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The detection of the gravitational waves emitted in the capture process of a compact object by a massive
black hole (MBH) is known as an extreme-mass ratio inspiral (EMRI), it represents a unique probe of
gravity in the strong regime, and it is one of the main targets of the Laser Interferometer Space Antenna
(LISA). The possibility of observing a compact-object EMRI at the Galactic Center (GC) when LISA is
taking data is very low. However, the capture of a brown dwarf, an X-MRI, is more frequent because these
objects are much more abundant and can plunge without being tidally disrupted. An X-MRI covers some
∼108 cycles before merger, and hence stays on band for millions of years. About 2 × 106 yrs before merger
they have a signal-to-noise ratio (SNR) at the GC of 10. Later, 104 yrs before merger, the SNR is of several
thousands, and 103 yrs before the merger a few 104. Based on these values, this kind of EMRIs is also
detectable at neighbor MBHs, albeit with fainter SNRs. We calculate the event rate of X-MRIs at the GC
taking into account the asymmetry of pro- and retrograde orbits on the location of the last stable orbit
(LSO). We estimate that at any given moment, and using a conservative approach, there are of the order of
≳20 sources in band. From these, ≳5 are circular and are located at higher frequencies, and about ≳15 are
highly eccentric and are at lower frequencies. Because of their proximity, X-MRIs represent a unique probe
of gravity in the strong regime. The mass ratio for a X-MRI at the GC is q ∼ 108, i.e., 3 orders of magnitude
larger than stellar-mass black hole EMRIs. Since backreaction depends on q, the orbit more closely follows
a standard geodesic, which means that approximations work better in the calculation of the orbit. X-MRIs
can be sufficiently loud so as to track the systematic growth of their SNR, which can be high enough to bury
that of MBH binaries.

DOI: 10.1103/PhysRevD.99.123025

I. INTRODUCTION

Thanks to major advances in high angular instrumenta-
tion we have observed a fundamental link between the
features of a host galaxy and those of its central massive
black hole (MBH) [1]. The lower end of the so-called mass-
sigma correlation remains uncertain, but if we assume that
it remains valid, then smaller dense stellar systems, such as
globular clusters should also contain black holes, although
in a smaller mass range. These are known as intermediate-
mass black holes (IMBHs) and are supported by the
existence of ultraluminous x-ray emission [2,3].
An excellent probe of I/MBHs are the gravitational

waves (GWs) emitted by the slow inspiral of a sufficiently
compact stellar object that radiates energy away and slowly
approaches the I/MBH. This is called an extreme- or
intermediate-mass ratio inspiral, depending on the mass
ratio between the compact object and the I/MBH (EMRIs,
≳104∶1 or IMRIs, ∼102–104∶1). EMRIs and IMRIs can be

detected by the Laser Interferometer Space Antenna (LISA)
mission [4–6] as well as by ground-based detectors such as
the Laser Interferometer Gravitational-Wave Observatory,
in principle jointly with LISA [7].
Compact objects can plunge through the event horizon

under the assumption that the stellar object can withstand
the enormous tidal forces exerted on it. Indeed, if the object
is an extended star such as our Sun, some or all of it
(depending on the distance of minimum approach) may be
torn apart because of the tidal gravity of the central object
[8,9]. The difference in the gravitational force on points
diametrically separated on the star alter its shape, from its
initial approximately spherical architecture to an ellipsoidal
one and, in the end, the star is disrupted. This occurs
whenever the work exerted over it by the tidal force exceeds
its own binding energy.
Whether a stellar object can successfully cross the event

horizon of the MBH without being tidally disrupted can be
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estimated by equating the plunge and the tidal radii. We
adopt the approximation in Newtonian mechanics of [10]
based on the estimation of a critical angular momentum
Jcrit < 4GMBHc−1 that leads to a successful inspiral of a
particle at infinity. The authors show that Jcrit defines a
parabolic orbit or pericenter distance

Rp ≔ 4RS ¼ 8
GMBH

c2
; ð1Þ

which we adopt as the plunge radius. In this equation G is
the gravitational constant and c the speed of light in
vacuum. The tidal radius of the stellar object can be
defined as

rt ¼
�
2
5 − n
3m�

MBH

�
1=3

r�; ð2Þ

where r� and m� are the radius and mass of the star,
respectively, and n the polytropic index [11]. Hence, by
equating Eqs. (1) and (2), we can obtain a threshold mass
for the MBH above which stellar objects plunge through
the event horizon without suffering significant tidal stresses
on their structure, Mmin

BH . In Fig. 1 we show this mass as a
function of the mass of various kinds of stellar objects,
ranging from red giants to main sequence and objects such
as brown dwarfs (BD) to white dwarfs. What determines a
successful plunge is the mass-radius relation of the given
object. In Fig. 1, we use the m� − r� relations from detailed
modeling of stars given in [12–15], and note that the
relations provided in those articles for substellar objects
reproduce almost exactly the more recent results of [16] for
brown dwarfs. In Fig. 1 we see that these objects can plunge
through the event horizon of MBHs of masses similar to the
one in our Milky Way without being tidally torn apart.
These objects are potential sources of inspirals with an
extremely large mass ratio, of ∼108, which translates into a
very large number of cycles before merger. Because of their
proximity, the signal-to-noise ratios (SNR) can be as large
as 20,000. Because of these extreme properties, in this
paper we call BD EMRIs “X-MRIs.”1

The possibility of having bursts of gravitational radiation
sources in our Galactic Center (GC) from main-sequence
(i.e., extended) stars (which are eventually tidally dis-
rupted) and the MBH has been addressed with
Monte Carlo simulations [17], and discussed in [18] over
the implications in Sec. V.C and Fig. 11. They include a
study of the SNR that these sources have and find similar
results to our work. However, they do not derive the event
rate and the number of sources in band. Also, the authors of
[19] have also addressed the emission of radiation in our
GC from main-sequence stars and BDs. They consider
circular orbits but their study is complete in the Kerr metric,

and include tidal effects, which are important for the main-
sequence stars. As before, they do not address the event rate
and number of sources in band, at any given time, which we
derive in this work.
In this paper we address the gravitational capture of

substellar objects at the Galactic Center, we calculate their
signal-to-noise ratio, and we derive a merger event rate.
Thanks to the rates, and taking into account the key
property of these sources, their mass ratio, we derive the
number of sources in the band of the space-borne LISA
observatory as a function of their eccentricity and signal-to-
mass ratio, and discuss the implications for observations.

II. DISTRIBUTION AROUND SgrA*

The quasisteady solution for the distribution of stars
around a MBH takes the form of an isotropic distribution
function in energy space fðEÞ ∼ Ep, which translates into
ρðrÞ ∼ r−γ in terms of the stellar density ρ (see [20,21], but
also [22] for a similar solution for the distribution of
electrons around a positively charged Coulomb center).
This solution has been confirmed a number of times using

FIG. 1. Minimum mass for a MBH for a given stellar object to
plunge through the event horizon without a tidal disruption as a
function of its massm�. For each different kind of stellar object—
i.e., red giants, main sequence stars, and substellar objects—we
use realistic mass-ratio relations (see text). SgrA*, with a mass of
about ∼4 × 106 M⊙, is marked with an arrow, which indicates the
range of masses of substellar objects that might cross the event
horizon without significant tidal stresses.

1As suggested by Bernard Schutz to us last X-mas.
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semianalytical and numerical approaches; see, e.g.,
[23–29]. In particular, for our Galactic Center, see the
numerical work of [30], which describes very well the
observational data of [31,32]. Therefore, we assume a
power-law mass distribution for the stellar density,

ρðrÞ ¼ ρ0

�
r
r0

�
−γ
; ð3Þ

with γ the exponent value, and ρ0 the stellar density at a
characteristic radius r0 of normalization. Since we are
interested in power-law cusps, as we will discuss later, this
can be chosen to be the influence radius, r0 ≡ Rh, and is
only valid for radii smaller than this value. The enclosed
massMðrÞ at a certain radius r can be estimated by solving
the integral

MðrÞ ¼ 4π

Z
r

0

ρðr0Þr02dr0; ð4Þ

so that, with the proviso that γ < 3,

MðrÞ ¼ 4π

3 − γ
ρ0r30

�
r
Rh

�ð3−γÞ
: ð5Þ

Main sequence (MS) stars build a power-law distribution
about the MBH, so that we can set r0 ¼ Rh for them, the
influence radius of the MBH at the Galactic Center. Also,
MBH ≔ ð4πÞ=ð3 − γÞ · ρ0r30 is the mass of the MBH, and
we have

MðrÞ ¼ MBH

�
r
Rh

�ð3−γÞ
: ð6Þ

Assuming that the mean stellar mass m̄� at the radii of
interest is independent of the radius, the number of stars at a
given radius r is

N�ðrÞ ¼
MðrÞ
m̄�

¼ MBH

m̄�

�
r
Rh

�ð3−γÞ
: ð7Þ

Hence, the number of a given subpopulation with a
number fraction fsub of the stars at a radius r can be
calculated with

NsubðrÞ ¼ fsub
MBH

m̄�

�
r
Rh

�ð3−γÞ
: ð8Þ

We must take into account that by doing so we are
implicitly assuming that light stars (or substellar objects,
the main interest of this work) follow the same distribution
as MS stars. In this approach, both the MS stars and the
BDs are the light stellar component with their own power-
law index, different from the power-law index of stellar-
mass black holes, which build a more concentrated

distribution around the MBH. A more realistic representa-
tion would require more than two different exponents, but
then it would be very difficult to treat the problem
analytically, as we do in this article. While until now we
have used γ as a generic exponent, from now on, we will
use it only for the exponent of the stellar-mass black hole
population (for historical reasons this has been the con-
vention), and β for the light star population, i.e., the BDs.
To derive m̄� and fsub, we have to take into account that

BDs have masses ranging from approximately 0.01 to
0.07 M⊙ (which is actually a lower limit, since they can
also have masses in the range 0.07 − 0.15 M⊙ through the
BD formation process; see [33]) and have their own initial
mass function (IMF), which is not well known, but can be
approximated by a single power law; see Eq. (4.55) of [33],
which is consistent with observational data of the inner
galaxy [34]. The IMF we consider is the usual Kroupa
broken power law of the form dN�=dm� ∝ m�−α. We
use the mass intervals ½0.01; 0.07; 0.5; 150� ×M⊙ with
α ¼ 0.3, 1.3, 2.3, because the bulge may have had a
top-heavy IMF; see [35,36] for some constraints on the
top heaviness in the bulge, although it remains unknown
if the IMF below 1 M⊙ was different [37]. We hence
introduce a discontinuity in this IMF to mimic the dis-
continuity between the substellar (BD) population and the
stellar IMF at 0.07 M⊙ (Fig. 4–23 of [33]). Assuming these
values, we find that for the BDs, fsub ∼ 0.21, and that the
average stellar mass is m̄� ∼ 0.27 M⊙. Taking into account
that the influence radius of our MBH, SgrA*, is Rh ∼ 3 pc
[32,38], and adopting the value β ¼ 1.5 [39], we obtain that

NBDðrÞ ≅ 6 × 105r1.5pc ; ð9Þ

with rpc the considered radius in pc. Therefore, at a distance
of 10−3 pc, there should be around ∼20 BD. This is the
number of sources as a function of radius; however, the
phenomenon we are interested in—the formation, evolu-
tion, and merger of an X-MRI with the central MBH—also
represents a drain on these sources. In order to have a
statistical picture of what we might expect at the Galactic
Center once LISA starts to gather data, we need to address
the (relativistic) loss-cone problem of this scenario. This
will also allow us to derive an event rate.

III. LOUDNESS

Assuming that one of these objects could indeed be in the
relevant part of phase space and become a source, in order
to assess whether these sources are interesting for LISA,
we estimate in this section the signal-to-noise ratio. At a
distance D given, an EMRI with a power emitted _E and a
rate of change of frequency _f, its characteristic amplitude

hc can be defined as hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 _E= _fÞ

q
=ðπDÞ [40]. If we

assume a perfect signal processing, the sky- and orienta-
tion-averaged SNR is given by [40]
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�
S
N

�
2

¼ 4

πD2

Z _E
_fSSAh ðfÞ

df
f2

; ð10Þ

with SSAh ðfÞ ≈ 5ShðfÞ the noise spectral density of the
detector. In the case of the EMRI problem, we need to sum
the previous expression over each mode to obtain the total
SNR2, since the signal has multiple frequency components.
In this article we consider quadrupolar gravitational radi-
ation and approach the orbit as a Keplerian ellipse with
parameters that evolve slowly due to the emission of GWs,
as presented in the work of [41]. Following this approxi-
mation, we decompose the amplitude in a series of
harmonics. For typical values relevant to this article, the
nth harmonic at a distance D is given by

hn ¼ gðn; eÞG
2MBHmBD

Dac4

≃ 10−18gðn; eÞ
�

D
8 kpc

�
−1
�

a
10−3 pc

�
−1

×

�
MBH

4 × 106 M⊙

��
mBD

0.05 M⊙

�
:

In this equation, gðn; eÞ is a function of the harmonic
number n, and e the eccentricity. Also, we note that the root
mean square is considered to be averaged over the two

polarizations and all directions. We hence consider the
contribution of the different harmonics [see Eq. (2.1) of
[40] and Eq. (56) of [18] for more details],

�
S
N

�
2

n
¼

Z
fnðtfinÞ

fnðtiniÞ

�
hc;nðfnÞ
hdetðfnÞ

�
2 1

fn
dðlnðfnÞÞ: ð11Þ

In this equation fnðtÞ is the (in principle redshifted, but
irrelevant for the GC) frequency of the nth harmonic at time
t (with fn ¼ n · forb, forb being the orbital frequency, and
we note that there are two differing orbital frequencies for
an eccentric body, radial and azimuthal; in [18] a com-
promise between the two is introduced), and hc;nðfnÞ is the
characteristic amplitude of the nth harmonic when the
frequency associated with that component is fn. Finally,
hdet is the square root of the sensitivity curve of LISA, and
we note that dðlnðfnÞÞ=fn is simply dfn.
In Fig. 2 we give an example of an X-MRI of a given

mass for the BD object at the GC. The curves are to be
interpreted as the SNR that we would observe if we
integrated for one year. Hence, at a given time in the
x axis, the SNR is what we would obtain if we followed
the source for one year, i.e., if LISA could only operate for
one year. We can see that from starting about 107 yrs−1

before plunging through the event horizon, these sources
already have SNR > 10. If the sources were on their last
year of inspiral when LISA starts to get data, the SNR

FIG. 2. SNR obtained by LISA for a one-year observation for an X-MRI of mass 0.05 M⊙ at the GC. At a given time, the curve shows
the SNR we would get if we followed the X-MRI for one year. The mass of the MBH is set to MBH ¼ 4 × 106 M⊙, while the initial
eccentricity to and semimajor axis are set to typical values. We show the initial pericenter distance in terms of the Schwarzschild radius
of the MBH and the (initial) time for the star to plunge on to it under the assumption that it evolves only due to the loss of energy in the
form of GWs, as approximated by [41]. We show the contribution of the first 10 harmonics (displayed in different colors, and we note
that we have used 1000 in the calculation of the SNR). The black, solid line corresponds to the total SNR and the red, dashed curve, to
the second harmonic.
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would be as much as a few 103 for the light BD in the left
panel and ∼2 × 104 for the larger one in the right panel. We
note that our calculation of the SNR is in good agreement
with the one done by [18], which addressed extended stars
of low mass undergoing tidal disruptions at the GC, and the
more recent work of [19], which focuses on circular orbits.
In Fig. 3 we show the peak of the frequency emitted by the
same systems.

IV. EVENT RATES

The event rate, i.e., the number of X-MRIs that success-
fully inspiral and cross the event horizon, can be calculated
by integrating in phase space the number of sources from a
critical radius acrit—which is defined as the crossing of the
red, oblique, dashed line of Fig. 5 with the last stable orbit
line—down to a minimum distance, amin,

_ΓX-MRI ≃
Z

acrit

amin

dnBDðaÞ
TrlxðaÞ lnðθ−2lc Þ

: ð12Þ

We do not need to care about the specific shape of
the curve in the integral, because on the left of the LSO
the integral will naturally vanish. To solve this integral,
we need (1) θls, the loss-cone angle (see, e.g., [42]);
(2) nBDðaÞ, the number of BDs within a given semimajor
axis a; (3) TrlxðaÞ, the relaxation time; and (4) acrit and
amin, the critical and minimum radii, which are the upper
and lower limits of the integral.

A. The loss-cone angle

The first quantity, (1) the loss-cone angle, can be
estimated as [43]

θlc ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Jmax=Jlc
p : ð13Þ

Using the same references, we have that

Jlc ≃
4G
c

MBH; J2max ¼ GMBHa; ð14Þ

so that we obtain the first quantity to solve the integral,

θ2lc ≃
ffiffiffiffiffiffiffiffi
8RS

a

r
: ð15Þ

B. Number of sources within a given radius

Regarding the second quantity, (2) the number of BDs
within a specific semimajor axis a, we have already
estimated in the previous section how many BDs we might
expect. Hence, the number of BDs within a is

NBDðaÞ ¼ fBDsub · N
BD
0 MS

�
a
R0

�
3−β

: ð16Þ

FIG. 3. Peak of the gravitational wave frequency emitted by the X-MRI systems of Fig. 2. Each blue line is an isochrone made by
selecting a given moment before the final plunge, shown as a dashed label, for the first 1000 harmonics (see text), although we only
depict the first ten in each line, at the same time, with circles. The curves are an interpolation from the 1000 harmonics. Additionally, we
show the corresponding pericenter distance Rp in units of the Schwarzchild radius RS and the eccentricity. The time Tpl is the time to
merge as calculated from the initial dynamical parameters of the binary, displayed at the top, left legend,
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As discussed previously, NBD
0 MS is the total number of

objects (main-sequence stars and substellar objects) within
R0, which we choose to be Rh, and fBDsub is the number
fraction of BDs. In order to obtain the numerator in the
integrand of Eq. (12), we differentiate the last equation and
obtain the second quantity,

dnBDðaÞ ¼ fBDsubð3 − βÞN
BD
0 MS

Rh

�
a
Rh

�
2−β

da: ð17Þ

C. The relaxation time

We can calculate the third quantity, (3) the relaxation
time, by approximating relaxation to be predominantly due
to the population of stellar-mass black holes of mass mbh,
which dominate the central densities (e.g., [42]).
The relaxation time for a given distance that we take to

be equal to the semimajor axis a is

TrlxðaÞ ¼ T0

�
a
R0

�
γ−3=2

; ð18Þ

with [44]

T0 ∼ 0.3389
σ30

lnðΛÞG2m2
bhn0

; ð19Þ

and

n0 ¼
3 − γ

4π

N0

R3
0

; ð20Þ

σ20 ¼
1

1þ γ

GMBH

R0

: ð21Þ

In the previous equations lnðΛÞ is the Coulomb logarithm,
G the gravitational constant, σ0 the velocity dispersion, R0

the radius within which stellar-mass black holes dominate
relaxation, and N0 the number of stellar-mass black holes
enclosed in R0 which, in principle, can be smaller than the
influence radius Rh. Hence, Eq. (19) becomes

T0 ≃
4.26

ð3 − γÞð1þ γÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
0ðGMBHÞ−1

q
lnðΛÞN0

�
MBH

mbh

�
2

: ð22Þ

Before we carry on with the rest of the quantities
necessary to solve Eq. (12), we address two important
points related to Eqs. (18) and (22).
First, (i) in order to derive R0 of Eqs. (18), (20), and (21),

we note that the relaxation rate is (see, e.g., [5])

Γrlx ¼
32

πv3rel
lnðΛÞG2n�ðmbh þm�Þ2: ð23Þ

This last equation expresses the “encounter relaxation
time,” which depends on the characteristics of a peculiar

class of encounter (see [5]), i.e., for our purposes, a stellar-
mass black hole of mass mbh with a field MS star of mass
m� with a local density n� and a relative velocity vrel. We
can depict Eq. (23) thanks to the Monte Carlo simulations
of the Galactic Center of [45]. In their Fig. 10, right panel,
they give the evolution of the density ρðrÞ profile for a
standard Milky Way nucleus after 1.05 × 1010 yrs−1. From
Eq. (23), Γrlx ∝ nðrÞ ×m2

obj, i.e., Γrlx ∝ ρðrÞ ×mobj, with
mobj the mass of the object taken into consideration, a BD
or a stellar-mass black hole. In Fig. 4 we show this quantity
from the data of [45]. We can see that from a distance of
about 10 pc, the relaxation rate is dominated by stellar-mass
black holes. We note that the fact that within ⪅ 0.1 pc the
stellar-mass black holes have a tendency to follow a
distribution which looks shallower than the one from the
MS stars is due to a problem related to the resolution of the
Monte Carlo simulations [46]. On the other hand, we note
that by assuming a pure power law, as we are doing in our
analytical approach, we are artificially increasing Trlx, since
we are populating with more stellar-mass black holes the
innermost radii. Therefore, the results that we will derive
for Eq. (12) are to be regarded as a lower limit.
Second, (ii) it must be noted that by assuming that

relaxation is dominated by stellar-mass black holes, we
are implying that relaxation can be added up individually
from two mass groups, BDs and stellar-mass black holes,
and that the contribution from BDs is negligible. In star
cluster evolution, close to the central regions, energy
equipartition is found only among the largest masses,

FIG. 4. Relaxation rate for the Milky Way model GN25 of [45]
in M2

⊙ per volume as a function of the radius from SgrA*. The
red, dashed line corresponds to MS stars and the blue, solid line to
stellar-mass black holes.
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and it progressively moves toward velocity equipartition at
low masses (see, e.g., [48]). Hence, if the distribution
function of mass and velocity is fðm; vÞ with v the velocity
andm the mass, and a moment of the change of velocities is
of the form

hdv2i ¼
Z

dv2fðm; vÞdmdv;

since energy equipartition among the low-mass object can
be neglected, this last equation can be expressed as

hdv2i ¼
X
m

nðmÞ
�Z

dv2fðvÞdv
�
;

with nðmÞ the density of stars of mass m. This has two
important implications. First, we expect BDs to actually be
close to the center and, second, since the mass of the BD
population is only a small contribution to the relaxation
produced by stellar-mass black holes, we ignore their
contribution in the calculations related to relaxational
processes.

D. The critical and minimum radii

We now need to calculate the only remaining quantities,
(4) the critical and the minimum semimajor axis. The
critical radius, the upper limit of integral Eq. (12), can be
derived by taking into account its definition. This is the
semimajor axis at which the threshold curve that separates
the dynamics and GW regime merges with the LSO curve.
First, we equate the relaxation time to the inspiral timescale
for a binary made from the MBH and a BD,

Trlx;peri ¼ CTGWða; eÞ: ð24Þ

In this equation, Trlx;peri is the relaxation time at pericenter,
i.e., Trlx;peri ≔ TrlxðaÞ × ð1 − eÞ [42], and C ∼ 1. Since at
the radii of interest the driving species in relaxation is that
of stellar-mass black holes, the mass that matters in the
expression of Trlx;peri is mbh. However, we are interested in
the inspiral of a BD into the MBH, and hence the mass
that is relevant for the right-hand side is mBD. We assume
here that e ∼ 1, which is the characteristic eccentricity of
EMRIs when they form [42], so that the function fðeÞ
that appears in TGWða; eÞ [41] can be approximated
as fðeÞ ¼ 425=ð768 ffiffiffi

2
p Þ.

We assume Newtonian parabolic orbits because BDs will
have semimajor axes much larger than their pericenter
distance. We hence equate the Newtonian value of the
pericenter distance of the last stable parabolic orbit around
the massive black hole [10] to the pericenter distance,

8GMBH

c2
¼ að1 − eÞWðι; sÞ: ð25Þ

In this equation, we have multiplied the right-hand side by
the function Wðι; sÞ, which takes into account the impact
of the asymmetry between prograde and retrograde orbits
on the location of the LSO for a Kerr MBH with respect to
the Schwarzschild case (at a distance 4RS) [49]. This
function depends on the inclination of the orbit, ι, and
the magnitude of the spin of the MBH, s.
Therefore, we obtain that

TGWða; eÞ ∼
ffiffiffi
2

p 24

85

c5

G3

a4ð1 − eÞ7=2
mBDM2

BH
: ð26Þ

From Eqs. (24), (18), and (22), we can obtain the relation
between a and e, the threshold curve between the dynam-
ics-dominated regime and the gravitational-wave one,
which we use for the dashed, red curve of Fig. 5,

FIG. 5. Definition of the critical radius acrit in the phase space in
the semimajor axis (in parsecs) and eccentricity plane,
a − ð1 − eÞ, for the inspiral of a BD of mass mBD ¼ 0.05 M⊙,
into a MBH of mass 4 × 106 M⊙. The dashed, blue lines are
isochrones depicting the inspiral time TGW in years of the binary,
were this to evolve only due to the emission of gravitational
radiation, as estimated in the approximation of [47]. When a
system crosses one of the isochrones, it will inspiral in a time as
shown by the corresponding curves. The green curves show the
relation between a and e as estimated in the work of [41], again
under the same assumption. The red, dashed line gives the
threshold for two different regimes in the evolution of the binary,
as derived in Eq. (27). Above this line the binary evolves due to
two-body relaxation, while below the curve the driving mecha-
nism is the emission of GWs. The solid, black line crossing the
figure from the top left to the bottom right is the LSO for a
Schwarzschild MBH of that mass. The conjunction of the red line
with the LSO defines the critical semimajor axis acrit, which is
shown with an arrow on the y axis.
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ð1 − eÞ5=2 ¼ 4.26

ð3 − γÞð1þ γÞ3=2
85

24

1ffiffiffi
2

p
c5

G5=2

lnðΛÞ

×
M7=2

BH

N0

mBD

mbh
R3−γ
0 aγ−11=2: ð27Þ

As before, R0 is a characteristic radius, within which
relaxation is dominated by stellar-mass black holes, and
N0 is the number of them contained in that radius. Because
of the explanation we gave before about stellar-mass black
holes dominating relaxation, we choose now to set this
radius also to the influence radius, Rh, as we did with the
normalization of the BDs and MS stars.
We can see that the threshold for these binaries to

decouple from the stellar system is around a distance of
2.5 × 10−3 pc. Indeed, solving the same equations for acrit,
we have that

acrit ¼ ϵR0

�
Wðι; sÞ5=2N0 lnðΛÞ

�
MBH

mBD

��
MBH

mbh

�
−2
� 1

γ−3
;

ð28Þ

where we have defined

ϵ ≔
�

C
4.26

6144

85
ð3 − γÞð1þ γÞ3=2

� 1
γ−3
: ð29Þ

Adopting γ ¼ 1.75, R0 ¼ Rh ¼ 3 pc, we have that BDs
have the following acrit at the GC:

acrit ∼ 2.89 × 10−3 pcWðι; sÞ−2

×

�
MBH

4 × 106 M⊙

�
4=5

�
mBD

0.05 M⊙

�
4=5

×

�
mbh

10 M⊙

�
−8=5

�
N0

104

�
−4=5

�
lnðΛÞ
12

�
−4=5

: ð30Þ

In Fig. 5 we depict this threshold for the same values
in phase space for the values of γ and β of [39]. We note
that our analytical model does not take into account the
fact that dynamical friction will bring in more stellar-mass
black holes within the influence radius. For instance, the
Milky Way models of [45] find ∼2 × 104 stellar-mass
black holes at a distance of R ¼ 1 pc. However, since
the dependency of acrit on N0 has an exponent of 4=5,
the difference is small. This is also true for the dependency
on mBD, with, e.g., acrit ∼ 5 × 10−3 pcWðι; sÞ−2 for
mBD ¼ 0.1 M⊙.
The minimum radius is the distance within which we

expect to have at least one object to start the integration.
This can be derived from Eq. (8) taking into account that
NBD

0 MS ¼ MBH=m̄�. Hence,

amin ≃ 1.65 × 10−5 pcf−2=3�;sub

�
Rh

1 pc

�
; ð31Þ

with f�;sub the fraction of substellar objects or stars taken
into consideration, and adopting β ¼ 3=2.
With all of the quantities defined, we substitute them into

Eq. (12) and find that the integral has as a solution

_ΓX-MRI ¼
3 − β

2λ

NBD
0 MS

T0Rλ
h

fBDsub

×

�
aλcrit

�
lnðΛcritÞ −

1

λ

�
− aλmin

�
lnðΛminÞ −

1

λ

��
;

ð32Þ

where we have introduced

λ ≔ 9=2 − β − γ;

Λcrit ≔
�
acrit
8RS

�
;

Λmin ≔
�
amin

8RS

�
: ð33Þ

E. Results for two classical examples

We now give two examples for the values of the critical
parameters for two different solutions of the power laws.
For historical reasons, we use the values derived by [39],
but note that the values found by the authors, γ ¼ 7=4 and
β → 3=2, are a (heuristically) generalized solution of their
earlier work [21] that only depends on the mass ratio of the
two different populations. While this solution is math-
ematically correct, it assumes a stellar population in which
50% of all stars are stellar-mass black holes. We refer to this
model using the sub- and superscript “BW.”
We then give a more accurate value, which corresponds

to more appropriate number fractions. This translates into a
more efficient diffusion, as noted by [50,51]. In particular,
γ ¼ 2 and the population of stars with lighter masses
β ¼ 3=4, as found with the direct-summation N-body
simulations of [51] (see also [52]). The notation in this
case is “SMS” (i.e., strong-mass segregation, a term coined
by Tal Alexander).
For legibility, we now introduce the following notation

for standard values of normalization:

Λ̃ ≔
�
lnðΛÞ
13

�
; Ñ0 ≔

�
N0

12000

�
;

R̃0 ≔
�

Rh

1 pc

�
; m̃BD ≔

�
mBD

0.05 M⊙

�
: ð34Þ

We have chosen the value of Λ̃ based on the fact that the
galactic nucleus is a non-self-gravitating system, so that
lnðΛÞ ≃ lnðMBH=mbhÞ ∼ 12.9 (see, e.g., [5]).
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The BW case leads to the following results for the critical
radius and the normalization timescale T0:

aBWcrit ∼ 8 × 10−4 pcWðι; sÞR̃0Ñ
−4=5
0 Λ̃−4=5m̃4=5

BD ;

TBW
0 ∼ 10.34 × 109 yrsR̃3=2

0 Ñ−1
0 Λ̃−1: ð35Þ

Hence, the BW event rate is

_ΓBW∼ 1.8× 10−4 yrs−1Ñ0Λ̃R̃
−11=4
0

×

�
1.34× 10−4R̃5=4

0 Ñ−1
0 Λ̃−1m̃BDWðι;sÞ

×

�
ln ð262R̃0Ñ

−4=5
0 Λ̃−4=5m̃4=5

BDWðι; sÞ−2Þ− 4

5

�

− 6.86×10−25=4R̃5=4
0 ×

�
lnð15.22R̃0Þ−

4

5

��
: ð36Þ

The same quantities calculated for the SMS case are

aSMS
crit ∼ 1.4 × 10−4 pcWðι; sÞ−5=4R̃0Ñ−1

0 Λ̃−1m̃BD;

TSMS
0 ∼ 1.13 × 109 yrsR̃3=2

0 Ñ−1
0 Λ̃−1: ð37Þ

With these, the event SMS rate can be derived to be

_ΓSMS ∼ 2.3 × 10−3 yrs−1R̃−5=2
0 Ñ0Λ̃

× f1.4 × 10−4R̃0Ñ−1
0 Λ̃−1m̃BDWðι; sÞ−5=2

× ½ln ð46R̃0Ñ−1
0 Λ̃−1m̃BDWðι; sÞ−5=2Þ − 1�

− 4.67 × 10−7R̃0 × ½ln ð15.24R̃0Þ − 1�g: ð38Þ

In Fig. 6 we show a few examples for the SMS cases,
including one for the BW. The rates typically are about
10−5 yr−1 for the SMS case and 1 order of magnitude less
for the less realistic BW scenario.

F. A check of our model

Thanks to Eqs. (32), (28), and (22), we can evaluate our
results by simplifying our analysis to the specific case of
stellar-mass black holes. We can easily recalculate the
previous equations for this kind of stellar objects and define
the quantity m̃bh ≔ mbh=ð10 M⊙Þ by analogy with the
previous section. We find that the event rate for the BW
case is

FIG. 6. Number of sources per year at the GC that successfully inspiral toward SgrA* as a function of the spin of the MBH and the
inclination of the orbit ι in rad, for typical values of the mass of the BD. We include as well two different values of the influence radius,
which is the value we have chosen for the normalization radius R0, of 1 pc (for being a traditional value in the related literature) and of
3 pc (according to more recent observations; see [32,38]). We show three characteristic combinations for the SMS scenario and one for
the less realistic BW case.
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_ΓBW;bh ∼ 2.63 × 10−6 yrs−1Ñ0Λ̃R̃
−5=2
0 m̃2

bh

× f5 × 10−2R̃0Ñ
−4=5
0 Λ̃−4=5m̃4=5

bh Wðι; sÞ−2

× ½ln ð16318R̃0Ñ
−4=5
0 Λ̃−4=5m̃4=5

bh Wðι; sÞ−2Þ − 1�
× 2 × 10−3R̃0 × ½ln ð618R̃0Þ − 1�g: ð39Þ

For the standard value of m̃bh ¼ 1 (and the rest of the
parameters set to unity), we recover the usual rate of
_ΓBW;bh ∼ 10−6 yr−1 (see, e.g., [5] and references therein).
For more massive stellar-mass black holes, in particular
for m̃bh ¼ 4 (i.e., mbh ¼ 40 M⊙), which is the scenario
recently proposed by [53] for EMRIs at the GC, we
find a slightly enhanced rate, but still negligible,
_ΓBW;bh ∼ 6.2 × 10−5 yr−1.
For completeness, we give now the case corresponding

to SMS,

_ΓSMS;bh ∼ 1.92 × 10−6 yrs−1Ñ0Λ̃R̃−2
0 m̃2

bh

× f1.6 × 10−1R̃1=2
0 Ñ−1=2

0 Λ̃−1=2m̃1=2
bh Wðι; sÞ−5=4

× ½ln ð9138R̃0Ñ−1
0 Λ̃−1m̃bhWðι; sÞ−5=2Þ − 2�

− 4 × 10−2R̃1=2
0 × ½ln ð618R̃0Þ − 2�g: ð40Þ

V. NUMBER OF SOURCES IN BAND

Contrary to EMRIs, which are more massive, X-MRIs
spend a long time in band, because they undergo ∼108
cycles before they cross the event horizon of the MBH. In
Fig. 2 we see that they can spend as much as ∼106 yr−1
with a SNR > 10. Since the event rate at the GC is of about
_ΓX-MRI ∼ 10−5 yr−1, we could naively argue that at any
given time there should be ∼10 × _ΓX-MRI sources at differ-
ent frequencies. These would have different SNRs, from
tens to a few 103 or even ≳104, depending on their mass.
However, not all of these objects will be successful

X-MRIs, because their semimajor axis must be below a
threshold value, which we henceforth call aband. To derive
this value and, therefore, the number of sources at any
given time, we need to evaluate the number of sources N at
any given semimajor axis a; i.e., we need to assess the
(line) density function

g ¼ dN
da

ð41Þ

as a function of a. In Fig. 7 we depict an illustrative shape
of g. Because of the slow diffusion, g must have larger
values at larger values of a. However, the number of
sources sweeping the different ranges of values for
a is constant, so that ΔNðt ¼ ΔtÞ ¼ ΔNðt ¼ 0Þ. This is
equivalent to

Δtðvrgr − vlglÞ ¼ −ðgðΔtÞΔa − gð0ÞΔaÞ; ð42Þ

where vl, gl (and vr, gr) are, respectively, the values of the
velocity and density function of the left (right), dashed line
of Fig. 7. gð0Þ is the density function at time t ¼ 0 and
gðΔtÞ after a time Δt, where the negative sign accounts for
the fact that we are losing sources when crossing amin.
Therefore,

vrgr − vlgl
Δa

¼ −
gðΔtÞ − gð0Þ

Δt
: ð43Þ

In the limit Δt → 0, this can be written as the continuity
equation

∂
∂a ð _aða; eÞgÞ þ

∂g
∂t ¼ 0; ð44Þ

where _aða; eÞ is the velocity, and it is a function of the
semimajor axis a and the eccentricity e. Its explicit form
can be found in [41] in the approximation of Keplerian
ellipses,

_aða; eÞ ¼ −
64

5

G3MBHmBDðMBH þmBDÞ
c5a3ð1 − e2Þ7=2

×

�
1þ 73

24
e2 þ 37

96
e4
�
: ð45Þ

FIG. 7. Density of sources g ¼ dN=da as a function of a.
Sources come from larger values of a, up to a maximum value at
amax——is equivalent to acrit—and diffuse toward lower values,
down to a minimum amin. Sources with semimajor axis values
above aband emit GWs but at too low frequencies for detection.
Those that cross the threshold value are in band. Sources above
abreak have large eccentricities, while sources below it can be
regarded as circular. In the text we derive the amount of sources in
the regimes marked as I (with semimajor axis values between
amin and abreak), II (between abreak and aband), and III (between
aband and amax).
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Equation (44) states that the rate at which sources enter the
range of semimajor axis values is equal to the rate of
sources leaving the system plus their accumulation. Since
the density function does not vary in time, the right term
vanishes. After integrating we obtain

_aða; eÞg ¼ K; ð46Þ

with K a constant. In Fig. 7 we display a representative
illustration of aband. The total number of sources is the
number of inspiraling BDs we derived in Sec. IV and is
comprised between the values amax and amin, so that all we
need to do is to obtain the relative occupation fractions in
the two areas to derive the number of sources detectable
by LISA, i.e., those with a semimajor axis between aband
and amin.
From Eqs. (41) and (46), we have that

dN
da

¼ K
_aða; eÞ : ð47Þ

In order to integrate this function, we must distinguish two
different regimes. Those X-MRIs with semimajor axis
values above a threshold abreak still have a significant
amount of eccentricity, while for lower values of the
semimajor axis, the systems will be circular, or close to
circular. We first address the eccentric regime. In Eq. (45)
we now use the fact that the pericenter distance is
rp ¼ að1 − eÞ. Therefore,

dN ¼ ZðeÞr7=2p a−1=2da; ð48Þ

where we have introduced

ZðeÞ≡ −
5K
64

c5

G3

LðeÞ
MBHmBDðMBH þmBDÞ

ð49Þ

and

LðeÞ ≔ ð1 − eÞ7=2
ð1þ 73

24
e2 þ 37

96
e4Þ : ð50Þ

Since we are considering high values of eccentricity, rp
is constant to first order (as can be seen in Fig. 3) and can
be taken out of the integral. In addition, e ∼ 1 so that LðeÞ
is constant and can also be taken out of the integral.
Therefore, the number of sources between amax and abreak is

dN
da

				
a>abreak

¼ dN
da

				
abreak

�
a

abreak

�
−1=2

; ð51Þ

where we have normalized the distribution to abreak.
Integrating,

Nða>abreakÞ¼2×abreak
dN
da

				
abreak

��
a

abreak

�
1=2

�
amax

abreak

: ð52Þ

For a < abreak, we need to take into account that e ∼ 0 in
Eq. (45), so that

dN
da

				
a<abreak

¼ dN
da

				
abreak

�
a

abreak

�
3

; ð53Þ

and, as in Eq. (51), we have normalized to the conjunction,
abreak. Therefore,

Nða<abreakÞ¼
1

4
×abreak

dN
da

				
abreak

��
a

abreak

�
4
�
amin

abreak

: ð54Þ

By using Eq. (51), we obtain the ratios for the number of
sources in II and III of Fig. 7,

NII

NIII
¼ a1=2band − a1=2break

a1=2max − a1=2band

: ð55Þ

Likewise, by using Eqs. (51) and (54), we can obtain the
ratio of sources between the region I [i.e., Nða < abreakÞ]
and IIþ III [i.e., Nða > abreakÞ],

NI

NII þ NIII
¼ 1

8
×

1 − ðamin=abreakÞ4
ðamax=abreakÞ1=2 − 1

: ð56Þ

Finally, as we have discussed at the beginning of this
section, we know that the total number of sources in I and II
is Eq. (32) multiplied by the typical lifetime of these
sources at a given eccentricity with a minimum SNR of 10,
Tðamax; eÞ ∼ 2 × 106 yr−1,

NI þ NII ¼ _ΓX-MRI × Tðamax; eÞ: ð57Þ

The plunge radius is amin ¼ 2 × RS ∼ 7.67 × 10−7 pc.
From Fig. 3, we see that a representative value of
abreak ∼ 4RS ∼ 1.53 × 10−6 pc. The value of amax is given
by Eq. (30), and a representative value of aband with
SNR ¼ 10 can be directly read from Fig. 3. Therefore,
we obtain that

NI ∼ 5; NII ∼ 15: ð58Þ

We note that these values fluctuate by a multiplying
factor of a few depending on the location of aband, which
depends on the initial eccentricity of the source.

VI. CONCLUSIONS

Brown dwarfs can inspiral in our Galactic Center on to
SgrA* via the emission of gravitational waves without
suffering significant tidal stresses.
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Because they have a mass ratio of q ∼ 108, the time these
systems spend in the LISA band is very long, since the
number of times they revolve around the MBH is propor-
tional to q. These systems, which we call X-MRIs, start to
accumulate a signal-to-noise ratio of SNR ¼ 10 some
∼2 × 106 yrs before the final plunge through the event
horizon. At 105 yrs before the merger, they achieve typically
SNR ∼ few102, and achieve values as high as SNR ∼ 104 a
thousand yrs before the plunge. Since SNR is inversely
proportional to the distance of the source, these systems are
also detectable in nearby galaxies, or dwarf satellite galaxies,
with the proviso that the MBH is in the range of masses of
detection, such as Messier 32. For a MBH mass of MBH ¼
106 M⊙ andmBD ¼ 0.05 M⊙, X-MRIs are detectable out to
50 Mpc with an SNR ¼ 10 200 yrs before the plunge.
A statistical treatment of the distribution of orbits in

phase space that takes into account the asymmetry of the
number of pro- and retrograde orbits on the location of the
LSO yields that every ∼105 yrs one of these objects should
cross the event horizon of SgrA*. The number of X-MRIs
in band, however, is much larger. We have checked the
results of our derivation by simplifying it to a single stellar
mass species, the case of stellar-mass black holes, and we
recover the usual results of the literature that the event rates
per year are negligible in our GC, of ∼10−6, even if the
mass of the stellar-mass black holes is set to 40 M⊙.
These potential sources evolve extremely slowly, as

compared to stellar-mass black hole EMRIs. By analyzing
the line density function in phase space, we derive that
there are about 15 X-MRIs at low frequencies with high
eccentricities and associated SNRs of ≃ a few100, and
about 5, at higher frequencies, i.e., at very high SNRs (from
a few 100 up to 2 × 104), in circular or almost circular
orbits. These numbers can be enhanced by a multiplying
factor of a few depending on the eccentricity of the sources
when they form.
The higher the SNR, the faster X-MRIs evolve in fre-

quency. However, even if it is less likely that LISA will
observe an X-MRI of SNR 20,000 as compared to one of a
few 100, the very loud systems live in band for as much as a
few thousand years. A SNR of a few 100 could already be
problematic in the detection of a binary of SMBHs, and an
X-MRI with SNR of a few 1000 could bury the signal.
Moreover, since X-MRIs can be detected for very long
periods of time with a high eccentricity, this will be a
challenge from thepoint of viewofdata analysis, as compared
to regular EMRIs. The valueswe have adopted to derive these
results are conservative, so that one should take into account
that X-MRIs might pose a problem if not in the detection
of MBH binaries, then in their parameter extraction.

Also, we are artificially decreasing the event rate because
we are limited in our analytical approach to pure power
laws. In numerical simulations the power law decreases as
one approaches the innermost radii. By populating this
region with more stellar-mass black holes, we are artifi-
cially increasing Trlx, and hence decreasing the event rate,
as it can be seen in Eq. (12). A more realistic approach
should lead to an enhanced event rate, and therefore to
more sources in band.
X-MRIs are interesting because backreaction depends on

the mass ratio, which means that at q ∼ 108, these systems
are closer to a geodesic than EMRIs formed with larger q.
This means that approximations in the calculation of the
orbit are closer to the actual inspiral, and hence easier to
model. A consequence is that it should not be difficult to
separate X-MRI signals from (potentially) weaker ones,
such as binaries of MBHs. Because they can reach very
large SNRs, and evolve very slowly in frequency, the
parameter extraction can be done in detail. Contrary to
EMRIs, X-MRIs can be regarded as monochromatic
sources for space-borne detectors. To map spacetime
around supermassive black holes in a fashion similar to
EMRIs, a certain number of different X-MRIs would be
required with different parameters such as semimajor axes
and inclinations. A detailed parameter study such as the
role of phase accuracy in the waveform that can be achieved
thanks to the high SNR is out of the scope of this paper and
will be presented in a separate study.
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