alfvénic speed characterizing the
magnetic turbulence—δ is the diffusion spectral index in
the intermediate inertial regime. Since it appears explicitly
only as a normalization factor, we stick to this formula even
when spatial diffusion exhibits several spectral regimes.
The fact that reacceleration is effectively localized in the
disk allows us to partly solve Eq. (1) analytically, which
significantly speeds up the numerical exploration of the
parameter space [36]. While this “pinching” is a fair
approximation for ionization and Coulomb processes, it
is only a convenient approximation for adiabatic losses

induced by convection and reacceleration. Hence, care
should be taken when comparing inferred values of the
parameters Vc ≡ jV⃗cj and VA with theoretical expectations.
Loosely speaking, one can expect to recover the phenom-
enology of a more extended reacceleration zone by a
rescaling of V2

A by a factor h=zA [99], where zA is the
half-height over which reacceleration would spread in the
magnetic slab [68]. So, for h=zA ≃Oðh=LÞ, our fitted value
of VA should be scaled by a factor

ffiffiffiffiffiffiffiffiffi
L=h

p
before any

comparison against theoretical or observational constraints
[100,101].
Finally, convection also arises quite naturally in the

framework discussed above. We include convection in the
standard way by means of the convection velocity

V⃗cðzÞ ¼
z
jzjVce⃗z; ð6Þ

where z is the vertical coordinate and e⃗z the unit vector
along the vertical axis crossing the magnetic slab of
extension ½−L; L� along that axis.

B. Benchmark models

In the most general case, the free parameters featuring
the propagation modeling that we have introduced above
are the following: L for the magnetic halo size;K10, δ, η, Rl,
δl (equivalently Δl), sl, Rh, Δh (equivalently δh), and sh
for the diffusion coefficient; VA for reacceleration; Vc for
convection. This is a 12-parameter space, hence a huge
configuration volume to explore.
Based on previous studies, we can further fix Lwhich is

highly correlated with K10, see discussion in Appendix C.
Unless specified otherwise, we will set L to 10 kpc in the
following. Moreover, as anticipated in Sec. I, the deter-
mination of (an interval for) the three parameters describ-
ing the high-rigidity break benefits from fits including
primary species, see Sec. III. Finally, without loss of
generality, we fix the smoothing low-rigidity break
parameter sl ¼ 0.05, which amounts to consider a fast
transition. This is however not critical to the fit. Hence, we
are left with 7 free parameters.
From these 7 parameters, we design three different

benchmark propagation models which may be related to
quite different limiting regimes of the underlying micro-
physics. The first, most generic, model includes the whole
setup introduced above: let us name it the BIG model. The
second one is much simpler as it is free of convection and
reacceleration, hence with much less free parameters,
while providing fits to the data comparable to the previous
one (see Sec. IV); let us call it the SLIM model. The third
and last one includes both reacceleration and convection,
but relates the possible change in the propagation at
low rigidities to a change originating specifically in the
non-relativistic regime (η), instead of a more generic
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low-rigidity break in the diffusion coefficient. This sce-
nario provides a slightly worse fit to the data compared to
the previous ones, at the expense of a large reacceleration
VA. However, it allows us to connect the current analysis
to the strong reacceleration models that were popular in
the past; let us dub it the QUAINT model. Both the SLIM
and QUAINT models are actually particular cases of the
BIG model, but put the emphasis on different physical
processes at low rigidity. In the following, we provide the
details of these three configurations.

1. BIG: The paradigmatic model

The BIG model includes a double-break diffusion
coefficient, as well as convection and reacceleration. Its
minimal version fixes the nonrelativistic parameter η ¼ 1,
while a nonminimal configuration may allow η to vary.
The latter case will actually help justify the former one
independently from theoretical arguments. Therefore, the
BIG model stands for the most general configuration
describing the propagation equation, Eq. (1), and which
allows us to probe the low-rigidity processes with the
largest flexibility and complexity. This model has a total of
6 (7) parameters in the minimal (nonminimal) configura-
tion, which are recalled in Table I.

2. SLIM: The minimal (double-break diffusion) model

The SLIM model is a subpart of BIG, which discards
convection and reacceleration as major players at low
rigidity (VA ¼ Vc ¼ 0 km=s), but instead insists on relat-
ing low-rigidity features to changes in the magnetic
turbulence properties. It also assumes a standard scaling
in the non-relativistic regime, with η ¼ 1. This model,
though very minimal, will be shown to provide an excellent
fit to the data. It has 4 free parameters which are
summarized in Table I. Note that an important advantage

of this model is that it comes with a fully analytical solution
to the transport equation. This is particularly attractive in
the context of dark matter predictions [99,102].

3. QUAINT: The “old-fashioned” strong
reacceleration model

Our last benchmark model is the QUAINT model, which
is also a subpart of the BIG model, and which aims at
describing the low-rigidity features mostly in terms of
reacceleration and convection. This model is actually the
direct descendant of themin- med-maxmodels [15,53] as it
relies on almost the same configuration space, except for
the high-rigidity break in the diffusion coefficient (which
was not observed at the time of its ancestors and will
anyway be treated as a nuisance parameter in the statistical
analysis). Large VA, in combination with a nontrivial value
of η≲ 0 is needed to provide decent fits to the data. A large
VA in turn couples low-rigidity and high-rigidity features,
maximizing parameter correlations. The QUAINT model
has 5 free parameters, made explicit in Table I. In practice,
the diffusion coefficient associated with the QUAINT
model is that of Eq. (3) without the low-rigidity term.

III. FITTING STRATEGY

In this section, we explain the fitting strategy used to
extract the benchmark propagation parameters for the
models presented above (BIG, SLIM, and QUAINT).
Fits are performed with the MINUIT package [103] inter-
faced with the USINE code [36], and in particular, asym-
metric error bars on the parameters rely on the MINOS

algorithm. For more technical details and subtleties on the
setup and the analysis, we refer the reader to Ref. [35].

A. Modeling uncertainties

For each run, the fluxes of the elements from Beryllium
(Be) to Silicon (Si) are computed assuming that 10B, 11B
(and 10Be, decaying into 10B) are pure secondary species
and that all the heavier elements contain a secondary and a
primary component. We assume the primary injection to
follow a universal power law in rigidity with index α. The
secondary component is computed by a full spallation
network using the GALPROP cross section parametrization
(see Appendices of [34]). It has been shown in [35] that this
parameterization provides the best agreement with the data,
and that uncertainties on spallation cross sections are
satisfactorily taken into account using only the 12Cþ H →
11B production cross section as nuisance parameter with the
“normalization, slope, and shape” (NSS) strategy. For each
run, the initial default procedure is to fix the normalization
of the primary components of all elements to the
10.6 GeV=nuc data point of HEAO-3 [36], except for
the CNO elements which affect more directly the B/C ratio:
The latter ones are normalized to the C, N, O data of AMS-
02 at a rigidity of 50 GV. The power-law index α is first set

TABLE I. Free parameters of the three benchmark models BIG,
SLIM, and QUAINT. The first block of parameters is associated
with the diffusion coefficient in the intermediate regime, and is
common to all models. The second block is related to a potential
low-rigidity break in the diffusion coefficient, or to purely
nonrelativistic effects. The last block is related to reacceleration
and convection.

Free parameters/
Models BIG SLIM QUAINT

K10 ✓ ✓ ✓
δ ✓ ✓ ✓

η 1 or ✓ 1 ✓
δl ✓ ✓ N/A
sl 0.05 0.05 N/A
Rl ✓ ✓ N/A

VA ✓ N/A ✓
Vc ✓ N/A ✓
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to 2.3, and fixed later via the iterative procedure explained
below. The solar modulation of CRs is described in the
force-field approximation, for which the Fisk potential ϕF
is averaged over the AMS-02 B/C data taking period. Based
on [63], we set ϕF as a nuisance parameter of mean value
730 GV and dispersion σϕF

¼ 100 MV.

B. Data errors

The AMS-02 collaboration does not provide users with
the covariance error matrix of the data. In this case, it is
common practice to estimate the total errors by summing
systematics and statistics in quadrature. This procedure is
however inappropriate when systematics dominate, i.e.,
below ∼100 GV for the AMS-02 data, and for which
correlations in energy are expected to be important. A
major novelty of the present analysis is to perform fits
taking into account these correlations with a parametric
form of the covariance matrix. The matrix was built thanks
to the information provided in the Supplemental Material of
the AMS-02 B/C analysis [33]. In particular, the different
systematics, which are associated with different physics
processes in the detector, have different correlation lengths,
and the covariance matrix built reflects this complexity. For
more precision we refer the reader to [35].

C. C and O primaries

It has been noted already that recent data show an
indication for a high-rigidity break in the diffusion coef-
ficient. However, these data are at present still far for
providing us with the precise characteristics of this feature.
In fact, in order to start gaining statistical confidence in the
very existence of this break, the typical strategy until now
has been to combine the B/C data with independent
indications for the break. For instance, in [23] we used
the AMS-02 p and He data to that purpose.
As anticipated in Sec. I, we no longer focus our B/C

analysis on the high-rigidity regime. Instead, we want to
provide reference values for the parameters controlling the
low- and intermediate-rigidity regimes. Consequently, it is
a natural choice to use the high-rigidity break parameters as
nuisance parameters. However, in order to establish the
plausible range over which to vary them, it is recommended
to resort to complementary and “independent” input. To
minimize possible biases due for instance to possibly
different origins of the different species, we choose to
limit ourselves to the C and O fluxes because:

(i) They are by far the main progenitors of the B and C
fluxes entering the B/C ratio.

(ii) Fitting them allows us to determine a plausible value
of the common spectral index of nuclei α as well
as to check their consistency with the parameters
obtained with the B/C analysis. Indeed, although we
focus here on the B/C observable to determine the
propagation parameters, we still want to make sure

that our results are consistent with the observed
primary fluxes.

In Appendix A, we make the important sanity check of
neglecting this external input, relying solely on the B/C
data to determine both the high-rigidity spectral break (and
the other propagation parameters). We show that the
obtained results are perfectly consistent with the “factoriz-
ing” procedure sketched above, at the obvious price of a
worse determination of the propagation parameters. This is
indeed not surprising, since the B flux, which dominates
the B/C statistical error at high rigidity, is more than one
order of magnitude scarcer than the C and O ones.

D. The fitting procedure

The technical implementation of the fits proceeds by
iteration. After fixing the (low- and intermediate-rigidity)
propagation parameters with a first fit of the B/C ratio (as
described above, i.e., with ϕF and the 12Cþ H → 11B
production cross section taken as nuisance parameters),
we perform a combined fit of the AMS-02 C and O fluxes
keeping the following parameters as free parameters:
source-term normalizations, power-law dependence in
rigidity α, and break parameters (Rh, sh, and Δh). We then
use the best-fit values of the break parameters and asso-
ciated covariance matrix as nuisance parameters in a new
B/C fit, keeping also α fixed to its best-fit value. In practice,
only a couple of iterations are needed to get the parameters
compatible between two consecutive iterations. The results
discussed below are the outcome of this procedure.
For the fits of the C and O fluxes, a simpler yet sufficient

approximation is to assume uncorrelated total errors σtot,
i.e., statistical and systematic errors summed in quadrature:
on the one hand, only statistical uncertainties dominate
around the high-energy break position, so that this is a
reasonable approximation. On the other hand, this fit only
enters the B/C analysis via the treatment of the high-rigidity
parameters as nuisance.
In Fig. 1 we report the fits of the source and high-rigidity

break parameters to the C (top panel) and O (bottom panel)
fluxes for our three benchmarks, the BIG, SLIM, and
QUAINT models. It is clear even by visual inspection that
the fits with a simple, common power-law index α are
excellent: The fits fall within one σtot and never beyond two
σtot’s from all intermediate and high-rigidity points, show-
ing that our consistency check is successful. Some minor
discrepancy at low rigidity is noticeable, but not worrisome
for our purposes. In fact, should one aim at describing
C and O primary fluxes in detail down to low rigidities, a
more accurate fitting procedure treating cross section
parameters as nuisance and accounting for bin-to-bin
correlations of the systematic errors (as done for B/C)
would certainly reduce these minor disagreements. This is
beyond our goals here, but will be of interest for future
more global analyses.
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IV. RESULTS

In this section, we illustrate our results for the (low- and
intermediate-rigidity) propagation parameters and discuss
their implications. Initialization files used for the analysis,
along with the resulting best-fit values and covariance
matrix of best-fit parameters will be provided with the
forthcoming new release USINE V3.5.

A. Best-fit values and 1σ uncertainties

The best-fit values and errors on the three model
parameters (BIG, SLIM, and QUAINT) are reported in
Table II. In the first block, we report the diffusion
parameters δ and K10 common to all models, which control
the intermediate-rigidity regime. We then report the low-
rigidity parameters, which are different (both in nature and
number) between QUAINT, on one side, and, BIG and
SLIM, on the other. The high-rigidity break parameters,
fixed following the nuisance procedure, are reported at the
bottom of the Table. The range over which we scan for

them will be discussed in Appendix A, since their deter-
mination is affected by the inclusion of external data (in our
case, C and O absolute fluxes).
In all these fits, nuisance parameters vary within rea-

sonable pre-assigned intervals. The solar modulation
parameter ϕF attains a value of 731, 734 and 725 MV in
the best-fit model BIG, SLIM, and QUAINT, respectively.
Concerning the nuisance of the spallation cross section
12Cþ H → 11B, its best normalization is found to be 12%,
13% and 11% above the reference GP17 value in the best-
fit model BIG, SLIM, and QUAINT, respectively. The
preferred slope encoding the low energy shape is of 0.12, 0
and 0.16, for the same models. The induced spectral
distorsions in BIG and QUAINT correspond to a slight
decrease of the cross section at low energy.
Our best-fit curves are reported in Fig. 2 for the three

models. Note that all models lead to analogous curves and
fit quality, only differing in the fine features of the spectral
shape at low rigidity. The inset displays the Z-score, i.e., the
residuals normalized to the total errors σtot. Note that this
has only a qualitative purpose, since technically the χ2 is
computed accounting for correlations in the systematics of
B/C data, a major novelty of this analysis. The similar fit
quality of the BIG and SLIM models indicates that the
additional free parameters present in the former are actually
unnecessary to describe the data: If the fit allows for a low-
rigidity break, there is but a minor and currently unnec-
essary role played by Vc and VA. We note a tiny and
statistically insignificant preference for model SLIM (and
a fortiori BIG) with respect to QUAINT, which is only
worth noticing since QUAINT has one free parameter
more than in SLIM. In fact, we stress that if we had fixed
η ¼ 1 in the QUAINT model, its fit quality would have
degraded, and it would have been rejected at >2σ with
respect to the BIG and SLIM models. Finally, we note
that, compared to SLIM, the benchmark BIG and QUAINT
have respectively a weaker and no break at low rigidity,
although the latter is partly mimicked by the spectral
distorsions of the cross section in nuisance. This tends
to provide additional support to the possible presence of a
low-rigidity break in the diffusion coefficient.
Also, it is important to notice that the parameters

common to the three models are found with values
compatible within ∼1σ. This suggests that the diffusive
properties at intermediate rigidities are constrained rather
robustly by the data (see Fig. 3 for an illustration of this),
independently of the specific scenario within which the
low-rigidity behavior is interpreted and fitted. This con-
clusion is rather encouraging when one considers inter-
pretations of the high-rigidity spectral break.
The QUAINT model comes out with a few apparently

surprising features: at face value, the best fit for VA is rather
large, perhaps even more so in the light of the value found
for Vc which is compatible with zero. A too large value for
VA would lead to the surprising conclusion that the power

FIG. 1. Combined best fits of C (top) and O (bottom) fluxes in
the three benchmark models BIG, SLIM, and QUAINT defined
by B/C fits (see Sec. IV). A panel below each plot reports the
Z-score, corresponding to the residuals normalized by the total
errors σtot.
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in diffusive reacceleration is comparable to the total CR
luminosity. This would for instance imply that the bulk of
CRs energy rather originates from ISM turbulence than
from shocks in SNRs, as customarily assumed (see, e.g.,
[101]). This apparent conundrum is alleviated once
accounting for the effective nature of our parameterization
of the reacceleration term, which for technical reasons is
artificially pinched to the thin disk, rather than being
present in the whole propagation halo. The actual power
in the turbulence in the whole Galaxy is thus reduced by the
ratio h=zA ≃Oðh=LÞ (see Sec. II A 3), hence resulting
roughly consistent with expectations, and also more in
line with the allowed range for Vc. Another perhaps

surprising outcome is the value of η, whose best fit is
negative, and anyway rather away from typically consid-
ered values ≃1. This conclusion is also qualitatively valid
in models BIG and SLIM: there is a slight preference for
the diffusion coefficient below about 4.5 GV to increase
with lower rigidity. Note that, within the allowed range for

TABLE II. Best-fit parameter values and uncertainties for the three benchmark models BIG, SLIM, and QUAINT
and corresponding χ2=dof. The high-rigidity break parameters are nuisance parameters in the fit (see also text and
Appendix A), and their preferred postfit values are also quoted for the sake of completeness. Errors in italic are those
that reach the allowed boundaries.

Parameters BIG SLIM QUAINT

χ2=dof 61.7=61 ¼ 1.01 61.8=63 ¼ 0.98 62.1=62 ¼ 1.00
Intermediate-rigidity parameters
K10 [kpc2 Myr−1] 0.30þ0.03

−0.04 0.28þ0.02
−0.02 0.33þ0.03

−0.06
δ 0.48þ0.04

−0.03 0.51þ0.02
−0.02 0.45þ0.05

−0.02

Low-rigidity parameters
Vc [km s−1] 0þ7.4 N/A 0.0þ8

VA [km s−1] 67þ24
−67 N/A 101þ14

−15
η 1 (fixed) 1 (fixed) −0.09þ0.35

−0.57
δl −0.69þ0.61

−1.26 −0.87þ0.33
−0.31 N/A

Rl [GV] 3.4þ1.1
−0.9 4.4þ0.2

−0.2 N/A

High-rigidity break parameters (nuisance parameters)
Δh 0.18 0.19 0.17
Rh [GV] 247 237 270
sh 0.04 0.04 0.04

FIG. 2. Best fit B/C curve for models BIG, SLIM, and
QUAINT. Results for the best fit parameter values are given in
Table II. The bottom panel shows the Z-score.

FIG. 3. The diffusion coefficients corresponding to the three fits
reported in Table II and Fig. 2, with their associated 1σ
uncertainty bands. We stress that the scaling at low rigidity
depends on where the onset of the nonrelativistic regime is
located; here the curves are traced for a mass/charge ratio
A=Z ¼ 2. For illustration, the inset shows the low rigidity regime
for various species with different mass/charge values in the SLIM
model.
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δl, extrapolation in the nonrelativistic regime could lead to
nonphysical results, as soon as δl þ 1 ¼ δ − Δl þ 1 < 0.
Be that as it may, neither this caveat nor the previous one
for η in the QUAINT model should be overstated, since
they arise at best at the 1σ level. All model fits are
consistent with a perhaps more physically acceptable flat
behavior, or a rigidity-independent diffusion coefficient at
low-R. Furthermore, it is worth noting how the BIG model
is closer to the relatively unproblematic regime δl > −1
than the SLIM one. The introduction of some reaccelera-
tion and convection (both physically expected) tends to
yield more reasonable values for the low-rigidity slope.

B. Possible interpretation and microphysics

In any case, themost obvious interpretationof these results
is that there are less and less waves onto which CRs can
scatter at low rigidity. One possible reason is that turbulence
dissipation effects lead to a parallel diffusion coefficient
which decreases with increasing rigidity, with turning point
at ∼3 GV for plausible choices for the parameters [91].
Another possibility arises in models where the CRs scatter
onto self-generated turbulence below some rigidity (see, e.g.,
[79]). The energy density (and the pressure) carried by CRs
peaks at the few GV scale; above this rigidity, the induced
diffusion coefficient increases with rigidity as customarily
assumed, because of the relatively steep CR power-law
spectrum. Below this rigidity, however, the lower the rigidity
(or Larmor radius), the smaller the turbulencewith respect to
extrapolations, simply because there are less and less CRs
that can generate it by streaming instability due to their
spectral inflection. The order ofmagnitude of the break in the
low-energy CR spectrum seems to be in the right ballpark,
but these qualitative arguments deserve a more detailed
investigation, which we postpone to future work.

C. Robustness of low-, intermediate-,
and high-rigidity parameters

A very encouraging finding is that, within uncertainties,
the diffusive properties at intermediate rigidities do not
depend on the specific scenario considered at low rigidity.
The value found for δ appears closer to a Kraichnan
turbulence spectrum (δ ≃ 0.5) than to a Kolmogorov one
(δ ≃ 1=3), although this conclusion should not be overstated
since the model involves an effective isotropic and homo-
geneous diffusion coefficient. An indirect implication of this
robustness is to increase the credibility in anydeviation found
at high rigidity, of course. It is also worth noting that a value
of δ closer toKraichan’s is consistentwith somepre-AMS-02
indications [104], indicating an overall agreement of the
recent AMS-02 data with datasets available a decade ago.
Concerning the low-rigidity regime, however, there are

several important caveats, which suggest some prudence
to avoid overinterpreting the values found. First of all,
while there is a clear indication for a different regime
of propagation at low rigidity, the “hardest” parameters to

interpret (η and δl) are actually heavily influenced by the
one or two lowest-rigidity points. This is illustrated in more
detail in Appendix B, where one can compare the behavior
of Rl vs Rmin with respect to δl vs Rmin, Rmin being the
rigidity above which the fit is performed. There is simply
not enough of a baseline at low rigidity in the AMS-02 data
to unambiguously measure the slope in this range. Another
point to keep in mind is that the low-rigidity range is quite
influenced by the uncertainties in the nuclear cross sections
and the treatment of solar modulation. Indeed, including
the nuisance parameters for the production cross section
increases the 1σ uncertainties on η (QUAINT) by 50%,
and on Rl and δl (BIG) by 90%. In our fits, including solar
modulation is a second order effect, since it increases the
low-energy parameters uncertainties by order 5%.
The only model-independent conclusion that we can

safely make on the low-rigidity range is that multiple models
can account for the observations, with rather different
physical interpretations possible. So, statements such as
“the reacceleration/convection velocity determined from
the B/C data is …” should be taken with a grain of salt,
since they appear very model dependent, if compared, for
instance,with thedeterminationof δ. The fitted values should
only be used as references in the samemodel used to fit them,
and extrapolations at lower rigidities (below the range
covered by the data) are not guaranteed to be physical.

V. SUMMARY, CONCLUSIONS, AND
PERSPECTIVES

This article has set the stage for the propagation
scenarios that we want to test, challenge and refine with
further AMS-02 data, defining benchmark models and
ranges of parameters. We have validated the first step of
this program with a statistically more sound analysis of the
AMS-02 B/C data, going beyond state-of-the-art in the
modern literature, and checking different theoretical frame-
works differing in the treatment of transport at low rigidities
with a major (model QUAINT) or a negligible (model
SLIM) role played by reacceleration. Both models are
limiting cases of a more general model (BIG). We have
made sure that issues like numerical stability, the effects of
cross sections uncertainties, the bin-to-bin correlation of
systematic errors are handled sufficiently well not to bias
significantly the conclusions.
For the time being, either model can describe with

comparable performances the low-rigidity regime, with a
statistically insignificant preference for model SLIM.
The parameters describing intermediate rigidities are con-
sistently determined in either case. At low rigidity, degen-
eracies with nuisance parameters impact both the best fit
and uncertainties, in particular the ones controlling the
energy shape of cross sections and solar modulation. This
means that qualitatively differentmodels offer almost equally
good description of the data, so that inferring the physics of
the propagation at low rigidity is challenging, and we must
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content ourselveswith one or another “effective” description.
This lesson on the shaky discrimination power among
models with mild differences at low rigidities is likely to
apply more generally, even to alternative models not tested
here, because it partially relies on the effect of the nuisance
parameters. Obviously, any discrimination between the two
sets of models must be based on complementary data or
arguments, such as the (astro)physical plausibility of the
parameters found, an issue which we also briefly discussed.
However, finding a break in the diffusion coefficient at low
rigidity should not come so much as a surprise, since this
feature, possibly related to some damping in the turbulence
spectrum and the subsequent increase of the CR mean free
path, is expected from theoretical grounds [88,90–92]. In this
respect, a careful study of low energy data complimentary to
AMS-02 ones (e.g. from ACE-CRIS [105] and Voyager I
[86,87]), together with a more realistic account of the
systematic error correlations (based on further information
providedby the experimental collaborations), could certainly
help in drawing more robust conclusions on the properties
and the nature of this break.
Besides extracting reference propagation parameters

and uncertainty ranges from B/C data, which are intended
for references for further studies, we have also performed a
first test of the consistency of the obtained results with
simple CR source spectra (power laws). We also confirmed
and strengthened our conclusions in [23], that the high-
rigidity data can be consistently interpreted as a conse-
quence of a break in the diffusive coefficient, in agreement
with AMS-02 high-energy primaries spectra. Indeed, we
show that this preference does persist in a generalized
analysis extending to the whole rigidity range, and for
alternative propagation setups, notably with/without
reacceleration.
The models considered in this study do not certainly

encompass all the complexity of the CR propagation. For
instance, we showed that a simple homogeneous setup is
sufficient to describe the B/C data. However, “nonlocal”
probes such as a comparison between lighter and heavier
species [106,107], or the CR anisotropy and the diffuse
γ-ray distribution [108], can all be better accounted for in
nonhomogeneous diffusivemodels. Following this study, the
most pressing issue is of course to test the efficacy of the
referencemodels provided here against other secondary data.
In particular, our forthcoming publication will focus on the
antiproton channel [46]. There has been a recent interest in
the possibility that these data hide a signal of dark matter
annihilation, see, e.g., [109,110], and it is interesting and
important to reexamine those claims within our analysis
framework. Finally, it is also known that putative darkmatter
signals are sensitive to the diffusive halo size, hence an
important and motivated follow-up project analysis will
involve other secondaries, including isotopes such as the
radioactive species (e.g. 10Be). To that purpose, we provide
the reader in Appendix C (1D models) and in Appendix D
(2D models) with the scaling relations that allow to

extrapolate our benchmark models (derived assuming
L ¼ 10 kpc) to a range of L between 4 and 18 kpc.
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Note added—As wewere completing this study, we became
aware of [111], where the authors find support for the
presence of multiple breaks in the diffusion coefficient
and interstellar lepton spectra, based on AMS-02 B/C and
lepton data.

APPENDIX A: ON THE HIGH-RIGIDITY
BREAK FROM C, O, AND THE

FITTING PROCEDURE

The fitting procedure described in Sec. III makes use of
the C and O fluxes:
(1) As a sanity check for the actual diffusion parameters

inferred (see Fig. 1).
(2) To determine α, the common spectral index for

all nuclei, although its value is irrelevant for the
B/C calculation (and for the transport parameter
determination).

(3) Above all, for cornering a plausible window for the
nuisance of the high-energy break parameters.

Below, we provide some consistency checks as well as
some comments on these ancillary results.

1. Consistency check

In Table III, we report the results of the reference fits of
C, O fluxes corresponding to the B/C model fits discussed
in Sec. II.
All propagation models inferred from B/C appear to

provide excellent fits to the C, O fluxes as well. The χ2

cannot be used at face value as a quantitative estimator of
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the quality of the fit, since total errors have been used in the
C, O fits: Hence, we likely underestimate the contribution
to the χ2, notably those of the intermediate- and low-
rigidity data mostly influenced by systematic errors and
their correlations (see also the companion paper [35]).
Nonetheless, a relative preference seems to emerge for the
BIG and SLIM models, compared to the QUAINT model,
which is interesting as the same trend is also present from
the more rigorous B/C analysis.
Concerning α, the values found are intriguingly similar

to the ones found in the fit of the He flux, which is
performed in [46], another reassuring consistency test of
our procedure. We are thus consistent with the current
universality of the spectra of nuclei (while the proton flux
seems to be somewhat steeper). This is an interesting
observable to keep an eye on in the future, of course. Note
that the fit yields a nominal error on the parameter α at the
sub-percent level, since δ is kept fixed in the iteration.
Realistic uncertainties on α are however comparable to the
ones of δ reported in Table II.
In all cases, the indication for a high-rigidity break Δh is

rather significant (≳4σ), again consistently with AMS-02
results, but here referring to the underlying diffusive coef-
ficient (i.e., a break in themodel space, not in the flux spectral
index). Also, thevalues found are consistentwithin the errors
with those found from p, He analyses (e.g., [23]), although a
bit higher, i.e., indicating a slightly more pronounced break.
It will be interesting to follow up on this in the light of further
analyses of both light and intermediate/heavy nuclei, to see if
the situation will relax towards a more common value or
point to some discrepant hardening.
Let us briefly develop further on the significance of the

high-rigidity break in the light of B/C data only.
If we were to use solely B/C data to fit also the high-

rigidity parameters (i.e., without relying on the C, O
flux data), we would obtain the results listed in Table IV.
The lowand intermediate rigidity propagation parameters are
consistent with our reference one (see Table II), with larger
error bars, as expected since we now are determining more
parameters from a more restricted set of data. Similar
considerations apply to high-rigidity parameters, compare

with Table III. The largest departures are seen in the
QUAINTmodel,where one suffers fromapartial degeneracy
of the (large) VA parameter with the others, including δ.
Also, in this case parameters tend to drift towards the borders
of the “plausible” interval fixed beforehand, which puts into
question how physicallymeaningful this model results really
are. Still, in all cases there is an evidence for a high-rigidity
break (at ≳2σ level, naively speaking) from the B/C alone,
which a posteriori is a justification for our choice of the
parametrization of the diffusion coefficient, Eq. (3).

2. Break vs no-break

In Table V we report the best fit propagation parameters
without high-rigidity break in the diffusion coefficient.
Note how the values of δ would be biased (at the 1–2σ
level), resulting in a harder diffusion coefficient. In the
same spirit as [23], we compute the Δχ2 with respect to our
results in Tab. II (break parameters fit to C and O fluxes).
In the QUAINT model, as intuitively expected, the pres-
ence of a large VA can partially mimic the break, but
not completely, and the “no break” case is still disfavored

TABLE III. The χ2=dof, the best-fit value for α as well as error
range (used as nuisance parameters and ranges in the B/C
analysis) for the high-rigidity parameters, coming from the
combined fit to absolute C, O fluxes in the iterative procedure
described in Sec. III. Values in italics means that the fit reached
the border of the interval.

Parameters BIG SLIM QUAINT

χ2=dof 75.7=129 ¼ 0.59 73.2=129 ¼ 0.57 80.3=129 ¼ 0.62
α 2.35 2.33 2.36
Δh 0.18þ0.13

−0.05 0.18þ0.11
−0.04 0.18þ0.18

−0.01
Rh [GV] 244þ198

−52 236þ152
−51 282þ349

−89
sh 0.04þ0.11−0.04 0.03þ0.09−0.03 0.04þ0.15−0.04

TABLE IV. Best fit parameters for models BIG, SLIM, and
QUAINT, if fitting the high-energy break of the diffusion
coefficient as well on the B/C data only. Values in italics means
that the fit reached the border of the interval.

Parameters BIG SLIM QUAINT

δ 0.55þ0.20
−0.04 0.55þ0.09

−0.03 0.9−0.23
K10 [kpc2=Myr] 0.26þ0.05

−0.2 0.26þ0.07
−0.01 0.10þ0.07

−0.01
VA [km/s] 0þ64 NA 71þ20

−7
Vc [km/s] 0þ16 NA 19þ3

−5
ηt 1 (fixed) 1 (fixed) −0.30þ0.54

−0.75
δl −0.84þ0.32

−0.36 −0.87þ0.35
−0.33 NA

Rl [GV] 4.4þ0.46
−2.1 4.4þ0.2

−0.2 NA

Δh 0.27þ0.22
−0.12 0.27þ0.21−0.12 0.56þ0.09

−0.24
Rh [GV] 158þ235−58 159þ240−59 100þ96

sh 0.10þ0.20−0.10 0.11þ0.19
−0.1 0.26þ0.04

0.26

χ2=dof 58.6=58 ¼ 1.01 58.7=60 ¼ 0.98 59.7=59 ¼ 1.01

TABLE V. Best fit parameters for models BIG, SLIM, and
QUAINT, with no high-rigidity break in the diffusion coefficient.

Parameters BIG SLIM QUAINT

δ 0.48þ0.02
−0.02 0.48þ0.02

−0.02 0.42þ0.03
−0.02

K10 [kpc2=Myr] 0.29þ0.02
−0.02 0.29þ0.02

−0.02 0.36þ0.02
−0.04

VA [km/s] 0þ115 NA 113þ7
−15

Vc [km/s] 0þ12 NA 0þ4.1

ηt 1 (fixed) 1 (fixed) 0.6þ0.3
−0.5

δl −0.88þ0.31
−0.30 −0.88þ0.32

−0.30 NA
Rl [GV] 4.4þ0.23

−2.4 4.4þ0.24
−0.21 NA

χ2=dof 72.8=61 ¼ 1.19 72.8=63 ¼ 1.16 67.1=62 ¼ 1.08

Δχ2 11.1 11.0 5.0
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(at ∼2σ level). For the BIG and SLIM models, which are
refinements of the purely diffusive intermediate/high-rigidity
model considered in [23], we find Δχ2 > 10, confirming
(and thus reinforcing the robustness of) the results presented
in [23].

APPENDIX B: FIT PARAMETERS DEPENDENCE
UPON LOW-RIGIDITY CUTOFF

In Fig. 4, we present the evolution of the best-fit
parameters as a function of a low-rigidity cut Rmin above
which the fit is performed, for the three models consid-
ered. We note that the value of the parameters δ and K10

remains essentially unchanged whatever Rmin. In contrast,
δl, Rl (for BIG and SLIM), Va, and η (for QUAINT)
depend crucially on the first data points, notably those
below ∼4 GV. This explains their denomination of
low-rigidity parameters. For the SLIM model, note how
the error on δl crucially depends on the first couple of
AMS-02 points, and the evidence for a change of slope
(a determination of Rl) is stronger than the actual value of
the slope at low rigidity. Finally, it is worth commenting
on VA: this parameter is (anti)correlating with low-energy
ones (in particular η for QUAINT) and, to a minor extent,
also with δ. This is not very surprising since large values
of VA imply “cross-talk” among energy bins.

APPENDIX C: SCALING OF PROPAGATION
PARAMETERS WITH L IN 1D MODEL

The benchmark parameters for BIG, SLIM, and QUAINT
were derived assuming the Galactic magnetic halo shapes as
a 1D-slab of half-thickness L ¼ 10 kpc. By fitting the B/C
ratio in these models, it is well known that the normalization
of the diffusion coefficient K10 and the halo thickness L are
degenerated so that the ratio K10=L is constant. We have
checked that thiswas still the case given the higher sensitivity

of AMS-02 data, and found the following scaling relations
for values of L within [4,18] kpc:

BIG∶
K10

L
¼ 0.030þ0.003−0.004 kpc=Myr: ðC1aÞ

SLIM∶
K10

L
¼ 0.028þ0.002−0.002 kpc=Myr; ðC1bÞ

QUAINT∶
K10

L
¼ 0.033þ0.003−0.006 kpc=Myr: ðC1cÞ

APPENDIX D: DICTIONARY TO USE 1D
PROPAGATION PARAMETERS IN 2D MODELS

A 1D-slab geometry for the magnetic halo does not allow
one to account for CRs escaping radially from the Galaxy
(see, e.g., Refs. [112,113]). This choice could be thought
as an oversimplification. A more realistic 2D geometry
commonly used is to consider the Galactic halo as a
cylindrical box of radius 20 kpc and half-thickness
L ¼ 10 kpc, where CR sources lie uniformly in the disk
and the Earth is set at 8.5 kpc from its center (for an
illustration see, e.g., Fig. 10 of [18]). However, using this
geometry we have found that variations of the best fit
values (Table II) for all parameters, except K10, are within
their respective uncertainties. In fact, in this 2D (uniform
disk) case, a degeneracy between K10 and L is still present,
but is no longer described by the relation Eq. (C1); the
escape from the radial boundaries increases with increasing
L. Starting from Table II, for each benchmark, we sum-
marize below our empirical prescription to go from 1D to
2D, only for the parameters which drift with L. Note that
the preferred value for VA in the BIG model is now zero,
although the uncertainty on this parameter is quite large.

FIG. 4. Evolution of the best fit parameter values and uncertainties as a function of the minimal rigidity Rmin above which the fit is
performed, for the three benchmark models BIG, SLIM, and QUAINT. Note that in this figure only we use K0 (normalization of K at
R ¼ 1 GV) instead of K10.
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BIG∶
K2D

10

tanh ðL1.1=10.1Þ ¼ 0.25þ0.04
−0.02 kpc2=Myr; δ2D × tanh ðL0.4=0.77Þ ¼ 0.50þ0.02

−0.04 and

8>><
>>:

VA ¼ 0þ80 km:s−1

Rl ¼ 4.4þ0.2
−0.2 GV

δl ¼ −0.83þ0.3
−0.3

;

SLIM∶
K2D

10

tanh ðL1.1=10.1Þ ¼ 0.25þ0.02
−0.02 kpc2=Myr and δ2D × tanh ðL0.4=0.77Þ ¼ 0.50þ0.02

−0.02 ;

QUAINT∶
K2D

10

tanh ðL1.1=10.1Þ ¼ 0.30þ0.02
−0.07 kpc2=Myr and δ2D × tanh ðL0.4=0.77Þ ¼ 0.44þ0.06

−0.02 :
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